JP3575015B2 - Heat transfer panel support structure for waste heat recovery boiler - Google Patents

Heat transfer panel support structure for waste heat recovery boiler Download PDF

Info

Publication number
JP3575015B2
JP3575015B2 JP14288095A JP14288095A JP3575015B2 JP 3575015 B2 JP3575015 B2 JP 3575015B2 JP 14288095 A JP14288095 A JP 14288095A JP 14288095 A JP14288095 A JP 14288095A JP 3575015 B2 JP3575015 B2 JP 3575015B2
Authority
JP
Japan
Prior art keywords
heat transfer
panel
transfer panel
gas
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14288095A
Other languages
Japanese (ja)
Other versions
JPH08334210A (en
Inventor
清 岡田
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP14288095A priority Critical patent/JP3575015B2/en
Publication of JPH08334210A publication Critical patent/JPH08334210A/en
Application granted granted Critical
Publication of JP3575015B2 publication Critical patent/JP3575015B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【0001】
【産業上の利用分野】
本発明は排熱回収ボイラに係わり、更に詳しくは、排熱回収ボイラの伝熱パネル支持構造に関する。
【0002】
【従来の技術】
ブレイトンサイクルとランキンサイクルを組合わせた複合サイクルや、既設のボイラにガスタービンを組み合わせて出力を増大させるリパワリングが、近年ますます盛んになっている。図3は、複合サイクルの1つである排熱回収式複合サイクル発電プラントの全体構成図であり、ガスタービン1の排気を排熱回収ボイラ2(HRSG:Heat Recovery Steam Generator)に導き、その熱を回収して蒸気を発生させ蒸気タービン3を駆動するようになっている。かかる複合サイクルは、ガスタービンの最高利用温度が高いという利点と、蒸気タービンの最低利用温度が低いという利点を活用したものであり、熱効率及び部分負荷効率が高く、起動停止時間が短く、温排水量が少ない、等の特徴を有している。なお図3に示した排熱回収ボイラは、ガスタービンの排熱を回収するためにリパワリングにも適用される。
【0003】
図4は、従来の排熱回収ボイラの全体構成図である。この図に示すように、従来の排熱回収ボイラは、断熱材で内張りされたボイラ本体4と、この本体内に架台4aに載せられて垂直に配置された複数(この図で3つ)の伝熱パネル5とからなる。各伝熱パネル5は、上下の水平管寄せ5a,5b(マニホールド)とこの管寄せ間を連結する多数の垂直伝熱管5cとからなる。ボイラ本体内は、仕切り板4bにより、ガスタービンからの高温排ガス(例えば650℃)が流れる(この図で左から右に)排ガス流路と上下管寄せの収納部分とに仕切られ、水平管寄せ5a,5bが高温の排ガスに直接曝されないようになっている。また、下管寄せ5bの下方にはパネル支持部6が設けられ、このパネル支持部6を架台4aで支持し、伝熱パネルの重量を支えるようになっている。また各伝熱パネル5の垂直伝熱管5cにはボイラ用給水が下流側から順次上向きに流れ、高温排ガスにより加熱されて高温水又は蒸気となり、これにより排ガス中の熱を回収するようになっている。
【0004】
図5は、従来の大型排熱回収ボイラのパネル正面図である。この図に示す排熱回収ボイラは大型であり、高温ガスの流路断面が例えば約10m×10mもあり、流路に並列に配置された各伝熱パネルの重量は20〜30トンにも達する。なお、各部の基本構造は図4と同様である。
【0005】
【発明が解決しようとする課題】
上述した従来の排熱回収ボイラでは、起動又は停止時に伝熱パネルが幅方向にも熱膨張(又は熱収縮)するため、パネル支持部6が架台4aの上を水平に滑る必要がある。しかし、仕切り板4bには熱膨張を許容するために隙間があるため、架台4aの周囲には、運転中に高温排ガス(約650℃)が仕切り板4bを通して流れ込み、架台4aの滑り面もほぼ同等の高温になり、高温酸化により摩擦係数が非常に大きく(例えば2以上)なり、熱膨張・熱収縮に応じて伝熱パネル5が円滑に滑らない問題点があった。
【0006】
このため、伝熱パネルに自重の2倍以上の水平力(約40〜60トン)が作用するばかりでなく、静摩擦係数と動摩擦係数の差によるいわゆるステックスリップが生じ、昇温・冷却の過程で急激にドーンという衝撃音とともに熱膨張が開放され、この衝撃荷重により各部に亀裂等が発生することがある、等の問題点があった。
【0007】
この現象は、比較的小型の排熱回収ボイラでも発生するが、特に大型になる程重要である。この問題を解決するために、従来は、高温・高面圧下で低い摩擦係数を有する材料を支持面に使用したり、図5に例示したように、幅方向に伝熱パネルを分割する、等の手段をとっていた。しかし、例えば約650℃以上の高温で面圧50〜70Kg/cmの高面圧に耐え、かつ低い摩擦係数を有する適当な材料は現実にはなく、かつ伝熱パネルを分割しても熱膨張量を低減できるだけで、抜本的な解決はなされていなかった。
【0008】
本発明は、かかる問題点を解決するために創案されたものである。すなわち本発明の目的は、高温・高面圧下で伝熱パネルを支持することができ、かつ熱膨張・熱収縮に応じて伝熱パネルを円滑に滑らせることができる排熱回収ボイラの伝熱パネル支持構造を提供することにある。
【0009】
【課題を解決するための手段】
本発明によれば、ボイラ本体内に垂直に配置され、かつ水平に流れる排ガスに沿って間隔を隔てて配置された複数の伝熱パネルを有し、該各伝熱パネルは、上下の水平管寄せと該水平管寄せ間を連結した多数の垂直伝熱管とからなる排熱回収ボイラの伝熱パネル支持構造において、前記各下管寄せの下方に設けられ水平な下面を有するパネル支持部と、水平な上面を有し該上面でパネル支持部を支持する中空架台と、伝熱パネル間の排ガスを中空架台内に供給するガス供給ラインと、該中空架台内のガスをボイラ本体内の伝熱パネルより下流側に流すガス排出ラインと、中空架台と下管寄せを一体に囲む断熱材と、を備えたことを特徴とする排熱回収ボイラの伝熱パネル支持構造が提供される。
【0010】
本発明の好ましい実施例によれば、前記各伝熱パネルは、高温の排ガスを十分に冷却し、かつ適当な圧損を有するように、垂直伝熱管が密に配置されており、前記ガス供給ラインは、中空架台を十分に冷却できる温度と、中空架台とガス排出ラインを通して排ガスを十分に供給できる圧力を有する伝熱パネル間にその上流端が連通している。前記排熱回収ボイラは、3つの伝熱パネルを有し、各伝熱パネルによる圧損と排ガスの温度降下は、それぞれ約25mmAqと約100℃であり、前記ガス供給ラインの上流端は、最上流と中間の伝熱パネル間に連通している、ことが好ましい。
【0011】
【作用】
上記本発明の構成によれば、各下管寄せの下方に設けられたパネル支持部を支持する架台が中空になっており、この内部に上流側の伝熱パネルで冷却された排ガスがガス供給ラインにより供給されるので、この排ガスにより、中空架台を冷却し、この上面とパネル支持部の下面を伝熱により直接冷却することができる。更に、中空架台と下管寄せを断熱材が一体に囲んでいるので、外部の排ガスからの入熱を低減することができ、かつ下管寄せ内の給水温度は排ガスに比較して十分低い(例えば200〜300℃)ので下管寄せにより断熱材を冷却することができ、断熱材で覆われた中空架台の上面とパネル支持部の下面を更に冷却することができる。
【0012】
従って、上流側の伝熱パネルでの冷却された排ガスと、下管寄せ内の相対的に低温の給水とにより、伝熱パネルを支持する滑り面を流入する高温排ガスより十分に低い温度(例えば約450℃以下)に保持することができ、滑り面の高温酸化を防止して低い摩擦係数に保持することができる。
また、本発明の好ましい構成によれば、各伝熱パネルは、高温の排ガスを十分に冷却しかつ適当な圧損を有するように垂直伝熱管が密に配置されており、前記ガス供給ラインは、中空架台を十分に冷却できる温度と、中空架台とガス排出ラインを通して排ガスを十分に供給できる圧力とを有する伝熱パネル間にその上流端が連通しているので、高温用の圧縮機等を設けることなく、ガスの圧力差によりガス供給ラインとガス排出ラインを通して排ガスを流すことができる。
【0013】
【実施例】
以下、本発明の好ましい実施例を図面を参照して説明する。なお、各図において共通する部分には同一の符号を付して使用する。
図1は、本発明による伝熱パネル支持構造を有する排熱回収ボイラの全体構成図である。この図において、排熱回収ボイラ10は、ボイラ本体4内に3つの伝熱パネル7,8,9を有し、各伝熱パネルはそれぞれ垂直に配置され、かつ水平に流れる排ガスに沿って間隔を隔てて配置されている。また、各伝熱パネルは、上下の水平管寄せ5a,5b(マニホールド)とこの水平管寄せ間を連結した多数の垂直伝熱管5cとからなる。かかる構成は、図4に示した従来の排熱回収ボイラと同様である。なお、本発明は3つの伝熱パネルに限定されず、2つであっても4つ以上であってもよい。
【0014】
図2は、図1の部分拡大図であり、排熱回収ボイラの伝熱パネル支持構造を示している。この図において、本発明の伝熱パネル支持構造は、パネル支持部12、中空架台14、ガス供給ライン16、ガス排出ライン18、及び断熱材20からなる。
パネル支持部12は、各下管寄せ5bの下方に設けられ水平な下面12aを有し、この下面12aで伝熱パネル5の重量を支持している。また、中空架台14は水平な上面14aを有し、この上面14aにパネル支持部12の下面12aが載りパネル支持部12を介して伝熱パネル全体を支持するようになっている。この中空架台14は、伝熱性の良い金属材料からなる。かかる構成により、伝熱パネル7,8,9が熱膨張・熱収縮する際に、パネル支持部12の下面12aが中空架台14の上面14aを水平に滑り、熱応力の発生を防止することができる。
【0015】
ガス供給ライン16は、伝熱パネル間の排ガスを中空架台14の内部に供給するようになっている。また、ガス排出ライン18は、中空架台14の内部のガスをボイラ本体4内の伝熱パネルより下流側に流すようになっている。これらのガスライン16,18は、適当な断熱材により高温の排ガスにより内部ガスが加熱されないようになっているのがよい。
【0016】
各伝熱パネル7,8,9は、高温の排ガスを十分に冷却し、かつ適当な圧損を有するように、垂直伝熱管が密に配置されている。各伝熱パネル7,8,9による圧損ΔPと排ガスの温度降下ΔTは、それぞれ約25mmAq,約100℃程度であるのがよい。この構成により、最上流の伝熱パネル7に流入する排ガス温度が約650℃程度の高温であっても、最上流の伝熱パネル7と中間の伝熱パネル8の間に位置する排ガス温度は、高温酸化が起こりにくい約550℃程度となり、かつこの部分の圧力を、最下流の伝熱パネル9の下流側に対して2つのパネルの圧損の和である約50mmAq高くすることができる。
【0017】
従って、図2に示すように、ガス供給ライン16の上流端16aを、最上流と中間の伝熱パネル7,8間に連通させることにより、ガス供給ライン16に、中空架台14を十分に冷却できる温度(この例では約550℃)の排ガスを、圧力差(この例では約100mmAq)だけで中空架台14とガス排出ライン18を通して流すことができ、この排ガスにより、中空架台14を冷却し、この上面14aとパネル支持部の下面12aを伝熱により直接冷却することができる。
【0018】
また、図2に示すように、本発明の伝熱パネル支持構造では、更に、断熱材20が中空架台14と下管寄せ5bを一体に囲んでいるので、外部の排ガスからの入熱を低減することができ、かつ下管寄せ5b内の給水温度は排ガスに比較して十分低い(例えば200〜300℃)ので下管寄せ5bにより断熱材20を冷却することができ、断熱材20で覆われた中空架台の上面14aとパネル支持部の下面5bを更に冷却することができる。
【0019】
なお、本発明は上述した実施例に限定されず、本発明の要旨を逸脱しない範囲で種々に変更できることは勿論である。
【0020】
【発明の効果】
上述した本発明の構成によれば、上流側の伝熱パネルで冷却された排ガスと、下管寄せ内の相対的に低温の給水とにより、伝熱パネルを支持する滑り面を高温排ガスより十分に低い温度(例えば約450℃以下)に保持することができ、滑り面の高温酸化を防止して低い摩擦係数に保持することができる。
【0021】
従って、本発明の排熱回収ボイラの伝熱パネル支持構造は、高温・高面圧下で伝熱パネルを支持することができ、かつ熱膨張・熱収縮に応じて伝熱パネルを円滑に滑らせることができる、等の優れた効果を有する。
【図面の簡単な説明】
【図1】本発明による伝熱パネル支持構造を有する排熱回収ボイラの全体構成図である。
【図2】図1の部分拡大図である。
【図3】従来の排熱回収式複合サイクル発電プラントの全体構成図である。
【図4】従来の排熱回収ボイラの全体構成図である。
【図5】従来の大型排熱回収ボイラのパネル正面図である。
【符号の説明】
1 ガスタービン
2 排熱回収ボイラ
3 蒸気タービン
4 ボイラ本体
4a 架台
4b 仕切り板
5 伝熱パネル
5a 上管寄せ
5b 下管寄せ
5c 垂直伝熱管
6 パネル支持部
7,8,9 伝熱パネル
10 排熱回収ボイラ
12 パネル支持部
12a 下面
14 中空架台
14a 上面
16 ガス供給ライン
18 ガス排出ライン
20 断熱材
[0001]
[Industrial applications]
The present invention relates to a heat recovery steam generator, and more particularly, to a heat transfer panel support structure of the heat recovery steam generator.
[0002]
[Prior art]
In recent years, a combined cycle in which a Brayton cycle and a Rankine cycle are combined, and repowering in which an existing boiler is combined with a gas turbine to increase the output have become increasingly popular in recent years. FIG. 3 is an overall configuration diagram of an exhaust heat recovery type combined cycle power plant that is one of the combined cycles. The exhaust gas of the gas turbine 1 is guided to an exhaust heat recovery boiler 2 (HRSG: Heat Recovery Steam Generator), and its heat is To generate steam and drive the steam turbine 3. Such a combined cycle takes advantage of the advantage that the maximum use temperature of the gas turbine is high and the advantage that the minimum use temperature of the steam turbine is low. Is small. The exhaust heat recovery boiler shown in FIG. 3 is also applied to repowering to recover exhaust heat of a gas turbine.
[0003]
FIG. 4 is an overall configuration diagram of a conventional exhaust heat recovery boiler. As shown in this figure, the conventional exhaust heat recovery boiler has a boiler body 4 lined with a heat insulating material, and a plurality (three in this figure) of vertically placed and mounted on a gantry 4a in this body. And a heat transfer panel 5. Each heat transfer panel 5 includes upper and lower horizontal headers 5a and 5b (manifolds) and a number of vertical heat transfer tubes 5c connecting between the headers. The inside of the boiler main body is partitioned by a partition plate 4b into an exhaust gas channel (from left to right in this figure) through which a high-temperature exhaust gas (for example, 650 ° C.) flows and a storage portion for the upper and lower headers. 5a and 5b are not directly exposed to high-temperature exhaust gas. A panel support 6 is provided below the lower header 5b, and the panel support 6 is supported by the gantry 4a to support the weight of the heat transfer panel. Further, the boiler feedwater flows upward from the downstream side to the vertical heat transfer tube 5c of each heat transfer panel 5 and is heated by high-temperature exhaust gas to become high-temperature water or steam, thereby recovering heat in the exhaust gas. I have.
[0004]
FIG. 5 is a panel front view of a conventional large-sized waste heat recovery boiler. The exhaust heat recovery boiler shown in this figure is large, has a high-temperature gas passage section of, for example, about 10 mx 10 m, and the weight of each heat transfer panel arranged in parallel to the passage reaches 20 to 30 tons. . The basic structure of each part is the same as in FIG.
[0005]
[Problems to be solved by the invention]
In the above-described conventional heat recovery steam generator, the heat transfer panel thermally expands (or shrinks) also in the width direction at the time of starting or stopping, so that the panel supporting portion 6 needs to slide horizontally on the gantry 4a. However, since there is a gap in the partition plate 4b to allow thermal expansion, high temperature exhaust gas (about 650 ° C.) flows through the partition plate 4b around the gantry 4a during operation, and the sliding surface of the gantry 4a is almost completely removed. There is a problem that the temperature becomes equivalently high, the friction coefficient becomes very large (for example, 2 or more) due to high-temperature oxidation, and the heat transfer panel 5 does not slide smoothly in response to thermal expansion and thermal contraction.
[0006]
For this reason, not only a horizontal force (about 40 to 60 tons) more than twice the own weight acts on the heat transfer panel, but also so-called stick slip occurs due to a difference between a static friction coefficient and a dynamic friction coefficient, and the temperature rise and cooling process. There has been a problem that thermal expansion is released with an impact sound of a sudden dawn, and cracks or the like may be generated in each part due to the impact load.
[0007]
This phenomenon occurs even in a relatively small waste heat recovery boiler, but becomes more important as the size becomes larger. Conventionally, in order to solve this problem, a material having a low coefficient of friction under a high temperature and a high surface pressure is used for a support surface, or a heat transfer panel is divided in a width direction as illustrated in FIG. Had taken the means of. However, there is no practical material that can withstand a high surface pressure of 50 to 70 Kg / cm 2 at a high temperature of about 650 ° C. or more and has a low coefficient of friction. Only the amount of expansion could be reduced, but no drastic solution had been made.
[0008]
The present invention has been made to solve such a problem. That is, an object of the present invention is to provide a heat transfer boiler capable of supporting a heat transfer panel under high temperature and high surface pressure and smoothly sliding the heat transfer panel in response to thermal expansion and contraction. It is to provide a panel support structure.
[0009]
[Means for Solving the Problems]
According to the present invention, there are provided a plurality of heat transfer panels vertically arranged in the boiler main body and spaced apart along the exhaust gas flowing horizontally, and each of the heat transfer panels is an upper and lower horizontal pipe. In a heat transfer panel support structure of a heat recovery steam generator comprising a number of vertical heat transfer tubes connected between a header and the horizontal header, a panel support provided below each of the lower headers and having a horizontal lower surface, A hollow frame having a horizontal upper surface and supporting a panel supporting portion on the upper surface, a gas supply line for supplying exhaust gas between the heat transfer panels into the hollow frame, and a heat transfer in the boiler main body using the gas in the hollow frame. A heat transfer panel support structure for a heat recovery steam generator, comprising: a gas discharge line that flows downstream from a panel; and a heat insulating material that integrally surrounds a hollow frame and a lower header.
[0010]
According to a preferred embodiment of the present invention, each of the heat transfer panels is provided with vertical heat transfer tubes densely arranged so as to sufficiently cool the high-temperature exhaust gas and have an appropriate pressure loss, and the gas supply line Has an upstream end communicating between a heat transfer panel having a temperature sufficient to cool the hollow frame and a pressure sufficient to supply exhaust gas through the hollow frame and the gas discharge line. The exhaust heat recovery boiler has three heat transfer panels, the pressure drop and the temperature drop of the exhaust gas due to each heat transfer panel are about 25 mmAq and about 100 ° C., respectively, and the upstream end of the gas supply line is the most upstream. And a heat transfer panel in between.
[0011]
[Action]
According to the configuration of the present invention, the gantry supporting the panel supporting portion provided below each lower header is hollow, and the exhaust gas cooled by the heat transfer panel on the upstream side is supplied to the inside thereof. Since the gas is supplied by the line, the exhaust gas cools the hollow gantry, and the upper surface and the lower surface of the panel supporting portion can be directly cooled by heat transfer. Further, since the heat insulating material integrally surrounds the hollow frame and the lower header, heat input from external exhaust gas can be reduced, and the temperature of water supplied in the lower header is sufficiently lower than the exhaust gas ( (For example, 200 to 300 ° C.), the heat insulating material can be cooled by the lower header, and the upper surface of the hollow frame and the lower surface of the panel supporting portion covered with the heat insulating material can be further cooled.
[0012]
Therefore, the cooled exhaust gas at the upstream heat transfer panel and the relatively low temperature water supply in the lower header draw a temperature sufficiently lower than the hot exhaust gas flowing through the sliding surface supporting the heat transfer panel (for example, (About 450 ° C. or less), and it is possible to prevent the sliding surface from being oxidized at a high temperature and maintain a low friction coefficient.
According to a preferred configuration of the present invention, in each heat transfer panel, vertical heat transfer tubes are densely arranged so as to sufficiently cool high-temperature exhaust gas and have an appropriate pressure loss, and the gas supply line includes: Since the upstream end communicates between a heat transfer panel having a temperature enough to cool the hollow mount and a pressure sufficient to supply exhaust gas through the hollow mount and a gas discharge line, a high-temperature compressor or the like is provided. Without the pressure difference, the exhaust gas can flow through the gas supply line and the gas discharge line.
[0013]
【Example】
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In the drawings, common parts are denoted by the same reference numerals.
FIG. 1 is an overall configuration diagram of an exhaust heat recovery boiler having a heat transfer panel support structure according to the present invention. In this figure, an exhaust heat recovery boiler 10 has three heat transfer panels 7, 8, 9 in a boiler main body 4, and each of the heat transfer panels is vertically arranged and spaced along a horizontally flowing exhaust gas. Are arranged at intervals. Each heat transfer panel includes upper and lower horizontal headers 5a and 5b (manifolds) and a number of vertical heat transfer tubes 5c connecting between the horizontal headers. Such a configuration is the same as the conventional exhaust heat recovery boiler shown in FIG. The present invention is not limited to three heat transfer panels, but may be two or four or more.
[0014]
FIG. 2 is a partially enlarged view of FIG. 1 and shows a heat transfer panel support structure of the heat recovery steam generator. In this figure, the heat transfer panel support structure of the present invention includes a panel support portion 12, a hollow frame 14, a gas supply line 16, a gas discharge line 18, and a heat insulating material 20.
The panel support portion 12 has a horizontal lower surface 12a provided below each lower header 5b, and supports the weight of the heat transfer panel 5 with the lower surface 12a. Further, the hollow gantry 14 has a horizontal upper surface 14a, on which the lower surface 12a of the panel supporting portion 12 rests and supports the entire heat transfer panel via the panel supporting portion 12. The hollow frame 14 is made of a metal material having good heat conductivity. With this configuration, when the heat transfer panels 7, 8, and 9 thermally expand and contract, the lower surface 12a of the panel support portion 12 slides horizontally on the upper surface 14a of the hollow gantry 14, thereby preventing generation of thermal stress. it can.
[0015]
The gas supply line 16 supplies the exhaust gas between the heat transfer panels to the inside of the hollow gantry 14. In addition, the gas discharge line 18 allows the gas inside the hollow gantry 14 to flow downstream of the heat transfer panel in the boiler body 4. These gas lines 16 and 18 are preferably provided with a suitable heat insulating material so that the internal gas is not heated by the high-temperature exhaust gas.
[0016]
In each of the heat transfer panels 7, 8, and 9, the vertical heat transfer tubes are densely arranged so as to sufficiently cool the high-temperature exhaust gas and have an appropriate pressure loss. The pressure loss ΔP and the temperature drop ΔT of the exhaust gas by the heat transfer panels 7, 8, 9 are preferably about 25 mmAq and about 100 ° C., respectively. With this configuration, even if the temperature of the exhaust gas flowing into the most upstream heat transfer panel 7 is as high as about 650 ° C., the temperature of the exhaust gas located between the most upstream heat transfer panel 7 and the intermediate heat transfer panel 8 is reduced. 550 ° C., at which high-temperature oxidation is unlikely to occur, and the pressure in this portion can be increased by about 50 mmAq, which is the sum of the pressure losses of the two panels with respect to the downstream side of the most downstream heat transfer panel 9.
[0017]
Therefore, as shown in FIG. 2, by connecting the upstream end 16 a of the gas supply line 16 between the uppermost stream and the middle heat transfer panels 7 and 8, the hollow frame 14 is sufficiently cooled in the gas supply line 16. Exhaust gas at a possible temperature (about 550 ° C. in this example) can flow through the hollow frame 14 and the gas discharge line 18 only with a pressure difference (about 100 mmAq in this example), and the exhaust gas cools the hollow frame 14, The upper surface 14a and the lower surface 12a of the panel support can be directly cooled by heat transfer.
[0018]
Further, as shown in FIG. 2, in the heat transfer panel supporting structure of the present invention, since the heat insulating material 20 integrally surrounds the hollow base 14 and the lower header 5b, heat input from external exhaust gas is reduced. Since the temperature of the feedwater in the lower header 5b is sufficiently lower than that of the exhaust gas (for example, 200 to 300 ° C.), the heat insulating material 20 can be cooled by the lower header 5b and covered with the heat insulating material 20. The upper surface 14a of the hollow frame and the lower surface 5b of the panel support can be further cooled.
[0019]
It should be noted that the present invention is not limited to the above-described embodiment, and it is needless to say that various changes can be made without departing from the spirit of the present invention.
[0020]
【The invention's effect】
According to the configuration of the present invention described above, the exhaust gas cooled by the heat transfer panel on the upstream side and the relatively low temperature water supply in the lower header allow the sliding surface supporting the heat transfer panel to be more sufficient than the high temperature exhaust gas. Low temperature (for example, about 450 ° C. or less), so that the sliding surface can be prevented from being oxidized at a high temperature and maintained at a low friction coefficient.
[0021]
Therefore, the heat transfer panel support structure of the exhaust heat recovery boiler of the present invention can support the heat transfer panel under high temperature and high surface pressure, and smoothly slides the heat transfer panel according to thermal expansion and contraction. And other excellent effects.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of an exhaust heat recovery boiler having a heat transfer panel support structure according to the present invention.
FIG. 2 is a partially enlarged view of FIG.
FIG. 3 is an overall configuration diagram of a conventional exhaust heat recovery combined cycle power plant.
FIG. 4 is an overall configuration diagram of a conventional exhaust heat recovery boiler.
FIG. 5 is a panel front view of a conventional large-sized waste heat recovery boiler.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Gas turbine 2 Exhaust heat recovery boiler 3 Steam turbine 4 Boiler main body 4a Stand 4b Partition plate 5 Heat transfer panel 5a Upper header 5b Lower header 5c Vertical heat transfer tube 6 Panel support parts 7, 8, 9 Heat transfer panel 10 Exhaust heat Recovery boiler 12 Panel support 12a Lower surface 14 Hollow frame 14a Upper surface 16 Gas supply line 18 Gas discharge line 20 Insulation material

Claims (3)

ボイラ本体内に垂直に配置され、かつ水平に流れる排ガスに沿って間隔を隔てて配置された複数の伝熱パネルを有し、該各伝熱パネルは、上下の水平管寄せと該水平管寄せ間を連結した多数の垂直伝熱管とからなる排熱回収ボイラの伝熱パネル支持構造において、
前記各下管寄せの下方に設けられ水平な下面を有するパネル支持部と、水平な上面を有し該上面でパネル支持部を支持する中空架台と、伝熱パネル間の排ガスを中空架台内に供給するガス供給ラインと、該中空架台内のガスをボイラ本体内の伝熱パネルより下流側に流すガス排出ラインと、中空架台と下管寄せを一体に囲む断熱材と、を備えたことを特徴とする排熱回収ボイラの伝熱パネル支持構造。
A plurality of heat transfer panels vertically arranged in the boiler main body and spaced apart along the horizontally flowing exhaust gas, the heat transfer panels being upper and lower horizontal headers and the horizontal headers In the heat transfer panel support structure of the exhaust heat recovery boiler consisting of a number of vertical heat transfer tubes connected between
A panel supporting portion provided below each of the lower headers and having a horizontal lower surface, a hollow frame having a horizontal upper surface and supporting the panel supporting portion on the upper surface, and exhaust gas between the heat transfer panels is introduced into the hollow frame. A gas supply line to be supplied, a gas exhaust line for flowing gas in the hollow gantry downstream from the heat transfer panel in the boiler main body, and a heat insulating material integrally surrounding the hollow gantry and the lower header. Characteristic heat transfer panel support structure for waste heat recovery boiler.
前記各伝熱パネルは、高温の排ガスを十分に冷却し、かつ適当な圧損を有するように、垂直伝熱管が密に配置されており、前記ガス供給ラインは、中空架台を十分に冷却できる温度と、中空架台とガス排出ラインを通して排ガスを十分に供給できる圧力を有する伝熱パネル間にその上流端が連通している、ことを特徴とする請求項1に記載の排熱回収ボイラの伝熱パネル支持構造。In each of the heat transfer panels, the vertical heat transfer tubes are densely arranged so as to sufficiently cool the high-temperature exhaust gas and have an appropriate pressure loss, and the gas supply line has a temperature at which the hollow frame can be sufficiently cooled. 2. The heat transfer of the heat recovery boiler according to claim 1, wherein an upstream end of the heat transfer panel is connected between the hollow frame and a heat transfer panel having a pressure sufficient to supply exhaust gas through the gas discharge line. Panel support structure. 前記排熱回収ボイラは、3つの伝熱パネルを有し、各伝熱パネルによる圧損と排ガスの温度降下は、それぞれ約25mmAqと約100℃であり、前記ガス供給ラインの上流端は、最上流と中間の伝熱パネル間に連通している、ことを特徴とする請求項2に記載の排熱回収ボイラの伝熱パネル支持構造。The exhaust heat recovery boiler has three heat transfer panels, the pressure drop and the temperature drop of the exhaust gas by each heat transfer panel are about 25 mmAq and about 100 ° C., respectively, and the upstream end of the gas supply line is the most upstream. The heat transfer panel support structure for a heat recovery steam generator according to claim 2, wherein the heat transfer panel is connected between the heat transfer panel and an intermediate heat transfer panel.
JP14288095A 1995-06-09 1995-06-09 Heat transfer panel support structure for waste heat recovery boiler Expired - Fee Related JP3575015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14288095A JP3575015B2 (en) 1995-06-09 1995-06-09 Heat transfer panel support structure for waste heat recovery boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14288095A JP3575015B2 (en) 1995-06-09 1995-06-09 Heat transfer panel support structure for waste heat recovery boiler

Publications (2)

Publication Number Publication Date
JPH08334210A JPH08334210A (en) 1996-12-17
JP3575015B2 true JP3575015B2 (en) 2004-10-06

Family

ID=15325748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14288095A Expired - Fee Related JP3575015B2 (en) 1995-06-09 1995-06-09 Heat transfer panel support structure for waste heat recovery boiler

Country Status (1)

Country Link
JP (1) JP3575015B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110805921B (en) * 2019-11-12 2021-03-26 哈尔滨锅炉厂有限责任公司 Flexible frame structure for heat preservation bearing of header and scattered pipe of flue gas heat exchanger

Also Published As

Publication number Publication date
JPH08334210A (en) 1996-12-17

Similar Documents

Publication Publication Date Title
US6173561B1 (en) Steam cooling method for gas turbine combustor and apparatus therefor
EP0721542A1 (en) High efficiency power generation
EP0572265B1 (en) Heat exchanger unit for heat recovery steam generator
JP3575015B2 (en) Heat transfer panel support structure for waste heat recovery boiler
US20100095648A1 (en) Combined Cycle Power Plant
JP3633667B2 (en) Support structure of heat transfer panel in exhaust heat recovery boiler
US3434531A (en) Semirigid tube supporting tie
CN209926932U (en) High-temperature high-pressure heat exchanger
JPH08334208A (en) Temperature lowering structure of heat transfer panel support member
US6186221B1 (en) Heat recovery assembly
JP3763856B2 (en) Heat transfer tube group support device
JP3784616B2 (en) Thermoelectric ratio control method for small capacity gas turbine cogeneration system
JP3875933B2 (en) Boiler horizontal heat transfer tube support structure
JPS60238682A (en) Waste heat recovery heat exchanger
ITPD950079A1 (en) DUCT FOR AN EXTERNAL ADDITIONAL COMBUSTER FOR GAS TURBINE
SU486593A1 (en) Nuclear power plant with several nuclear reactors
JPH09303707A (en) Frame support structure in exhausted heat recovering boiler
JP2014119136A (en) Heat transfer pipe assembly and heat recovery device comprising the same
JP3106689B2 (en) Gas cooler for high temperature gas
RU97121547A (en) METHOD FOR OPERATING POWER INSTALLATION AND INSTALLATION FOR ITS IMPLEMENTATION
JPH03140752A (en) Waste heat recovery for cogeneration engine
JPH11100584A (en) Gasification complex power generation facilities
JPH0914576A (en) Heat insulating structure for duct inside of high temperature fluid
JPH11294186A (en) Gas combined power generating facility
JPH102508A (en) Superheater

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040627

LAPS Cancellation because of no payment of annual fees