JPH08334208A - Temperature lowering structure of heat transfer panel support member - Google Patents

Temperature lowering structure of heat transfer panel support member

Info

Publication number
JPH08334208A
JPH08334208A JP14288195A JP14288195A JPH08334208A JP H08334208 A JPH08334208 A JP H08334208A JP 14288195 A JP14288195 A JP 14288195A JP 14288195 A JP14288195 A JP 14288195A JP H08334208 A JPH08334208 A JP H08334208A
Authority
JP
Japan
Prior art keywords
heat transfer
panel support
water supply
temperature
transfer panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14288195A
Other languages
Japanese (ja)
Inventor
Kiyoshi Okada
清 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP14288195A priority Critical patent/JPH08334208A/en
Publication of JPH08334208A publication Critical patent/JPH08334208A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a temperature lowering structure of a heat transfer panel support member which enables thermally expanding of a heat transfer panel smoothly under a high temperature and a light surface pressure by lowering the temperature of a support member for supporting the heat transfer panel to eliminate diffusion or coupling of a stick slip with a lowering of the degree of high temperature oxidation of a slide surface. CONSTITUTION: This temperature lowering structure is provided with a panel support part 12 having a horizontal undersurface provided closely on the under side of a lower header 5b of a heat transfer panel, a hollow frame base 14 having a horizontal top surface to support the panel support part on the top surface, a water supply introduction line 16 to introduce a part of water supplied to the lower header and a water supply/drain line 18 to let supply water flow to the lower header from the hollow base. The panel support part 12 and the hollow frame base 14 are cooled by the water supplied.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は排熱回収ボイラに係わ
り、更に詳しくは、排熱回収ボイラにおける伝熱パネル
支持部材の温度低減構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust heat recovery boiler, and more particularly to a structure for reducing the temperature of a heat transfer panel supporting member in the exhaust heat recovery boiler.

【0002】[0002]

【従来の技術】ブレイトンサイクルとランキンサイクル
を組合わせた複合サイクルや、既設のボイラにガスター
ビンを組み合わせて出力を増大させるリパワリングが、
近年ますます盛んになっている。図4は、複合サイクル
の1つである排熱回収式複合サイクル発電プラントの全
体構成図であり、ガスタービン1の排気を排熱回収ボイ
ラ2(HRSG:Heat Recovery Steam Generator)に導
き、その熱を回収して蒸気を発生させ蒸気タービン3を
駆動するようになっている。かかる複合サイクルは、ガ
スタービンの最高利用温度が高いという利点と、蒸気タ
ービンの最低利用温度が低いという利点を活用したもの
であり、熱効率及び部分負荷効率が高く、起動停止時間
が短く、温排水量が少ない、等の特徴を有している。な
お図4に示した排熱回収ボイラは、ガスタービンの排熱
を回収するためにリパワリングにも適用される。
2. Description of the Related Art A combined cycle in which a Brayton cycle and a Rankine cycle are combined, and repowering in which an output is increased by combining a gas turbine with an existing boiler,
It has become more and more popular in recent years. FIG. 4 is an overall configuration diagram of an exhaust heat recovery type combined cycle power generation plant which is one of combined cycles, in which exhaust gas of a gas turbine 1 is guided to an exhaust heat recovery boiler 2 (HRSG: Heat Recovery Steam Generator) and its heat is recovered. Is recovered to generate steam to drive the steam turbine 3. This combined cycle takes advantage of the high maximum utilization temperature of the gas turbine and the low minimum utilization temperature of the steam turbine.It has high thermal efficiency and partial load efficiency, short start-stop time, and hot drainage volume. There are few The exhaust heat recovery boiler shown in FIG. 4 is also applied to repowering to recover the exhaust heat of the gas turbine.

【0003】図5は、従来の排熱回収ボイラの全体構成
図である。この図に示すように、従来の排熱回収ボイラ
は、断熱材で内張りされたボイラ本体4と、この本体内
に架台4aに載せられて垂直に配置された複数(この図
で3つ)の伝熱パネル5とからなり、各伝熱パネル5
は、上下の水平管寄せ5a,5b(マニホールド)とこ
の管寄せ間を連結する多数の垂直伝熱管5cとからな
る。ボイラ本体内は、仕切り板4bにより、ガスタービ
ンからの高温排ガス(例えば650℃)が流れる(この
図で左から右に)排ガス流路と上下管寄せの収納部分と
に仕切られ、水平管寄せが高温の排ガスに直接曝されな
いようになっている。また、下管寄せ5bの下方にはパ
ネル支持部6が設けられ、このパネル支持部6を架台4
aで支持し、伝熱パネルの重量を支えるようになってい
る。また各伝熱パネル5の垂直伝熱管5cにはボイラ用
給水が下流側から順次上向きに流れ、高温排ガスにより
加熱されて高温水又は蒸気となり、これにより排ガス中
の熱を回収するようになっている。
FIG. 5 is an overall configuration diagram of a conventional exhaust heat recovery boiler. As shown in this figure, a conventional exhaust heat recovery boiler includes a boiler main body 4 lined with a heat insulating material, and a plurality of (three in this figure) vertically mounted on a frame 4a inside the main body. It consists of heat transfer panel 5 and each heat transfer panel 5
Consists of upper and lower horizontal headers 5a, 5b (manifolds) and a large number of vertical heat transfer tubes 5c connecting the headers. Inside the boiler main body, the partition plate 4b partitions the high-temperature exhaust gas (for example, 650 ° C.) from the gas turbine (from left to right in this figure) into the exhaust gas flow path and the storage portion for the vertical alignment, and the horizontal alignment. Are not directly exposed to hot exhaust gases. In addition, a panel support portion 6 is provided below the lower header 5b.
It is supported by a and supports the weight of the heat transfer panel. In addition, boiler feed water sequentially flows upward from the downstream side to the vertical heat transfer tubes 5c of each heat transfer panel 5 and is heated by high temperature exhaust gas to become high temperature water or steam, thereby recovering heat in the exhaust gas. There is.

【0004】図6は、従来の大型排熱回収ボイラのパネ
ル正面図である。この図に示す排熱回収ボイラは大型で
あり、高温ガスの流路断面が例えば約10m×10mも
あり、流路に並列に配置された各伝熱パネルの重量は2
0〜30トンにも達する。なお、各部の基本構造は図5
と同様である。
FIG. 6 is a panel front view of a conventional large-sized exhaust heat recovery boiler. The exhaust heat recovery boiler shown in this figure has a large size, and the cross section of the flow path of the high-temperature gas is, for example, about 10 m × 10 m, and the weight of each heat transfer panel arranged in parallel in the flow path is 2
It reaches 0 to 30 tons. The basic structure of each part is shown in FIG.
Is the same as

【0005】[0005]

【発明が解決しようとする課題】上述した従来の排熱回
収ボイラでは、起動又は停止時に伝熱パネルが幅方向に
熱膨張(又は熱収縮)するため、パネル支持部6が架台
4aの上を水平に滑る必要がある。しかし、架台4aの
周囲には、仕切り板4bの隙間から高温排ガス(約65
0℃)が流れ込むため、架台4aの滑り面はほぼ同等の
高温になり、長時間保持後の滑り出し摩擦係数が非常
に増大し(例えば2以上)、かつステックスリップや
部分的な拡散結合が生じて、伝熱パネル5が架台4a
(伝熱パネル支持部材)上をスムーズに滑らなくなる問
題点があった。
In the above-described conventional exhaust heat recovery boiler, the heat transfer panel thermally expands (or contracts) in the width direction at the time of starting or stopping, so that the panel support portion 6 moves above the pedestal 4a. You need to slide horizontally. However, around the pedestal 4a, high temperature exhaust gas (about 65
(0 ° C) flows in, the sliding surface of the gantry 4a becomes almost the same high temperature, the coefficient of sliding friction after holding for a long time greatly increases (for example, 2 or more), and stick slip and partial diffusion coupling occur. And the heat transfer panel 5 is mounted on the mount 4a.
(Heat transfer panel support member) There is a problem that it does not slide smoothly.

【0006】このため、摩擦係数の増大や拡散結合によ
り伝熱パネルに過大な水平力(例えば自重の2倍以上の
約40〜60トン)が作用したり、ステックスリップに
より、昇温・冷却の過程で熱膨張が急に開放され、ドー
ンという衝撃音とともに激しい衝撃荷重が作用し、各部
に亀裂等を発生させることがある等の問題点があった。
この現象は、比較的小型の排熱回収ボイラでも発生する
が、特に大型になる程重要である。
Therefore, an excessive horizontal force (for example, about 40 to 60 tons, which is more than twice its own weight) acts on the heat transfer panel due to an increase in the friction coefficient and diffusion coupling, and the temperature rises and cools due to the stick slip. In the process, the thermal expansion is suddenly released, and a violent impact load is applied along with the impact sound of a dawn, which may cause cracks or the like in each part.
This phenomenon occurs even in a relatively small heat recovery steam generator, but it becomes more important as the size becomes larger.

【0007】上述した架台の滑り面は、例えば約650
℃以上の高温に曝されながら50〜70Kg/cm2の高面圧
を受ける。このため、通常の材料では、上述した現象を
回避できず、従来は、例えば、幅方向に伝熱パネルを分
割する(図5参照)、ボイラ各部の強度を高める、メン
テナンスを頻繁に行う、等の手段をとっていた。しか
し、これらの対策により、構造が複雑化し、重量が増
し、装置が大型化し、製造コストが過大になる等の問題
点があった。
The sliding surface of the above-mentioned mount is, for example, about 650.
While being exposed to a high temperature of ℃ or more, it receives a high surface pressure of 50 to 70 Kg / cm 2 . Therefore, the above-mentioned phenomenon cannot be avoided with ordinary materials, and conventionally, for example, the heat transfer panel is divided in the width direction (see FIG. 5), the strength of each part of the boiler is increased, and frequent maintenance is performed. Was taken. However, due to these measures, there are problems that the structure becomes complicated, the weight increases, the device becomes large, and the manufacturing cost becomes excessive.

【0008】本発明は、かかる問題点を解決するために
創案されたものである。すなわち本発明の目的は、伝熱
パネルを支持する支持部材の温度を低減し、これによ
り、滑り面の高温酸化量を低減し、ステックスリップや
拡散結合をなくし、高温・高面圧下において伝熱パネル
をスムーズに熱膨張させることができる伝熱パネル支持
部材の温度低減構造を提供することにある。
The present invention was devised to solve such problems. That is, the object of the present invention is to reduce the temperature of the supporting member that supports the heat transfer panel, thereby reducing the high temperature oxidation amount of the sliding surface, eliminating stick slip and diffusion coupling, and performing heat transfer at high temperature and high surface pressure. An object of the present invention is to provide a structure for reducing the temperature of a heat transfer panel support member that can smoothly thermally expand the panel.

【0009】[0009]

【課題を解決するための手段】本発明によれば、ボイラ
本体内に垂直に配置され、かつ水平に流れる排ガスに沿
って間隔を隔てて配置された複数の伝熱パネルを有し、
該各伝熱パネルは、上下の水平管寄せと該水平管寄せ間
を連結した多数の垂直伝熱管とからなる排熱回収ボイラ
における伝熱パネル支持部材の温度低減構造であって、
前記各下管寄せの下面に密着して設けられ水平な下面を
有するパネル支持部と、水平な上面を有し該上面でパネ
ル支持部を支持する中空架台と、下管寄せへの給水の一
部を中空架台内に導入する給水導入ラインと、該中空架
台から下管寄せに給水を流す給水排出ラインと、を備え
たことを特徴とする伝熱パネル支持部材の温度低減構造
が提供される。
According to the present invention, there are provided a plurality of heat transfer panels vertically arranged in a boiler body and arranged at intervals along a horizontally flowing exhaust gas,
Each of the heat transfer panels is a structure for reducing the temperature of a heat transfer panel support member in an exhaust heat recovery boiler, which includes upper and lower horizontal heat transfer panels and a plurality of vertical heat transfer tubes connecting the horizontal heat transfer panels.
A panel support portion that is provided in close contact with the lower surface of each of the lower pipe headers and that has a horizontal lower surface, a hollow pedestal that has a horizontal upper surface that supports the panel support portion, and one of the water supplies to the lower pipe headers. There is provided a temperature reduction structure for a heat transfer panel support member, comprising: a water supply introduction line for introducing a portion into a hollow gantry; and a water supply discharge line for flowing water from the hollow gantry to a lower pipe header. .

【0010】本発明の好ましい実施例によれば、前記給
水導入ラインの上流端は、下管寄せへの降水管又は給水
管に連通している。
According to a preferred embodiment of the present invention, the upstream end of the water supply introduction line communicates with a downfall pipe or a water supply pipe.

【0011】[0011]

【作用】上記本発明の構成によれば、伝熱パネルを支持
する架台が中空になっており、この内部に下管寄せへの
給水の一部が給水導入ラインから供給されるので、この
給水により、中空架台を冷却し、この上面とパネル支持
部の下面を伝熱により直接冷却することができる。ま
た、伝熱パネルのパネル支持部は各下管寄せの下面に密
着して設けられているので、給水で満ちた下管寄せから
の伝熱によってもパネル支持部を冷却することができ
る。すなわち、下管寄せへの給水温度は、排ガスに比較
して十分低い(例えば200〜300℃)ので、この給
水により中空架台とパネル支持部を冷却することによ
り、その間に位置する滑り面、すなわち中空架台の上面
とパネル支持部の下面を高温酸化の生じにくい温度(例
えば約350〜400℃程度)に冷却し、これによりス
テックスリップや拡散結合をなくし、高温・高面圧下に
おける伝熱パネルの水平方向の伸びを円滑にすることが
できる。
According to the above-described structure of the present invention, the frame for supporting the heat transfer panel is hollow, and a part of the water supply to the lower header is supplied from the water supply introduction line to the inside of the frame. Thus, the hollow frame can be cooled, and the upper surface and the lower surface of the panel support can be directly cooled by heat transfer. Further, since the panel support portion of the heat transfer panel is provided in close contact with the lower surface of each lower pipe header, the panel support portion can also be cooled by heat transfer from the lower pipe header filled with water. That is, the temperature of the water supplied to the lower pipe is sufficiently lower than that of the exhaust gas (for example, 200 to 300 ° C.). Therefore, by cooling the hollow pedestal and the panel support by this water, the sliding surface located between them, that is, The upper surface of the hollow pedestal and the lower surface of the panel support are cooled to a temperature at which high-temperature oxidation is unlikely to occur (for example, about 350 to 400 ° C), thereby eliminating stick slips and diffusion coupling, and making the heat transfer panel under high temperature and high surface pressure. The horizontal extension can be smoothed.

【0012】また、本発明の好ましい構成によれば、前
記給水導入ラインの上流端は、下管寄せへの降水管又は
給水管に連通しているので、高温用のポンプ等を設ける
ことなく、伝熱パネル間を流れる給水の自己循環によ
り、給水導入ラインと給水排出ラインを通して相対的に
低温の給水を流すことができる。
Further, according to the preferable construction of the present invention, since the upstream end of the water supply introduction line is communicated with the downfall pipe or the water supply pipe to the lower head, it is possible to provide a high temperature pump or the like, Due to the self-circulation of the water supply flowing between the heat transfer panels, relatively low temperature water supply can be made to flow through the water supply introduction line and the water supply discharge line.

【0013】[0013]

【実施例】以下、本発明の好ましい実施例を図面を参照
して説明する。なお、各図において共通する部分には同
一の符号を付して使用する。図1は、本発明による伝熱
パネル支持部材の温度低減構造を有する排熱回収ボイラ
の全体構成図であり、図2は、図1の排熱回収ボイラの
パネル正面図である。図1及び図2において、排熱回収
ボイラ10は、ボイラ本体4内に3つの伝熱パネル7,
8,9を有し、各伝熱パネルはそれぞれ垂直に配置さ
れ、かつ水平に流れる排ガスに沿って間隔を隔てて配置
されている。また、各伝熱パネルは、上下の水平管寄せ
5a,5b(マニホールド)とこの水平管寄せ間を連結
した多数の垂直伝熱管5cとからなる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below with reference to the drawings. In addition, in each figure, the same parts are denoted by the same reference numerals. 1 is an overall configuration diagram of an exhaust heat recovery boiler having a temperature reduction structure for a heat transfer panel support member according to the present invention, and FIG. 2 is a panel front view of the exhaust heat recovery boiler of FIG. 1 and 2, the exhaust heat recovery boiler 10 includes three heat transfer panels 7 in a boiler body 4.
The heat transfer panels 8 and 9 are vertically arranged and are arranged at intervals along the horizontally flowing exhaust gas. Each heat transfer panel is composed of upper and lower horizontal heat transfer tubes 5a and 5b (manifolds) and a large number of vertical heat transfer tubes 5c connecting the horizontal heat transfer panels.

【0014】更に図1において、伝熱パネル7,8,9
の間には下流側の上管寄せ5aから上流側の下管寄せ5
bに給水を流す降水管11aが設けらている。また、最
下流の伝熱パネル9の下管寄せ5bには外部から低温
(約180〜200℃)の給水が給水入口ライン11b
から導入され、かつ最上流の伝熱パネル7の上管寄せ5
aからは高温(例えば300℃以上)になった蒸気又は
高温水が給水出口ライン11cを介して図示しないメイ
ンボイラ等に供給されるようになっている。かかる構成
は、図5に示した従来の排熱回収ボイラと同様である。
なお、本発明は3つの伝熱パネルに限定されず、2つで
あっても4つ以上であってもよい。
Further in FIG. 1, the heat transfer panels 7, 8 and 9 are shown.
Between the upper side 5a on the downstream side and the lower side 5 on the upstream side.
A downcomer 11a for supplying water is provided in b. Further, low-temperature (about 180 to 200 ° C.) feed water is externally supplied to the bottom pipe 5b of the heat transfer panel 9 located at the most downstream side from the feed water inlet line 11b.
The uppermost heat transfer panel 7 introduced from
From a, steam or high-temperature water having a high temperature (for example, 300 ° C. or higher) is supplied to a main boiler or the like (not shown) via the water supply outlet line 11c. Such a configuration is similar to that of the conventional exhaust heat recovery boiler shown in FIG.
The present invention is not limited to the three heat transfer panels, and may be two or four or more.

【0015】図3は、図2のA部拡大図であり、排熱回
収ボイラにおける伝熱パネル支持部材の温度低減構造を
示している。この図において、本発明の伝熱パネル支持
部材の温度低減構造は、パネル支持部12、中空架台1
4、給水導入ライン16、及び給水排出ライン18から
なる。パネル支持部12は、各下管寄せ5bの下面に密
着して設けられ水平な下面12aを有し、この下面12
aで伝熱パネル7,8,9の重量を支持している。ま
た、中空架台14は、水平な上面14aを有し、この上
面14aにパネル支持部12の下面12aが載りパネル
支持部12を介して伝熱パネル全体を支持するようにな
っている。この中空架台14は、伝熱性の良い金属材料
からなる。かかる構成により、パネル支持部12と中空
架台14により伝熱パネル支持部材が構成され、伝熱パ
ネル7,8,9が熱膨張・熱収縮する際に、パネル支持
部12の下面12aを中空架台14の上面14aを水平
に滑らし、熱応力の発生を防止することができる。
FIG. 3 is an enlarged view of portion A of FIG. 2, showing a structure for reducing the temperature of the heat transfer panel support member in the exhaust heat recovery boiler. In this figure, the structure for reducing the temperature of the heat transfer panel support member of the present invention includes a panel support portion 12 and a hollow mount 1.
4, a water supply introduction line 16 and a water supply discharge line 18. The panel supporting portion 12 has a horizontal lower surface 12a which is provided in close contact with the lower surface of each lower pipe holder 5b.
The weight of the heat transfer panels 7, 8 and 9 is supported by a. Further, the hollow pedestal 14 has a horizontal upper surface 14a, and the lower surface 12a of the panel support portion 12 rests on the upper surface 14a to support the entire heat transfer panel via the panel support portion 12. The hollow mount 14 is made of a metal material having a good heat transfer property. With this configuration, the panel support portion 12 and the hollow pedestal 14 constitute a heat transfer panel support member, and when the heat transfer panels 7, 8 and 9 thermally expand and contract, the lower surface 12a of the panel support portion 12 is hollow. The upper surface 14a of 14 can be horizontally slid to prevent the generation of thermal stress.

【0016】給水導入ライン16は、下管寄せ5bへの
給水の一部を中空架台14の内部に導入するようになっ
ている。すなわち、給水導入ライン16の上流端16a
は、下管寄せ5bへ給水を供給する降水管11a又は給
水入口ライン11b(最下流の伝熱パネル9の場合)に
連通している。また、給水排出ライン18は、中空架台
14の内部の給水を下管寄せ5bに流すようになってい
る。
The water supply introduction line 16 introduces a part of the water supply to the lower header 5b into the hollow mount 14. That is, the upstream end 16a of the water supply introduction line 16
Communicates with the downfall pipe 11a or the water supply inlet line 11b (in the case of the most downstream heat transfer panel 9) that supplies water to the lower header 5b. Further, the water supply and discharge line 18 is configured to flow the water supply inside the hollow pedestal 14 to the lower header 5b.

【0017】給水導入ライン16の上流端16aから、
中空架台14及び給水排出ライン18を介して下管寄せ
5bまでの流路抵抗は、給水導入ライン16の上流端1
6aから下管寄せ5bへ直接流れる給水の一部(例えば
1/20〜1/10程度)が流れるように設定されてい
る。この構成により、高温用のポンプ等を設けることな
く、伝熱パネル7,8,9間を流れる給水の自己循環に
より、給水導入ライン16と給水排出ライン18を通し
て相対的に低温の給水を中空架台14内に流すことがで
きる。
From the upstream end 16a of the water supply introduction line 16,
The flow path resistance to the lower header 5b via the hollow mount 14 and the water supply discharge line 18 is the upstream end 1 of the water supply introduction line 16.
It is set so that a part (for example, about 1/20 to 1/10) of the water supply that directly flows from 6a to the lower header 5b flows. With this configuration, the relatively low temperature water supply is performed through the water supply introduction line 16 and the water supply discharge line 18 by the self-circulation of the water supply flowing between the heat transfer panels 7, 8 and 9 without providing a high temperature pump or the like. It can be poured into 14.

【0018】また、伝熱パネル7,8,9のパネル支持
部12は各下管寄せ5bの下面に密着して設けられてい
るので、給水で満ちた下管寄せ5bからの伝熱によって
もパネル支持部12を冷却することができる。すなわ
ち、下管寄せへの給水温度は、排ガスに比較して十分低
い(例えば200〜300℃)ので、この給水により中
空架台14とパネル支持部12を冷却することにより、
その間に位置する滑り面、すなわち中空架台の上面14
aとパネル支持部の下面12aを高温酸化の生じにくい
温度(例えば約350〜400℃程度)に冷却し、これ
によりステックスリップや拡散結合をなくし、高温・高
面圧下における伝熱パネルの水平方向の伸びを円滑にす
ることができる。
Further, since the panel support portion 12 of the heat transfer panel 7, 8, 9 is provided in close contact with the lower surface of each lower header 5b, heat transfer from the lower header 5b filled with water is also possible. The panel support 12 can be cooled. That is, since the temperature of the water supplied to the lower pipe is sufficiently lower than that of the exhaust gas (for example, 200 to 300 ° C.), by cooling the hollow mount 14 and the panel support 12 with this water,
The sliding surface located between them, that is, the upper surface 14 of the hollow mount.
a and the lower surface 12a of the panel support part are cooled to a temperature at which high temperature oxidation is unlikely to occur (for example, about 350 to 400 ° C.), thereby eliminating stick slip and diffusion coupling, and the horizontal direction of the heat transfer panel under high temperature and high surface pressure. Can be smoothed out.

【0019】なお、本発明は上述した実施例に限定され
ず、本発明の要旨を逸脱しない範囲で種々に変更できる
ことは勿論である。
The present invention is not limited to the above-described embodiments, and it goes without saying that various modifications can be made without departing from the gist of the present invention.

【0020】[0020]

【発明の効果】上述したように本発明の構成によれば、
伝熱パネルを支持する架台が中空になっており、この内
部に下管寄せへの給水の一部が給水導入ラインから供給
されるので、この給水により、中空架台を冷却し、この
上面とパネル支持部の下面を伝熱により直接冷却するこ
とができる。また、伝熱パネルのパネル支持部は各下管
寄せの下面に密着して設けられているので、給水で満ち
た下管寄せからの伝熱によってもパネル支持部を冷却す
ることができる。
As described above, according to the configuration of the present invention,
The frame that supports the heat transfer panel is hollow, and part of the water supply to the lower head is supplied from the water supply introduction line to the inside, so this water supply cools the hollow frame and the top surface and the panel. The lower surface of the support portion can be directly cooled by heat transfer. Further, since the panel support portion of the heat transfer panel is provided in close contact with the lower surface of each lower pipe header, the panel support portion can also be cooled by heat transfer from the lower pipe header filled with water.

【0021】従って、本発明の伝熱パネル支持部材の温
度低減構造は、伝熱パネルを支持する支持部材の温度を
低減し、これにより、滑り面の高温酸化量を低減し、ス
テックスリップや拡散結合をなくし、高温・高面圧下に
おいて伝熱パネルをスムーズに熱膨張させることができ
る、等の優れた効果を有する。
Therefore, the structure for reducing the temperature of the heat transfer panel support member of the present invention reduces the temperature of the support member that supports the heat transfer panel, thereby reducing the high temperature oxidation amount of the sliding surface, and the stick slip and diffusion. It has excellent effects such as eliminating the bond and allowing the heat transfer panel to thermally expand smoothly under high temperature and high surface pressure.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による伝熱パネル支持構造を有する排熱
回収ボイラの全体構成図である。
FIG. 1 is an overall configuration diagram of an exhaust heat recovery boiler having a heat transfer panel support structure according to the present invention.

【図2】図1の排熱回収ボイラのパネル正面図である。FIG. 2 is a panel front view of the exhaust heat recovery boiler of FIG.

【図3】図2のA部拡大図である。FIG. 3 is an enlarged view of part A of FIG.

【図4】従来の排熱回収式複合サイクル発電プラントの
全体構成図である。
FIG. 4 is an overall configuration diagram of a conventional exhaust heat recovery combined cycle power plant.

【図5】従来の排熱回収ボイラの全体構成図である。FIG. 5 is an overall configuration diagram of a conventional exhaust heat recovery boiler.

【図6】従来の大型排熱回収ボイラのパネル正面図であ
る。
FIG. 6 is a panel front view of a conventional large-sized exhaust heat recovery boiler.

【符号の説明】[Explanation of symbols]

1 ガスタービン 2 排熱回収ボイラ 3 蒸気タービン 4 ボイラ本体 4a 架台 4b 仕切り板 5 伝熱パネル 5a 上管寄せ 5b 下管寄せ 5c 垂直伝熱管 6 パネル支持部 7,8,9 伝熱パネル 10 排熱回収ボイラ 11a 降水管 11b 給水入口ライン 11c 給水出口ライン 12 パネル支持部 12a 下面 14 中空架台 14a 上面 16 給水導入ライン 18 給水排出ライン 1 Gas Turbine 2 Exhaust Heat Recovery Boiler 3 Steam Turbine 4 Boiler Main Body 4a Frame 4b Partition Plate 5 Heat Transfer Panel 5a Upper Pipe Drawer 5b Bottom Pipe Drawer 5c Vertical Heat Transfer Pipe 6 Panel Support 7,8,9 Heat Transfer Panel 10 Heat Dissipation Recovery boiler 11a Precipitation pipe 11b Water supply inlet line 11c Water supply outlet line 12 Panel support 12a Lower surface 14 Hollow stand 14a Upper surface 16 Water supply introduction line 18 Water supply discharge line

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ボイラ本体内に垂直に配置され、かつ水
平に流れる排ガスに沿って間隔を隔てて配置された複数
の伝熱パネルを有し、該各伝熱パネルは、上下の水平管
寄せと該水平管寄せ間を連結した多数の垂直伝熱管とか
らなる排熱回収ボイラにおける伝熱パネル支持部材の温
度低減構造であって、 前記各下管寄せの下面に密着して設けられ水平な下面を
有するパネル支持部と、水平な上面を有し該上面でパネ
ル支持部を支持する中空架台と、下管寄せへの給水の一
部を中空架台内に導入する給水導入ラインと、該中空架
台から下管寄せに給水を流す給水排出ラインと、を備え
たことを特徴とする伝熱パネル支持部材の温度低減構
造。
1. A plurality of heat transfer panels vertically arranged in a boiler main body and arranged at intervals along a horizontally flowing exhaust gas, wherein each heat transfer panel includes upper and lower horizontal pipe headers. A structure for reducing the temperature of a heat transfer panel support member in an exhaust heat recovery boiler, which comprises a plurality of vertical heat transfer tubes connecting the horizontal headers to each other, and is provided horizontally in close contact with the lower surface of each lower header. A panel support part having a lower surface, a hollow pedestal having a horizontal upper surface for supporting the panel support part on the upper surface, a water supply introduction line for introducing a part of the water supply to the lower pipe header into the hollow gantry, and the hollow A structure for reducing the temperature of a heat transfer panel support member, comprising: a water supply discharge line for supplying water from a frame to the lower pipe.
【請求項2】 前記給水導入ラインの上流端は、下管寄
せへの降水管又は給水管に連通している、ことを特徴と
する請求項1に記載の伝熱パネル支持部材の温度低減構
造。
2. The temperature reducing structure for a heat transfer panel support member according to claim 1, wherein an upstream end of the water supply introduction line is in communication with a downfall pipe or a water supply pipe to the lower head. .
JP14288195A 1995-06-09 1995-06-09 Temperature lowering structure of heat transfer panel support member Pending JPH08334208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14288195A JPH08334208A (en) 1995-06-09 1995-06-09 Temperature lowering structure of heat transfer panel support member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14288195A JPH08334208A (en) 1995-06-09 1995-06-09 Temperature lowering structure of heat transfer panel support member

Publications (1)

Publication Number Publication Date
JPH08334208A true JPH08334208A (en) 1996-12-17

Family

ID=15325772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14288195A Pending JPH08334208A (en) 1995-06-09 1995-06-09 Temperature lowering structure of heat transfer panel support member

Country Status (1)

Country Link
JP (1) JPH08334208A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160104496A (en) * 2015-02-26 2016-09-05 주식회사 한종이엔지 Apparatus for absorbing thermal strain to prevent crack of hsrg casing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160104496A (en) * 2015-02-26 2016-09-05 주식회사 한종이엔지 Apparatus for absorbing thermal strain to prevent crack of hsrg casing

Similar Documents

Publication Publication Date Title
US4098324A (en) Water-cooled, high-temperature gasifier and method for its operation
RU2007114050A (en) METHOD AND SYSTEM OF ENERGY RECOVERY AND (OR) COOLING
JP7114764B2 (en) radiative syngas cooler
JPH08334208A (en) Temperature lowering structure of heat transfer panel support member
CN220039179U (en) Novel preheating evaporator for solar thermal power generation system
US4120348A (en) Heat exchanger having a plurality of modules connected in parallel
JP3575015B2 (en) Heat transfer panel support structure for waste heat recovery boiler
CN209926932U (en) High-temperature high-pressure heat exchanger
JPH08334209A (en) Support structure of heat transfer panel for waste-heat boiler
JP3875933B2 (en) Boiler horizontal heat transfer tube support structure
CN207439171U (en) corner tube boiler
SU486593A1 (en) Nuclear power plant with several nuclear reactors
JP4344839B2 (en) Equipment equipped with HTGR gas turbine power generation system with twin double pipe arrangement
AU2020362987A1 (en) Cogeneration turbines for power and desalination of sea water
JPS60238682A (en) Waste heat recovery heat exchanger
KR102415730B1 (en) Thermoelectric generation apparatus
CN109916212A (en) A kind of high efficient heat exchanging system suitable for solid heat storage device
CN208366113U (en) A kind of oily salt heat-exchange system for groove type solar photo-thermal power station
CN102290475A (en) Cooling device for improving generating capacity of photovoltaic cell
JPH09303707A (en) Frame support structure in exhausted heat recovering boiler
JP3106689B2 (en) Gas cooler for high temperature gas
CN210688158U (en) Improved heat circulation waste heat boiler
CN209013461U (en) A kind of self-contained large-scale vacuum Hot water units of through type
JP2000161017A (en) High heat energy generating and accumulating device utilizing excessive power
EP1055082B1 (en) Heat recovery assembly