JP3633667B2 - Support structure of heat transfer panel in exhaust heat recovery boiler - Google Patents

Support structure of heat transfer panel in exhaust heat recovery boiler Download PDF

Info

Publication number
JP3633667B2
JP3633667B2 JP14288295A JP14288295A JP3633667B2 JP 3633667 B2 JP3633667 B2 JP 3633667B2 JP 14288295 A JP14288295 A JP 14288295A JP 14288295 A JP14288295 A JP 14288295A JP 3633667 B2 JP3633667 B2 JP 3633667B2
Authority
JP
Japan
Prior art keywords
water supply
heat transfer
supply pipe
horizontal
transfer panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14288295A
Other languages
Japanese (ja)
Other versions
JPH08334209A (en
Inventor
清 岡田
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP14288295A priority Critical patent/JP3633667B2/en
Publication of JPH08334209A publication Critical patent/JPH08334209A/en
Application granted granted Critical
Publication of JP3633667B2 publication Critical patent/JP3633667B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【0001】
【産業上の利用分野】
本発明は排熱回収ボイラに係わり、更に詳しくは、排熱回収ボイラにおける伝熱パネルの支持構造に関する。
【0002】
【従来の技術】
ブレイトンサイクルとランキンサイクルを組合わせた複合サイクルや、既設のボイラにガスタービンを組み合わせて出力を増大させるリパワリングが、近年ますます盛んになっている。図5は、複合サイクルの1つである排熱回収式複合サイクル発電プラントの全体構成図であり、ガスタービン1の排気を排熱回収ボイラ2(HRSG:Heat Recovery Steam Generator)に導き、その熱を回収して蒸気を発生させ蒸気タービン3を駆動するようになっている。かかる複合サイクルは、ガスタービンの最高利用温度が高いという利点と、蒸気タービンの最低利用温度が低いという利点を活用したものであり、熱効率及び部分負荷効率が高く、起動停止時間が短く、温排水量が少ない、等の特徴を有している。なおこの図に示した排熱回収ボイラは、ガスタービンの排熱を回収するためにリパワリングにも適用される。
【0003】
図6は、従来の排熱回収ボイラの全体構成図である。この図に示すように、従来の排熱回収ボイラは、断熱材で内張りされたボイラ本体4と、この本体内に架台4aに載せられて垂直に配置された複数(この図で3つ)の伝熱パネル5とからなり、各伝熱パネル5は、上下の水平管寄せ5a,5b(マニホールド)とこの管寄せ間を連結する多数の垂直伝熱管5cとからなる。ボイラ本体内は、仕切り板4bにより、ガスタービンからの高温排ガス(例えば650℃)が流れる排ガス流路と上下管寄せの収納部分とに仕切られ、各管寄せが高温の排ガスに直接曝されないようになっている。また、下管寄せ5bの下方にはパネル支持部6が設けられ、このパネル支持部6を架台4aで支持し、伝熱パネルの重量を支えるようになっている。また各伝熱パネル5の垂直伝熱管5cにはボイラ用給水が下流側から順次上向きに流れ、高温排ガスにより加熱されて高温水又は蒸気となり、これにより排ガス中の熱を回収するようになっている。
【0004】
図7は、図6の排熱回収ボイラのパネル正面図である。大型の排熱回収ボイラでは、高温ガスの流路断面は例えば約10m×10mにもなり、各伝熱パネルの重量が重く、下管寄せ5bの水平長さも長くなる。
【0005】
【発明が解決しようとする課題】
上述した従来の排熱回収ボイラでは、起動又は停止時に伝熱パネルが幅方向に熱膨張(又は熱収縮)するため、パネル支持部6が架台4aの上を水平に滑る必要がある。しかし、架台4aの周囲には、仕切り板4bの隙間から高温排ガス(約650℃)が流れ込むため、架台4aの滑り面はほぼ同等の高温になり、 1長時間保持後の滑り出し摩擦係数が非常に増大し(例えば2以上)、 2かつステックスリップや 3部分的な拡散結合が生じて、伝熱パネル5が架台4a(伝熱パネル支持部材)上をスムーズに滑らなくなる問題点があった。
【0006】
このため、摩擦係数の増大や拡散結合により伝熱パネルに過大な水平力(例えば自重の2倍以上の約40〜60トン)が作用したり、ステックスリップにより、昇温・冷却の過程で熱膨張が急に開放され、激しい衝撃音(例えば「バキーン」,「ドーン」という音)とともに衝撃荷重が作用し、各部に亀裂等を発生させることがある問題点があった。この現象は、比較的小型の排熱回収ボイラでも発生するが、特に大型になる程重要である。
【0007】
上述した架台の滑り面は、例えば約650℃以上の高温に曝されながら50〜70Kg/cmの高面圧を受ける。このため、通常の材料では、上述した現象を回避できず、従来は、幅方向に伝熱パネルを分割したり、ボイラ各部の強度を高めかつメンテナンスを頻繁に行う、等の手段をとっていた。しかし、これらの対策により、構造が複雑化し、重量が増し、装置が大型化し、製造コストが過大になる等の問題点があった。
【0008】
本発明は、かかる問題点を解決するために創案されたものである。すなわち本発明の目的は、滑り面の高温酸化量を低減し、ステックスリップや拡散結合をなくし、高温・高面圧下において伝熱パネルをスムーズに熱膨張させることができる排熱回収ボイラにおける伝熱パネルの支持構造を提供することにある。
【0009】
【課題を解決するための手段】
本発明によれば、ボイラ本体内に垂直に配置され、かつ水平に流れる排ガスに沿って間隔を隔てて配置された複数の伝熱パネルを有し、該各伝熱パネルは、上下の水平管寄せと該水平管寄せ間を連結した多数の垂直伝熱管とからなる、排熱回収ボイラにおける伝熱パネルの支持構造であって、上端が下管寄せに剛接され下方に伸びた複数の垂直給水管と、該垂直給水管の下端に剛接され前記下管寄せと平行にほぼ水平に伸びた水平給水管と、水平給水管の直下に設けられ水平給水管を熱膨張可能に支持する支持架台と、該支持架台を囲む断熱材とを備え、水平給水管及び垂直給水管を介して下管寄せに給水が供給される、ことを特徴とする排熱回収ボイラにおける伝熱パネルの支持構造が提供される。
【0010】
本発明の好ましい実施例によれば、前記水平給水管は、複数の水平な支持面を有し、前記支持架台は、水平給水管の支持面を支持する水平な上面を有する。また、前記水平給水管の支持面は、垂直給水管に対応した位置に設けられている、ことが好ましい。
【0011】
【作用】
上記本発明の構成によれば、伝熱パネルの下管寄せの下方に複数の垂直給水管と下管寄せと平行に水平に伸びた水平給水管とが剛接されているので、支持架台により水平給水管を熱膨張可能に支持することにより、伝熱パネル全体を下管寄せの長さ方向に熱膨張可能に支持することができる。また、この水平給水管及び垂直給水管を介して下管寄せに給水が供給されるので、内部を流れる給水により水平給水管及び垂直給水管を下管寄せとほぼ同一の温度(例えば200〜300℃)に冷却することができる。更に、水平給水管の直下に支持架台が設けられ、かつこの部分が断熱材で囲まれているので、水平給水管により支持架台を冷却し、かつ断熱材により高温排ガスによる昇温を防止することができ、これにより、支持架台の滑り面の高温酸化量を低減し、ステックスリップや拡散結合をなくし、高温・高面圧下において伝熱パネルをスムーズに熱膨張させることができる。
【0012】
【実施例】
以下、本発明の好ましい実施例を図面を参照して説明する。なお、各図において共通する部分には同一の符号を付して使用する。
図1は、本発明による伝熱パネル支持構造を有する排熱回収ボイラの全体構成図である。この図において、排熱回収ボイラ10は、ボイラ本体4内に3つの伝熱パネル7,8,9を有し、各伝熱パネルはそれぞれ垂直に配置され、かつ水平に流れる排ガスに沿って間隔を隔てて配置されている。また、各伝熱パネルは、上下の水平管寄せ5a,5b(マニホールド)とこの水平管寄せ間を連結した多数の垂直伝熱管5cとからなる。
【0013】
更に図1において、伝熱パネル7,8,9の間には下流側の上管寄せ5aから上流側の下管寄せ5bに給水を流す降水管11aが設けらている。また、最下流の伝熱パネル9の下管寄せ5bには外部から低温(約180〜200℃)の給水が給水入口ライン11bから導入され、かつ最上流の伝熱パネル7の上管寄せ5aからは加熱されて例えば300℃以上の高温になった蒸気又は高温水が給水出口ライン11cを介して図示しないメインボイラ等に供給されるようになっている。なお、本発明は3つの伝熱パネルに限定されず、2つであっても4つ以上であってもよい。
【0014】
図2は、本発明の伝熱パネルの支持構造を有する大型排熱回収ボイラのパネル正面図、図3は最上流又は中間の伝熱パネルの支持構造を示す図2の部分拡大図、図4は図3のA部拡大図である。
図2において、最下流の伝熱パネル9の下管寄せ5bには、図1と同様に、外部から低温(約180〜200℃)の給水が給水入口ライン11bから導入される。また図3に示すように、最上流と中間の伝熱パネル7,8には、下流側の上管寄せ5aから降水管11aを介して給水が供給される。なお図2に示すような大型の排熱回収ボイラでは、高温ガスの流路断面は例えば約10m×10m以上にもなり、各伝熱パネルの重量が重く(例えば20〜30トン)、下管寄せ5bの水平長さは、この図のように、各伝熱パネルを左右に別々に設けた場合でも例えば4〜5m以上の長さになる。
【0015】
図1〜図4において、本発明の伝熱パネルの支持構造では、上端が下管寄せに溶接等で剛接され下方に垂直に伸びた複数の垂直給水管12と、垂直給水管12の下端に剛接され下管寄せ5bと平行にほぼ水平に伸びた水平給水管14と、水平給水管14の直下に設けられ水平給水管14を支持する支持架台16と、支持架台16を囲む断熱材18とを備える。また、水平給水管14及び垂直給水管12を介して下管寄せ5bに給水を供給するようになっている。
【0016】
また、図4に示すように、水平給水管14は、複数の水平な支持面14aを有し、支持架台16は、水平給水管14の支持面14aを支持する水平な上面16aを有している。この構成により、支持架台16の上面16aの上を垂直給水管の支持面14aが水平に滑ることにより、支持架台16により水平給水管14を熱膨張可能に支持することができる。
【0017】
更に、図2〜図4に示すように、水平給水管14の支持面14aは、垂直給水管12に対応した位置に設けら、垂直給水管12や水平給水管14に大きな曲げモーメントを作用させることなく、伝熱パネル7,8,9の全体の重量を支持面14aを介して支持架台16に伝達するようになっている。
【0018】
上述した構成により、伝熱パネル7,8,9の下管寄せ5bの下方に複数の垂直給水管12と下管寄せ5bと平行に水平に伸びた水平給水管14とが溶接等により剛接されているので、支持架台16により水平給水管14を熱膨張可能に支持することにより、伝熱パネル全体を下管寄せの長さ方向(図2で左右)に熱膨張可能に支持することができる。
また、この水平給水管14及び垂直給水管12を介して下管寄せ5bに給水が供給されるので、内部を流れる給水により水平給水管14及び垂直給水管12を下管寄せ5bとほぼ同一の温度(例えば200〜300℃)に冷却することができる。
【0019】
更に、水平給水管14の直下に支持架台16が設けられ、かつこの部分が断熱材18で囲まれているので、水平給水管14により支持架台16を冷却し、かつ断熱材18により高温排ガスによる昇温を防止することができ、これにより、支持架台の滑り面の高温酸化量を低減し、ステックスリップや拡散結合をなくし、高温・高面圧下において伝熱パネルをスムーズに熱膨張させることができる。
【0020】
なお、本発明は上述した実施例に限定されず、本発明の要旨を逸脱しない範囲で種々に変更できることは勿論である。
【0021】
【発明の効果】
上述したように本発明の排熱回収ボイラにおける伝熱パネルの支持構造は、滑り面の高温酸化量を低減し、ステックスリップや拡散結合をなくし、高温・高面圧下において伝熱パネルをスムーズに熱膨張させることができる、等の優れた効果を有する。
【図面の簡単な説明】
【図1】本発明による伝熱パネル支持構造を有する排熱回収ボイラの全体構成図である。
【図2】本発明の伝熱パネルの支持構造を有する大型排熱回収ボイラのパネル正面図である。
【図3】最上流又は中間の伝熱パネルの支持構造を示す図2の部分拡大図である。
【図4】図3のA部拡大図である。
【図5】従来の排熱回収式複合サイクル発電プラントの全体混図である。
【図6】従来の排熱回収ボイラの全体構成図である。
【図7】従来の大型排熱回収ボイラのパネル正面図である。
【符号の説明】
1 ガスタービン
2 排熱回収ボイラ
3 蒸気タービン
4 ボイラ本体
4a 架台
4b 仕切り板
5 伝熱パネル
5a 上管寄せ
5b 下管寄せ
5c 垂直伝熱管
6 パネル支持部
7,8,9 伝熱パネル
10 排熱回収ボイラ
11a 降水管
11b 給水入口ライン
11c 給水出口ライン
12 垂直給水管
14 水平給水管
14a 支持面
16 支持架台
16a 上面
18 断熱材
[0001]
[Industrial application fields]
The present invention relates to an exhaust heat recovery boiler, and more particularly to a heat transfer panel support structure in an exhaust heat recovery boiler.
[0002]
[Prior art]
In recent years, combined cycles combining the Brayton cycle and Rankine cycle, and repowering that increases output by combining a gas turbine with an existing boiler, have become increasingly popular. FIG. 5 is an overall configuration diagram of an exhaust heat recovery combined cycle power plant that is one of the combined cycles. The exhaust of the gas turbine 1 is led to an exhaust heat recovery boiler 2 (HRSG: Heat Recovery Steam Generator). The steam is generated by generating steam to drive the steam turbine 3. This combined cycle takes advantage of the advantages of high gas turbine maximum utilization temperature and steam turbine minimum utilization temperature, and has high thermal and partial load efficiency, short start / stop time, It has the characteristics such as few. The exhaust heat recovery boiler shown in this figure is also applied to repowering in order to recover the exhaust heat of the gas turbine.
[0003]
FIG. 6 is an overall configuration diagram of a conventional exhaust heat recovery boiler. As shown in this figure, a conventional exhaust heat recovery boiler includes a boiler body 4 lined with a heat insulating material, and a plurality of (three in this figure) vertically placed on a gantry 4a in the body. Each heat transfer panel 5 is composed of upper and lower horizontal headers 5a and 5b (manifold) and a number of vertical heat transfer tubes 5c connecting the headers. The inside of the boiler body is partitioned by the partition plate 4b into an exhaust gas passage through which high-temperature exhaust gas (for example, 650 ° C.) from the gas turbine flows and a storage portion of the upper and lower headers so that each header is not directly exposed to the high-temperature exhaust gas. It has become. A panel support 6 is provided below the lower header 5b. The panel support 6 is supported by a gantry 4a to support the weight of the heat transfer panel. In addition, boiler feed water sequentially flows upward from the downstream side to the vertical heat transfer tubes 5c of each heat transfer panel 5 and is heated by the high temperature exhaust gas to become high temperature water or steam, thereby recovering the heat in the exhaust gas. Yes.
[0004]
FIG. 7 is a panel front view of the exhaust heat recovery boiler of FIG. In the large exhaust heat recovery boiler, the flow path cross section of the high-temperature gas is about 10 m × 10 m, for example, each heat transfer panel is heavy, and the horizontal length of the lower header 5b is also long.
[0005]
[Problems to be solved by the invention]
In the conventional exhaust heat recovery boiler described above, the heat transfer panel thermally expands (or contracts) in the width direction at the time of start-up or stop, so that the panel support 6 needs to slide horizontally on the gantry 4a. However, since high temperature exhaust gas (about 650 ° C) flows around the gantry 4a from the gap of the partition plate 4b, the sliding surface of the gantry 4a becomes almost the same high temperature, and the sliding friction coefficient after holding for a long time is extremely high. (For example, 2 or more), 2 and stick slip and 3 partial diffusion coupling occurred, and there was a problem that the heat transfer panel 5 did not slide smoothly on the gantry 4a (heat transfer panel support member).
[0006]
For this reason, an excessive horizontal force (for example, about 40 to 60 tons, more than twice its own weight) acts on the heat transfer panel due to an increase in the friction coefficient or diffusion bonding, or a stick slip causes heat to rise during cooling and heating. There is a problem that the expansion is suddenly released and an impact load is applied together with a severe impact sound (for example, a sound of “bakin” or “dawn”), which may cause cracks or the like in each part. This phenomenon occurs even in a relatively small exhaust heat recovery boiler, but is particularly important as the size increases.
[0007]
The sliding surface of the gantry described above receives a high surface pressure of 50 to 70 kg / cm 2 while being exposed to a high temperature of, for example, about 650 ° C. or more. For this reason, the above-mentioned phenomenon cannot be avoided with ordinary materials, and conventionally, measures such as dividing the heat transfer panel in the width direction, increasing the strength of each part of the boiler, and frequently performing maintenance have been taken. . However, these measures have problems such as a complicated structure, an increased weight, a larger apparatus, and an excessive manufacturing cost.
[0008]
The present invention has been developed to solve such problems. That is, the object of the present invention is to reduce the amount of high-temperature oxidation of the sliding surface, eliminate stick slip and diffusion bonding, and heat transfer in the exhaust heat recovery boiler that can smoothly expand the heat transfer panel under high temperature and high surface pressure. It is to provide a panel support structure.
[0009]
[Means for Solving the Problems]
According to the present invention, it has a plurality of heat transfer panels arranged vertically in the boiler body and spaced apart along the horizontally flowing exhaust gas, and each heat transfer panel has upper and lower horizontal tubes. A heat transfer panel support structure for an exhaust heat recovery boiler, comprising a header and a number of vertical heat transfer tubes connected between the horizontal headers, wherein the upper end is rigidly connected to the lower header and extends vertically. A water supply pipe, a horizontal water supply pipe which is rigidly connected to the lower end of the vertical water supply pipe and extends substantially horizontally in parallel with the lower header, and a support provided directly below the horizontal water supply pipe so as to be capable of thermal expansion A structure for supporting a heat transfer panel in an exhaust heat recovery boiler, comprising a frame and a heat insulating material surrounding the support frame, wherein water is supplied to a lower header through a horizontal water supply pipe and a vertical water supply pipe Is provided.
[0010]
According to a preferred embodiment of the present invention, the horizontal water supply pipe has a plurality of horizontal support surfaces, and the support frame has a horizontal upper surface that supports the support surface of the horizontal water supply pipe . Moreover, it is preferable that the support surface of the said horizontal water supply pipe is provided in the position corresponding to a vertical water supply pipe.
[0011]
[Action]
According to the configuration of the present invention, a plurality of vertical water supply pipes and a horizontal water supply pipe extending horizontally in parallel to the lower header are rigidly connected to the lower part of the lower header of the heat transfer panel. By supporting the horizontal water supply pipe so as to be capable of thermal expansion, the entire heat transfer panel can be supported so as to be capable of thermal expansion in the length direction of the lower header . Further, since water is supplied to the lower header through the horizontal water supply pipe and the vertical water supply pipe, the horizontal water supply pipe and the vertical water supply pipe are made to have substantially the same temperature (for example, 200 to 300) as the lower header by the water supply flowing inside. C.). Furthermore, since the support frame is provided directly under the horizontal water supply pipe and this part is surrounded by the heat insulating material, the support water frame is cooled by the horizontal water supply pipe and the temperature rise due to the high temperature exhaust gas is prevented by the heat insulating material. As a result, the amount of high-temperature oxidation of the sliding surface of the support frame can be reduced, stick slip and diffusion bonding can be eliminated, and the heat transfer panel can be expanded smoothly under high temperature and high surface pressure.
[0012]
【Example】
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected and used for the common part in each figure.
FIG. 1 is an overall configuration diagram of an exhaust heat recovery boiler having a heat transfer panel support structure according to the present invention. In this figure, the exhaust heat recovery boiler 10 has three heat transfer panels 7, 8, and 9 in the boiler body 4, and each heat transfer panel is arranged vertically and spaced along the exhaust gas flowing horizontally. Are arranged apart from each other. Each heat transfer panel is composed of upper and lower horizontal headers 5a and 5b (manifold) and a number of vertical heat transfer tubes 5c connecting the horizontal headers.
[0013]
Further in FIG. 1, downcomer 11a flowing water down pipe pulling 5b upstream from the upper pipe pulling 5a on the downstream side between the heat transfer panels 7, 8, 9 are al provided. Further, low temperature (about 180 to 200 ° C.) water is introduced from the outside into the lower header 5b of the most downstream heat transfer panel 9 from the feed water inlet line 11b, and the upper header 5a of the most upstream heat transfer panel 7 is introduced. Is heated to a high temperature of, for example, 300 ° C. or higher, and steam or high-temperature water is supplied to a main boiler (not shown) or the like via a feed water outlet line 11c. Note that the present invention is not limited to three heat transfer panels, and may be two or four or more.
[0014]
2 is a front view of a panel of a large exhaust heat recovery boiler having a heat transfer panel support structure of the present invention, FIG. 3 is a partially enlarged view of FIG. 2 showing the support structure of the most upstream or intermediate heat transfer panel, FIG. These are the A section enlarged views of FIG.
In FIG. 2, the lower header 5b of the most downstream heat transfer panel 9 is supplied with low-temperature (about 180 to 200 ° C.) feed water from the outside through the feed water inlet line 11b as in FIG. Moreover, as shown in FIG. 3, water supply is supplied to the most upstream and intermediate heat transfer panels 7 and 8 from the downstream upper header 5a through the downpipe 11a. In the large exhaust heat recovery boiler as shown in FIG. 2, the cross section of the high-temperature gas passage is, for example, about 10 m × 10 m or more, the weight of each heat transfer panel is heavy (for example, 20 to 30 tons), and the lower pipe The horizontal length of the shift 5b is, for example, 4 to 5 m or longer even when the heat transfer panels are separately provided on the left and right as shown in this figure.
[0015]
1 to 4, in the heat transfer panel support structure of the present invention, a plurality of vertical water supply pipes 12 whose upper ends are rigidly connected to the lower header by welding or the like and vertically extended downward, and lower ends of the vertical water supply pipes 12 A horizontal water supply pipe 14 that is rigidly connected to the lower header 5b and extends substantially horizontally, a support base 16 that is provided directly below the horizontal water supply pipe 14 and supports the horizontal water supply pipe 14, and a heat insulating material that surrounds the support base 16 18. Further, water is supplied to the lower header 5b through the horizontal water supply pipe 14 and the vertical water supply pipe 12.
[0016]
As shown in FIG. 4, the horizontal water supply pipe 14 has a plurality of horizontal support surfaces 14 a, and the support base 16 has a horizontal upper surface 16 a that supports the support surface 14 a of the horizontal water supply pipe 14. Yes. With this configuration, the support surface 14a of the vertical water supply pipe slides horizontally on the upper surface 16a of the support frame 16, so that the horizontal water supply pipe 14 can be supported by the support frame 16 so as to be thermally expandable.
[0017]
Furthermore, as shown in FIGS. 2 to 4, the support surface 14a of the horizontal water supply pipe 14, et provided at a position corresponding to the vertical water supply pipe 12 is, act a large bending moment in the vertical water supply pipe 12 and the horizontal water supply pipe 14 Without any change, the entire weight of the heat transfer panels 7, 8, 9 is transmitted to the support frame 16 via the support surface 14a.
[0018]
With the above-described configuration, the plurality of vertical water supply pipes 12 and the horizontal water supply pipe 14 extending horizontally in parallel with the lower header 5b are rigidly connected by welding or the like below the lower header 5b of the heat transfer panels 7, 8, 9. Therefore, by supporting the horizontal water supply pipe 14 by the support base 16 so as to be capable of thermal expansion, the entire heat transfer panel can be supported so as to be capable of thermal expansion in the length direction of the lower header (left and right in FIG. 2). it can.
Further, since water is supplied to the lower header 5b through the horizontal water supply pipe 14 and the vertical water supply pipe 12, the horizontal water supply pipe 14 and the vertical water supply pipe 12 are substantially the same as the lower header 5b by the water supply flowing inside. It can cool to temperature (for example, 200-300 degreeC).
[0019]
Furthermore, since the support frame 16 is provided immediately below the horizontal water supply pipe 14 and this portion is surrounded by the heat insulating material 18, the support frame 16 is cooled by the horizontal water supply pipe 14, and is heated by the high temperature exhaust gas by the heat insulating material 18. Temperature rise can be prevented, which reduces the amount of high-temperature oxidation on the sliding surface of the support frame, eliminates stick slip and diffusion bonding, and allows the heat transfer panel to thermally expand smoothly under high temperature and high surface pressure. it can.
[0020]
Of course, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention.
[0021]
【The invention's effect】
As described above, the heat transfer panel support structure in the exhaust heat recovery boiler of the present invention reduces the amount of high-temperature oxidation on the sliding surface, eliminates stick slip and diffusion bonding, and smoothes the heat transfer panel under high temperature and high surface pressure. It has excellent effects such as thermal expansion.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of an exhaust heat recovery boiler having a heat transfer panel support structure according to the present invention.
FIG. 2 is a panel front view of a large exhaust heat recovery boiler having a heat transfer panel support structure of the present invention.
3 is a partially enlarged view of FIG. 2 showing a support structure for the most upstream or intermediate heat transfer panel.
4 is an enlarged view of a part A in FIG. 3;
FIG. 5 is an overall mixture diagram of a conventional exhaust heat recovery combined cycle power plant.
FIG. 6 is an overall configuration diagram of a conventional exhaust heat recovery boiler.
FIG. 7 is a panel front view of a conventional large exhaust heat recovery boiler.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Gas turbine 2 Waste heat recovery boiler 3 Steam turbine 4 Boiler main body 4a Mounting frame 4b Partition plate 5 Heat transfer panel 5a Upper header 5b Lower header 5c Vertical heat transfer tube 6 Panel support part 7, 8, 9 Heat transfer panel 10 Waste heat Recovery boiler 11a Precipitation pipe 11b Water supply inlet line 11c Water supply outlet line 12 Vertical water supply pipe 14 Horizontal water supply pipe 14a Support surface 16 Support frame 16a Upper surface 18 Heat insulating material

Claims (3)

ボイラ本体内に垂直に配置され、かつ水平に流れる排ガスに沿って間隔を隔てて配置された複数の伝熱パネルを有し、該各伝熱パネルは、上下の水平管寄せと該水平管寄せ間を連結した多数の垂直伝熱管とからなる、排熱回収ボイラにおける伝熱パネルの支持構造であって、
上端が下管寄せに剛接され下方に伸びた複数の垂直給水管と、該垂直給水管の下端に剛接され前記下管寄せと平行にほぼ水平に伸びた水平給水管と、水平給水管の直下に設けられ水平給水管を熱膨張可能に支持する支持架台と、該支持架台を囲む断熱材とを備え、水平給水管及び垂直給水管を介して下管寄せに給水が供給される、ことを特徴とする排熱回収ボイラにおける伝熱パネルの支持構造。
A plurality of heat transfer panels arranged vertically in the boiler body and spaced apart along the horizontally flowing exhaust gas, each heat transfer panel comprising an upper and lower horizontal header and the horizontal header A heat transfer panel support structure in an exhaust heat recovery boiler, consisting of a number of vertical heat transfer tubes connected between,
A plurality of vertical water supply pipes whose upper ends are in rigid contact with the lower header and extend downward, a horizontal water supply pipe which is rigidly in contact with the lower ends of the vertical water supply pipes and extends substantially horizontally in parallel with the lower header, and a horizontal water supply pipe Provided with a support frame that is provided directly below the support frame and supports the horizontal water supply pipe so as to be thermally expandable, and a heat insulating material that surrounds the support frame, and water is supplied to the lower header through the horizontal water supply pipe and the vertical water supply pipe. A support structure for a heat transfer panel in an exhaust heat recovery boiler.
前記水平給水管は、複数の水平な支持面を有し、前記支持架台は、水平給水管の支持面を支持する水平な上面を有する、ことを特徴とする請求項1に記載の排熱回収ボイラにおける伝熱パネルの支持構造。The exhaust heat recovery according to claim 1, wherein the horizontal water supply pipe has a plurality of horizontal support surfaces, and the support frame has a horizontal upper surface that supports the support surface of the horizontal water supply pipe. Support structure for heat transfer panel in boiler. 前記水平給水管の支持面は、垂直給水管に対応した位置に設けられている、ことを特徴とする請求項1に記載の排熱回収ボイラにおける伝熱パネルの支持構造。The support structure of the heat transfer panel in the exhaust heat recovery boiler according to claim 1, wherein the support surface of the horizontal water supply pipe is provided at a position corresponding to the vertical water supply pipe.
JP14288295A 1995-06-09 1995-06-09 Support structure of heat transfer panel in exhaust heat recovery boiler Expired - Fee Related JP3633667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14288295A JP3633667B2 (en) 1995-06-09 1995-06-09 Support structure of heat transfer panel in exhaust heat recovery boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14288295A JP3633667B2 (en) 1995-06-09 1995-06-09 Support structure of heat transfer panel in exhaust heat recovery boiler

Publications (2)

Publication Number Publication Date
JPH08334209A JPH08334209A (en) 1996-12-17
JP3633667B2 true JP3633667B2 (en) 2005-03-30

Family

ID=15325796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14288295A Expired - Fee Related JP3633667B2 (en) 1995-06-09 1995-06-09 Support structure of heat transfer panel in exhaust heat recovery boiler

Country Status (1)

Country Link
JP (1) JP3633667B2 (en)

Also Published As

Publication number Publication date
JPH08334209A (en) 1996-12-17

Similar Documents

Publication Publication Date Title
US5628183A (en) Split stream boiler for combined cycle power plants
US6393822B2 (en) Cooling steam supply method of a combined cycle power generation plant
CN109826685B (en) Supercritical carbon dioxide circulating coal-fired power generation system and method
EP0721542A1 (en) High efficiency power generation
US20100095648A1 (en) Combined Cycle Power Plant
JP3633667B2 (en) Support structure of heat transfer panel in exhaust heat recovery boiler
JP3575015B2 (en) Heat transfer panel support structure for waste heat recovery boiler
JPS60238682A (en) Waste heat recovery heat exchanger
JPH11280412A (en) Combined cycle power generation plant
JPH08334208A (en) Temperature lowering structure of heat transfer panel support member
JPH09303707A (en) Frame support structure in exhausted heat recovering boiler
CN212226982U (en) Secondary high-temperature medium-pressure vertical waste heat boiler
JPH03140752A (en) Waste heat recovery for cogeneration engine
EP1055082B1 (en) Heat recovery assembly
JP3936123B2 (en) Operation control method for small capacity gas turbine cogeneration system
JPS5813902A (en) Waste heat recovering heat exchanger
JP2857691B2 (en) Cogeneration system
JPH0914576A (en) Heat insulating structure for duct inside of high temperature fluid
JPH0821207A (en) Steam producing system by waste heat of steam, gas turbine composite plant
JPH0335921Y2 (en)
JPH04124411A (en) Steam turbine combine generator equipment
JP2005042961A (en) Waste heat recovery boiler and operating method thereof
KR200311524Y1 (en) Combined array recovery boiler for even flow without guide vanes or perforated plates
JP2014119136A (en) Heat transfer pipe assembly and heat recovery device comprising the same
JPH1122906A (en) Bracing for heating tube panel and exhaust-heat recovery boiler

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080107

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080107

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees