JP3637206B2 - Raw water treatment method - Google Patents

Raw water treatment method Download PDF

Info

Publication number
JP3637206B2
JP3637206B2 JP15566198A JP15566198A JP3637206B2 JP 3637206 B2 JP3637206 B2 JP 3637206B2 JP 15566198 A JP15566198 A JP 15566198A JP 15566198 A JP15566198 A JP 15566198A JP 3637206 B2 JP3637206 B2 JP 3637206B2
Authority
JP
Japan
Prior art keywords
raw water
membrane
membrane separation
stopped
liquid level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15566198A
Other languages
Japanese (ja)
Other versions
JPH11347554A (en
JPH11347554A6 (en
Inventor
秀春 田下
正悦 加賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP15566198A priority Critical patent/JP3637206B2/en
Publication of JPH11347554A publication Critical patent/JPH11347554A/en
Publication of JPH11347554A6 publication Critical patent/JPH11347554A6/en
Application granted granted Critical
Publication of JP3637206B2 publication Critical patent/JP3637206B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、生活若しくは工業用排水その他の含汚泥原水を膜分離装置を利用して、処理水と濃縮汚泥とに分離する原水処理方法に係り、特に前記膜分離装置を複数並設し、該複数の膜分離装置の運転/停止操作を交互に切換え、そして前記停止時に洗浄及び待機を行なうことにより長期に亙って前記装置の保守を好適に実施し得る原水処理方法に関する。
【0002】
【従来の技術】
従来より、生活若しくは工業用排水その他の含汚泥原水を、処理水と濃縮汚泥とに分離する加圧式膜分離装置は公知であり、かかる膜分離装置の運転制御方法を図3に基づいて簡単に説明するに、4は液位検出装置3を具えた膜原水槽で、該膜原水槽4に貯溜された原水は膜原水ポンプ1a、1bにより膜分離装置2a、2bに圧送され、処理水と濃縮汚泥とに分離した後、膜処理水は膜処理水槽5に、濃縮汚泥は例えば次工程の脱水装置に給送されるように構成されている。
【0003】
かかるシステムにおいて、膜原水槽4の液位が任意のレベル位置R1 まで低下すると、液位検出装置3が検知し、膜原水ポンプ1a、1bを選択的に停止し、一方膜原水槽4液位が任意のレベル位置R2 まで増加すると、液位検出装置3が検知し、膜原水ポンプ1a、1bが選択的に起動するように運転制御され、常に膜原水槽4の液位が一定レベルの範囲内において膜分離が行なわれるように制御されている。
【0004】
一方、前記膜分離装置は、一般にチューブエレメント状に形成した多数本の限外濾過膜からなる膜モジュール内に原水を圧送することにより、該膜モジュール外に処理水を透過させて排出通路より次工程の膜処理水槽等に給送するように構成されているが、前記膜モジュール内に付着した汚泥除去等の為に、定期的に運転を停止して洗浄を行なう必要がある。
【0005】
この為、従来装置においては、前記膜分離装置2a、2bとこれに原水を供給する膜原水ポンプ1a、1bを複数設けると共に、該膜分離装置2a、2b夫々に液ポンプ9a、9bを介して洗浄液タンク6より洗浄液を供給可能に構成されている。そして前記膜原水ポンプ1a、1bと液ポンプ9a、9bを操作盤80により起動/停止制御を手動にて行なうようにように構成している。
【0006】
【発明が解決しようとする課題】
即ち、従来の図3に示す装置においては、前記膜分離装置の運転切換、洗浄及び運転休止等は、運転状況を確認しながら(主に膜分離装置入口圧力上昇)前記洗浄等の切換等を行なっていた為、かかる手動切換えでは前記モジュール内の傾度等にむらがある上、ある一定の膜ユニットのみの寿命がちぢむ等の問題があった。
【0007】
請求項1記載の発明は、かかる技術的課題に鑑み、前記膜分離装置の運転切換、洗浄及び運転休止等を効率よく行ない、前記膜分離装置の劣化が生じることなく所期の性能を維持し得る原水処理方法を提供することを目的とする。
また、請求項2記載の発明は、原水槽の液位レベルに応じて前記膜分離装置の運転切換えを行ないながら前記膜分離装置の運転切換、洗浄及び運転休止等を効率よく行ない、前記膜分離装置の劣化が生じることなく所期の性能を維持し得るとともに、膜分離装置内の膜モジュールの閉塞やフラックス低下が生じることなく円滑に原水を処理する得る原水処理方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明はかかる技術的課題を解決するために、請求項1記載の発明は、原水槽に流入した原水をそれぞれポンプを介して複数の膜分離装置に供給し、それぞれの膜分離装置で処理水と濃縮汚泥とに分離する原水処理方法において、
所定日程周期毎に切換え信号を出力する第1のカレンダタイマと第2のカレンダタイマを設け、該第1のカレンダタイマにより設定期間毎に前記複数の運転する系列と停止する系列とを切り換え、前記切換により停止した系列がその停止期間中に第2のカレンダタイマにより設定された周期によりその系列の膜分離装置に自動的に水押出と水洗浄を行なった後、次回運転まで待機状態となるように前記第2のカレンダタイマの所定周期が設定されていることを特徴とする。
【0009】
かかる発明によれば複数の膜分離装置の運転起動、停止、洗浄及び運転休止の各工程をカレンダタイマにてメリーゴーランド状に順次交互に切り換える運転制御を行なうことが出来る。言換えればカレンダタイマにて自動的に複数の膜分離装置の運転系列を切り換えるとともに、停止した系列は自動的に水押出と水洗浄を行なった後、次回運転まで待機することにより、記膜分離装置の劣化が生じることなく所期の性能を維持し得る。
【0010】
請求項2記載の発明は、原水槽の液位レベルに応じて前記膜分離装置の運転切換えを行なうもので、その特徴とするところは、原水槽に流入した原水をそれぞれポンプを介して複数の膜分離装置に供給し、それぞれの膜分離装置で処理水と濃縮汚泥とに分離する原水処理方法において、
前記原水槽の液位が低下したとき、前記複数の膜分離装置の運転する系列を液位の段階で1系列ごとに停止し、停止された系列の膜分離装置に圧力水を供給して汚泥を排出すると共に、該膜分離装置を水洗浄した後、次回運転まで待機状態とすることを特徴とする。
【0011】
即ち前記図3に示す装置において、原水槽側に着目してその課題を検討するに、前記源水槽において原水槽流入量に比べ、膜処理水量が多い場合、膜原水槽液位が低下し、MLSS濃度(活性汚泥濃度)が高くなり、膜モジュールの閉塞やフラックス(単位面積当たりの処理量)の低下の原因となる。又、前記液位の変動に起因して膜原水ポンプ入口圧力の変動が大きいと、膜分離装置への原水の供給量が一定に維持できず、膜分離装置内の流速の低下等が生じ、同様に膜モジュールの閉塞や、フラックス低下の原因となる。
【0012】
これに対し本発明は、原水槽が1つで膜分離装置が2ユニット以上ある条件下において、前記液位検出手段による液位検知レベル位置を2点以上設け、第1の設定レベルにおいて、第1の膜分離装置(群)の運転を停止し、その液位が第1の設定レベルより更に低下し、第2の設定レベルに達した時点で、第2の膜分離装置(群)の運転を停止する。(以下第3、第4のユニットも同様)という運転を行なうことにより、液位を一定に保つことが出来る為に、膜原水槽液位を一定の範囲に保つゾーン制御を容易に行なうことが出来、これにより、膜原水槽内のMLSS濃度と膜原水ポンプ入口圧力を一定に保つことが出来、この結果膜分離装置への膜原水の供給を一定量に維持することができ、これらの作用により膜モジュール内の閉塞、フラックスの低下を防ぐことができる。
【0013】
そして更に本発明によれば、前記液位レベルの制御に同期させて若しくは前記請求項1記載のカレンダタイマによる定期的な運転/停止制御と併用して自動的に複数の膜分離装置の運転系列を切り換えるとともに、停止した系列は自動的に水押出と水洗浄を行なった後、次回運転まで待機するものである為に、膜分離装置の劣化防止を一層長期にわたって保証しつつ所期の性能を維持し得る。
【0014】
【発明の実施の形態】
以下、図面を参照して本発明の好適な実施形態を例示的に詳しく説明する。但しこの実施形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がないかぎりは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例にすぎない。
【0015】
図1(A)は本発明の前提実施形態に係る原水処理システムを示し、4は液位検出装置3を具えた膜原水槽で、該膜原水槽4に貯溜された原水は膜原水ポンプ1a、1b、1cにより膜分離装置2a、2b、2cに圧送され、処理水と濃縮汚泥とに分離した後、膜処理水は膜処理水槽5に、濃縮汚泥は例えば次工程の脱水装置に給送されるように構成されると共に、該膜分離装置2a、2b、2c夫々に液ポンプ9a、9b、9cを介して洗浄液タンク6より洗浄液を供給可能に構成されている。そして前記膜原水ポンプ1a、1b、1cと液ポンプ9a、9b、9cをコントローラ8に設けたウイークリタイマ10a、10b、10c及びデイリタイマ19a、19b、19cにより起動/停止とともに、洗浄及び運転休止をメリーゴーランド状に制御するように構成している。
【0016】
次に、かかる実施形態の運転制御方法を図1(B)に基づいて説明するに、先ず第1の膜分離装置2aにおいては、カレンダタイマ10aにより第1週、第3〜4週、第6〜7週を運転し、第2及び第5週で運転を停止するように運転/停止サイクルを構成している。そして前記第2及び第5週の運転停止サイクルにおいてデイリタイマ19aが作動し、最初の2〜3日において液ポンプ9aが作動し、洗浄タンク6より洗浄液が供給され、膜モジュール内の水押出しと水洗浄が行なわれた後、次の運転起動サイクルまで待機(休止)されている。
以下第2の膜分離装置2bは第1の膜分離装置2aに対し、1週間ずらして同様な運転制御が、更に第3の膜分離装置2cは第1の膜分離装置2aに対し、2週間ずらして同様な運転制御が夫々行なわれる。
【0017】
この結果、第1週及び第4週では、第1及び第2の膜分離装置2a、2bが膜分離運転され、第3の膜分離装置2cが運転停止されているとともに、膜モジュール内の水押出しと水洗浄が行なわれた後、待機(休止)されている。
又、第2週及び第5週では、第2及び第3の膜分離装置2b、2cが膜分離運転され、第1の膜分離装置2aが運転停止されているとともに、膜モジュール内の水押出しと水洗浄が行なわれた後、待機(休止)されている。
更に第3週及び第6週では、第1及び第3の膜分離装置2a、2cが膜分離運転され、第2の膜分離装置2bが運転停止されているとともに、膜モジュール内の水押出しと水洗浄が行なわれた後、待機(休止)されている。
【0018】
従って本実施形態によれば、ウイークリタイマ10a、10b、10c及びデイリタイマ19a、19b、19cとにて自動的に複数の膜分離装置の運転系列を切り換えるとともに、停止した運転系列は自動的に水押出と水洗浄を行なった後、次回運転まで待機することにより、前記膜分離装置の劣化が生じることなく所期の性能を維持し得る。
【0019】
図2は本発明に対応する第2の実施形態を示す膜分離システムで、前記実施形態との差異を中心に説明している。
図2(A)に示す本実施形態よれば、前記膜原水ポンプ1a、1b、1cはコントローラ8に設けたウイークリタイマ10a、10b、10cにより2週/1週サイクルで運転及び停止制御を行なうと共に、前記膜原水ポンプ1a、1bの駆動/停止制御を液位検出装置3よりの検出信号に基づく液位レベル制御により駆動制御可能に構成されている。
【0020】
即ち、ウイークリタイマ10a、10b、10cにより必ず、選択された2台の膜原水ポンプ1a、1b、1cが駆動されるが、該駆動中に液位レベルM2 以下に低下すると、前記駆動中の1週目の1の後発膜原水ポンプ1a、1b、1cが停止し、停止中の他の膜原水ポンプ1a、1b、1cがウイークリタイマ10a、10b、10cと無関係に駆動復帰するように構成されている。
又デイリタイマ19a、19b、19cはウイークリタイマ10a、10b、10cにより又液位レベル低下により前記膜原水ポンプ1a、1b、1cが停止した場合に該停止信号と連動して、洗浄及び運転休止を行なうように構成されている。
【0021】
そして本実施形態では、前記膜分離装置2の出口側に前記処理水を分離して前記原水槽4に戻す戻し回路16Aを設けるとともに、該戻し回路16Aの途中に液位検出装置3よりの検出信号に基づいてコントローラ8により開閉制御される分離液返送弁16を設ける。
【0022】
次にかかる実施形態の運転制御方法を説明するに、先ず、本実施形態では、図1(b)に示す第1実施形態と同様に、夫々の週毎に、ウイークリタイマ10a、10b、10cにて自動的に複数の膜分離装置の運転系列を切り換え、2つの膜分離装置が膜分離運転され、他の膜分離装置が運転停止されるとともに、停止した運転系列はデイリタイマ19a、19b、19cにより自動的に水押出と水洗浄を行なった後、次回運転まで待機する点は前記実施例と同様であるが、前記実施形態と異なるのは、図1(C)及び(B)に示すように、例えば第1週において、ウイークリタイマ10a、10bにより選択された2台の膜原水ポンプ1a、1bが駆動中に原水槽の液位レベルM2 以下に低下すると、前記駆動中の1週目の1aの後発膜原水ポンプ1bが停止し、停止中の他の原水ポンプ1cがウイークリタイマ10cと無関係に駆動復帰する点である。
【0023】
即ちより詳細に説明するに、先ず図2(C)に示すように、第1週において、第1及び第2の膜分離装置2a、2bが膜分離運転され、第3の膜分離装置2cが運転停止されているとともに、膜モジュール内の水押出しと水洗浄が行なわれた後、待機(休止)されている。
この状態下において、原水槽4に流入している原水の流入水量が減少しているにもかかわらず、前記膜分離装置2a、2bがいずれも駆動し、原水槽4の液位がM1 から第1の下限レベルM2 まで低下した場合は、コントローラ8よりの制御信号により先ず膜分離装置2bが休止し、これに同期して停止中の他の膜分離装置2cが駆動するとともに、停止した膜分離装置2bはデイリタイマ19bにより自動的に水押出と水洗浄を行なった後、次回運転まで待機する。
そして膜原水槽4への原水流入水量と膜原水ポンプ1bの原水圧送量がバランスしている場合はウイークリタイマによるサイクルをおこなう。
【0024】
又、膜原水槽4への原水流入水量が更に低下し、前記第1の下限レベルM2 より低い第2の下限レベルL以下まで低下した場合は、コントローラ8よりの制御信号によりいずれの膜分離装置2a、2cの運転も停止するとともに、分離液返送弁16を開にし、前記膜分離後の処理水を戻し回路16Aより前記原水槽4内に戻して前記原水槽4内の液位をM1 〜M2 の範囲のレベルに維持する。
その後、膜原水槽4液位がレベルM1 〜M2 の範囲まで増加した場合、コントローラ8よりの制御信号によりウイークリタイマによるサイクル運転を行なう。そして膜原水槽4への原水流入水量と膜原水ポンプ1bの原水圧送量がバランスしてM1 〜M2 の間にある場合はその状態が継続する。
【0025】
又、原水槽4の液位がM1 から第1の下限レベルM2 まで再度低下した場合は、図2(C)の第2週に示すように、コントローラ8よりの制御信号により先ず膜分離装置2cが休止し、これに同期して停止中の他の膜分離装置2aが駆動するとともに、停止した膜分離装置2cはデイリタイマ19bにより自動的に水押出と水洗浄を行なった後、次回運転まで待機する。
以下同様な操作を繰返す。
【0026】
【発明の効果】
以上記載のごとく前記したいずれの発明においても、前記膜分離装置の運転切換、洗浄及び運転休止等を効率よく行ない、前記膜分離装置の劣化が生じることなく所期の性能を維持し得る。
又請求項2記載の発明は、原水槽の液位レベルに応じて前記膜分離装置の運転切換えを行ないながら前記膜分離装置の運転切換、洗浄及び運転休止等を効率よく行ない、前記膜分離装置の劣化が生じることなく所期の性能を維持し得るとともに、膜分離装置内の膜モジュールの閉塞やフラックス低下が生じることなく円滑に原水を処理する得る。
【図面の簡単な説明】
【図1】 本発明の前提実施形態を示す膜分離システムで、(A)は制御ブロック図、(B)はサイクル運転図である。
【図2】 液位制御を組合せた他の実施形態を示す膜分離システムで(A)は制御ブロック図、(B)は要部回路の作用図、(C)はサイクル運転図である。
ある。
【図3】 従来の膜分離システムを示す構成図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a raw water treatment method for separating raw or industrial wastewater or other raw sludge-containing raw water into treated water and concentrated sludge using a membrane separator, and in particular, a plurality of the membrane separators are arranged side by side. The present invention relates to a raw water treatment method capable of suitably performing maintenance of the apparatus over a long period of time by alternately switching the operation / stop operation of a plurality of membrane separation apparatuses and performing cleaning and standby at the time of the stop.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, pressure-type membrane separation devices that separate raw or industrial wastewater or other raw sludge-containing raw water into treated water and concentrated sludge are known, and the operation control method of such a membrane separation device can be simply described based on FIG. To explain, 4 is a membrane raw water tank provided with a liquid level detecting device 3, and the raw water stored in the membrane raw water tank 4 is pumped to the membrane separation devices 2a and 2b by the membrane raw water pumps 1a and 1b, and treated water and After separation into concentrated sludge, the membrane treated water is fed to the membrane treated water tank 5 and the concentrated sludge is fed to, for example, a dehydrator in the next step.
[0003]
In such a system, when the liquid level in the membrane raw water tank 4 drops to an arbitrary level position R1, the liquid level detection device 3 detects it, and selectively stops the membrane raw water pumps 1a and 1b, while the membrane raw water tank 4 liquid level. Is increased to an arbitrary level position R2, the liquid level detection device 3 detects it, and the membrane raw water pumps 1a, 1b are controlled to be activated selectively, so that the liquid level in the membrane raw water tank 4 is always within a certain level range. It is controlled so that membrane separation is performed in the inside.
[0004]
On the other hand, the membrane separator generally feeds treated water to the outside of the membrane module by pumping the raw water into the membrane module consisting of a large number of ultrafiltration membranes formed in a tube element shape. Although it is configured so as to be fed to the membrane treatment water tank or the like of the process, it is necessary to periodically stop the operation for cleaning in order to remove the sludge adhered in the membrane module.
[0005]
For this reason, in the conventional apparatus, a plurality of membrane raw water pumps 1a and 1b for supplying raw water to the membrane separation devices 2a and 2b are provided, and the membrane separation devices 2a and 2b are respectively connected via liquid pumps 9a and 9b. The cleaning liquid can be supplied from the cleaning liquid tank 6. The membrane raw water pumps 1a and 1b and the liquid pumps 9a and 9b are configured to be manually activated / stopped by the operation panel 80.
[0006]
[Problems to be solved by the invention]
That is, in the conventional apparatus shown in FIG. 3, the operation switching, washing, operation stop, etc. of the membrane separation apparatus are performed by switching the washing, etc. while confirming the operation status (mainly the inlet pressure of the membrane separation apparatus is increased). As a result, the manual switching has a problem in that the inclination in the module is uneven and the life of only a certain membrane unit is reduced.
[0007]
In view of the technical problem, the invention according to claim 1 efficiently performs operation switching, washing, operation stop, etc. of the membrane separation device, and maintains the expected performance without causing deterioration of the membrane separation device. It aims at providing the raw water treatment method to obtain.
Further, the invention according to claim 2 efficiently performs switching, washing, operation stop, etc. of the membrane separator while switching the operation of the membrane separator according to the liquid level of the raw water tank. An object of the present invention is to provide a raw water treatment method capable of maintaining the desired performance without causing deterioration of the apparatus, and smoothly treating raw water without causing blockage of the membrane module in the membrane separation apparatus or flux reduction. To do.
[0008]
[Means for Solving the Problems]
In order to solve this technical problem, the present invention provides the raw water that has flowed into the raw water tank to each of the plurality of membrane separation devices via a pump, and each membrane separation device uses treated water. And raw water treatment method to separate into concentrated sludge,
Provided first calendar timer and the second calendar timer for outputting a switching instead signal every predetermined schedule period, switching the streams to stop with the first calendar timer by said plurality of operation to sequence for each set period, The series stopped by the switching is automatically subjected to water extrusion and water washing to the membrane separation apparatus of the series according to the period set by the second calendar timer during the stop period, and then enters a standby state until the next operation. As described above, the predetermined period of the second calendar timer is set.
[0009]
According to this invention, it is possible to perform operation control in which the operation of starting, stopping, cleaning, and stopping the operation of the plurality of membrane separation devices are alternately switched in a merry-go-round manner by the calendar timer. In other words, the calendar timer automatically switches the operation series of a plurality of membrane separation devices, and the stopped series automatically performs water extrusion and water washing, and then waits for the next operation, thereby separating the membrane separation. The expected performance can be maintained without causing deterioration of the apparatus.
[0010]
The invention according to claim 2 is to switch the operation of the membrane separation device in accordance with the liquid level of the raw water tank. The feature of the invention is that the raw water flowing into the raw water tank is supplied through a plurality of pumps. In the raw water treatment method of supplying to the membrane separator and separating into treated water and concentrated sludge in each membrane separator,
When the liquid level of the raw water tank is lowered, the series operated by the plurality of membrane separators is stopped for each series at the liquid level stage, and sludge is supplied with pressure water to the membrane separators of the stopped series In addition, the membrane separation device is washed with water and then put into a standby state until the next operation.
[0011]
That is, in the apparatus shown in FIG. 3, in order to examine the problem focusing on the raw water tank side, when the amount of membrane treated water is larger than the raw water tank inflow amount in the source water tank, the membrane raw water tank liquid level decreases, The MLSS concentration (activated sludge concentration) becomes high, which causes a blockage of the membrane module and a decrease in flux (processing amount per unit area). In addition, if the fluctuation of the membrane raw water pump inlet pressure due to the fluctuation of the liquid level is large, the supply amount of raw water to the membrane separation device cannot be kept constant, resulting in a decrease in the flow rate in the membrane separation device, etc. Similarly, the membrane module is blocked and the flux is reduced.
[0012]
In contrast, the present invention provides two or more liquid level detection level positions by the liquid level detection means under the condition that there is one raw water tank and two or more membrane separation devices. The operation of the second membrane separator (group) is stopped when the operation of the first membrane separator (group) is stopped and the liquid level further falls below the first set level and reaches the second set level. To stop. Since the liquid level can be kept constant by performing the operation (hereinafter the same applies to the third and fourth units), the zone control for keeping the membrane raw water tank liquid level within a certain range can be easily performed. It is possible to keep the MLSS concentration in the membrane raw water tank and the pressure at the inlet of the membrane raw water pump constant. As a result, the supply of the membrane raw water to the membrane separation device can be maintained at a constant amount. Thus, blockage in the membrane module and reduction in flux can be prevented.
[0013]
Further, according to the present invention, the operation sequence of the plurality of membrane separation devices is automatically synchronized with the control of the liquid level or in combination with the periodic operation / stop control by the calendar timer according to claim 1. In addition, the stopped system automatically performs water extrusion and water washing and then waits until the next operation. Can be maintained.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Only.
[0015]
FIG. 1A shows a raw water treatment system according to a premise embodiment of the present invention, 4 is a membrane raw water tank provided with a liquid level detecting device 3, and the raw water stored in the membrane raw water tank 4 is a membrane raw water pump 1a. 1b, 1c is pumped to the membrane separators 2a, 2b, 2c and separated into treated water and concentrated sludge, then the membrane treated water is fed to the membrane treated water tank 5, and the concentrated sludge is fed to the dehydrator in the next step, for example. In addition, the cleaning liquid can be supplied from the cleaning liquid tank 6 to the membrane separation devices 2a, 2b, and 2c via the liquid pumps 9a, 9b, and 9c, respectively. The membrane raw water pumps 1a, 1b and 1c and the liquid pumps 9a, 9b and 9c are provided with the weekly timers 10a, 10b and 10c and the daily timers 19a, 19b and 19c provided in the controller 8 for starting and stopping, as well as washing and operation stop. It is configured to control in a merry-go-round shape.
[0016]
Next, the operation control method according to this embodiment will be described with reference to FIG. 1B. First, in the first membrane separation device 2a, the calendar timer 10a performs the first week, the third to fourth weeks, the sixth The run / stop cycle is configured to run ˜7 weeks and to cease operation in the second and fifth weeks. In the second and fifth week shutdown cycles, the daily timer 19a is activated, the liquid pump 9a is activated in the first two to three days, the cleaning liquid is supplied from the cleaning tank 6, and the water extrusion and water in the membrane module are supplied. After the cleaning is performed, the system is on standby (paused) until the next operation start cycle.
Thereafter, the second membrane separation device 2b is shifted by one week with respect to the first membrane separation device 2a and the same operation control is performed, and the third membrane separation device 2c is further controlled with respect to the first membrane separation device 2a for two weeks. The same operation control is performed by shifting.
[0017]
As a result, in the first week and the fourth week, the first and second membrane separation devices 2a, 2b are operated for membrane separation, the third membrane separation device 2c is stopped, and the water in the membrane module is stopped. After extruding and washing with water, it is on standby (paused).
In the second week and the fifth week, the second and third membrane separation devices 2b and 2c are operated for membrane separation, the first membrane separation device 2a is shut down, and water is pushed out in the membrane module. After being washed with water, it is waiting (paused).
Furthermore, in the third week and the sixth week, the first and third membrane separation devices 2a and 2c are operated for membrane separation, the second membrane separation device 2b is shut down, and water extrusion in the membrane module is performed. After washing with water, it is on standby (pause).
[0018]
Therefore, according to the present embodiment, the weekly timers 10a, 10b, and 10c and the daily timers 19a, 19b, and 19c automatically switch the operation series of the plurality of membrane separation devices, and the stopped operation series automatically After performing the extrusion and water washing, the expected performance can be maintained without causing deterioration of the membrane separation apparatus by waiting until the next operation.
[0019]
FIG. 2 is a membrane separation system showing a second embodiment corresponding to the present invention , and the explanation will focus on the differences from the previous embodiment.
According to the present embodiment shown in FIG. 2A, the membrane raw water pumps 1a, 1b, 1c perform operation and stop control at a cycle of 2 weeks / 1 week by weekly timers 10a, 10b, 10c provided in the controller 8. At the same time, the driving / stopping control of the membrane raw water pumps 1a and 1b can be controlled by liquid level control based on the detection signal from the liquid level detection device 3.
[0020]
That is, the selected two membrane raw water pumps 1a, 1b, and 1c are always driven by the weekly timers 10a, 10b, and 10c, but when the liquid level drops below the liquid level M2 during the driving, The first membrane raw water pumps 1a, 1b, 1c in the first week of the first week are stopped, and the other membrane raw water pumps 1a, 1b, 1c being stopped are returned to drive regardless of the weekly timers 10a, 10b, 10c. Has been.
The daily timers 19a, 19b, and 19c are operated in conjunction with the stop signal when the membrane raw water pumps 1a, 1b, and 1c are stopped by the weekly timers 10a, 10b, and 10c and the liquid level is lowered. Configured to do.
[0021]
And in this embodiment, while providing the return circuit 16A which isolate | separates the said treated water and returns to the said raw | natural water tank 4 in the exit side of the said membrane separation apparatus 2, detection from the liquid level detection apparatus 3 in the middle of this return circuit 16A A separation liquid return valve 16 that is controlled to open and close by the controller 8 based on the signal is provided.
[0022]
Next, the operation control method of this embodiment will be described. First, in the present embodiment, the weekly timers 10a, 10b, 10c are each weekly as in the first embodiment shown in FIG. The operation sequence of the plurality of membrane separation devices is automatically switched at, the two membrane separation devices are operated for membrane separation, the other membrane separation devices are stopped, and the stopped operation sequences are the daily timers 19a, 19b, 19c. After performing water extrusion and water washing automatically by the above, the point of waiting until the next operation is the same as in the above example, but the difference from the above embodiment is as shown in FIGS. 1 (C) and (B). For example, in the first week, when the two membrane raw water pumps 1a and 1b selected by the weekly timers 10a and 10b are lowered to the level M2 or less of the raw water tank during driving, the first week during the driving. Subsequent membrane source of 1a Pump 1b is stopped is that the other raw water pump 1c suspended drives restored regardless of the Week retimer 10c.
[0023]
That is, in more detail, as shown in FIG. 2C, first, in the first week, the first and second membrane separation devices 2a and 2b are operated for membrane separation, and the third membrane separation device 2c is operated. The operation is stopped, and after the water is pushed out and washed in the membrane module, it is on standby (paused).
In this state, despite the fact that the amount of raw water flowing into the raw water tank 4 is decreasing, both the membrane separation devices 2a and 2b are driven, and the liquid level in the raw water tank 4 is changed from M1. When the lower limit level M2 of 1 is reached, the membrane separation device 2b is first stopped by the control signal from the controller 8, and the other membrane separation device 2c that is stopped is driven in synchronism with this, and the stopped membrane separation is performed. The apparatus 2b automatically performs water extrusion and water washing by the daily timer 19b, and then waits until the next operation.
If the raw water inflow amount to the membrane raw water tank 4 and the raw water pumping amount of the membrane raw water pump 1b are balanced, a cycle by a weekly timer is performed.
[0024]
When the raw water inflow amount into the membrane raw water tank 4 is further reduced to lower than the second lower limit level L lower than the first lower limit level M2, any membrane separation device is controlled by a control signal from the controller 8. The operation of 2a and 2c is also stopped, the separation liquid return valve 16 is opened, the treated water after the membrane separation is returned to the raw water tank 4 from the return circuit 16A, and the liquid level in the raw water tank 4 is changed to M1. Maintain a level in the range of M2.
Thereafter, when the liquid level in the membrane raw water tank 4 increases to the range of the levels M1 to M2, the cycle operation by the weekly timer is performed by the control signal from the controller 8. When the raw water inflow amount to the membrane raw water tank 4 and the raw water pumping amount of the membrane raw water pump 1b are balanced and are between M1 and M2, that state continues.
[0025]
When the liquid level in the raw water tank 4 is lowered again from M1 to the first lower limit level M2, as shown in the second week of FIG. The other membrane separation device 2a that is stopped is driven in synchronization with this, and the stopped membrane separation device 2c automatically performs water extrusion and water washing by the daily timer 19b, and then waits for the next operation. To do.
The same operation is repeated thereafter.
[0026]
【The invention's effect】
As described above, in any of the above-described inventions, the operation of the membrane separation apparatus can be efficiently switched, washed, stopped, etc., and the expected performance can be maintained without causing the deterioration of the membrane separation apparatus.
The invention according to claim 2 efficiently performs the operation switching, washing, operation stop, etc. of the membrane separation device while switching the operation of the membrane separation device according to the liquid level of the raw water tank. The desired performance can be maintained without causing deterioration of the raw water, and the raw water can be treated smoothly without causing the membrane module in the membrane separation apparatus to be clogged or reduced in flux.
[Brief description of the drawings]
FIG. 1 is a membrane separation system showing a premise embodiment of the present invention, in which (A) is a control block diagram and (B) is a cycle operation diagram.
2A is a control block diagram, FIG. 2B is an operation diagram of a main circuit, and FIG. 2C is a cycle operation diagram in a membrane separation system showing another embodiment combined with liquid level control.
is there.
FIG. 3 is a configuration diagram showing a conventional membrane separation system.

Claims (2)

原水槽に流入した原水をそれぞれポンプを介して複数の膜分離装置に供給し、それぞれの膜分離装置で処理水と濃縮汚泥とに分離する原水処理方法において、
所定日程周期毎に切換え信号を出力する第1のカレンダタイマと第2のカレンダタイマを設け、該第1のカレンダタイマにより設定期間毎に前記複数の運転する系列と停止する系列とを切り換え、前記切換により停止した系列がその停止期間中に第2のカレンダタイマにより設定された周期によりその系列の膜分離装置に自動的に水押出と水洗浄を行なった後、次回運転まで待機状態となるように前記第2のカレンダタイマの所定周期が設定されていることを特徴とする原水処理方法。
In the raw water treatment method, the raw water flowing into the raw water tank is supplied to a plurality of membrane separation devices through respective pumps, and separated into treated water and concentrated sludge by each membrane separation device,
Provided first calendar timer and the second calendar timer for outputting a switching instead signal every predetermined schedule period, switching the streams to stop with the first calendar timer by said plurality of operation to sequence for each set period, The series stopped by the switching is automatically subjected to water extrusion and water washing to the membrane separation apparatus of the series according to the period set by the second calendar timer during the stop period, and then enters a standby state until the next operation. The raw water treatment method is characterized in that the predetermined period of the second calendar timer is set as described above.
原水槽に流入した原水をそれぞれポンプを介して複数の膜分離装置に供給し、それぞれの膜分離装置で処理水と濃縮汚泥とに分離する原水処理方法において、
前記原水槽の液位が低下したとき、前記複数の膜分離装置の運転する系列を液位の段階で1系列ごとに停止し、停止された系列の膜分離装置に圧力水を供給して汚泥を排出すると共に、該膜分離装置を水洗浄した後、次回運転まで待機状態とすることを特徴とする原水処理方法。
In the raw water treatment method, the raw water flowing into the raw water tank is supplied to a plurality of membrane separation devices through respective pumps, and separated into treated water and concentrated sludge by each membrane separation device,
When the liquid level of the raw water tank is lowered, the series operated by the plurality of membrane separators is stopped for each series at the liquid level stage, and sludge is supplied with pressure water to the membrane separators of the stopped series The raw water treatment method is characterized in that after the membrane separation device is washed with water, it is put into a standby state until the next operation.
JP15566198A 1998-06-04 1998-06-04 Raw water treatment method Expired - Lifetime JP3637206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15566198A JP3637206B2 (en) 1998-06-04 1998-06-04 Raw water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15566198A JP3637206B2 (en) 1998-06-04 1998-06-04 Raw water treatment method

Publications (3)

Publication Number Publication Date
JPH11347554A JPH11347554A (en) 1999-12-21
JPH11347554A6 JPH11347554A6 (en) 2004-07-08
JP3637206B2 true JP3637206B2 (en) 2005-04-13

Family

ID=15610839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15566198A Expired - Lifetime JP3637206B2 (en) 1998-06-04 1998-06-04 Raw water treatment method

Country Status (1)

Country Link
JP (1) JP3637206B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6214231B1 (en) * 1999-08-27 2001-04-10 Zenon Environmental Inc. System for operation of multiple membrane filtration assemblies
JP4710107B2 (en) * 2000-07-13 2011-06-29 栗田工業株式会社 Operation method of membrane separator

Also Published As

Publication number Publication date
JPH11347554A (en) 1999-12-21

Similar Documents

Publication Publication Date Title
US6508937B1 (en) Fresh water generator and fresh water generating method
US6334955B1 (en) Fresh water generator and fresh water generating method
JPH06277664A (en) Method and apparatus for clarifying surface flowing water with membrane
JP2000334276A (en) Operation of filtration device
KR20090127124A (en) Drain-flush sequence and system for filter module
JP2017209654A (en) Reverse osmosis membrane device and operation method of reverse osmosis membrane device
JP3598912B2 (en) Operation method of membrane separator
JP2000189965A (en) Fresh water maker and production of fresh water
JP3637206B2 (en) Raw water treatment method
JP3777376B2 (en) Water purifier and control method thereof
JP2000015061A (en) Method and apparatus for separating/producing liquid
US9212071B2 (en) System and method for filtering
JPH11347554A6 (en) Raw water treatment method
JP2003284929A (en) Water treatment method and apparatus therefor
JP3579188B2 (en) Filtration device
KR100800453B1 (en) Water treatment apparatus using the hollow fiber membrane module
JP2005246239A (en) Membrane filter apparatus and its operation method
CN112456731B (en) Sewage treatment control method and system based on MBR process
JPH10165781A (en) Method and apparatus for washing filter membrane and filter apparatus
KR20030091208A (en) Hollow fiber membrane water-treatment system and process controlling cross-flow type and dead-end type filtration automatically
JP2003305313A (en) Solid-liquid separation method and apparatus therefor
JP2000210540A (en) Membrane filter apparatus
JP2005013797A (en) Operation method of fluid process
JP3670804B2 (en) Raw water treatment method and apparatus
JPH06304455A (en) Method for cleaning tubular membrane module and apparatus therefor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041115

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 9

EXPY Cancellation because of completion of term