JP3579188B2 - Filtration device - Google Patents

Filtration device Download PDF

Info

Publication number
JP3579188B2
JP3579188B2 JP19876596A JP19876596A JP3579188B2 JP 3579188 B2 JP3579188 B2 JP 3579188B2 JP 19876596 A JP19876596 A JP 19876596A JP 19876596 A JP19876596 A JP 19876596A JP 3579188 B2 JP3579188 B2 JP 3579188B2
Authority
JP
Japan
Prior art keywords
filtration
filtration membrane
stock solution
pressure
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19876596A
Other languages
Japanese (ja)
Other versions
JPH1033957A (en
Inventor
龍男 捫垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP19876596A priority Critical patent/JP3579188B2/en
Publication of JPH1033957A publication Critical patent/JPH1033957A/en
Application granted granted Critical
Publication of JP3579188B2 publication Critical patent/JP3579188B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、原液を循環しながら濾過を行う濾過装置に係り、詳細には、河川水、湖沼水、地下水或いは海水等を原水としてクロスフロー型の精密濾過または限外濾過装置により大量に浄化する水処理に好適な濾過技術に関するものである。
【0002】
【従来の技術】
クロスフロー型の精密濾過または限外濾過装置において、濾過能力の維持のために循環濾過法が用いられているが、従来のこの種の濾過装置においては、濾過処理中は定流量運転や定圧運転方式で稼働し、濾過膜に蓄積した懸濁物質を排除する逆洗やエアバブリング時には、例えば、特開平7-275671号公報に開示されたように循環側を停止して濾過膜内の液を抜いたり、空気と置換して運転する方式となっているのが一般である。
【0003】
【発明が解決しようとする課題】
しかしながら、前述の従来の技術では、逆洗やエアバブリング時に、循環側を停止して濾過膜内の液を抜いたり、空気と置換して運転した後、通常の濾過処理を開始する際に、濾過膜及び配管内の液が抜かれた状態であるため比較的軽負荷となって原液循環ポンプの回転数が不安定となり、場合によっては、原液循環ポンプの送り圧力が増大して濾過膜の耐圧限界を超える虞がある。
【0004】
本発明は前記課題を解決するものであり、その目的とするところは、濾過膜に蓄積した懸濁物質を排除する逆洗、エアバブリングまたは停止状態からの濾過処理開始への切り換え時に安定した運転が出来る濾過装置を提供せんとするものである。
【0005】
【課題を解決するための手段】
前記目的を達成するための本発明に係る濾過装置は、原液を循環しながら濾過を行うクロスフロー型の精密濾過または限外濾過装置において、濾過液流路に該濾過液流路を流通する濾過液の流量を検知する流量センサを設けると共に、濾過膜の上流側に該濾過膜への原液の入力圧力を検知する圧力センサを設け、前記流量センサの検知情報及び前記圧力センサの検知情報に選択的に対応して原液循環ポンプの出力を制御するインバータを有し、通常の濾過処理状態では前記流量センサの検知情報に基づいてインバータが原液循環ポンプの出力を制御して濾過液を定流量運転し、濾過膜に蓄積した懸濁物質を排除する逆洗、エアバブリングまたは停止状態からの濾過処理開始への切り換え時に前記圧力センサの検知情報に基づいてインバータが原液循環ポンプの出力を制御して濾過膜への原液の入力圧力を所定時間低圧運転するように構成したことを特徴とする。
【0006】
上記構成によれば、通常の濾過処理状態では濾過液流路に設けた流量センサの検知情報に基づいてインバータが原液循環ポンプの出力を制御して濾過液の流量が一定流量になるように運転し、濾過膜に蓄積した懸濁物質を排除する逆洗、エアバブリングまたは停止状態からの濾過処理開始への切り換え時に濾過膜の上流側に設けた圧力センサの検知情報に基づいて前記インバータが原液循環ポンプの出力を制御して濾過膜への原液の入力圧力を所定時間低圧運転させることが出来、これにより濾過膜が保護されて安定運転することが出来る。
【0007】
また、前記インバータの周波数を変化させて前記原液循環ポンプの回転数を変化させるように構成すれば好ましい。
【0008】
【発明の実施の形態】
図により本発明に係る濾過装置の一実施形態を具体的に説明する。図1は本発明に係る濾過装置を適用した濾過システムの一例を示す全体図、図2は本発明に係る濾過装置の通常運転時において、濾過液を定流量運転する構成を示す模式図、図3は本発明に係る濾過装置において、濾過膜に蓄積した懸濁物質を排除する逆洗、エアバブリングまたは停止状態からの濾過処理開始への切り換え時に濾過膜への原液の入力圧力を所定時間低圧運転する構成を示す模式図である。
【0009】
図1に示す濾過システムは、原液を循環しながら濾過を行うクロスフロー型の精密或いは限外濾過装置として構成される。ここでは、濾過装置にクロスフロー方式の中空糸状膜で構成される濾過膜モジュール4が並列に6個設置されて構成された一例を示す。
【0010】
図1において、1は原液タンクであり、濾過されるべき原液1aが貯蔵されている。本実施形態では、原液1aとして、例えば、河川水、湖沼水、地下水或いは海水等が使用される。原液タンク1の下流側には、各系統に夫々原液循環ポンプ2が接続されており、該原液循環ポンプ2を駆動することにより原液タンク1内の原液1aを配管3に供給する。
【0011】
前記配管3にはクロスフロー方式の中空糸状膜で構成される濾過膜モジュール4が6個並列に接続されており、配管3を通って濾過膜モジュール4に供給された原液1aは、原液循環ポンプ2の作用により所定の圧力が付与されて濾過膜モジュール4の中空糸状膜の外側から内側に透過することで濾過され、濾過膜モジュール4により濾過された濾過液1bが中空糸状膜の内側を流通して濾過液配管5に導かれて濾過液タンク6に貯蔵される。
【0012】
一方、配管3を通って濾過膜モジュール4に供給された原液1aの一部は、循環戻り原液1cとして濾過膜モジュール4の中空糸状膜の外側を流通して原液戻り配管7に導かれて原液タンク1に戻るようになっている。
【0013】
また、濾過膜モジュール4の濾過膜に蓄積した懸濁物質を排除する目的で、逆洗装置が設けられており、濾過液タンク6に一旦貯蔵された濾過液1bが逆洗回収ポンプ8a,8bを運転することにより逆洗配管9を流通して濾過液配管5に導かれ、濾過膜モジュール4の中空糸状膜の内側を濾過液1bが逆流すると共に、逆洗回収ポンプ8a,8bにより所定の圧力が付与されて濾過液1bが濾過膜モジュール4の中空糸状膜の内側から外側に透過することで濾過膜モジュール4の中空糸状膜の外側表面に蓄積した懸濁物質を剥離する。
【0014】
上記逆洗運転は、例えば、60分に1回の割合で60秒間行なって周期的に繰り返す。
【0015】
また、同様に濾過膜モジュール4の濾過膜に蓄積した懸濁物質を排除する目的で、エアバブリング装置が設けられており、コンプレッサ10により供給された圧縮空気が空気槽11を介して配管12に導かれ、濾過膜モジュール4の上流側から供給されて該濾過膜モジュール4の中空糸状膜の外側を流通して該中空糸状膜を振動させ、中空糸状膜の外側表面に蓄積した懸濁物質を剥離する。
【0016】
上記エアバブリング運転は、例えば、先ず、濾過膜モジュール4内に原液1aを張った状態、即ち、濾過膜モジュール4内で原液1aが静止して滞留した状態で60秒間、空気または窒素ガスを供給した後、更に濾過膜モジュール4に原液1aを流した状態で60秒間、空気または窒素ガスを供給する。そして、3日に1回の割合で前述の一連のエアバブリング運転を120秒間行ってこれを周期的に繰り返す。
【0017】
そして、原液タンク1から原液循環ポンプ2により供給された原液1aの一部である循環戻り原液1cが濾過膜モジュール4の中空糸状膜の外側を流通して、上述のようにして剥離した懸濁物質を押し流して排液し、剥離した懸濁物質を含む循環戻り原液1cは原液戻り配管7に導かれて原液タンク1に戻る。
【0018】
上述の逆洗運転やエアバブリング運転では、通常の濾過処理運転を一旦停止させることとなり、この運転中に、濾過膜モジュール4及び各配管内の原液1a(及び濾過液1b)が抜け出して比較的軽負荷となる。そして、従来では、逆洗運転やエアバブリング運転の終了後に停止状態から濾過処理開始への切り換え時に、原液循環ポンプ2により濾過膜モジュール4へ供給される原液1aの入力圧力が急激に増大して濾過膜モジュール4の濾過膜に大きな圧力がかかるため、濾過膜モジュール4の濾過膜の耐圧を比較的大きく構成する必要があった。
【0019】
そこで、以下に示す実施形態では、通常の濾過処理時には、濾過液を定流量運転すると共に、逆洗、エアバブリングまたは停止状態から通常の濾過処理開始への切り換え時に濾過膜モジュール4への原液1aの入力圧力を所定時間低圧運転するように自動的に変更するように構成したことで、濾過処理運転開始時や通常運転時に流量や圧力の大幅な変動がなく、濾過膜モジュール4の濾過膜に衝撃を与えることがない安定した運転が出来るように構成している。
【0020】
前記低圧運転とは、濾過膜モジュール4への原液1aの入力圧力を通常運転時よりも低い圧力で運転するものであり、これは、通常運転圧力によっても変わるが、濾過膜へのショックを少なくするために1kg/cm2以下の圧力で運転することが好ましい。
【0021】
図2及び図3に示すように、原液循環ポンプ2の下流側で、且つ濾過膜モジュール4の上流側には、濾過膜モジュール4への原液1aの入力圧力を検知する圧力センサ13が設けられており、濾過液流路となる濾過液配管5には、流量センサ14が設けられている。
【0022】
そして、前記圧力センサ13及び前記流量センサ14に接続され、該圧力センサ13の検知情報及び前記流量センサ14の検知情報に選択的に対応して原液循環ポンプ2の出力を制御するモータ2aを制御するインバータ15が設けられている。
【0023】
図2は、濾過装置の通常運転時において、濾過液1bを定流量運転する場合の構成を示し、インバータ15は濾過液配管5に設けられた流量センサ14の検知情報に基づいてモータ2aを制御し、原液循環ポンプ2の出力を制御して濾過液1bを定流量運転するようになっている。
【0024】
即ち、濾過液配管5を流通する濾過液1bの流量を流量センサ14により検知し、該流量センサ14の出力信号に応じてインバータ15がモータ2aに印加する入力周波数を制御して該モータ2aの回転数を制御し、原液循環ポンプ2の出力を制御するように構成される。
【0025】
そして、例えば、濾過液配管5を流通する濾過液1bの流量が減少すると、流量センサ14の検知信号に基づいてインバータ15の周波数を増加させてモータ2aの回転数を所定量増加させ、原液循環ポンプ2の出力を増加させる。そして、原液循環ポンプ2の出力が増加すると、濾過膜モジュール4の濾過膜に印加される濾過圧力が増加して濾過膜モジュール4を通過する濾過液1bの流量が増加する。
【0026】
また、逆に、濾過液配管5を流通する濾過液1bの流量が増加すると、流量センサ14の検知信号に基づいてインバータ15の周波数を低下させてモータ2aの回転数を所定量減少させ、原液循環ポンプ2の出力を減少させる。そして、原液循環ポンプ2の出力が減少すると、濾過膜モジュール4の濾過膜に印加される濾過圧力が減少して濾過膜モジュール4を通過する濾過液1bの流量が減少する。
【0027】
従って、流量センサ14の検知情報によりインバータ15が作動する値を予め設定しておき、濾過液配管5を流通する濾過液1bの流量が一定になるようにインバータ15を作動させてモータ2aを制御し、これにより原液循環ポンプ2を制御することで濾過液配管5を流通する濾過液1bの流量を一定にすることが出来る。
【0028】
図3は、濾過装置において、濾過膜モジュール4の濾過膜に蓄積した懸濁物質を排除する逆洗、エアバブリングまたは停止状態からの濾過処理開始への切り換え時に濾過膜モジュール4への原液1aの入力圧力を所定時間低圧運転する構成を示し、インバータ15は原液循環ポンプ2の下流側で、且つ濾過膜モジュール4の上流側に設けられた圧力センサ13の検知情報に基づいてモータ2aを制御し、原液循環ポンプ2の出力を制御して濾過膜モジュール4への原液1aの入力圧力を低圧運転する。そして、インバータ15の動作をタイマー等でコントロールすることで低圧運転を所定時間行うようになっている。
【0029】
即ち、通常の濾過処理運転を一旦停止させて、逆洗運転やエアバブリング運転を実施することで、これ等の運転中に、濾過膜モジュール4及び各配管内の原液1a(及び濾過液1b)が抜け出して比較的軽負荷となり、圧力センサ13により検知される濾過膜モジュール4の上流側の圧力は減少する。
【0030】
そして、逆洗、エアバブリングまたは停止状態からの濾過処理開始への切り換え時に、圧力センサ13により検知された検知情報に基づいてインバータ15の周波数を低下させてモータ2aの回転数を所定量減少させ、原液循環ポンプ2の出力を減少させる。そして、原液循環ポンプ2の出力が減少すると、濾過膜モジュール4の濾過膜に印加される濾過圧力が減少して、原液1aが低圧で濾過膜モジュール4に供給される。
【0031】
上記のように、逆洗、エアバブリングまたは停止状態から通常の濾過処理開始への切り換え時に濾過膜モジュール4への原液1aの入力圧力を所定時間定圧運転することで、原液循環ポンプ2から供給される原液1aが濾過膜モジュール4に入力される圧力が低圧となり、濾過膜モジュール4の濾過膜に衝撃等を与えることなく、濾過膜モジュール4の濾過膜の保全が維持できると共に、原液循環ポンプ2が安定に運転できる。
【0032】
従って、従来例のように、逆洗運転やエアバブリング運転の終了後に停止状態から濾過処理開始への切り換え時に、原液循環ポンプ2により濾過膜モジュール4へ供給される原液1aの入力圧力が増大し、濾過膜モジュール4の濾過膜に大きな圧力がかかり、該濾過膜に多大な負担をかけることがない。
【0033】
低圧運転が所定時間経過し、濾過液1bの流量が安定した時点で、インバータ15に伝達される検知情報が、圧力センサ13からの検知情報から流量センサ14からの検知情報に自動的に変更されるようになっており、これによって、前述したように、濾過液1bを定流量運転する通常の濾過処理運転に移行するようになっている。
【0034】
以上の構成により、通常の濾過処理状態では流量センサ14の検知情報に基づいてインバータ15が原液循環ポンプ2の出力を制御して定流量運転し、濾過膜モジュール4の濾過膜に蓄積した懸濁物質を排除する逆洗、エアバブリングまたは停止状態からの濾過処理開始への切り換え時には、圧力センサ13の検知情報に基づいてインバータ15が原液循環ポンプ2の出力を制御して濾過膜モジュール4への原液1aの入力圧力を所定時間低圧運転することが出来るものである。
【0035】
尚、図中の16は温度センサ、17は流量センサ、18は流量弁である。前記実施形態における通常の濾過処理運転中の流量及び圧力の制御の一例として、原液循環ポンプ2の下流側で濾過膜モジュール4の上流側の原液1aの流量が2.5m3/hr、圧力が2.0kg/cm2であり、濾過膜モジュール4の下流側の濾過液1bの流量が2.0m3/hrの定流量で、圧力が0.1kg/cm2であり、濾過膜モジュール4の下流側の循環戻り原液1cの流量が0.5m3/hrの定流量で、圧力が1.7kg/cm2等の数値で制御される。尚、ここで使用される濾過膜モジュール4の濾過膜の耐圧は3kg/cm2に設定されている。
【0036】
濾過膜モジュール4の濾過膜に蓄積した懸濁物質を排除する逆洗、エアバブリングまたは停止状態からの濾過処理開始への切り換え時には、原液循環ポンプ2により供給される原液1aが濾過膜モジュール4の上流側に入力される圧力が好ましくは1.0kg/cm2以下の範囲内で所定時間低圧運転され、所定時間が経過後は、通常の濾過処理運転の圧力が2.0kg/cm2に復帰する。
【0037】
【発明の効果】
本発明は、上述の如き構成と作用とを有するので、濾過処理時には、定流量運転すると共に、逆洗、エアバブリングまたは停止状態から通常の濾過処理開始への切り換え時に濾過膜への原液の入力圧力を所定時間低圧運転するように自動的に変更されるようにすることで、逆洗、エアバブリングまたは停止状態から通常の濾過処理状態への移行が安定して行える。よって、濾過膜入口圧力のオーバーシュートもなくなり、濾過膜に過大な圧力がかかることがなくなり、濾過膜に衝撃等を与えることがなく、濾過膜の保全を確保することが出来る。
【0038】
また、低圧運転から定流量運転に切り換えることで、濾過膜内に液が満たされていない状態であっても、濾過膜入口の圧力の大きな変動を生じることがないため、流量や圧力の大幅な変動がなく、安定した運転が出来る。
【図面の簡単な説明】
【図1】本発明に係る濾過装置を適用した濾過システムの一例を示す全体図である。
【図2】本発明に係る濾過装置の通常運転時において、濾過液を定流量運転する構成を示す模式図である。
【図3】本発明に係る濾過装置において、濾過膜に蓄積した懸濁物質を排除する逆洗、エアバブリングまたは停止状態からの濾過処理開始への切り換え時に濾過膜への原液の入力圧力を所定時間低圧運転する構成を示す模式図である。
【符号の説明】
1…原液タンク
1a…原液
1b…濾過液
1c…循環戻り原液
2…原液循環ポンプ
2a…モータ
3…配管
4…濾過膜モジュール
5…濾過液配管
6…濾過液タンク
7…原液戻り配管
8a,8b…逆洗回収ポンプ
9…逆洗配管
10…コンプレッサ
11…空気槽
12…配管
13…圧力センサ
14…流量センサ
15…インバータ
16…温度センサ
17…流量センサ
18…流量弁
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a filtration device that performs filtration while circulating undiluted solution, and in particular, purifies a large amount by cross-flow type microfiltration or ultrafiltration device using river water, lake water, groundwater or seawater as raw water. The present invention relates to a filtration technique suitable for water treatment.
[0002]
[Prior art]
In a cross-flow type microfiltration or ultrafiltration apparatus, a circulating filtration method is used to maintain the filtration capacity. However, in this type of conventional filtration apparatus, a constant flow rate operation or a constant pressure operation is performed during a filtration process. During the backwashing or air bubbling that operates in the system and eliminates suspended substances accumulated in the filtration membrane, for example, the circulation side is stopped and the liquid in the filtration membrane is stopped as disclosed in JP-A-7-275671. In general, the system is operated by removing or replacing with air.
[0003]
[Problems to be solved by the invention]
However, in the above-described conventional technology, at the time of backwashing or air bubbling, when the circulation side is stopped to drain the liquid in the filtration membrane, or after the air is replaced with air and operated, a normal filtration process is started. Since the liquid in the filtration membrane and the piping has been drained, the load becomes relatively light and the rotation speed of the stock solution circulation pump becomes unstable. In some cases, the feed pressure of the stock solution circulation pump increases and the pressure resistance of the filtration membrane increases. The limit may be exceeded.
[0004]
The present invention has been made to solve the above-described problems, and an object thereof is to provide a stable operation at the time of switching from a backwashing, air bubbling, or a stop state to a filtration process start for removing suspended substances accumulated in a filtration membrane. The purpose of the present invention is to provide a filtration device capable of performing the above-mentioned steps.
[0005]
[Means for Solving the Problems]
A filtration device according to the present invention for achieving the above object is a cross-flow type microfiltration or ultrafiltration device that performs filtration while circulating a stock solution, wherein the filtration device circulates through the filtrate channel in the filtrate channel. A flow sensor for detecting the flow rate of the liquid is provided, and a pressure sensor for detecting the input pressure of the undiluted solution to the filtration membrane is provided on the upstream side of the filtration membrane, and selected for the detection information of the flow sensor and the detection information of the pressure sensor. An inverter that controls the output of the stock solution circulating pump in a corresponding manner, and in a normal filtration processing state, the inverter controls the output of the stock solution circulating pump based on the detection information of the flow rate sensor to operate the filtrate at a constant flow rate. Then, at the time of switching from the backwashing, air bubbling or the stop state to the start of the filtration process for removing suspended substances accumulated in the filtration membrane, the inverter is activated based on the detection information of the pressure sensor. Characterized by being configured so as to control the output of the liquid circulation pump for a predetermined time low driving input pressure stock to the filtration membrane.
[0006]
According to the above configuration , in a normal filtration state, the inverter controls the output of the stock solution circulating pump based on the detection information of the flow rate sensor provided in the filtrate flow path so that the flow rate of the filtrate becomes constant. Then, based on the detection information of the pressure sensor provided on the upstream side of the filtration membrane at the time of switching from the backwashing, air bubbling or the stop state to the start of the filtration process to eliminate suspended substances accumulated in the filtration membrane, the inverter performs undiluted liquid processing. By controlling the output of the circulating pump, the input pressure of the undiluted solution to the filtration membrane can be operated at a low pressure for a predetermined time, whereby the filtration membrane is protected and can be operated stably.
[0007]
It is preferable that the frequency of the inverter is changed to change the rotation speed of the stock solution circulating pump.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the filtration device according to the present invention will be specifically described with reference to the drawings. FIG. 1 is an overall view showing an example of a filtration system to which a filtration device according to the present invention is applied, and FIG. 2 is a schematic diagram showing a configuration in which a filtrate is operated at a constant flow rate during normal operation of the filtration device according to the present invention. In the filtration apparatus according to the present invention, the input pressure of the undiluted solution to the filtration membrane is reduced for a predetermined time at the time of backwashing, air bubbling or switching from a stopped state to the start of filtration processing in the filtration apparatus according to the present invention. It is a schematic diagram which shows the structure which drives.
[0009]
The filtration system shown in FIG. 1 is configured as a cross-flow type precision or ultrafiltration device that performs filtration while circulating a stock solution. Here, an example is shown in which six filtration membrane modules 4 each composed of a cross-flow type hollow fiber membrane are installed in a filtration device in parallel.
[0010]
In FIG. 1, reference numeral 1 denotes a stock solution tank which stores a stock solution 1a to be filtered. In the present embodiment, for example, river water, lake water, groundwater, seawater, or the like is used as the stock solution 1a. A stock solution circulation pump 2 is connected to each system on the downstream side of the stock solution tank 1, and the stock solution 1 a in the stock solution tank 1 is supplied to the pipe 3 by driving the stock solution circulation pump 2.
[0011]
Six filtration membrane modules 4 composed of cross-flow type hollow fiber membranes are connected in parallel to the pipe 3, and the stock solution 1a supplied to the filtration membrane module 4 through the pipe 3 is fed to the stock solution circulation pump. The filter 1b is filtered by applying a predetermined pressure by the action of 2 and permeating from the outside to the inside of the hollow fiber membrane of the filtration membrane module 4, and the filtrate 1b filtered by the filtration membrane module 4 flows inside the hollow fiber membrane. Then, it is led to the filtrate pipe 5 and stored in the filtrate tank 6.
[0012]
On the other hand, a part of the stock solution 1a supplied to the filtration membrane module 4 through the pipe 3 flows outside the hollow fiber membrane of the filtration membrane module 4 as the circulation return stock solution 1c, and is led to the stock solution return pipe 7, It returns to tank 1.
[0013]
In order to remove suspended substances accumulated in the filtration membrane of the filtration membrane module 4, a backwashing device is provided, and the filtrate 1b once stored in the filtrate tank 6 is supplied to the backwash recovery pumps 8a, 8b. , The liquid 1b flows through the backwash pipe 9 and is guided to the filtrate pipe 5, and the filtrate 1b flows backward inside the hollow fiber membrane of the filtration membrane module 4 and at a predetermined rate by the backwash recovery pumps 8a and 8b. When the pressure is applied, the filtrate 1b permeates from the inside to the outside of the hollow fiber membrane of the filtration membrane module 4, thereby removing the suspended substance accumulated on the outer surface of the hollow fiber membrane of the filtration membrane module 4.
[0014]
The backwashing operation is performed, for example, once every 60 minutes for 60 seconds, and is repeated periodically.
[0015]
Similarly, an air bubbling device is provided for the purpose of removing suspended substances accumulated in the filtration membrane of the filtration membrane module 4, and compressed air supplied by the compressor 10 is supplied to the pipe 12 through the air tank 11. The suspension is supplied from the upstream side of the filtration membrane module 4, circulates outside the hollow fiber membrane of the filtration membrane module 4, vibrates the hollow fiber membrane, and accumulates suspended matter accumulated on the outer surface of the hollow fiber membrane. Peel off.
[0016]
In the air bubbling operation, for example, first, air or nitrogen gas is supplied for 60 seconds in a state in which the stock solution 1a is stretched in the filtration membrane module 4, that is, in a state in which the stock solution 1a is stationary and retained in the filtration membrane module 4. After that, air or nitrogen gas is further supplied for 60 seconds while the stock solution 1a is flowing through the filtration membrane module 4. Then, the above-described series of air bubbling operations is performed once every three days for 120 seconds, and this is periodically repeated.
[0017]
The recirculated undiluted solution 1c, which is a part of the undiluted solution 1a supplied from the undiluted solution tank 1 by the undiluted solution circulation pump 2, flows outside the hollow fiber membrane of the filtration membrane module 4 and is separated as described above. The circulating return stock solution 1c containing the suspended material that has been washed away by draining the material is guided to the stock solution return pipe 7 and returns to the stock solution tank 1.
[0018]
In the above-described backwashing operation and air bubbling operation, the ordinary filtration operation is temporarily stopped, and during this operation, the undiluted solution 1a (and the filtrate 1b) in the filtration membrane module 4 and each pipe escapes and is relatively removed. Light load. In the related art, when switching from the stopped state to the start of the filtration process after the backwashing operation or the air bubbling operation is completed, the input pressure of the stock solution 1a supplied to the filtration membrane module 4 by the stock solution circulation pump 2 sharply increases. Since a large pressure is applied to the filtration membrane of the filtration membrane module 4, it is necessary to make the pressure resistance of the filtration membrane of the filtration membrane module 4 relatively large.
[0019]
Therefore, in the embodiment described below, during a normal filtration process, the filtrate is operated at a constant flow rate, and at the time of switching from the backwashing, air bubbling or stop state to the normal filtration process start, the undiluted solution 1a to the filtration membrane module 4 is switched. The input pressure of the filter is automatically changed so as to operate at a low pressure for a predetermined time, so that the flow rate and the pressure do not greatly change at the start of the filtration process or at the time of the normal operation. The system is designed to enable stable operation without impact.
[0020]
The low-pressure operation refers to an operation in which the input pressure of the undiluted solution 1a to the filtration membrane module 4 is operated at a pressure lower than that in the normal operation, and this varies depending on the normal operation pressure. For this purpose, it is preferable to operate at a pressure of 1 kg / cm 2 or less.
[0021]
As shown in FIGS. 2 and 3, a pressure sensor 13 for detecting the input pressure of the stock solution 1 a to the filtration membrane module 4 is provided downstream of the stock solution circulation pump 2 and upstream of the filtration membrane module 4. A flow sensor 14 is provided in the filtrate pipe 5 serving as a filtrate flow path.
[0022]
The motor 2a is connected to the pressure sensor 13 and the flow rate sensor 14, and controls the motor 2a that controls the output of the stock solution circulating pump 2 selectively in response to the detection information of the pressure sensor 13 and the detection information of the flow rate sensor 14. An inverter 15 is provided.
[0023]
FIG. 2 shows a configuration in which the filtrate 1b is operated at a constant flow rate during the normal operation of the filtration device. The inverter 15 controls the motor 2a based on the detection information of the flow rate sensor 14 provided in the filtrate pipe 5. Then, the output of the stock solution circulating pump 2 is controlled to operate the filtrate 1b at a constant flow rate.
[0024]
That is, the flow rate of the filtrate 1b flowing through the filtrate pipe 5 is detected by the flow rate sensor 14, and the inverter 15 controls the input frequency applied to the motor 2a in accordance with the output signal of the flow rate sensor 14 to control the motor 2a. It is configured to control the rotation speed and control the output of the stock solution circulation pump 2.
[0025]
Then, for example, when the flow rate of the filtrate 1b flowing through the filtrate pipe 5 decreases, the frequency of the inverter 15 is increased based on the detection signal of the flow sensor 14 to increase the rotation speed of the motor 2a by a predetermined amount, thereby circulating the undiluted solution. The output of the pump 2 is increased. When the output of the stock solution circulation pump 2 increases, the filtration pressure applied to the filtration membrane of the filtration membrane module 4 increases, and the flow rate of the filtrate 1b passing through the filtration membrane module 4 increases.
[0026]
Conversely, when the flow rate of the filtrate 1b flowing through the filtrate pipe 5 increases, the frequency of the inverter 15 is reduced based on the detection signal of the flow sensor 14 to reduce the number of revolutions of the motor 2a by a predetermined amount. The output of the circulation pump 2 is reduced. When the output of the stock solution circulation pump 2 decreases, the filtration pressure applied to the filtration membrane of the filtration membrane module 4 decreases, and the flow rate of the filtrate 1b passing through the filtration membrane module 4 decreases.
[0027]
Therefore, a value at which the inverter 15 operates is set in advance based on the detection information of the flow sensor 14, and the motor 15 is controlled by operating the inverter 15 so that the flow rate of the filtrate 1b flowing through the filtrate pipe 5 is constant. By controlling the undiluted solution circulation pump 2, the flow rate of the filtrate 1b flowing through the filtrate pipe 5 can be made constant.
[0028]
FIG. 3 shows that in the filtration device, the stock solution 1a is transferred to the filtration membrane module 4 at the time of backwashing, air bubbling, or switching from the stopped state to the start of the filtration process to eliminate suspended substances accumulated in the filtration membrane of the filtration membrane module 4. A configuration in which the input pressure is operated at a low pressure for a predetermined time is shown, and an inverter 15 controls the motor 2a based on detection information of a pressure sensor 13 provided on the downstream side of the stock solution circulating pump 2 and on the upstream side of the filtration membrane module 4. The input pressure of the stock solution 1a to the filtration membrane module 4 is reduced by controlling the output of the stock solution circulation pump 2. The low-pressure operation is performed for a predetermined time by controlling the operation of the inverter 15 with a timer or the like.
[0029]
That is, by temporarily stopping the normal filtration process operation and performing the backwashing operation and the air bubbling operation, during these operations, the stock solution 1a (and the filtrate 1b) in the filtration membrane module 4 and each pipe are provided. Escapes to a relatively light load, and the pressure on the upstream side of the filtration membrane module 4 detected by the pressure sensor 13 decreases.
[0030]
Then, at the time of switching from the backwashing, the air bubbling or the stop state to the start of the filtration process, the frequency of the inverter 15 is reduced based on the detection information detected by the pressure sensor 13 to reduce the rotation speed of the motor 2a by a predetermined amount. In addition, the output of the stock solution circulating pump 2 is reduced. When the output of the stock solution circulating pump 2 decreases, the filtration pressure applied to the filtration membrane of the filtration membrane module 4 decreases, and the stock solution 1a is supplied to the filtration membrane module 4 at a low pressure.
[0031]
As described above, the constant pressure operation of the input pressure of the stock solution 1a to the filtration membrane module 4 for a predetermined time at the time of switching from the backwashing, the air bubbling or the stop state to the start of the normal filtration process is performed. The pressure at which the undiluted solution 1a is input to the filtration membrane module 4 becomes low pressure, the integrity of the filtration membrane of the filtration membrane module 4 can be maintained without giving an impact to the filtration membrane of the filtration membrane module 4, and the undiluted solution circulating pump 2 Can be operated stably.
[0032]
Therefore, as in the conventional example, when switching from the stop state to the start of the filtration process after the backwash operation or the air bubbling operation is completed, the input pressure of the stock solution 1a supplied to the filtration membrane module 4 by the stock solution circulation pump 2 increases. In addition, a large pressure is applied to the filtration membrane of the filtration membrane module 4, and a large load is not applied to the filtration membrane.
[0033]
When the low-pressure operation has passed for a predetermined time and the flow rate of the filtrate 1b has stabilized, the detection information transmitted to the inverter 15 is automatically changed from the detection information from the pressure sensor 13 to the detection information from the flow rate sensor 14. As a result, as described above, the operation shifts to the ordinary filtration operation in which the filtrate 1b is operated at a constant flow rate.
[0034]
With the above configuration, in a normal filtration processing state, the inverter 15 controls the output of the stock solution circulating pump 2 based on the detection information of the flow rate sensor 14 to operate at a constant flow rate, and the suspension accumulated in the filtration membrane of the filtration membrane module 4. At the time of switching from the backwashing, air bubbling or stop state to the start of the filtration process for removing the substance, the inverter 15 controls the output of the stock solution circulating pump 2 based on the detection information of the pressure sensor 13, The input pressure of the stock solution 1a can be operated at a low pressure for a predetermined time.
[0035]
In the drawing, 16 is a temperature sensor, 17 is a flow sensor, and 18 is a flow valve. As an example of the control of the flow rate and the pressure during the normal filtration processing operation in the embodiment, the flow rate of the stock solution 1a downstream of the stock solution circulation pump 2 and the upstream side of the filtration membrane module 4 is 2.5 m 3 / hr, and the pressure is 2.0 kg / cm 2 , the flow rate of the filtrate 1b downstream of the filtration membrane module 4 is a constant flow rate of 2.0 m 3 / hr, the pressure is 0.1 kg / cm 2 , The flow rate of the circulating undiluted solution 1c on the downstream side is controlled at a constant flow rate of 0.5 m 3 / hr, and the pressure is controlled at a numerical value such as 1.7 kg / cm 2 . The pressure resistance of the filtration membrane of the filtration membrane module 4 used here is set to 3 kg / cm 2 .
[0036]
At the time of back washing, air bubbling, or switching from the stopped state to the start of the filtration process, the stock solution 1a supplied by the stock solution circulating pump 2 is used to remove the suspended matter accumulated in the filtration membrane of the filtration membrane module 4. The pressure inputted to the upstream side is preferably low pressure operation within a range of preferably 1.0 kg / cm 2 or less, and after the predetermined time has elapsed, the pressure of the normal filtration operation returns to 2.0 kg / cm 2 I do.
[0037]
【The invention's effect】
Since the present invention has the above-described configuration and operation, at the time of filtration, a constant flow rate operation is performed, and at the time of switching from backwashing, air bubbling, or a stopped state to the start of normal filtration, input of the undiluted solution to the filtration membrane is performed. By automatically changing the pressure to the low-pressure operation for a predetermined time, the transition from the backwashing, air bubbling or stop state to the normal filtration processing state can be performed stably. Therefore, there is no overshoot of the filtration membrane inlet pressure, so that excessive pressure is not applied to the filtration membrane, and no impact is applied to the filtration membrane, so that the maintenance of the filtration membrane can be secured.
[0038]
Further, by switching from the low pressure operation to the constant flow operation, even when the liquid is not filled in the filtration membrane, the pressure at the filtration membrane inlet does not fluctuate greatly. There is no fluctuation and stable operation is possible.
[Brief description of the drawings]
FIG. 1 is an overall view showing an example of a filtration system to which a filtration device according to the present invention is applied.
FIG. 2 is a schematic diagram showing a configuration for performing a constant flow operation of a filtrate during a normal operation of the filtration device according to the present invention.
FIG. 3 is a diagram illustrating a state in which the input pressure of the undiluted solution to the filtration membrane is set to a predetermined value at the time of backwashing, air bubbling, or switching from a stopped state to the start of filtration processing in the filtration device according to the present invention. It is a schematic diagram which shows the structure which performs low pressure operation for a time.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Undiluted solution tank 1a ... Undiluted solution 1b ... Filtrate 1c ... Circulating return undiluted solution 2 ... Undiluted solution circulation pump 2a ... Motor 3 ... Piping 4 ... Filtration membrane module 5 ... Filtrate piping 6 ... Filtrate tank 7 ... Undiluted solution return piping 8a, 8b … Backwash recovery pump 9… Backwash piping
10 ... Compressor
11… Air tank
12… Piping
13… Pressure sensor
14… Flow sensor
15… Inverter
16… Temperature sensor
17… Flow sensor
18… Flow valve

Claims (2)

原液を循環しながら濾過を行うクロスフロー型の精密濾過または限外濾過装置において、濾過液流路に該濾過液流路を流通する濾過液の流量を検知する流量センサを設けると共に、濾過膜の上流側に該濾過膜への原液の入力圧力を検知する圧力センサを設け、前記流量センサの検知情報及び前記圧力センサの検知情報に選択的に対応して原液循環ポンプの出力を制御するインバータを有し、通常の濾過処理状態では前記流量センサの検知情報に基づいてインバータが原液循環ポンプの出力を制御して濾過液を定流量運転し、濾過膜に蓄積した懸濁物質を排除する逆洗、エアバブリングまたは停止状態からの濾過処理開始への切り換え時に前記圧力センサの検知情報に基づいてインバータが原液循環ポンプの出力を制御して濾過膜への原液の入力圧力を所定時間低圧運転するように構成したことを特徴とする濾過装置。In a cross-flow type microfiltration or ultrafiltration device that performs filtration while circulating the undiluted solution, a flow rate sensor for detecting the flow rate of the filtrate flowing through the filtrate flow path is provided in the filtrate flow path, A pressure sensor for detecting the input pressure of the undiluted solution to the filtration membrane is provided on the upstream side, and an inverter for selectively controlling the output of the undiluted solution circulation pump in response to the detection information of the flow rate sensor and the detection information of the pressure sensor. In a normal filtration process state, the inverter controls the output of the stock solution circulating pump based on the detection information of the flow rate sensor to operate the filtrate at a constant flow rate, and backwash to remove suspended substances accumulated in the filtration membrane. The inverter controls the output of the stock solution circulating pump based on the detection information of the pressure sensor at the time of switching from the air bubbling or the stop state to the start of the filtration process, so that the stock solution enters the filtration membrane. Filtration device, characterized in that to constitute a pressure to low pressure operation a predetermined time. 前記インバータの周波数を変化させて前記原液循環ポンプの回転数を変化させるように構成したことを特徴とする請求項1に記載の濾過装置。The filtering device according to claim 1 , wherein a frequency of the inverter is changed to change a rotation speed of the stock solution circulating pump.
JP19876596A 1996-07-29 1996-07-29 Filtration device Expired - Fee Related JP3579188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19876596A JP3579188B2 (en) 1996-07-29 1996-07-29 Filtration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19876596A JP3579188B2 (en) 1996-07-29 1996-07-29 Filtration device

Publications (2)

Publication Number Publication Date
JPH1033957A JPH1033957A (en) 1998-02-10
JP3579188B2 true JP3579188B2 (en) 2004-10-20

Family

ID=16396574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19876596A Expired - Fee Related JP3579188B2 (en) 1996-07-29 1996-07-29 Filtration device

Country Status (1)

Country Link
JP (1) JP3579188B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3180108A4 (en) * 2014-08-12 2018-03-28 Water Planet Inc. Intelligent fluid filtration management system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2015259228B2 (en) 2014-05-13 2020-04-23 Amgen Inc. Process control systems and methods for use with filters and filtration processes
CN107617337A (en) * 2016-07-14 2018-01-23 宁波乐惠国际工程装备股份有限公司 A kind of cross-flow filtration control method, cross-flow filtration device and cross-flow filtration system
CN109020091A (en) * 2018-09-12 2018-12-18 国合环境研究有限公司 A kind of combined type artificial marsh sewage treatment system and its processing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3180108A4 (en) * 2014-08-12 2018-03-28 Water Planet Inc. Intelligent fluid filtration management system
US10562787B2 (en) 2014-08-12 2020-02-18 Water Planet, Inc. Intelligent fluid filtration management system
AU2015301791B2 (en) * 2014-08-12 2021-01-28 Water Planet, Inc. Intelligent fluid filtration management system
US11401172B2 (en) 2014-08-12 2022-08-02 Intelliflux Controls Intelligent fluid filtration management system

Also Published As

Publication number Publication date
JPH1033957A (en) 1998-02-10

Similar Documents

Publication Publication Date Title
US4935143A (en) Cleaning of filters
JP2724673B2 (en) Surface water purification method and device therefor
JPH04256425A (en) Back washing device for filtration
JPH05184885A (en) Method for cleaning meso-porous tubular membrane of ultrafiltration
WO2000074826A1 (en) Apparatus and method for membrane filtration with enhanced net flux
US6692786B1 (en) Beer clarification process by crossflow microfiltration
JP2003266072A (en) Membrane filtration method
JPH11319516A (en) Water filtration apparatus and method for operating the same
JP2007296500A (en) Membrane separation apparatus and membrane filtration method
JP3579188B2 (en) Filtration device
JP3579193B2 (en) Filtration treatment method and filtration device
JPS61230707A (en) Ultrafiltration method
JPH11244852A (en) Desalination device and back washing method of filter used for desalination device
JPH06226059A (en) Filter device
JP3579187B2 (en) Filtration device
JPH11169851A (en) Water filter and its operation
JP3601015B2 (en) Filtration method using membrane
KR101256704B1 (en) System and Method for Filtering
JP3395846B2 (en) Water membrane purification method and method of operating the same
JP3560708B2 (en) Membrane separation device, its leak detection method and its operation method
JP4467087B2 (en) Filtration membrane cleaning method, filtration membrane cleaning device and filtration device
JPH11347382A (en) Shape memory separation membrane system module
JP3445916B2 (en) Water treatment equipment
JP4454922B2 (en) Control method of filtration apparatus using hollow fiber type separation membrane
JPH08299767A (en) Method for washing backward pressurized hollow-fiber membrane module

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040715

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees