JPH08299767A - Method for washing backward pressurized hollow-fiber membrane module - Google Patents

Method for washing backward pressurized hollow-fiber membrane module

Info

Publication number
JPH08299767A
JPH08299767A JP13113495A JP13113495A JPH08299767A JP H08299767 A JPH08299767 A JP H08299767A JP 13113495 A JP13113495 A JP 13113495A JP 13113495 A JP13113495 A JP 13113495A JP H08299767 A JPH08299767 A JP H08299767A
Authority
JP
Japan
Prior art keywords
water
membrane module
backwash
backwashing
hollow fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13113495A
Other languages
Japanese (ja)
Inventor
Muraa Pieeru
ムラー ピエール
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DICK DEGUREMON KK
Original Assignee
DICK DEGUREMON KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DICK DEGUREMON KK filed Critical DICK DEGUREMON KK
Priority to JP13113495A priority Critical patent/JPH08299767A/en
Publication of JPH08299767A publication Critical patent/JPH08299767A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a backward washing method capable of restoring the flux of a pressurized hollow-fiber membrane module to the original state with a simple operation. CONSTITUTION: The pressurized hollow-fiber membrane module 1 is washed backward by injecting backward washing water from a permeated water inlet 1C and discharging it from the end of the module 1. As a first stage, one end 1A of the module 1 and 5 are opened, the other end and 4, 8 and 9 are closed, backward washing water is discharged into the one end 1A of the module 1 and 5 from the permeated water outlet, 11, 12, 14, 15 and 1C, and the module is washed backward. As a second stage, the other end and 9 are opened, the one end and 5 are closed, the backward washing water is discharged into the other end of the module and 9 from the permeated water outlet, 11, 12, 14, 15 and 1C, and the module is washed backward.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内圧式中空糸膜モジュ
ールの透過水出口側から逆洗水を注入して膜モジュール
の端部より逆洗水を排出させることにより逆洗を行う内
圧式中空糸膜モジュールの逆洗方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an internal pressure type hollow fiber membrane module in which backwashing water is injected from the permeated water outlet side and the backwashing water is discharged from the end of the membrane module. The present invention relates to a backwash method for hollow fiber membrane modules.

【0002】[0002]

【従来の技術】内圧式中空糸膜モジュールは、例えばポ
リエチレン、ポリスルフォン、ポリアクリルニトリル、
酢酸セルロース等を原材料にして形成した内径約1.0
mm、長さ約1mの多孔質(0.01〜0.5μm)の
中空糸を数千本束ねて容器に収めたものである。容器に
は原水供給口、透過水出口及び濃縮水出口が備わってお
り、内圧式の場合には、原水供給口が中空糸の一端に、
透過水出口が中空糸の外部に、そして濃縮水出口が中空
糸の他端にそれぞれ連通させられている。内圧式中空糸
膜モジュールをクロスフロー濾過方式で浄水処理に用い
る場合には、河川水等の原水を原水供給ポンプを用いて
一定の流量で中空糸膜モジュールの原水供給口から圧送
し、更に濃縮水出口から出てきた原水を循環ポンプを用
いて元に戻して・循環させ、この工程を繰り返し行っ
て、中空糸壁から滲み出た透過水を集めて配水池に送っ
ている。処理水には多くの場合懸濁物質やコロイド物質
が浮遊するので、濾過を行っていると、中空糸内壁に懸
濁物質やコロイド物質が堆積する。堆積量が次第に増し
てくると中空糸壁の透過抵抗が増し、一定水量を確保す
るために原水供給ポンプの圧力も高くなる。このポンプ
圧が高いと中空糸膜にかかる負荷も大きくなるので通常
一定期間経過したときに逆洗を行って元の流束を取り戻
すようにしている。逆洗は逆洗タンクに一時蓄えて置い
た透過水を逆洗ポンプで中空糸膜モジュールの透過水出
口から一定の水量を圧送して、中空糸壁を貫通させ、そ
の際剥離した堆積物を逆洗水と共に濃縮水出口又は原水
供給口のいずれか一方の出口から系外に排出して行って
いる。濾過法には上記の他、デッドエンド濾過法がある
が、この濾過法はクロスフロー濾過方式のように処理水
を循環させないのでランニングコストが安いというメリ
ットがあるが、一方循環水によって中空糸内壁に付着し
た堆積物を剥離させるといった作用がないので、水質が
悪いと直ぐに目詰まりするといったデメリットがある。
いずれにしても流束が落ちてきたとき、例えば一定期間
経過したときはクロスフロー濾過方式と同じようにして
逆洗が行われる。更に、中空糸壁に粘着性の菌体やその
代謝物が付着していたり、コロイド状の水酸化鉄が細孔
に詰まっているような場合には、逆洗水のみでは短時間
に除去することができないので、逆洗水に塩素系の酸化
剤、例えば次亜塩素酸ソーダを数ppm添加して逆洗す
ることがある。逆洗処理は、一般に通水10分〜1時間
に対して逆洗15秒〜1分の割合で行っている。この逆
洗でも流束が回復しないときは薬品洗浄を行っている。
薬品には通常洗剤やクエン酸等が用いられる。
2. Description of the Related Art Internal pressure type hollow fiber membrane modules are made of, for example, polyethylene, polysulfone, polyacrylonitrile,
Approximately 1.0 inner diameter formed using cellulose acetate as a raw material
Thousands of porous hollow fibers (0.01 to 0.5 μm) having a length of 1 mm and a length of 1 mm are bundled and housed in a container. The container is equipped with a raw water supply port, a permeated water outlet and a concentrated water outlet.In the case of the internal pressure type, the raw water supply port is at one end of the hollow fiber,
The permeated water outlet communicates with the outside of the hollow fiber, and the concentrated water outlet communicates with the other end of the hollow fiber. When the internal pressure type hollow fiber membrane module is used for water purification by cross-flow filtration, raw water such as river water is pumped from the raw water supply port of the hollow fiber membrane module at a constant flow rate using a raw water supply pump, and further concentrated. The raw water coming out of the water outlet is returned and circulated using a circulation pump, and this process is repeated to collect permeated water that has exuded from the hollow fiber wall and send it to the distribution reservoir. In many cases, suspended solids and colloidal substances float in the treated water, so that suspended solids and colloidal substances accumulate on the inner wall of the hollow fiber during filtration. As the amount of accumulation gradually increases, the permeation resistance of the hollow fiber wall increases, and the pressure of the raw water supply pump also increases to secure a constant amount of water. When the pump pressure is high, the load applied to the hollow fiber membrane is also large. Therefore, after a certain period of time, backwash is usually performed to restore the original flux. For backwashing, the permeated water that was temporarily stored in the backwash tank was pumped with a backwash pump from the permeate outlet of the hollow fiber membrane module to pump a certain amount of water to penetrate the hollow fiber wall and remove the deposits that were peeled at that time. The water is discharged from the concentrated water outlet or the raw water supply outlet together with the backwash water to the outside of the system. In addition to the above, there is a dead end filtration method, but this filtration method has the advantage of low running cost because it does not circulate the treated water unlike the cross-flow filtration method. Since it does not have the effect of peeling off the deposits attached to, there is a demerit that it will be clogged immediately if the water quality is poor.
In any case, when the flux drops, for example, when a certain period of time has passed, backwashing is performed in the same manner as in the crossflow filtration method. Furthermore, if sticky cells or its metabolites adhere to the hollow fiber wall, or if colloidal iron hydroxide is clogged in the pores, it can be removed in a short time with only backwash water. Since this is not possible, backwashing may be performed by adding a few ppm of a chlorine-based oxidizing agent, such as sodium hypochlorite, to the backwashing water. The backwashing treatment is generally performed at a rate of 15 seconds to 1 minute of backwashing for 10 minutes to 1 hour of passing water. If the flux does not recover even with this backwash, chemical cleaning is performed.
Detergent and citric acid are usually used as chemicals.

【0003】[0003]

【発明が解決しようとする課題】逆洗水を多く使用すれ
ばそれだけ流束の回復率も高くなると思われるが、しか
し従来の逆洗方法では思ったほどに流束が回復しないと
いう問題があった。そこで、本発明の目的は流束の十分
な回復が見込める内圧式中空糸膜モジュールの逆洗方法
を提供することにある。
The use of a large amount of backwash water is likely to increase the flux recovery rate, but the conventional backwash method has a problem in that the flux is not recovered as expected. It was Then, the objective of this invention is providing the backwashing method of the internal pressure type hollow fiber membrane module which can anticipate sufficient recovery of a flux.

【0004】[0004]

【課題を解決するための手段】上記課題は、内圧式中空
糸膜モジュールの透過水出口側から逆洗水を注入して該
膜モジュールの端部より逆洗水を排出させることにより
逆洗を行う内圧式中空糸膜モジュールの逆洗方法におい
て、先ず第1工程として前記膜モジュールの一端を開、
他端を閉にして逆洗水を透過水出口側から膜モジュール
の一端側に排出させて逆洗を行い、次いで第2工程とし
て他端を開、一端を閉にして逆洗水を透過水出口側から
膜モジュールの他端側に排出させて逆洗を行うことを特
徴とする内圧式中空糸膜モジュールの逆洗方法により解
決される。クロスフロー濾過方式で使用する場合には膜
モジュールの一端を原水注入口側に、膜モジュールの他
端を濃縮水出口側にとってもよい。デッドエンド濾過方
式で使用する場合には膜モジュールの一端が逆洗水排出
口になる。いずれの工程も一定量の逆洗水を送って逆洗
を行ってもよく、また時間的に期間を定めて逆洗を行っ
てもよい。
[Means for Solving the Problems] The above problems are solved by injecting backwash water from the permeated water outlet side of an internal pressure type hollow fiber membrane module and discharging the backwash water from the end of the membrane module. In the backwashing method of an internal pressure type hollow fiber membrane module to be performed, first, one end of the membrane module is opened as a first step,
The other end is closed and the backwash water is discharged from the permeate outlet side to one end side of the membrane module for backwashing, and then the other end is opened as the second step and one end is closed and the backwash water is the permeated water. A backwashing method for an internal pressure type hollow fiber membrane module is characterized in that the backwashing is performed by discharging from the outlet side to the other end side of the membrane module. When used in the cross-flow filtration system, one end of the membrane module may be on the raw water inlet side and the other end may be on the concentrated water outlet side. When using the dead end filtration method, one end of the membrane module serves as a backwash water discharge port. In each step, a certain amount of backwash water may be sent to carry out backwashing, or the backwashing may be carried out for a predetermined period of time.

【0005】[0005]

【作用】逆洗においては中空糸の外側から圧力をかけて
中空糸内壁に付着した堆積物を中空糸内外の差圧により
離脱させればよいと考えがちである。しかし、付着した
堆積物の除去は差圧のみならず中空糸内を流れる逆洗水
の流速によるところも大きい。すなわち、第1工程で透
過水出口側から逆洗水を送り込むと、中空糸の全長に渡
って逆洗水が中空糸内部にしみ込む。しみ込んだ逆洗水
は全て膜モジュールの一端に向けて流れるので末端近く
ではかなりの流速となる。流速が速ければ、流体が中空
糸内壁に及ぼす剪断力も大きいので堆積物の剥離効果が
大きくなる。一方、膜モジュールの他端近くではしみ込
んだ逆洗水の量も少なく増える見込みもないので流体の
剪断力による剥離効果を期待できない。したがって、第
1工程では従来の逆洗方法にも見られるように一端近く
の流束が当初の流束まで回復し、他端近くの流束は一向
に回復しないという状態が生じる。逆洗水は流れ抵抗の
小さい方に流れるので、逆洗水出口側に近い部分の流束
が回復すると、その部分を透過する逆洗水の流量は増え
るが、他方他端近くを流れる逆洗水の流量は減る。した
がって、第1工程の逆洗を更に続けても他端近くの水量
が増えないので逆洗の効果はあまり期待できない。本発
明においては第1工程に続いて第2工程の逆洗が行われ
る。第2工程での逆洗では透過水出口側から送り込まれ
た逆洗水が第1工程とは逆に中空糸内を通って膜モジュ
ールの他端側に流される。中空糸の一端側は既に第1工
程の逆洗で流束が回復されており、この状態で逆洗水を
通すと、抵抗の小さい中空糸の一端側より逆洗水が浸透
して他端側に流れる。流れ抵抗があるにしてもかなりの
流量が一端側から入り込むので、第1工程に比べると他
端近くでの逆洗水の流速がかなり速くなる。しかも、他
端近くでは堆積物が中空糸内壁に付着していて管内が狭
く、その半径に反比例して流速も速くなるので流体の堆
積物に及ぼす剪断力も大きい。この剪断力により他端近
くの堆積物が剥離されるから、従来法に比べると他端近
くの中空糸の流束の回復が望める。
In backwashing, it is easy to think that pressure may be applied from the outside of the hollow fiber to remove the deposits adhering to the inner wall of the hollow fiber by the pressure difference between the inside and outside of the hollow fiber. However, the removal of the deposited deposit depends not only on the differential pressure but also on the flow velocity of the backwash water flowing in the hollow fiber. That is, when the backwash water is fed from the permeated water outlet side in the first step, the backwash water permeates the inside of the hollow fiber over the entire length of the hollow fiber. All the backwash water that has soaked flows toward one end of the membrane module, so that the flow velocity is considerable near the end. If the flow velocity is high, the shearing force exerted by the fluid on the inner wall of the hollow fiber is also large, so that the effect of separating the deposit becomes large. On the other hand, near the other end of the membrane module, the amount of backwash water that has soaked into the membrane module is small and it is unlikely to increase. Therefore, in the first step, as seen in the conventional backwash method, the flux near one end recovers to the initial flux, but the flux near the other end does not recover at all. Since the backwash water flows toward the side with the smaller flow resistance, when the flux near the outlet of the backwash water is restored, the flow rate of the backwash water passing through that part increases, but the backwash water flowing near the other end The flow rate of water is reduced. Therefore, even if the backwashing in the first step is further continued, the amount of water near the other end does not increase, so the effect of backwashing cannot be expected so much. In the present invention, backwashing in the second step is performed after the first step. In the backwashing in the second step, the backwashing water sent from the permeated water outlet side flows through the hollow fiber to the other end side of the membrane module, contrary to the first step. The flux on one end side of the hollow fiber has already been restored by the backwashing in the first step, and when backwashing water is passed in this state, the backwashing water permeates from one end side of the hollow fiber with low resistance and the other end Flowing to the side. Even if there is flow resistance, a considerable flow rate enters from one end side, so the flow velocity of the backwash water near the other end becomes considerably faster than in the first step. In addition, since the deposit adheres to the inner wall of the hollow fiber near the other end and the inside of the pipe is narrow, and the flow velocity increases in inverse proportion to the radius, the shear force of the fluid on the deposit is large. This shear force separates the deposit near the other end, so that the recovery of the hollow fiber flux near the other end can be expected as compared with the conventional method.

【0006】[0006]

【実施例】以下添付図面を参照して本発明を具体的に説
明する。先ず最初に図1を参照して本発明に使用される
クロスフロー濾過装置の概要を説明する。符号1は例え
ば酢酸セルロースから成る内圧式中空糸を多数束ねた膜
モジュールで、この膜モジュール1の右側には膜モジュ
ール1の上部にあたる原水供給口1Aと下部にあたる濃
縮水出口側1Bを接続する循環路2が形成され、その循
環路2には原水を反時計回りに循環させる循環ポンプ3
とその下流側に循環弁4、更にその下流側に循環路2と
分岐して逆洗水を系外に排出する第1逆洗排出弁5が接
続されている。そして循環ポンプ3の上流側には膜モジ
ュール1に原水を供給するための原水供給配管6が接続
され、その配管6には原水供給ポンプ7と原水供給弁8
が接続され、更にその下流側に分岐して逆洗水を系外に
排出する第2逆洗排出弁9が接続されている。また、膜
モジュール1の透過水出口側1Cには透過水を配水池に
導くための送水管10が配置され、その途中には逆洗水
として使用するために透過水を一時蓄えておくことがで
きるようにしたタンク11が配置されている。そして、
タンク11からの逆洗水を膜モジュール1側に送り込む
ための洗浄配管12がタンク11の上流側の送水管10
に接続され、その逆洗水が送水管10を伝ってタンク1
1内に流れないようにその接続点の下流側には透過水弁
13が接続されている。逆洗配管12には逆洗ポンプ1
4とその下流に逆洗弁15が接続されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the accompanying drawings. First, referring to FIG. 1, an outline of the cross-flow filtration device used in the present invention will be described. Reference numeral 1 is a membrane module in which a large number of inner pressure type hollow fibers made of cellulose acetate are bundled. On the right side of this membrane module 1 is a circulation connecting a raw water supply port 1A which is the upper part of the membrane module 1 and a concentrated water outlet side 1B which is the lower part. A circulation passage 3 is formed, and a circulation pump 3 that circulates raw water counterclockwise in the circulation passage 2 is formed.
A circulation valve 4 is connected to the downstream side thereof, and a first backwash discharge valve 5 that branches from the circulation path 2 and discharges the backwash water to the outside of the system is connected to the downstream side thereof. A raw water supply pipe 6 for supplying raw water to the membrane module 1 is connected to the upstream side of the circulation pump 3, and a raw water supply pump 7 and a raw water supply valve 8 are connected to the pipe 6.
Is connected, and a second backwash discharge valve 9 that branches off to the downstream side and discharges the backwash water to the outside of the system is connected. Further, a water supply pipe 10 for guiding the permeated water to the distribution reservoir is arranged on the permeated water outlet side 1C of the membrane module 1, and the permeated water may be temporarily stored in the middle of the pipe 10 for use as backwash water. A tank 11 that can be used is arranged. And
The cleaning pipe 12 for sending the backwash water from the tank 11 to the membrane module 1 side is the water supply pipe 10 on the upstream side of the tank 11.
And the backwash water is transmitted through the water pipe 10 to the tank 1
A permeate valve 13 is connected to the downstream side of the connection point so as not to flow into the inside 1. Backwash pump 1 for backwash pipe 12
4 and a backwash valve 15 are connected downstream thereof.

【0007】以下、この濾過装置を用いて本発明にかか
る逆洗方法を説明する。先ず、濾過工程から説明する
と、濾過は原水供給弁8、循環弁4及び透過水弁13を
それぞれ開、第1逆洗排水弁5、第2逆洗排水弁9及び
逆洗弁15をそれぞれ閉、逆洗ポンプ14を停止、そし
て原水供給ポンプ7と循環ポンプ3を運転して行う。循
環路2の循環ポンプ3が運転されているので、原水供給
ポンプ7により供給された原水は循環路2に沿って反時
計回りに流れ、膜モジュール1の原水供給口1Aから濃
縮水出口1Bを抜けて更に循環ポンプ3により循環され
る。原水は膜モジュール1を構成する中空糸内部を通る
ときに濾過され、中空糸壁を通過した透過水が膜モジュ
ール1の透過水出口1Cを通ってタンク11に流れ込
む。タンク11は逆洗用の水を確保するためのもので、
必要水量以上になるとタンク11を溢流して透過水が配
水池に流れる。透過水が透過水出口1Cより出ていくと
循環路2内の水量が減るがその分は原水供給ポンプ7に
より絶えず補充される。濾過時には、綺麗な水が中空糸
壁を通過するため原水に含まれる懸濁物質や微生物が中
空糸内壁に遮られて付着する。クロスフロー濾過方式で
は循環ポンプ3によって大量の原水が循環されるため、
その水流によって中空糸内壁に付着した堆積物が剥離さ
れる。したがって、濾過の初期においては懸濁物質や微
生物が付着したり剥離したりする現象が交互に繰り返さ
れる。ある程度濾過が進むと、循環路2内を流れる原水
の不純物濃度が高くなり、中空糸内壁に懸濁物質や微生
物が徐々に堆積し始める。これに対応して濾過抵抗も徐
々に上昇し、透過水量が落ちてくるので、それを補うた
め原水供給ポンプ7のポンプ圧が上昇する。ある一定圧
以上上昇すると効率も悪く、また膜モジュール1に悪い
影響を与えるため、定期的に又は一定圧以上の圧を検出
した時に逆洗を行って膜モジュール1の流束を回復させ
ている。
The backwashing method according to the present invention using this filtration device will be described below. First, the filtration process will be described. For filtration, the raw water supply valve 8, the circulation valve 4 and the permeate valve 13 are opened, and the first backwash drain valve 5, the second backwash drain valve 9 and the backwash valve 15 are closed. The backwash pump 14 is stopped, and the raw water supply pump 7 and the circulation pump 3 are operated. Since the circulation pump 3 of the circulation path 2 is operated, the raw water supplied by the raw water supply pump 7 flows counterclockwise along the circulation path 2 and flows from the raw water supply port 1A of the membrane module 1 to the concentrated water outlet 1B. After exiting, it is further circulated by the circulation pump 3. Raw water is filtered as it passes through the hollow fibers constituting the membrane module 1, and the permeated water that has passed through the hollow fiber wall flows into the tank 11 through the permeated water outlet 1C of the membrane module 1. The tank 11 is for securing water for backwashing,
When the amount of water exceeds the required amount, the tank 11 overflows and the permeate flows into the reservoir. When the permeated water flows out from the permeated water outlet 1C, the amount of water in the circulation path 2 decreases, but the amount is continuously replenished by the raw water supply pump 7. During filtration, clean water passes through the hollow fiber wall, so suspended substances and microorganisms contained in raw water are blocked and attached to the inner wall of the hollow fiber. Since a large amount of raw water is circulated by the circulation pump 3 in the cross flow filtration method,
The water flow separates the deposits attached to the inner wall of the hollow fiber. Therefore, in the initial stage of filtration, the phenomenon in which suspended substances and microorganisms adhere and peel off is repeated alternately. When the filtration proceeds to some extent, the concentration of impurities in the raw water flowing in the circulation path 2 increases, and suspended substances and microorganisms gradually begin to deposit on the inner wall of the hollow fiber. Corresponding to this, the filtration resistance gradually increases and the amount of permeated water decreases, so the pump pressure of the raw water supply pump 7 increases to compensate for it. If the pressure rises above a certain pressure, the efficiency is poor and the membrane module 1 is adversely affected. Therefore, backwash is performed periodically or when the pressure above the certain pressure is detected to restore the flux of the membrane module 1. .

【0008】本発明はこの逆洗法に関するもので次のよ
うにして行う。先ず第1工程の逆洗では、原水供給ポン
プ7と循環ポンプ3を停止、循環弁4と透過水弁13を
閉、逆洗弁15と第1逆洗排水弁5を開、逆洗ポンプ1
4を運転状態にすることにより行われる。タンク11に
蓄えられた逆洗水は逆洗配管12に備えられている逆洗
ポンプ14により昇圧されて膜モジュール1の透過水出
口1C側より膜モジュール1内に圧送される。図2は膜
モジュール1内に有する中空糸を拡大して示したもの
で、中空糸内壁には濾過で堆積したゼリ状の物質が中空
糸の全長にわたって付着している。逆洗の条件はどこを
取ってもあまり変わらないので、透過水出口1Cより流
入した逆洗水は当初あらゆる箇所から略均等に中空糸内
部に浸透する。浸透した逆洗水が原水供給口1Aに向か
って流れる間に次第に水量が増える。原水供給口1A近
くではかなりの量となり、しかも中空糸内壁には堆積物
が付着していて有効径も狭くなっているのでかなりの流
速となる。逆洗水が堆積物に及ぼす剪断力は逆洗水の平
均流速に比例し、有効径に反比例するので、第1工程の
逆洗では主として剪断力の大きい原水供給口1A近くの
堆積物が剥離される。この第1工程の逆洗は時間を定め
て一定期間行ってもよく、また水量を定めて一定水量行
ってもよい。しかし、この第1工程の逆洗を長時間続け
ても剥離効果はあまり期待できない。それは原水供給口
1A近くの中空糸壁の透過抵抗が堆積物の剥離によって
小さく、透過水出口1Cより流入した逆洗水が抵抗の小
さい部分を通って流れ、濃縮水出口1B側の堆積物の剥
離に貢献しないからである。
The present invention relates to this backwashing method and is carried out as follows. First, in the backwash of the first step, the raw water supply pump 7 and the circulation pump 3 are stopped, the circulation valve 4 and the permeated water valve 13 are closed, the backwash valve 15 and the first backwash drain valve 5 are opened, and the backwash pump 1
This is done by putting 4 into the operating state. The backwash water stored in the tank 11 is pressurized by the backwash pump 14 provided in the backwash pipe 12 and pressure-fed into the membrane module 1 from the permeated water outlet 1C side of the membrane module 1. FIG. 2 is an enlarged view of the hollow fiber contained in the membrane module 1, and the jelly-like substance deposited by filtration adheres to the inner wall of the hollow fiber over the entire length of the hollow fiber. Since the conditions of backwashing do not change much regardless of the conditions, the backwashing water that has flowed in through the permeate outlet 1C initially permeates the hollow fiber substantially uniformly from every location. The amount of water gradually increases while the permeated backwash water flows toward the raw water supply port 1A. The flow rate is considerably large near the raw water supply port 1A, and since the deposit adheres to the inner wall of the hollow fiber and the effective diameter is also narrow, the flow velocity is considerable. Since the shear force exerted on the sediment by the backwash water is proportional to the average flow velocity of the backwash water and inversely proportional to the effective diameter, the sediment near the raw water supply port 1A, which mainly has a large shear force, peels off in the backwash of the first step. To be done. The backwashing in the first step may be performed for a certain period of time with a fixed time, or may be performed for a certain amount of water with a fixed amount of water. However, even if the backwashing in the first step is continued for a long time, the peeling effect cannot be expected so much. The permeation resistance of the hollow fiber wall near the raw water supply port 1A is small due to the separation of the deposit, and the backwash water that has flowed in from the permeate outlet 1C flows through the part with low resistance, and the sediment on the concentrated water outlet 1B side This is because it does not contribute to peeling.

【0009】そこで、本発明においては第2工程の逆洗
が行われる。この第2工程の逆洗は第1工程の逆洗の
後、第1逆洗排出弁5を閉、第2逆洗排出弁9を開にし
て行う。この操作を行うと、図3に示すように中空糸内
を流れる逆洗水の流れの方向が逆になる。図からも判る
ように原水供給口1A近くの透過抵抗が小さいので逆洗
水は原水供給口1A近くから中空糸内部に多く流れ込
む。一方、有効径は濃縮水出口1B側の方が小さいので
原水供給口1A近くから進入した逆洗水の流速は濃縮水
出口1B側で最も速くなる。したがって逆洗水が堆積物
に及ぼす剪断力は濃縮水出口1B側で最も大きくなるの
でこの部分の堆積物が重点的に剥離される。この第2工
程の逆洗も時間を定めて一定期間行ってもよく、また水
量を定めて一定水量行ってもよい。
Therefore, in the present invention, backwashing in the second step is performed. The backwash in the second step is performed by closing the first backwash discharge valve 5 and opening the second backwash discharge valve 9 after the backwash in the first step. When this operation is performed, the direction of the backwash water flowing in the hollow fibers is reversed as shown in FIG. As can be seen from the figure, since the permeation resistance near the raw water supply port 1A is small, a large amount of backwash water flows into the hollow fiber from near the raw water supply port 1A. On the other hand, since the effective diameter is smaller on the concentrated water outlet 1B side, the flow velocity of the backwash water entering from near the raw water supply port 1A is the highest on the concentrated water outlet 1B side. Therefore, the shearing force that the backwash water exerts on the deposit becomes the largest on the concentrated water outlet 1B side, so that the deposit in this part is peeled off intensively. The backwashing in the second step may also be performed for a certain period of time with a fixed time, or may be performed for a certain amount of water with a fixed amount of water.

【0010】実施例の説明はクロスフロー濾過方式の場
合であるが、本発明はデッドエンド濾過法にも実施する
ことができる。また、逆洗水に次亜塩素酸ソーダを数p
pm加えて逆洗を行ってもよい。場合によっては中空糸
内部に空気を吹き込むようにしてもよい。更に浄水処理
のみならず、その他の処理にも適用できる。
Although the description of the embodiment is for a cross-flow filtration system, the present invention can also be applied to a dead end filtration method. In addition, add a few p of sodium hypochlorite to the backwash water.
Back washing may be performed by adding pm. In some cases, air may be blown into the hollow fiber. Furthermore, it can be applied not only to water purification treatment, but also to other treatments.

【0011】[0011]

【発明の効果】以上説明したように本発明によれば、簡
単な操作で膜モジュールの流束をほぼ初期の状態まで回
復させることができる。
As described above, according to the present invention, the flux of the membrane module can be restored to an almost initial state by a simple operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施に使用される濾過装置の概要図で
ある。
FIG. 1 is a schematic view of a filtration device used for carrying out the present invention.

【図2】第1工程の逆洗を行っているところを示した説
明図である。
FIG. 2 is an explanatory diagram showing a process of backwashing in a first step.

【図3】同じく第2工程の逆洗を行っているところを示
した説明図である。
FIG. 3 is an explanatory view showing a process of backwashing in the same second step.

【符号の説明】[Explanation of symbols]

1 内圧式中空糸膜モジュール 1A 原水供給口 1B 濃縮水出口 1C 透過水出口 2 循環路 3 循環ポンプ 4 循環弁 5 第1逆洗排出弁 6 原水供給配管 7 原水供給ポンプ 8 原水供給弁 9 第2逆洗排出弁 10 送水管 11 タンク 12 洗浄配管 13 透過水弁 14 逆洗ポンプ 15 逆洗弁 1 Internal pressure type hollow fiber membrane module 1A Raw water supply port 1B Concentrated water outlet 1C Permeate water outlet 2 Circulation path 3 Circulation pump 4 Circulation valve 5 First backwash discharge valve 6 Raw water supply pipe 7 Raw water supply pump 8 Raw water supply valve 9 Second Backwash discharge valve 10 Water pipe 11 Tank 12 Washing pipe 13 Permeate water valve 14 Backwash pump 15 Backwash valve

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 内圧式中空糸膜モジュールの透過水出
口側から逆洗水を注入して該膜モジュールの端部より逆
洗水を排出させることにより逆洗を行う内圧式中空糸膜
モジュールの逆洗方法において、先ず第1工程として前
記膜モジュールの一端を開、他端を閉にして逆洗水を透
過水出口側から膜モジュールの一端側に排出させて逆洗
を行い、次いで第2工程として他端を開、一端を閉にし
て逆洗水を透過水出口側から膜モジュールの他端側に排
出させて逆洗を行うことを特徴とする内圧式中空糸膜モ
ジュールの逆洗方法。
1. An internal pressure type hollow fiber membrane module for backwashing by injecting backwash water from the permeate outlet side of the internal pressure type hollow fiber membrane module and discharging the backwash water from the end of the membrane module. In the backwashing method, first, as one step, one end of the membrane module is opened and the other end is closed to discharge backwash water from the permeate outlet side to one end side of the membrane module for backwashing, and then the second step. As a step, the other end is opened and the other end is closed, and the backwash water is discharged from the permeate outlet side to the other end side of the membrane module to perform backwashing. .
【請求項2】 前記膜モジュールの一端は原水注入口
側であり、前記膜モジュールの他端は濃縮水出口側であ
ることを特徴とする請求項1記載の内圧式中空糸膜モジ
ュールの逆洗方法。
2. The backwash of an internal pressure type hollow fiber membrane module according to claim 1, wherein one end of the membrane module is on a raw water inlet side and the other end of the membrane module is on a concentrated water outlet side. Method.
【請求項3】 前記第1及び第2工程の逆洗は一定水
量の逆洗水を送って行うことを特徴とする請求項1又は
2記載の内圧式中空糸膜モジュールの逆洗方法。
3. The backwashing method for an internal pressure type hollow fiber membrane module according to claim 1 or 2, wherein the backwashing in the first and second steps is performed by sending a constant amount of backwashing water.
JP13113495A 1995-05-01 1995-05-01 Method for washing backward pressurized hollow-fiber membrane module Pending JPH08299767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13113495A JPH08299767A (en) 1995-05-01 1995-05-01 Method for washing backward pressurized hollow-fiber membrane module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13113495A JPH08299767A (en) 1995-05-01 1995-05-01 Method for washing backward pressurized hollow-fiber membrane module

Publications (1)

Publication Number Publication Date
JPH08299767A true JPH08299767A (en) 1996-11-19

Family

ID=15050789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13113495A Pending JPH08299767A (en) 1995-05-01 1995-05-01 Method for washing backward pressurized hollow-fiber membrane module

Country Status (1)

Country Link
JP (1) JPH08299767A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH119973A (en) * 1997-06-26 1999-01-19 Ebara Corp Method for filtration back-washing of membrane module for turbidity removal
JPH1119490A (en) * 1997-07-04 1999-01-26 Ebara Corp Method for filtration-backwashing clarifying membrane module
JP2007245083A (en) * 2006-03-17 2007-09-27 Fuji Electric Systems Co Ltd Operation method of water treatment system by membrane filtration
JP2008229471A (en) * 2007-03-20 2008-10-02 Metawater Co Ltd Washing method of membrane filtration system
JP2014233813A (en) * 2013-06-04 2014-12-15 株式会社クラレ Used silicon coolant processing apparatus and used silicon coolant processing method
EP2759331B1 (en) * 2011-09-22 2020-09-16 Zhang, Huichun Upright pressure infiltration hybrid membrane filtration system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH119973A (en) * 1997-06-26 1999-01-19 Ebara Corp Method for filtration back-washing of membrane module for turbidity removal
JPH1119490A (en) * 1997-07-04 1999-01-26 Ebara Corp Method for filtration-backwashing clarifying membrane module
JP2007245083A (en) * 2006-03-17 2007-09-27 Fuji Electric Systems Co Ltd Operation method of water treatment system by membrane filtration
JP2008229471A (en) * 2007-03-20 2008-10-02 Metawater Co Ltd Washing method of membrane filtration system
EP2759331B1 (en) * 2011-09-22 2020-09-16 Zhang, Huichun Upright pressure infiltration hybrid membrane filtration system
JP2014233813A (en) * 2013-06-04 2014-12-15 株式会社クラレ Used silicon coolant processing apparatus and used silicon coolant processing method

Similar Documents

Publication Publication Date Title
EP1885475B1 (en) Chemical clean for membrane filter
EP1704911B1 (en) Method for cleaning a separation membrane in a membrane bioreactor system
JPH11156166A (en) Cleaning method for hollow fiber membrane module
JPH06277664A (en) Method and apparatus for clarifying surface flowing water with membrane
JPH05184885A (en) Method for cleaning meso-porous tubular membrane of ultrafiltration
JP2003266072A (en) Membrane filtration method
EP0079040A2 (en) Method and apparatus for increasing the cross-flow filtration fluxes of liquids containing suspended solids
JPH02126922A (en) Back washing method of separating membrane
JPH06292820A (en) Membrane separation device
JPH07236818A (en) Backwashing of inner pressure type hollow yarn module
JPH08299767A (en) Method for washing backward pressurized hollow-fiber membrane module
JPS61230707A (en) Ultrafiltration method
JP3488535B2 (en) Chemical solution cleaning method for membrane in immersion type membrane filtration device and chemical solution cleaning device
JPH06170178A (en) Hollow fiber membrane module filtration equipment
JPS644802B2 (en)
JP3440684B2 (en) Filtration device and method for cleaning filtration device
JP4454922B2 (en) Control method of filtration apparatus using hollow fiber type separation membrane
JP2002028456A (en) Treatment system using spiral membrane module and operating method therefor
JPS6111108A (en) Process for washing membrane module
JP3608227B2 (en) Membrane separator
JP3919893B2 (en) Cleaning method
JPH0667456B2 (en) Filtration device
JP3359516B2 (en) Filtration device
JPH1057780A (en) Dipped membrane separator
JP3453695B2 (en) Oil-water separator