JP3638724B2 - Overhead wire measuring device and crossover wire measuring method - Google Patents

Overhead wire measuring device and crossover wire measuring method Download PDF

Info

Publication number
JP3638724B2
JP3638724B2 JP18682996A JP18682996A JP3638724B2 JP 3638724 B2 JP3638724 B2 JP 3638724B2 JP 18682996 A JP18682996 A JP 18682996A JP 18682996 A JP18682996 A JP 18682996A JP 3638724 B2 JP3638724 B2 JP 3638724B2
Authority
JP
Japan
Prior art keywords
light
line
substrate
light receiving
main line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18682996A
Other languages
Japanese (ja)
Other versions
JPH1016608A (en
Inventor
慶一 村上
修 加藤
祐一 岩間
昌美 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanwa Tekki Corp
Original Assignee
Sanwa Tekki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanwa Tekki Corp filed Critical Sanwa Tekki Corp
Priority to JP18682996A priority Critical patent/JP3638724B2/en
Publication of JPH1016608A publication Critical patent/JPH1016608A/en
Application granted granted Critical
Publication of JP3638724B2 publication Critical patent/JP3638724B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電車線の高さ及び偏位を非接触で測定する可搬型の架線測定装置と、渡り線箇所での本装置の使用方法に関するものである。
【0002】
【発明が解決しようとする課題】
トロリ線の高さと偏位を適正に維持しておくことは電気鉄道の正常な走行に欠かせないことである。従来は両者の測定に立上がり式測定器を用い、トロリ線に接触させる原始的な方法をとっていた。これの改善策としてレーザ光線を使用した非接触型のものが実開平5−45510で開示されている。垂直と傾斜の2本のレーザ光線を用い、垂直レーザ光線の水平移動で偏位を、また傾斜レーザ光線の傾斜角から高さを計るようにしたものである。しかしこの方法では横移動量の誤差がごく僅かであってもこれに対する高さ誤差が大きくなり、実用性に問題がある。
高さと偏位の測定が特に重要とされるのは渡り線部分である。本線から側線へ、逆に側線から本線へ移行する場合、高さと偏位が適正範囲に収まっていない場合、パンタグラフがトロリ線上へ割込む事故を発生する。非接触で確実な測定が可能であり、割込み事故防止に貢献できる装置の出現が待望されている。
【0003】
【課題を解決するための手段】
両レールに渡しかけた短冊状基板へ、その中心から左右対称位置に基軸を設ける。各基軸には受光筒を固着しておく。附設のステップモータによりこの両軸は受光筒が垂直位置を中心に適当角度傾斜可能とし、その傾斜角を読取り可能としておく。受光筒は、自然光によるときは上部電車線の像影をとらえ、そのときの電車線位置における受光筒の角度を知れば電車線の高さ、偏位を算出可能である。また光源によるときは両軸に投光筒と受光筒とを並列に固着し、受光筒で反射光をとらえ、そのときの受光筒の角度を知れば自然光同様に電車線の高さ、偏位を算出可能である。投光筒にはレーザ光線をはじめ、ハロゲンランプ、発光ダイオード等の光源装置を内蔵させておく。次に述べる如く、例えばトロリ線の高さHと偏位dを算出することができる。
図1は基軸S1,S2(この間隔はA)から回動させた受光筒がトロリ線T(高さH)をとらえたときの三角形であり、3辺をA,B,C、三つの角度θ1,θ2,θ3で示す。
【数1】

Figure 0003638724
上式でAは一定であり、θ3は180度からθ1+θ2を引いたものである。従ってθ1とθ2を測ればHがわかる。
またS1S2線中心垂線をPPとすると同図に於いて
【数2】
Figure 0003638724
となる。従ってθ1,θ2の測定でdも同時にわかる。点TがPP線の上或いはその左側にある場合は、dが零になるか、負の数値になるかの違いだけである。従って附設のコンピューターにθ1,θ2を入力することによって即時Hとdを算出可能であり、画像を目視することも出来る。
【0004】
次に渡り線の測定を図2について述べる。ここでは両軸に投光筒と受光筒とを並列に設けた場合の実施例にもとづいて説明する。本線T1から側線T2を分岐させた場合、本線上で分岐点がわずかに通りすぎた位置にこの装置を定置し、まず前記の如く両投光筒を対向傾斜させてトロリ線T1についての角θ1,θ2を測定する。次に両投光筒を共に側線側へ傾斜させるとトロリ線T2に光軸が合って、同様にこの場合のθ1,θ2を測る。これにより本線T1,側線T2の高さと偏位を算出可能であり、高さに関しては図2の如く同一画像上で両線の高さと、高さ差hを見ることができる。ここで使用する光学系機器は、望遠レンズ系で構成しているので、測定対象までの距離が5m位であれば特に焦点を合わせる必要はない。
連続性のある本線を基準に、側線の始端部を測定するのであるから、渡り線としての適否を端的に判定することが出来る。
【0005】
【発明の実施の形態】
図3,図4について実施例を述べる。基板1は両レールR上へ渡しかけた短冊状枠体で、下部にタテ横1対のローラ1a,1bを備え、これによってレール上へ緊密に位置決めされ、レールに沿い移動可能である。基板1は中央から対称位置に1対の基軸2を軸支する。各基軸には受光筒4を固着してある。基軸には別にステッピングモータMが設けてあって、受光筒4の光軸傾斜角度を検知可能としてある。受光筒の光センサは、センサ電圧の変化によって自然光のときの上部トロリ線の像影をとらえ、そのときの受光筒の角度を認識して電車線の位置、角度を検出する。
以上は測定環境が自然光の場合であるが、測定が終電車通過後の夜間作業になることが多いので、両軸に投光筒3を受光筒4と並列に固着し、これにレーザ光線をはじめ、ハロゲンランプ、発光ダイオード、白熱ランプ等の光源装置を内設する。図5は投光筒3と受光筒4とを併設したときの実施例を示す斜視図である。
投光筒の光源はトロリ線を照射し、受光筒でその反射光をとらえ、そのときの角度を検出する。
図2は本線T1から側線T2を分岐させた、いわゆる渡り線の測定を示すものであるが、両投光筒を対向傾斜させてトロリ線T1及び側線T2に光源を照射し、夫々に光軸が合ったときの角度θ1,θ2を測定する。これにより両線の高さと偏位が付設コンピュータ(図示せず)により算出可能である。また両線の高さと夫々の高さの差hは同一画像上で確認できる。
図6はセンサ電圧測定図の一例である。上の線Aは一方の側の受光筒、下の線Bは他側受光筒によるもので、下向き突起は、夫々トロリ線を検知したときのものである。両突起の位置のズレは偏位の存在によるものであり、きざし波状起伏は風による揺れを示す。
両突起を生じたときの受光筒の傾斜角度値は直ちに付設のコンピュータに投入され、高さと偏位を即座に読取可能とする。装置をレールに沿うて移動させながら変化を連続的に読取ることも可能である。
【0006】
【発明の効果】
トロリ線に触れることもなく高さと偏位を無理なく即座に知ることができる。渡り線についても本線上の同一位置で、本線側線両者の測定を行うことによって両者を対比可能とし、割り込み事故防止に貢献する。
【図面の簡単な説明】
【図1】本装置の原理説明図である。
【図2】渡り線測定の原理説明図である。
【図3】本装置の正面図である。
【図4】同平面図である。
【図5】投光筒と受光筒とを併設した斜視図である。
【図6】光センサ電圧の変化記録図である。
【符号の説明】
1 基板
2 基軸
3 投光筒
4 受光筒
M ステップモータ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a portable overhead wire measurement device that measures the height and displacement of a train line in a non-contact manner, and a method of using the device at a crossover location.
[0002]
[Problems to be solved by the invention]
Proper maintenance of the height and displacement of the trolley line is essential for the normal operation of electric railways. Conventionally, a rise-up type measuring instrument was used for both measurements, and a primitive method of contacting the trolley wire was used. As a countermeasure for this, a non-contact type using a laser beam is disclosed in Japanese Utility Model Laid-Open No. 5-45510. Two laser beams, vertical and inclined, are used, the displacement is measured by horizontal movement of the vertical laser beam, and the height is measured from the inclination angle of the inclined laser beam. However, in this method, even if the error of the lateral movement is very small, the height error corresponding to this is large, and there is a problem in practicality.
It is the crossover section where height and excursion measurements are particularly important. When moving from the main line to the side line, and conversely from the side line to the main line, if the height and excursion are not within the proper range, an accident will occur where the pantograph breaks into the trolley line. There is a long-awaited appearance of a device that can perform non-contact and reliable measurement and contribute to prevention of interruption accidents.
[0003]
[Means for Solving the Problems]
A base axis is provided at a symmetrical position from the center of the strip-shaped substrate passed to both rails. A light receiving tube is fixed to each base shaft. The attached step motor enables the light receiving tube to tilt at an appropriate angle around the vertical position, so that the tilt angle can be read. The light receiving tube captures an image of the upper train line when it is caused by natural light, and the height and deviation of the train line can be calculated by knowing the angle of the light receiving tube at the train line position at that time. In addition, when using a light source, a light projecting tube and a light receiving tube are fixed in parallel on both axes, the reflected light is captured by the light receiving tube, and if the angle of the light receiving tube at that time is known, the height and displacement of the train line as in natural light Can be calculated. A light source device such as a laser beam, a halogen lamp, or a light emitting diode is built in the projection tube. As will be described below, for example, the height H and the displacement d of the trolley wire can be calculated.
FIG. 1 shows a triangle when the light receiving tube rotated from the base axes S1 and S2 (this interval is A) captures the trolley line T (height H), and three sides are A, B, C, and three angles. Indicated by θ1, θ2, and θ3.
[Expression 1]
Figure 0003638724
In the above equation, A is constant, and θ3 is 180 degrees minus θ1 + θ2. Therefore, H can be found by measuring θ1 and θ2.
In addition, if the central perpendicular of the S1S2 line is PP,
Figure 0003638724
It becomes. Therefore, d can be determined simultaneously by measuring θ1 and θ2. If the point T is above or to the left of the PP line, the only difference is whether d is zero or negative. Therefore, by inputting θ1 and θ2 into the attached computer, H and d can be calculated immediately, and the image can be visually observed.
[0004]
Next, the crossover measurement will be described with reference to FIG. Here, a description will be given based on an embodiment in which a light projecting tube and a light receiving tube are provided in parallel on both axes. When the side line T2 is branched from the main line T1, the apparatus is placed at a position where the branch point slightly passes on the main line, and first, as described above, the two projection tubes are inclined to face each other, and the angle θ1 about the trolley line T1 is set. , Θ2 are measured. Next, when both the light projecting tubes are inclined to the side line side, the optical axis is aligned with the trolley line T2, and θ1 and θ2 in this case are similarly measured. Thus, the height and displacement of the main line T1 and the side line T2 can be calculated, and regarding the height, the height of both lines and the height difference h can be seen on the same image as shown in FIG. Since the optical system apparatus used here is composed of a telephoto lens system, it is not necessary to focus in particular if the distance to the measurement object is about 5 m.
Since the starting end portion of the side line is measured on the basis of the continuous main line, the suitability as a crossover can be determined simply.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment will be described with reference to FIGS. The substrate 1 is a strip-shaped frame that is passed over both rails R, and is provided with a pair of horizontal rollers 1a and 1b at the lower portion thereof, so that it is closely positioned on the rails and can move along the rails. The substrate 1 pivotally supports a pair of base shafts 2 at symmetrical positions from the center. A light receiving tube 4 is fixed to each base shaft. A stepping motor M is separately provided on the base shaft so that the optical axis tilt angle of the light receiving tube 4 can be detected. The light sensor of the light receiving cylinder captures the image of the upper trolley line in the natural light by the change of the sensor voltage, recognizes the angle of the light receiving cylinder at that time, and detects the position and angle of the train line.
The above is the case where the measurement environment is natural light. However, since the measurement is often performed at night after passing the last train, the light projecting cylinder 3 is fixed in parallel with the light receiving cylinder 4 on both axes, and laser beams and the like are added thereto. In addition, a light source device such as a halogen lamp, a light emitting diode, or an incandescent lamp is installed. FIG. 5 is a perspective view showing an embodiment when the light projecting cylinder 3 and the light receiving cylinder 4 are provided side by side.
The light source of the light projecting tube emits a trolley line, the reflected light is captured by the light receiving tube, and the angle at that time is detected.
FIG. 2 shows a so-called crossover measurement in which the side line T2 is branched from the main line T1, and both light projecting tubes are inclined to face each other to illuminate the trolley line T1 and the side line T2 with light sources, respectively. Measure the angles θ1 and θ2 when. Thereby, the height and deviation of both lines can be calculated by an attached computer (not shown). Further, the difference h between the heights of the two lines and the respective heights can be confirmed on the same image.
FIG. 6 is an example of a sensor voltage measurement diagram. The upper line A is from the light receiving cylinder on one side, the lower line B is from the other light receiving cylinder, and the downward projections are when the trolley line is detected. The deviation between the positions of the two protrusions is due to the presence of the deviation, and the wavy undulations indicate the shaking by the wind.
The inclination angle value of the light receiving cylinder when both protrusions are generated is immediately input to an attached computer so that the height and deviation can be read immediately. It is also possible to read changes continuously while moving the device along the rail.
[0006]
【The invention's effect】
Without touching the trolley line, you can immediately know the height and deviation without difficulty. The crossover line can be compared at the same position on the main line by measuring both of the main line and contributes to the prevention of interruption accidents.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating the principle of this apparatus.
FIG. 2 is a diagram illustrating the principle of crossover measurement.
FIG. 3 is a front view of the apparatus.
FIG. 4 is a plan view of the same.
FIG. 5 is a perspective view in which a light projecting tube and a light receiving tube are provided side by side.
FIG. 6 is a change recording diagram of an optical sensor voltage.
[Explanation of symbols]
1 Substrate 2 Base 3 Emitting tube 4 Receiving tube M Step motor

Claims (3)

左右レールの上面とレール頭内面に沿い移動可能な短冊形基板と、基板の中央から左右対称位置で基板上に軸支された1対の基軸と、一端が基軸に固着され自然光による電車線の像影を形成可能な受光筒と、基板に附設のモータにより前記の受光筒を所定角度範囲内俯仰可能とした駆動装置と、受光筒に接続し受光筒の傾斜角から電車線の高さと偏位を算出可能な計算装置とから成る架線測定装置を用意し、本線から側線を分岐する分岐点附近に於いて、本線レールセンタから側線までの距離が適正値となる点で、本線レール上に基板を位置させ、受光筒を対向傾斜させて俯仰回動させ、本線および側線の位置角度から両線の高さと偏位を測るようにした渡り線測定方法。   A strip-shaped board that can move along the upper surface of the left and right rails and the inner surface of the rail head, a pair of base axes that are pivotally supported on the board in a symmetrical position from the center of the board, A light receiving cylinder capable of forming an image shadow, a driving device that allows the above-mentioned light receiving cylinder to be raised and lowered within a predetermined angle range by a motor attached to the substrate, and the height and deviation of the train line from the inclination angle of the light receiving cylinder connected to the light receiving cylinder. An overhead line measuring device consisting of a calculation device capable of calculating the position is prepared, and on the main rail, the distance from the main rail center to the side line becomes an appropriate value near the branch point where the main line branches from the main line. A crossover measurement method in which a substrate is positioned, a light receiving cylinder is inclined to face and rotate up and down, and the height and deviation of both lines are measured from the position angle of the main line and the side line. 左右レールの上面とレール頭内面に沿い移動可能な短冊形基板と、基板の中央から左右対称位置で基板上に軸支された1対の基軸と、一端が基軸に固着され光源による反射光を受光可能な受光筒と、一端が基軸へ固着され受光筒と並列に所定角度範囲内を俯仰可能とし光源を投光可能な投光筒と、基板に附設のモータにより前記の受光筒と投光筒を所定角度範囲内俯仰可能とした駆動装置と、受光筒に接続し受光筒の傾斜角から電車線の高さと偏位を算出可能な計算装置とから成る架線測定装置を用意し、本線から側線を分岐する分岐点附近に於いて、本線レールセンタから側線までの距離が適正値となる点で、本線レール上に基板を位置させ、受光筒を対向傾斜させて俯仰回動させ、本線および側線の位置角度から両線の高さと偏位を測るようにした渡り線測定方法。   A strip-shaped substrate that can move along the upper surface of the left and right rails and the inner surface of the rail head, a pair of base shafts that are pivotally supported on the substrate in a symmetrical position from the center of the substrate, and one end that is fixed to the base shaft to reflect light from the light source A light-receiving tube capable of receiving light, a light-projecting tube whose one end is fixed to the base shaft and can be raised and lowered within a predetermined angle range in parallel with the light-receiving tube, and the light-receiving tube and the light projecting by a motor attached to the substrate An overhead wire measuring device is prepared, which consists of a drive device that allows the tube to be raised and lowered within a predetermined angle range, and a calculation device that is connected to the light receiving tube and can calculate the height and deviation of the train line from the inclination angle of the light receiving tube. In the vicinity of the branch point where the side line is branched, at the point where the distance from the main line rail center to the side line is an appropriate value, the board is positioned on the main line rail, the light receiving cylinder is inclined to face up and down, and the main line and Measure the height and deviation of both lines from the position angle of the side lines Unishi was a crossover measurement method. 左右レールの上面とレール頭内面に沿い移動可能な短冊形基板と、基板の中央から左右対称位置で基板上に軸支された1対の基軸と、一端が基軸に固着され光源による反射光を受光可能な受光筒と、一端が基軸へ固着され受光筒と並列に所定角度範囲内を俯仰可能としレーザ光線投光装置を備えた投光筒と、基板に附設のモータにより前記の受光筒と投光筒を所定角度範囲内俯仰可能とした駆動装置と、受光筒に接続し受光筒の傾斜角から電車線の高さと偏位を算出可能な計算装置とから成る架線測定装置を用意し、本線から側線を分岐する分岐点附近に於いて、本線レールセンタから側線までの距離が適正値となる点で、本線レール上に基板を位置させ、受光筒を対向傾斜させて俯仰回動させ、本線および側線の位置角度から両線の高さと偏位を測るようにした渡り線測定方法。   A strip-shaped substrate that can move along the upper surface of the left and right rails and the inner surface of the rail head, a pair of base shafts that are pivotally supported on the substrate in a symmetrical position from the center of the substrate, and one end that is fixed to the base shaft to reflect light from the light source A light-receiving tube capable of receiving light, a light-projecting tube having one end fixed to the base shaft and capable of rising and falling within a predetermined angle range in parallel with the light-receiving tube, and the light-receiving tube provided by a motor attached to the substrate. Prepare an overhead wire measuring device consisting of a drive device that can raise and lower the light emitting tube within a predetermined angle range, and a calculation device that can be connected to the light receiving tube and calculate the height and deviation of the train line from the inclination angle of the light receiving tube, In the vicinity of the branch point where the main line branches off from the main line, at the point where the distance from the main line rail center to the side line becomes an appropriate value, the substrate is positioned on the main line rail, the light receiving cylinder is inclined to face up and down, From the position angle of the main line and side line, A crossover measurement method to measure the position.
JP18682996A 1996-06-27 1996-06-27 Overhead wire measuring device and crossover wire measuring method Expired - Fee Related JP3638724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18682996A JP3638724B2 (en) 1996-06-27 1996-06-27 Overhead wire measuring device and crossover wire measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18682996A JP3638724B2 (en) 1996-06-27 1996-06-27 Overhead wire measuring device and crossover wire measuring method

Publications (2)

Publication Number Publication Date
JPH1016608A JPH1016608A (en) 1998-01-20
JP3638724B2 true JP3638724B2 (en) 2005-04-13

Family

ID=16195350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18682996A Expired - Fee Related JP3638724B2 (en) 1996-06-27 1996-06-27 Overhead wire measuring device and crossover wire measuring method

Country Status (1)

Country Link
JP (1) JP3638724B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101325990B1 (en) * 2013-04-05 2013-11-07 이인옥 An measure equipment of latitude for trolley line
FR3082792A1 (en) * 2018-06-22 2019-12-27 4Nrj MEASURING DEVICE FOR THE CATENARIES OF A SWITCH

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100652838B1 (en) 2005-04-26 2006-12-01 박종국 Contact wire measurement system in electric railway
JP5549488B2 (en) * 2010-09-02 2014-07-16 株式会社明電舎 Trolley wire inspection device
WO2013133779A2 (en) * 2012-03-07 2013-09-12 Robat Kontrol Otomasyon Ar Ge Ve Yazilim Catenary measurement robot and method
KR101527068B1 (en) * 2013-12-26 2015-06-09 주식회사 포스코 Distance measuring apparatus for furnace surface steel
JP6389783B2 (en) * 2015-03-11 2018-09-12 公益財団法人鉄道総合技術研究所 Crossover relative position management apparatus and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101325990B1 (en) * 2013-04-05 2013-11-07 이인옥 An measure equipment of latitude for trolley line
FR3082792A1 (en) * 2018-06-22 2019-12-27 4Nrj MEASURING DEVICE FOR THE CATENARIES OF A SWITCH

Also Published As

Publication number Publication date
JPH1016608A (en) 1998-01-20

Similar Documents

Publication Publication Date Title
US6634112B2 (en) Method and apparatus for track geometry measurement
EP3051252B1 (en) Trolley wire measurement device and trolley wire measurement method
ITVE20000036A1 (en) DETECTION EQUIPMENT OF THE CHARACTERISTIC PARAMETERS OF A RAILWAY AERIAL LINE.
ES2702630T3 (en) Procedure to measure the heights and lateral position of contact wire of the one-way overhead line
JP3638724B2 (en) Overhead wire measuring device and crossover wire measuring method
JPH07198382A (en) Laser surveying system
JP3666707B2 (en) Rail displacement detection mechanism of simple inspection vehicle
JP4562420B2 (en) Trajectory inspection apparatus and method
JP3852076B2 (en) Rail advance measuring device and measuring method
JP3221247B2 (en) Automatic guided vehicle
JP3536950B2 (en) Portable trolley wire wear measuring device
JP3442171B2 (en) Railway surveying equipment
JPH01187403A (en) Glass edge detecting device
ES2333286B1 (en) DEVICE AND PROCEDURE FOR THE INSPECTION AND / OR SUPERVISION OF AN INSTALLATION OF CHANGE OF NEEDLES PRESENTING ONE OR VARIOUS CHANGES OF NEEDLES.
KR100317957B1 (en) Method and device for recognizing damaged part of belt conveyor using laser
JPH05164519A (en) Measuring instrument for three-dimensional shape of structure surrounding railroad track
JP2803980B2 (en) Trolley wire wear measurement optical system
JP3848310B2 (en) Glass bottle inspection equipment
JPS5814029A (en) Measuring device for abrasion of trolley wire
JPH1068611A (en) Displacement measuring apparatus
JPH0686012U (en) Strain measuring device for construct
JP2001221620A (en) Optical scanning method for structural surface
JPH10185521A (en) Displacement measuring instrument
EP1710117A1 (en) Apparatus for measuring the height of the electrical contact line of a railroad, and associated method
JPH0688711A (en) Apparatus for measuring amounts of rail expansion and contraction

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees