JP3632842B2 - Manufacturing method of robot hand member - Google Patents

Manufacturing method of robot hand member Download PDF

Info

Publication number
JP3632842B2
JP3632842B2 JP2001097479A JP2001097479A JP3632842B2 JP 3632842 B2 JP3632842 B2 JP 3632842B2 JP 2001097479 A JP2001097479 A JP 2001097479A JP 2001097479 A JP2001097479 A JP 2001097479A JP 3632842 B2 JP3632842 B2 JP 3632842B2
Authority
JP
Japan
Prior art keywords
robot hand
prepreg sheet
core material
hand member
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001097479A
Other languages
Japanese (ja)
Other versions
JP2002292592A (en
Inventor
孝至 小林
健一 青柳
大介 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP2001097479A priority Critical patent/JP3632842B2/en
Priority to KR1020020016981A priority patent/KR20020077179A/en
Priority to CNB021085870A priority patent/CN100402246C/en
Priority to US10/107,307 priority patent/US20020180104A1/en
Priority to TW091106239A priority patent/TW544383B/en
Publication of JP2002292592A publication Critical patent/JP2002292592A/en
Application granted granted Critical
Publication of JP3632842B2 publication Critical patent/JP3632842B2/en
Priority to US11/147,459 priority patent/US7833455B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manipulator (AREA)
  • Moulding By Coating Moulds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、産業用ロボットのロボットハンド部材の製造方法に関し、特に、炭素繊維を含んで構成される繊維強化複合材料(FRP)からなるロボットハンド部材を、安価に且つ短時間に製造することを可能にするロボットハンド部材の製造方法に関する。
【0002】
【従来の技術】
産業用ロボットのロボットハンドは、ロボットアームの先端に取付けられ、ロボットアームの動作を介して、ワークの支持・把持・挟持等を行うものであり、鉄、ステンレス、アルミニウム等の金属素材によって製造されるものが多かった。
【0003】
液晶ディスプレー(LCD)、プラズマディスプレーパネル(PDP)、シリコンウェハ等の精密品の製造工程で使用される基板搬送用等のロボットハンドについては、LCD等の普及と共に大きくなりつつあるガラス基板のサイズに対応すべく大型化の要請が高い。しかし、かかる大型化には、ロボットハンド部材の自重による撓みが増大するという不都合を伴うので、これに対処すべく、軽量性を有する材料が求められていた。
【0004】
又、前記精密品の搬送等を行う場合の搬送精度を高める為に、曲げ剛性、耐熱性、振動減衰性の高い材料が求められていた。
かかる特性の材料として、種々の繊維強化複合材料(FRP)が開発されており、特に、炭素繊維強化複合材料(CFRP)の無垢材からなるロボットハンド部材が普及している。
【0005】
かかるCFRP無垢材からなるロボットハンド部材は、炭素繊維プリプレグシートを、離型フィルムが貼られたあて板の上に載せ、アイロン等で熱を掛けながら所望の厚みに達するまで複数枚積層貼付した後、最上面にあて板を乗せた状態で真空バックに入れ、加熱硬化させ、これを自然冷却させた後、あて板及び離型フィルムを外すことによって製造されている。
【0006】
又、特開2000−343476号公報に記載されているように、炭素繊維プリプレグシートを複数枚積層して加熱し熱硬化させた板状のCFRP(以下「CFRP板」という)からなるスキン層と、同じくCFRPからなるコア層とを別々に成形し、上記コア層を芯材として、その上面及び下面にスキン層を積層し、該コア層とスキン層とを接着剤により貼り合わせて製造する技術も提案されている。
【0007】
この場合、上記スキン層としては、炭素繊維の配向方向を異ならせた炭素繊維プリプレグシートを複数枚積層することによって、曲げ剛性、振動減衰特性、耐熱性等を向上させている。又、上記コア層としては、アルミニウム等の金属や繊維集合体からなるハニカム状の芯材とCFRP材を組み合わせることによって、軽量化を図ると共に、曲げ剛性、振動減衰特性、耐熱性等を向上させている。
【0008】
【発明が解決しようとする課題】
しかし、前記CFRP無垢材からなるロボットハンド部材では、軽量な材料を使用しているにも関わらず、近年のロボットハンド部材の大型化に伴い自重が大きくならざるを得ない為、自重による撓みを充分に解消することができなかったり、ロボットハンド部材の取付部位やロボット駆動系への負荷が大きくなったり、ロボットそのものの設計に困難性が生じたり、或いはコストが高くなる、といった不都合が生じていた。
【0009】
かかるロボットハンド部材において、ロボットハンド部材の厚みを薄くしたり、ロボットハンド部材のワーク支持面の幅を狭くしたりして軽量化することで、自重撓みはある程度解消できるが、このような対策では、ロボットハンドの曲げ剛性が低下するので、ワークを支持した際の荷重撓みが大きくなってしまう。
特に、長尺のロボットハンド部材を片持に取付けた場合等は、先端部における撓みが大きくなり、ワークを支持した際の振動等が大きくなり易いので、ワーク支持性或いは搬送性に支障を来す虞があった。
【0010】
又、特開2000−343476号公報に記載のロボットハンド部材の製造においては、CFRP板としてのスキン層と、芯材としてのコア層を予め成形しておき、コア層の上面及び下面にスキン層を接着剤で接合し、これをロボットハンド部材の寸法に合わせて切断することによって、ロボットハンド部材を形成していたので、製造工程数が多くなり、製造効率が低い上に、製造コストが高かった。
【0011】
特に、プリプレグシートの積層工程及び加熱硬化工程を経てスキン層を成形した後に、それをコア層と接合するので、スキン層の製造工程における加熱及び冷却時間と、コア層とスキン層との接着時間とが別個必要となり、製造所要時間が長くなるものであった。
又、予め所定の厚みに成形した(熱硬化させた)4面分のFRP板を接着剤を用いて断面方形に貼り合わせる方法も考えられる。しかし、この方法では、プリプレグシートの積層工程、FRP板の成形工程、貼り合わせ工程が必要であると共に、接着して貼り合わせた部分では荷重に対する強度が低くなるという問題がある。
【0012】
更に、ロボットハンド部材としては、液晶ディスプレー、プラズマディスプレー、シリコンウェハ等の精密品をワークとして搬送等する為、該ロボットハンド部材がワークを傷付けたりしないような平面性が必要であるが、中空構造のロボットハンド部材にすると、中央部分が窪み易く、その場合には、中空構造のロボットハンド部材を平面にする後加工を必要とする不都合がある。
【0013】
そこで、本発明は、ロボットハンド部材の製造に際し、軽量なロボットハンド部材を形成することができると共に、工程数を削減でき、製造所要時間を短縮できる効率的な製造方法の提供を目的とする。
【0014】
【課題を解決するための手段】
請求項1に係るロボットハンド部材の製造方法は、炭素繊維を含むプリプレグシートを積層して矩形状断面とされたものを熱硬化させたFRP部材から成り、産業用ロボットのアーム部に取り付けられるロボットハンド部材を製造する方法において、所定温度以下では加熱非変形性を有し且つ上記熱硬化されたプリプレグシートとの密着性が良好な樹脂を用いて矩形状断面とされた芯材の外周面の4面それぞれに、最内層にはPAN系炭素繊維をその配向方向が芯材の長手方向に対して90度に配向されたプリプレグシートを積層し、中間層には引張弾性率が上記PAN系炭素繊維よりも高いピッチ系炭素繊維をその配向方向が芯材の長手方向に対して0度に配向されたプリプレグシートを積層し、最外層には二方向の炭素繊維が90度で交わるように配向されたクロスプリプレグシートを巻掛けて被覆し、前記芯材の外周面にプリプレグシートの積層部材を形成する積層工程と、前記積層工程で形成された積層部材を加熱し熱硬化させて前記芯材と一体化したFRP部材を形成する加熱工程と、を行うものである。
【0015】
即ち、予め、芯材及びプリプレグシートを準備しておく。
芯材は、ロボットハンドの形状に対応させて成形されたものである。
又、炭素繊維を含んで構成されるプリプレグシートとは、炭素繊維、ガラス繊維、アラミド繊維、炭化珪素繊維等に熱硬化性樹脂を含浸させた未硬化状態のシートを言う。
【0016】
本発明に係る製造方法において、先ず、積層工程において、複数のプリプレグシートを、例えば、断面方形状の芯材の外周面の4面それぞれに積層していく
【0017】
プリプレグシートは、未硬化状態であるので、芯材、或いは下層のプリプレグシートに重ね合わせただけで相互に貼着される。
その後、上記工程で形成された積層部材(即ち、芯材にプリプレグシートが積層されたもの)を加熱し硬化させる。この場合の加熱温度及び加熱時間は、プリプレグシートの熱硬化樹脂の種類に応じた熱硬化温度及び熱硬化時間とする。
プリプレグシートは強化繊維の配向方向に剛性を有するので、強化繊維の配向方向の異なるプリプレグシートを複数選択し、それらを積層することによって、ロボットハンド部材の撓み量を調節できるようになる。本発明では、プリプレグシートの強化繊維の配向を芯材の長手方向に沿う方向と長手方向に略直交する方向に異ならせて積層することによって、ロボットハンド部材の曲げ剛性、捻じり剛性、或いは振動減衰性等が向上される。
【0018】
積層された複数のプリプレグシートは、夫々のシートの熱硬化性樹脂が加熱によって接合され、その状態で硬化し、所定厚さのFRP板となる。
芯材とこれに接面するプリプレグシートも、プリプレグシートの熱硬化によって一体化し、中実構造のロボットハンド部材が形成される。
【0021】
請求項に係るロボットハンド部材の製造方法は、炭素繊維を含むプリプレグシートを積層して矩形状断面とされたものを熱硬化させたFRP部材から成り、産業用ロボットのアーム部に取り付けられるロボットハンド部材を製造する方法において、所定温度以下では加熱非変形性を有し且つ上記FRP部材より熱膨張率が大きい金属又は樹脂を用いて矩形状断面とされた芯材の外周面の4面それぞれに、最内層にはPAN系炭素繊維をその配向方向が芯材の長手方向に対して90度に配向されたプリプレグシートを積層し、中間層には引張弾性率が上記PAN系炭素繊維よりも高いピッチ系炭素繊維をその配向方向が芯材の長手方向に対して0度に配向されたプリプレグシートを積層し、最外層には二方向の炭素繊維が90度で交わるように配向されたクロスプリプレグシートを巻掛けて被覆し、前記芯材の全外周面にプリプレグシートの積層部材を形成する積層工程と、前記積層工程で形成された積層部材を加熱し熱硬化させてFRP部材を形成する加熱工程と、前記FRP部材から前記芯材を抜き取り中空構造とする芯材抜取工程と、を行うものである。
【0022】
芯材は、ロボットハンドの形状に対応させて成形されており、ロボットハンド部材を成形する際の所謂中型として機能すべく、加熱工程における所定の加熱温度以下では変形しない性質を有し、且つ加熱硬化後のFRP部材から容易に抜き取れる材質のものを使用する。前記所定の加熱温度とは、例えば、プリプレグシートの加熱硬化処理における加熱温度である。
【0023】
そして、請求項に係る発明と同様、積層工程において芯材の外周面にプリプレグシートの積層体を形成し、かかる積層部材を加熱工程において加熱硬化させ、FRP部材を形成する。
これによって、請求項に係る発明と同様、縁部において隣接区分領域のプリプレグシート同士が接合された状態で加熱硬化し、芯材の外周面をパイプ状のFRP板で覆った状態のFRP部材が形成される。
【0024】
その後、かかるFRP部材から、芯材を抜き取ることで、中空構造のロボットハンド部材が形成される。ここにおいて、芯材は、FRPよりも熱膨張率の高い材料を用いれば、熱硬化後に芯材を容易に抜き取ることができる。
【0026】
請求項に係るロボットハンド部材の製造方法は、請求項1又は2記載のロボットハンド部材の製造方法において、上記中間層にプリプレグシートを積層するのは、該プリプレグシートの炭素繊維の配向方向が芯材の長手方向に対して0度と90度に配向されたものを含むものである。
【0027】
【発明の実施の形態】
図1は、本実施形態に係るロボットハンド部材の製造方法によって製造されたロボットハンド1を示す。
このロボットハンド1は、産業用ロボットのアーム部の先端に取り付けられるものであり、液晶ディスプレイ(LCD)、プラズマディスプレイパネル(PDP)、半導体ウェハや精密機器等のワーク2を支持して搬送等を行う為に使用されるものである。
【0028】
このロボットハンド1は、取付孔3を介して上記産業用ロボットのアーム部に取りつけられる取付部4と、その先端に固定取付されたロボットハンド部材10を含んで構成される。
本実施形態に示すロボットハンド部材10は、図2に示すように、例えば角パイプ形状等の中空構造体であり、軽量性、曲げ剛性、耐熱性等にすぐれたものとするために、繊維強化複合材料(FRP)によって構成される。
【0029】
かかるロボットハンド部材10は、以下の工程によって製造される。
先ず、準備工程として、芯材20と原形プリプレグシート30を用意する。
芯材20は、ロボットハンド部材10の形状に対応させて成形されており、プリプレグシートを積層する際の所謂あて板として機能すべく、ある程度の剛性を有し、ロボットハンド部材を成形する際の所謂中型として機能すべく、加熱工程における加熱温度以下では変形しない性質を有し、且つ上記FRP部材より熱膨張率が大きい金属又は樹脂を用いて矩形状断面とされており、加熱硬化後のFRP部材から容易に抜き取れる材質のものを使用する。かかる観点から、芯材の材質としては、例えば、アルミニウム、鉄、ステンレス等の金属や、MCナイロン樹脂、ポリイミド樹脂等が適する。前記金属や樹脂等は、FRPより熱膨張率が大きい為、加熱後の冷却により収縮し、抜取り容易となる。又、必要に応じ、芯材の表面に離型材を施してもよい。離型材としては、スプレー等による薬剤(例えば、界面活性剤等)の塗布、或いはテフロン(登録商標)シート等の離形シートの使用など何れの方法でもよい。
【0030】
尚、前記所定温度での加熱非変形性とは、後述の加熱工程での加熱温度では殆ど変形しないという性質を有するものを言う。前記加熱温度では殆ど変形しないとは、後述の加熱条件下で、芯材の材料が溶融したり、芯材の部材に反り、曲がり、撓み、捩れや皺、褶曲等の変形が生じないことを言う。又、前記所定温度とは、後述する原形プリプレグシートのマトリックス樹脂の熱硬化温度に応じ、例えば、約100〜190℃以上の温度を言う。
【0031】
この場合、芯材20は、図4(b)に示すように、断面が横長長方形状の角材であり、芯材の外周面は、4つの平面領域、即ち、上面21、下面22、左側面23及び右側面24に区分されている。
先ず、図4(a)に示すように、原形プリプレグシート30を切断し、所定形状のプリプレグシート片33を形成する。
【0032】
プリプレグシート片33とは、芯材20の夫々の面(区分領域)に積層されるシートであり、芯材の夫々の面の寸法に合わせて切断される。断面が横長長方形状のロボットハンド部材10において、プリプレグシート片33は、上壁用33a、下壁用33b、右側壁用33c、左側壁用33dの4種類が必要となり、このうち、相対する壁面用のものは同一形状である。
【0033】
原形プリプレグシート30とは、図3に示すように、強化繊維31をシート化したものにマトリックス樹脂32を含浸させたものであり、未硬化状態のシートである。この場合、強化繊維31には、剛性及び軽量性の観点から炭素繊維を使用する。しかし、炭素繊維以外にもガラス繊維、アラミド繊維、炭化珪素繊維等も使用可能である。即ち、例えば、積層される複数のプリプレグシートは、炭素繊維プリプレグシートを主体として使用し、ロボットハンド部材としての支持性能或いは搬送性能を損なわない限りで、前記ガラス繊維等、或いはその他の繊維を含むプリプレグシートを一部に加えることも可能である。
【0034】
マトリックス樹脂32としては、エポキシ樹脂、フェノール樹脂、シアネート樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂、ビスマレイミド樹脂等の熱硬化性樹脂を用いる。この場合、ゴム加硫等のような高温高湿環境に耐え得るものが好ましい。又、前記熱硬化性樹脂は、耐衝撃性、靱性を付与する目的で熱硬化性樹脂にゴムや樹脂からなる微粒子を添加したり、或いは熱硬化性樹脂に熱可塑性樹脂を溶解させたものを使用してもよい。
【0035】
炭素繊維の種類としては、230〜490GPaのPAN系のものと、490〜950GPaのピッチ系のものがあるが、何れを用いてもよい。この場合、ピッチ系のものは弾性が高いという特徴を有し、PAN系のものは引っ張り強度が高いという特徴を有する。
又、原形プリプレグシートとしては、強化繊維が同一方向に配向する一方向シートと、平織物、綾織物、朱子織物、三軸織物等のクロスシートとがある。
【0036】
原形プリプレグシートは、強化繊維の種類を異ならせたり、マトリック樹脂に対する強化繊維の密度を異ならせたり、或いは強化繊維の配向状態を異ならせたりして、様々なタイプのものを用意しておき、ロボットハンド1の使用目的やロボットハンド部材10の使用箇所に応じて、最適な曲げ剛性のFRP部材が形成されるように、使用すべき原形プリプレグシートを複数選択するのが好ましい。
【0037】
尚、前記選択された全ての原形プリプレグシート30についても、同様に所定寸法のプリプレグシート片33を形成しておく。
次に、図4(b)に示すように、芯材20の各面に、プリプレグシート片33を積層貼付する(積層工程)。
プリプレグシート片33は未硬化状態であり、ある程度の粘着力を有するので、離型フィルムの貼られた芯材20の上に、シートを順次重ね合わせていくだけで貼着される。
【0038】
この場合、アイロン等で熱を掛けながら、下層のフィルムやシートに密着させ、所望の厚み(例えば、1〜7mm程度)になる迄、密着積層させる。この場合の所望の厚みとは、プリプレグシートが加熱硬化する際の体積減少分を見越し、ロボットハンド部材のFRP板の要求板厚よりも僅かに厚い程度が好ましい。
図5はプリプレグシート片33の積層状態の一例を示したものであり、プリプレグシート片33の長手方向に対して略直角に炭素繊維が配向(以下「90°配向」という)する一方向シート330を最も内側(即ち、最下層)にして複数段積層し、その上面に、プリプレグシート片の長手方向に対して略平行に配向(以下「0°配向」という)する一方向シート331を複数段積層している。
【0039】
この場合、上記シート片330、331に加え、斜め方向に配向(以下「45°又は135°配向」という)する一方向シート、45°と135°との2方向に配向するクロスプリプレグシート等を組み合せて積層してもよい。
この場合、0°配向シートは、長手方向の撓み防止性、及び振動減衰特性を有する。0°配向シートに90°配向シートを組み合わせることによって、曲げ剛性、曲げ振動の振動減衰特性が向上されると共に、反りや撓み等が一層効果的に防止される。更に、45°配向シートや135°配向シートを組み合わせることによって、捻じれ剛性や捻じれ振動減衰特性が一層向上される。クロスシートについては、一方向シートの上記組み合わせに準じた効果を有する。
【0040】
尚、積層順序としては、90°配向シートを最下層(最内側)とするのが、芯材の抜き取り易さの観点から好ましい。なぜならば、炭素繊維はマトリックス樹脂よりも熱収縮率が低い為、シートとしての収縮率は、繊維配向方向への収縮率の方が繊維配列方向への収縮率よりも低くなるので、パイプ状のFRP板の内側面を90°配向シートによって構成することで、芯材の外周を囲むように強化繊維が配向することとなるので、熱硬化した際、パイプ状のFRP板が差程縮径しなくて済むからである。
【0041】
又、上層に積層されるシートほど(即ち、外側のシートほど)、ロボットハンド部材の性状(即ち、曲げ剛性等)への寄与率が高いので、0°配向シートを90°配向シートよりも上層に積層するのが、撓み防止性の観点から好ましい。
かかる点を考慮しつつ、使用すべきプリプレグシートの組み合わせ及び積層順序を決定する。
【0042】
この様にして、芯材20の全ての面にプリプレグシート片33を積層貼付することで、芯材20の外周面にプリプレグシートの積層体を形成した状態の積層部材40が形成される。
その後、図4(c)に示すように、積層部材40の外周に、クロスプリプレグシート34を1回り或いは複数回り巻掛けて被覆する。(被覆工程)。
【0043】
尚、クロスプリプレグシート34とは、複数の方向に織り込んだ強化繊維に前記マトリックス樹脂を含浸させた未硬化状態のシートであり、強化繊維としては、織物状の炭素繊維、ガラス繊維、アラミド繊維、或いは炭化珪素繊維等が好ましい。又、積層部材40に密着させて被覆できるように、可撓性及び接着性の高いシートが好ましい。
【0044】
そして、図4(d)に示すように、クロスプリプレグシート34で被覆された状態の積層部材40に外型41、42、43、44を四方から押し付ける。
この場合の外型は、2枚のあて板41、42と、該2枚のあて板の間に介挿される2枚の厚み設定板43、44からなる。即ち、積層部材40の上面と下面にあて板41、42を押し付け、積層部材40の左右側面に厚み設定板43、44を押し付ける。
【0045】
この状態の積層部材40を真空バック45に入れ、加熱することによって、FRP部材50が形成される。
この場合の加熱条件は、室温から2〜10℃/minの割合で加熱昇温させ、約100〜190℃で約10〜180分間保持し、その後加熱を停止し自然冷却によって降温させて常温に戻す。
【0046】
何れのプリプレグシート33、34も熱硬化性樹脂を含むので、夫々のシート面及びシート縁部において相互に貼着された状態で硬化する。
尚、積層部材40を真空バック45に入れるのは、積層工程で生じたシート間等の気泡を吸引するという目的と、積層部材40に対して外圧(即ち、大気圧)を略均等に加える目的とがある。
【0047】
又、積層部材40に対して特定方向の外圧を加えてもよい。例えば、あて板41、42と厚み設定板43、44との間に間隙が生じないようにして、上方から重石等で押圧することによって、ロボットハンド部材10の上面(即ち、ワーク支持面)の平坦性が向上したり、ロボットハンド部材10の寸法(特に、厚み)精度が高くなったりするし、又、接合界面が相互に押しつけられる方向に万力等で押圧することによって、プリプレグシート片33の縁部における接合性が向上したりする。
【0048】
その後、図4(e)に示すように、前記加熱工程によって形成されたFRP部材50から、芯材20を抜き取る(抜取工程)。
これによって、中空構造のロボットハンド部材10が形成される。
本実施形態によれば、ロボットハンド部材10は、FRP無垢材としてではなく、中空構造体として構成されるので、ロボットハンド部材自体の体積を減少させること無く(即ち、厚みを薄くしたり幅を狭くすることなく)、軽量化を実現できる。よって、例えば、取付部材等に取付けられる長尺のロボットハンド部材の場合、自重或いはワークの荷重によって先端部に撓みや振動が生ずるのを防止でき、ワークの支持精度及び搬送精度を向上させることができる。
【0049】
又、ロボットハンド部材10の中空部分を、ワークを非接触支持する場合のエアーの供給路、ワークを吸着支持する場合の吸引路、或いは、ロボットハンド部材の先端等にセンサ等を取り付ける場合の配線路として利用することもできる。
本実施形態によれば、芯材20に、プリプレグシートを積層する際の所謂あて板、及びロボットハンド部材10を加熱成形する際の所謂中型としての2つの機能を担わせるので、FRP板の形成(即ち、プリプレグシート片の積層)と、ロボットハンド部材の成形(即ち、隣接壁部のプリプレグシート片との相互接合)とを、同時に行うことができる。
【0050】
従って、従来のCFRP板からなるスキン層を成形した後、そのスキン層をコア層(即ち、芯材)に接合するという製造方法よりも、製造工程数が少なくてすむ。特に、CFRP板を形成する段階での自然冷却時間と、ロボットハンド部材を形成する段階での接着時間とが一体化されるので、製造所要時間を大幅に短縮できる。
【0051】
又、積層部材40の外周面をクロスプリプレグシート34で被覆したので、切削や開孔等の後加工を行った際に加工部位に生ずる毛羽立ちやささくれ等を防止できる。これによって、加工性が向上される上、液晶ディスプレー、プラズマディスプレー、シリコンウェハ等の精密なワークを傷付ける心配が無いという利点をも有する。
【0052】
又、クロスプリプレグシート34による被覆によって、プリプレグシート片33縁部の接合部位に生じるバリや段差等をカバーして美観を向上させたり、プリプレグシート片33の接合部位の補強ができたり、といった利点もある。
尚、ロボットハンド部材の製造方法として、長尺のプリプレグシートを芯材の外周面に巻付けて積層するという方法も考えられる。かかる製造方法において、特に、本実施形態の如き角部を有する芯材にプリプレグシートを巻付け積層した場合は、各角部が外側に膨らんだ状態になり易い。この様な方法では、角部形状を維持させる為に、ロボットハンド部材の外面形状に合わせて成形された専用外型を、積層部材の外側から押しつけた状態で加熱する必要がある。
【0053】
これに対し本実施形態の場合、角部が外側に膨らむといった事態が生じないので、前記の如き専用外型は必要なく、汎用型の外型(即ち、あて板や厚み設定板等)で充分である。特に、外型は、中型よりも一般的に大きく高価であるため、ロボットハンド部材の形状に合わせて個別に製造したり、種々の外型を取り揃えておくのはコストがかかるが、本実施形態の製造方法によれば、かかる不都合は少なく、ロボットハンド部材の設計変更に要するコストが抑えられ、設計の自由度が向上される。これによって、ユーザーの要求に合致したロボットハンド部材を迅速に製造できるようになり、納期を短縮できる。
【0054】
又、中空構造のロボットハンド部材の製造方法としては、ロボットハンド部材の各壁面に合わせて形成された4面分のFRP板を、夫々の縁部にて相互に接着させるという方法も考えられる。
かかる製造方法と比較しても、本実施形態の方法は、FRP板の縁部を接合するという接着工程が不要なので作業効率が高く、製造所要時間が短いという利点を有する。
【0055】
又、FRP板の縁部を接合するという作業自体が比較的煩雑であるので、上記方法によって製造されたロボットハンド部材は、寸法精度が低くなり易く、接着部分における強度が低くなりがちであるが、本実施形態では、芯材にプリプレグシートを貼り付けるという比較的簡単な作業でロボットハンド部材が形成できるので、かかる不都合を有しない。
【0056】
尚、本発明において、ロボットハンド部材の断面形状としては、方形にかかわらず、三角形、多角形、円形或いは半円形状等でも構わない。
又、クロスプリプレグシートの積層工程は、必ずしも必要ではない。
第2実施形態に係るロボットハンド部材の製造方法は、図6に示すロボットハンド部材100を製造する為の方法であり、このロボットハンド部材100は、芯材120の全外周面にプリプレグシートの積層部材を形成して一体化し、芯材120を残存させている点で、第1実施形態に係るロボットハンド部材とは、相違する。
【0057】
この場合、ロボットハンド部材100の総重量を抑える為に、芯材120には、所定温度以下では加熱非変形性を有し且つ熱硬化されたプリプレグシートとの密着性が良好な樹脂を用いて矩形状断面とされ、FRP部材よりも軽量な材料で構成された軽量部材を使用することとし、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、ポリウレタン樹脂、ポリイミド樹脂、ビスマレイミド樹脂、或いはこれらを組み合わせた材料、又はこれらの発泡材が適する。尚、芯材120は、プリプレグシート片133との密着性を向上するために、表面をサンドブラスト、サンドペーパー等による粗面化処理を行ってもよい。又、必要に応じて、接着剤の塗布を行ってもよい。
【0058】
かかるロボットハンド部材100の製造方法は、芯材抜取工程を省略した点を除き、プリプレグシート片133a、133b、133c、133dの積層工程、被覆工程、加熱工程等において、第1実施形態に係る製造方法と略同一である。
本実施形態において、前記エアーの供給路、前記吸引路、或いは前記配線路等を形成したい場合は、積層工程後の積層部材に溝を刻設したりチューブを埋め込んだ後、その施工部位にプリプレグシートを被せて加熱硬化させるといった手段を採用してもよいし、或いは、FRP部材の所望の部位に、機械加工等によって溝を刻設したり、孔やネジ孔等を開設するといった後工程を施してもよい。
【0059】
本実施形態では、芯材抜取工程が不要なので、製造所要時間を大幅に短縮できる。又、ロボットハンド部材100に軽量な芯材120を残存させたので、中空構造のロボットハンド部材と無垢材の双方の不都合が解消される。
即ち、中空構造のロボットハンドの場合は、使用に伴って中央部分に窪み等の経時的変形が生ずるといった不都合や、従来型ロボットハンド部材(即ち、無垢材)からの切換えの際に、溝や孔の加工部位の設計変更が余儀なくされるといった不都合を有していたが、本実施形態の場合は、かかる不都合は生じない。
【0060】
又、無垢材のロボットハンド部材と同等の体積を維持した状態で、部材総重量を軽くできるので、自重撓みに加えて荷重撓みも抑制できる。
第3実施形態に係るロボットハンド部材の製造方法は、図7に示すロボットハンド部材200を製造する為の方法であり、このロボットハンド部材200は、芯材220の一部の外周面にプリプレグシートの積層部材を形成して一体化して成り、芯材220の上面221と下面222に、プリプレグシート片233a,233bを積層している。尚、プリプレグシート片233a又は233bを積層する面は、芯材220の外周面のうち少なくとも上面の大部分とし、この場合、ワーク支持面となる上面221のみであってもよいし、上面221と側面の一部等であってもよい。
【0061】
本実施形態に係る方法において、ロボットハンド部材200としての形状が維持される為には、芯材220を残存させることに加えて、芯材220と最下層のプリプレグシート片との接合性が確保されることが必要となる。この場合、プリプレグシートの熱硬化によって接合性は確保される。
尚、本実施形態に適する、軽量性を有しプリプレグシートとの接合性の確保される芯材220の一例としては、被積層表面221、222に熱硬化性の接着剤を塗布した前記軽量部材、熱硬化性樹脂、ウレタン発泡体等が挙げられる。
【0062】
かかるロボットハンド部材200の製造方法は、積層工程において、芯材220の上側面221及び下側面222に、プリプレグシート片233a,233bを積層貼付する点を除き、被覆工程及び加熱工程において、第2実施形態に係る製造方法と略同一である。尚、加熱工程での外型としては、厚み設定板を省略しても構わない。
【0063】
プリプレグシート片233a,233bと芯材220とは、加熱によって硬化し一体化され、中実構造のロボットハンド部材が形成できる。
本実施形態の製造方法によれば、第2実施形態の製造方法における効果に加え、プリプレグシートの使用量が少なくて済むので、材料コストを大幅に削減できるという効果を有する。
【0064】
【実施例】
以下に、本発明に係るロボットハンド部材の製造方法によって製造されたロボットハンド部材の実施例及び比較例を、図8〜10を参照して説明する。
(1)比較例
図8に示すロボットハンド部材の比較例は、従来方法によって製造されたCFRP無垢材からなるロボットハンド部材であって、表1に、その製造数値例を示す。
【0065】
この例は、約1500mm×50mmのプリプレグシートを積層し熱硬化させることによって厚さ12mmのロボットハンド部材を形成したものである。この場合、引張弾性率240GpaのPAN系炭素繊維を0°配向させたプリプレグBシートの積層体の上下双方に、夫々、同炭素繊維を90°配向させたプリプレグB’シートと、引張弾性率800Gpaのピッチ系炭素繊維を0°配向させたプリプレグAシートとを所定枚数積層し、最外層に0°・90°クロスプリプレグシートを貼付することによって形成された合計7層の積層体を、加熱硬化させたものである。
【0066】
このロボットハンド部材の総重量は1.53kgとなり、取付部材に対して約1200mm突出させて取付けた場合の先端部における自重撓みは、1.6mmであった。
(2)第1実施形態に係る製造方法の実施例
図9に示す実施例は、第1実施形態の方法によって製造された中空構造のロボットハンド部材10であって、表2に、その製造数値例を示す。
【0067】
本実施例は、長さ1500mm、幅36mm、厚さ6.9mm程度の芯材20の長手方向の4つの面に、夫々プリプレグシート片33を積層したものを加熱硬化させ、その後、芯材20を抜き取って製造されたものである。
この場合、芯材20の上面21及び下面22に、約1500mm×36mmの広幅プリプレグシート片33a,33bを積層した後、芯材20の左右側面23、24に、両端の前記広幅プリプレグシート片の積層体の縁部に被さるように、約1500mm×11.5mmの細幅プリプレグシート片を積層し、かかる積層部材40を加熱硬化させる。
【0068】
この場合、芯材20の各面について、90°配向のプリプレグB’シートを所定枚数積層し、その上層に0°配向のプリプレグAシートを所定枚数積層することで積層部材40を形成した後、その積層部材40の外周面にクロスプリプレグシートを巻掛けて被覆し、加熱硬化させた後に芯材20を抜き取ることで、ロボットハンド部材10の厚さが約12mm、CFRP板の厚さが約2.55mmの中空構造のロボットハンド部材10を形成した。
【0069】
ロボットハンド部材10の総重量は0.75kgであり、前記自重撓みは、0.47mmであった。尚、ロボットハンド部材の中央部における厚みが11.8mmであり、端部における厚み(12.0mm,12.1mm)よりも若干窪んではいるが、ワークの支持性能及び搬送性能上の問題は無く、平面性は優れていた。
【0070】
本実施例によれば、比較例に係るロボットハンド部材よりも、軽量で撓み防止性が高いことが理解できる。
(3)第2実施形態に係る製造方法の実施例
図10に示す実施例は、第2実施形態の方法によって製造された中実構造のロボットハンド部材100であって、表3に、その製造数値例を示す。
【0071】
本実施例では、長さ1500mm、幅36mm、厚さ6.9mm程度の発泡ウレタン芯材120を用いた。
発泡ウレタン芯材120の上下面に、第1実施例と同一サイズの広幅プリプレグシート片133a,133b及び細幅プリプレグシート片133c,133dを夫々積層し、クロスプリプレグシート134を被覆した後、加熱硬化させ、ロボットハンド部材100の厚さが約12mm、CFRP板の厚さが約2.55mmの中実構造のロボットハンド部材100を形成した。
【0072】
尚、この場合のプリプレグシート133の積層状態も第1実施例の積層状態と同様である。
ロボットハンド部材100の総重量は1.06kgであり、前記自重撓みは、0.77mmであった。
本実施例においても、比較例に係るロボットハンド部材よりも、軽量で撓み防止性が高いことが理解できる。
【0073】
又、ロボットハンド部材100の厚みは、端部においても中央部においても同一(12.0mm)であり、実施例1の中空構造のロボットハンド部材10よりも平坦性が格段に優れていることが理解できる。
【0074】
【発明の効果】
請求項1に係る発明によれば、所定温度以下では加熱非変形性を有し且つ熱硬化されたプリプレグシートとの密着性が良好な樹脂を用いて矩形状断面とされた芯材の外周面の4面それぞれに、最内層にはPAN系炭素繊維をその配向方向が芯材の長手方向に対して90度に配向されたプリプレグシートを積層し、中間層には引張弾性率が上記PAN系炭素繊維よりも高いピッチ系炭素繊維をその配向方向が芯材の長手方向に対して0度に配向されたプリプレグシートを積層し、最外層には二方向の炭素繊維が90度で交わるように配向されたクロスプリプレグシートを巻掛けて被覆し、前記芯材の全外周面にプリプレグシートの積層部材を形成し、この形成された積層部材を加熱し熱硬化させて前記芯材と一体化したFRP部材を形成して、中実構造のロボットハンド部材を製造することができる。
この場合、上記芯材は、所定温度以下では加熱非変形性を有し且つ熱硬化されたプリプレグシートとの密着性が良好な樹脂を用いて矩形状断面とされているので、該芯材の外周面の4面それぞれに積層されたプリプレグシートとの密着性を向上することができる。したがって、上記芯材に対して熱硬化されたFRP部材を強固に一体化して、中実構造の部材を製造することができる。また、上記芯材の外周面に複数層に巻き付けられる最内層のプリプレグシートは、PAN系炭素繊維の配向方向が該芯材の長手方向に対して90度とされており、さらに、中間層のプリプレグシートは、引張弾性率が上記PAN系炭素繊維よりも高いピッチ系炭素繊維をその配向方向が芯材の長手方向に対して0度とされているので、熱硬化によりFRP部材とされた部材の長手方向の撓み防止や、振動減衰特性を向上することができる。さらにまた、最外層のプリプレグシートは、二方向の炭素繊維が90度で交わるように配向されたクロスプリプレグシートとされているので、ロボットハンド部材の後加工として切削や研磨加工をしたときに毛羽立ちが少なく部材としての加工性を向上し、製品としての美観を向上することができる。これらのことから、熱硬化によりFRP部材とされた部材全体の曲げ剛性を向上することができ、ロボットハンド部材の寸法精度を向上することができる。また、芯材を有する中実構造のものにおいても、芯材としてFRP部材よりも軽量な樹脂を用いることにより軽量化を図ることができる。
【0077】
請求項に係る発明によれば、所定温度以下では加熱非変形性を有し且つFRP部材より熱膨張率が大きい金属又は樹脂を用いて矩形状断面とされた芯材の外周面の4面それぞれに、最内層にはPAN系炭素繊維をその配向方向が芯材の長手方向に対して90度に配向されたプリプレグシートを積層し、中間層には引張弾性率が上記PAN系炭素繊維よりも高いピッチ系炭素繊維をその配向方向が芯材の長手方向に対して0度に配向されたプリプレグシートを積層し、最外層には二方向の炭素繊維が90度で交わるように配向されたクロスプリプレグシートを巻掛けて被覆し、前記芯材の全外周面にプリプレグシートの積層部材を形成し、この形成された積層部材を加熱し熱硬化させてFRP部材を形成し、このFRP部材から前記芯材を抜き取り中空構造としてロボットハンド部材を製造することができる。
この場合、上記芯材は、所定温度以下では加熱非変形性を有し且つFRP部材より熱膨張率が大きい金属又は樹脂を用いて矩形状断面とされているので、加熱硬化後には収縮してFRP部材から容易に抜き取ることができる。また、上記芯材の全外周面に複数層に巻き付けられる最内層のプリプレグシートは、PAN系炭素繊維の配向方向が該芯材の長手方向に対して90度とされているので、加熱硬化した際にFRP部材があまり縮径せず、芯材の抜き取りが容易である。したがって、中空構造のロボットハンド部材を容易に製造することができる。さらに、中間層のプリプレグシートは、引張弾性率が上記PAN系炭素繊維よりも高いピッチ系炭素繊維をその配向方向が芯材の長手方向に対して0度とされているので、熱硬化によりFRP部材とされた材料の長手方向の撓み防止や、振動減衰特性を向上することができる。さらにまた、最外層のプリプレグシートは、二方向の炭素繊維が90度で交わるように配向されたクロスプリプレグシートとされているので、ロボットハンド部材の後加工として切削や研磨加工をしたときに毛羽立ちが少なく部材としての加工性を向上し、製品としての美観を向上することができる。これらのことから、熱硬化によりFRP部材とされた部材全体の曲げ剛性を向上することができ、ロボットハンド部材の寸法精度を向上することができる。また、FRP部材を用いて、アルミニウム材のロボットハンドよりも軽量で、平面性に優れ、曲げ剛性、振動減衰特性、耐熱性等に優れたロボットハンド部材を製造することができる。
【0079】
請求項に係る発明によれば、上記中間層にプリプレグシートを積層するのは、該プリプレグシートの炭素繊維の配向方向が芯材の長手方向に対して0度と90度に配向されたものを含むことにより、熱硬化によりFRP部材とされた矩形状断面の部材の長手方向の撓み防止や、振動減衰特性を向上すると共に、部材全体の曲げ剛性や、曲げ振動の振動減衰特性を向上することができる
【図面の簡単な説明】
【図1】本発明の実施形態に係るロボットハンド部材の製造方法で製造されたロボットハンドの斜視図。
【図2】上記ロボットハンド部材の断面図。
【図3】上記ロボットハンド部材に使用される炭素繊維プリプレグシートの断面図。
【図4】本発明の実施形態に係るロボットハンド部材の製造方法を示す斜視図であり、(a)はプリプレグシート片を形成する状態、(b)は芯材にプリプレグシート片を積層する状態、(c)は積層部材にクロスプリプレグシートを被覆する状態、(d)は、積層部材に外型を押し付けた状態、(e)は芯材を抜き取る状態を示す。
【図5】上記プリプレグシート片の積層状態を示す斜視図。
【図6】本発明の第2実施形態に係るロボットハンド部材の製造方法で製造されたロボットハンド部材を示す斜視図。
【図7】本発明の第3実施形態に係るロボットハンド部材の製造方法で製造されたロボットハンド部材を示す斜視図。
【図8】本発明のロボットハンド部材の比較例として、CFRP無垢材からなるロボットハンド部材の製造数値例を示す表1。
【図9】本発明のロボットハンド部材の実施例として、中空構造のロボットハンド部材の製造数値例を示す表2。
【図10】本発明のロボットハンド部材の実施例として、中実構造のロボットハンド部材の製造数値例を示す表3。
【符号の説明】
10、100、200…ロボットハンド部材
20、120、220…芯材
30…原形プリプレグシート
31…強化繊維
33、133、233…プリプレグシート片
34、134、234…クロスプリプレグシート
40…積層部材
50…FRP部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a robot hand member of an industrial robot, in particular,Carbon fiberIn particular, the present invention relates to a method for manufacturing a robot hand member that can manufacture a robot hand member made of a fiber reinforced composite material (FRP) including a low cost in a short time.
[0002]
[Prior art]
The robot hand of an industrial robot is attached to the tip of the robot arm, and supports, grips, and holds the workpiece through the movement of the robot arm, and is manufactured from a metal material such as iron, stainless steel, or aluminum. There were many things.
[0003]
The size of glass substrates, which are growing with the spread of LCDs, will be used for robotic hands for transporting substrates used in the manufacturing process of precision products such as liquid crystal displays (LCDs), plasma display panels (PDPs), and silicon wafers. There is a high demand for enlargement to cope. However, such an increase in size is accompanied by the disadvantage that the bending of the robot hand member due to its own weight increases. Therefore, a material having a light weight has been demanded to cope with this.
[0004]
Further, in order to increase the conveyance accuracy when carrying the precision product, a material having high bending rigidity, heat resistance, and vibration damping properties has been demanded.
Various fiber reinforced composite materials (FRP) have been developed as materials having such characteristics, and in particular, robot hand members made of a solid material of carbon fiber reinforced composite material (CFRP) are widespread.
[0005]
A robot hand member made of such a solid CFRP material is obtained by placing a plurality of carbon fiber prepreg sheets on a cover plate on which a release film is pasted and laminating a plurality of sheets until reaching a desired thickness while applying heat with an iron or the like. It is manufactured by putting it in a vacuum bag with a plate placed on the uppermost surface, heat-curing it, naturally cooling it, and then removing the plate and release film.
[0006]
Further, as described in JP-A No. 2000-343476, a skin layer made of a plate-like CFRP (hereinafter referred to as “CFRP plate”) obtained by laminating a plurality of carbon fiber prepreg sheets and heating and thermosetting them; Also, a technology for manufacturing by separately molding a core layer made of CFRP, using the core layer as a core, laminating a skin layer on the upper surface and the lower surface, and bonding the core layer and the skin layer with an adhesive Has also been proposed.
[0007]
In this case, as the skin layer, a plurality of carbon fiber prepreg sheets having different carbon fiber orientation directions are stacked to improve bending rigidity, vibration damping characteristics, heat resistance, and the like. In addition, as the core layer, a honeycomb core material made of a metal such as aluminum or a fiber aggregate and a CFRP material are combined to reduce the weight and improve the bending rigidity, vibration damping characteristics, heat resistance, and the like. ing.
[0008]
[Problems to be solved by the invention]
However, in the robot hand member made of the above-mentioned solid CFRP material, although the light weight material is used, the weight of the robot hand member is inevitably increased with the recent increase in the size of the robot hand member. Inconveniences such as insufficient resolution, increased load on the robot hand member mounting site and robot drive system, difficulty in designing the robot itself, and increased costs It was.
[0009]
In such a robot hand member, the weight of the robot hand member can be reduced by reducing the thickness of the robot hand member or by reducing the width of the workpiece support surface of the robot hand member. Since the bending rigidity of the robot hand is lowered, the load deflection when the work is supported is increased.
In particular, when a long robot hand member is attached to the cantilever, the deflection at the tip becomes large, and vibrations when supporting the workpiece are likely to increase, which hinders work supportability or transportability. There was a fear.
[0010]
Further, in the manufacture of the robot hand member described in Japanese Patent Application Laid-Open No. 2000-343476, a skin layer as a CFRP plate and a core layer as a core material are formed in advance, and the skin layer is formed on the upper and lower surfaces of the core layer. Since the robot hand member was formed by bonding it with an adhesive and cutting it according to the dimensions of the robot hand member, the number of manufacturing processes was increased, the manufacturing efficiency was low, and the manufacturing cost was high. It was.
[0011]
In particular, after forming the skin layer through the prepreg sheet lamination step and the heat curing step, it is joined to the core layer, so the heating and cooling time in the skin layer manufacturing step, and the adhesion time between the core layer and the skin layer Is required separately, which increases the time required for production.
Further, a method in which four FRP plates that have been preliminarily molded (heat-cured) to a predetermined thickness are bonded to each other in a square cross section using an adhesive is also conceivable. However, this method requires a prepreg sheet laminating step, an FRP plate forming step, and a bonding step, and has a problem that strength against a load is lowered at a bonded and bonded portion.
[0012]
Furthermore, as the robot hand member, in order to transport precision products such as liquid crystal displays, plasma displays, silicon wafers and the like as workpieces, the robot hand member needs to be flat so that the workpieces will not be damaged. When the robot hand member is used, the central portion is likely to be depressed, and in this case, there is a disadvantage that post-processing is required to make the hollow robot hand member flat.
[0013]
Accordingly, an object of the present invention is to provide an efficient manufacturing method capable of forming a lightweight robot hand member, reducing the number of steps, and shortening the time required for manufacturing when manufacturing the robot hand member.
[0014]
[Means for Solving the Problems]
A manufacturing method of a robot hand member according to claim 1 is:Carbon fiberLaminating prepreg sheets containingRectangular cross sectionIn a method for manufacturing a robot hand member that is made of a heat-hardened FRP member and is attached to an arm portion of an industrial robot, the heat-precured prepreg having heat non-deformability below a predetermined temperature Using a resin with good adhesion to the sheetRectangular cross sectionOf the outer peripheral surface of the core materialOn each of the four surfaces, a prepreg sheet having a PAN-based carbon fiber oriented in the innermost layer and an orientation direction of 90 ° with respect to the longitudinal direction of the core material is laminated. Laminated prepreg sheets with pitch-based carbon fibers that are higher than the fibers, with the orientation direction oriented at 0 degrees with respect to the longitudinal direction of the core, and oriented so that the carbon fibers in two directions intersect at 90 degrees in the outermost layer Wrap the covered cloth prepreg sheetThe core materialallA lamination process for forming a prepreg sheet lamination member on the outer peripheral surface, and a heating process for heating and thermosetting the lamination member formed in the lamination process to form an FRP member integrated with the core material. It is.
[0015]
That is, a core material and a prepreg sheet are prepared in advance.
The core material is formed according to the shape of the robot hand.
or,Carbon fiberA prepreg sheet composed of carbon fiber, glass fiber, aramid fiber, silicon carbide fiberEtc.An uncured sheet impregnated with a thermosetting resin.
[0016]
In the manufacturing method according to the present invention, first, in the laminating step, a plurality of prepreg sheets are made of, for example, a core having a square cross section.Laminate on each of the four outer peripheral surfaces.
[0017]
Since the prepreg sheets are in an uncured state, they are attached to each other simply by being superimposed on the core material or the underlying prepreg sheet.
After that, formed in the above processLaminated member(That is, a core material in which a prepreg sheet is laminated) is heated and cured. In this case, the heating temperature and the heating time are set to a thermosetting temperature and a thermosetting time according to the type of the thermosetting resin of the prepreg sheet.
Since the prepreg sheet has rigidity in the orientation direction of the reinforcing fibers, the bending amount of the robot hand member can be adjusted by selecting a plurality of prepreg sheets having different orientation directions of the reinforcing fibers and laminating them. In the present invention, the bending strength, torsional rigidity, or vibration of the robot hand member is obtained by laminating the prepreg sheet with different orientations of reinforcing fibers in the direction along the longitudinal direction of the core material and in the direction substantially orthogonal to the longitudinal direction. Attenuation and the like are improved.
[0018]
The plurality of laminated prepreg sheets are bonded to each other by heating the thermosetting resin of the respective sheets, and are cured in that state to form an FRP plate having a predetermined thickness.
The core material and the prepreg sheet contacting the core material are also integrated by thermosetting the prepreg sheet to form a solid structure robot hand member.
[0021]
Claim2The manufacturing method of the robot hand member according toCarbon fiberLaminating prepreg sheets containingRectangular cross sectionIn the method of manufacturing a robot hand member which is made of an FRP member obtained by thermosetting the above-described one and is attached to an arm portion of an industrial robot, the method has heat non-deformability below a predetermined temperature andMetal having a larger coefficient of thermal expansion than the FRP member orWith resinRectangular cross sectionThe outer peripheral surface of the core materialOn each of the four surfaces, a prepreg sheet having a PAN-based carbon fiber oriented in the innermost layer and an orientation direction of 90 ° with respect to the longitudinal direction of the core material is laminated. A pitch-based carbon fiber higher than the carbon fiber is laminated with a prepreg sheet whose orientation direction is oriented at 0 degrees with respect to the longitudinal direction of the core material, and carbon fibers in two directions intersect at 90 degrees in the outermost layer. Wrap and coat an oriented cloth prepreg sheetA laminating step of forming a prepreg sheet laminating member on the entire outer peripheral surface of the core material, and heating and thermosetting the laminating member formed in the laminating step.FA heating step of forming an RP member;A core material extraction step of extracting the core material from the FRP member to form a hollow structure;Is to do.
[0022]
The core material is formed in accordance with the shape of the robot hand, and has a property that it does not deform below a predetermined heating temperature in the heating process so as to function as a so-called middle mold when forming the robot hand member. Use a material that can be easily removed from the cured FRP member. The predetermined heating temperature is, for example, the heating temperature in the heat curing process of the prepreg sheet.
[0023]
And claims1As in the invention according to, a laminated body of prepreg sheets is formed on the outer peripheral surface of the core material in the laminating step, and the laminated member is heat-cured in the heating step to form an FRP member.
Thereby, the claim1As in the invention according to the above, an FRP member is formed in which the prepreg sheets in the adjacent divided regions are bonded to each other at the edge portion and heat-cured, and the outer peripheral surface of the core material is covered with a pipe-shaped FRP plate.
[0024]
Thereafter, the core material is extracted from the FRP member, thereby forming a robot hand member having a hollow structure. Here, if the core material is a material having a higher thermal expansion coefficient than FRP, the core material can be easily extracted after thermosetting.
[0026]
Claim3The manufacturing method of the robot hand member according to claim1 or 2In the manufacturing method of the robot hand member described,Lamination of the prepreg sheet to the intermediate layer includes those in which the orientation directions of the carbon fibers of the prepreg sheet are oriented at 0 degrees and 90 degrees with respect to the longitudinal direction of the core material.Is.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a robot hand 1 manufactured by a method for manufacturing a robot hand member according to this embodiment.
The robot hand 1 is attached to the tip of an arm portion of an industrial robot, and supports a workpiece 2 such as a liquid crystal display (LCD), a plasma display panel (PDP), a semiconductor wafer, or a precision instrument for conveyance. It is used to do.
[0028]
The robot hand 1 includes an attachment portion 4 attached to the arm portion of the industrial robot through an attachment hole 3 and a robot hand member 10 fixedly attached to the tip of the attachment portion 4.
As shown in FIG. 2, the robot hand member 10 shown in the present embodiment is a hollow structure such as a square pipe shape, and is excellent in lightness, bending rigidity, heat resistance, and the like. compositematerial(FRP).
[0029]
The robot hand member 10 is manufactured by the following process.
First, the core material 20 and the original prepreg sheet 30 are prepared as a preparation process.
The core material 20 is formed in accordance with the shape of the robot hand member 10 and has a certain degree of rigidity so as to function as a so-called address plate when stacking the prepreg sheets. In order to function as a so-called medium size, a metal or a resin having a property that does not deform below the heating temperature in the heating process and has a higher thermal expansion coefficient than the FRP member is used.Rectangular cross sectionA material that can be easily extracted from the FRP member after heat curing is used. From this viewpoint, as the material of the core material, for example, metals such as aluminum, iron, and stainless steel, MC nylon resin, polyimide resin, and the like are suitable. Since the metal, resin, etc. have a higher coefficient of thermal expansion than FRP, they shrink by cooling after heating and are easy to remove. Moreover, you may give a mold release material to the surface of a core material as needed. The release material may be any method such as application of a drug (for example, a surfactant) by spraying or the like, or use of a release sheet such as a Teflon (registered trademark) sheet.
[0030]
The heating non-deformability at the predetermined temperature means a property that hardly deforms at the heating temperature in the heating process described later. “It hardly deforms at the heating temperature” means that under the heating conditions described later, the core material does not melt, warp, bend, bend, twist, bend, bend, or the like. say. Moreover, the said predetermined temperature says about 100-190 degreeC or more according to the thermosetting temperature of the matrix resin of the original prepreg sheet mentioned later, for example.
[0031]
In this case, as shown in FIG. 4B, the core member 20 is a square member having a horizontally long cross section, and the outer peripheral surface of the core member has four planar regions, that is, an upper surface 21, a lower surface 22, and a left side surface. 23 and a right side surface 24.
First, as shown in FIG. 4A, the original prepreg sheet 30 is cut to form a prepreg sheet piece 33 having a predetermined shape.
[0032]
The prepreg sheet piece 33 is a sheet laminated on each surface (segmented region) of the core material 20 and is cut according to the dimensions of the respective surfaces of the core material. In the robot hand member 10 having a horizontally long rectangular cross section, the prepreg sheet piece 33 requires four types of upper wall 33a, lower wall 33b, right side wall 33c, and left side wall 33d. The ones for use have the same shape.
[0033]
As shown in FIG. 3, the original prepreg sheet 30 is a sheet in which reinforcing fibers 31 are made into a sheet and impregnated with a matrix resin 32, and is an uncured sheet. In this case, carbon fibers are used for the reinforcing fibers 31 from the viewpoint of rigidity and lightness. However, glass fibers, aramid fibers, silicon carbide fibers and the like can be used in addition to the carbon fibers. That is, for example, a plurality of prepreg sheets to be laminated mainly use a carbon fiber prepreg sheet, and include the glass fiber or the like, as long as the support performance or the conveyance performance as a robot hand member is not impaired. It is also possible to add a prepreg sheet to a part.
[0034]
As the matrix resin 32, a thermosetting resin such as an epoxy resin, a phenol resin, a cyanate resin, an unsaturated polyester resin, a polyimide resin, or a bismaleimide resin is used. In this case, a material that can withstand a high temperature and high humidity environment such as rubber vulcanization is preferable. In addition, the thermosetting resin is obtained by adding fine particles made of rubber or resin to the thermosetting resin for the purpose of imparting impact resistance or toughness, or by dissolving a thermoplastic resin in the thermosetting resin. May be used.
[0035]
The carbon fiber includes a PAN type of 230 to 490 GPa and a pitch type of 490 to 950 GPa, any of which may be used. In this case, the pitch type is characterized by high elasticity, and the PAN type is characterized by high tensile strength.
The original prepreg sheet includes a unidirectional sheet in which reinforcing fibers are oriented in the same direction, and a cross sheet such as a plain woven fabric, a twill woven fabric, a satin woven fabric, and a triaxial woven fabric.
[0036]
Various types of original prepreg sheets are prepared by varying the types of reinforcing fibers, varying the density of reinforcing fibers relative to the matrix resin, or varying the orientation of the reinforcing fibers, It is preferable to select a plurality of original prepreg sheets to be used so that an FRP member having the optimum bending rigidity is formed according to the purpose of use of the robot hand 1 and the place of use of the robot hand member 10.
[0037]
In addition, the prepreg sheet piece 33 having a predetermined size is similarly formed for all the selected original prepreg sheets 30.
Next, as shown in FIG.4 (b), the prepreg sheet piece 33 is laminated and stuck on each surface of the core material 20 (lamination process).
Since the prepreg sheet piece 33 is in an uncured state and has a certain degree of adhesive strength, it is attached only by sequentially superposing the sheets on the core material 20 to which the release film is attached.
[0038]
In this case, while applying heat with an iron or the like, it is brought into close contact with the underlying film or sheet, and is adhered and laminated until a desired thickness (for example, about 1 to 7 mm) is reached. The desired thickness in this case allows for a volume decrease when the prepreg sheet is heat-cured, and is preferably slightly thicker than the required thickness of the FRP plate of the robot hand member.
FIG. 5 shows an example of a laminated state of the prepreg sheet pieces 33, and the unidirectional sheet 330 in which carbon fibers are oriented substantially perpendicularly to the longitudinal direction of the prepreg sheet pieces 33 (hereinafter referred to as “90 ° orientation”). A plurality of unidirectional sheets 331 that are oriented substantially parallel to the longitudinal direction of the prepreg sheet piece (hereinafter referred to as “0 ° orientation”). Laminated.
[0039]
In this case, in addition to the sheet pieces 330 and 331, a unidirectional sheet oriented in an oblique direction (hereinafter referred to as “45 ° or 135 ° orientation”), a cross prepreg sheet oriented in two directions of 45 ° and 135 °, etc. You may laminate | stack by combining.
In this case, the 0 ° oriented sheet has a longitudinal-direction deflection preventing property and vibration damping property. By combining the 0 ° oriented sheet with the 90 ° oriented sheet, the bending rigidity and the vibration damping characteristics of the bending vibration are improved, and warping and bending are further effectively prevented. Furthermore, the torsional rigidity and the torsional vibration damping characteristics are further improved by combining the 45 ° orientated sheet and the 135 ° orientated sheet. About a cross sheet, it has an effect according to the above-mentioned combination of a unidirectional sheet.
[0040]
In addition, as a lamination order, it is preferable from a viewpoint of the ease of extracting a core material to make a 90 degree orientation sheet into the lowest layer (innermost side). Because the carbon fiber has a lower thermal shrinkage rate than the matrix resin, the shrinkage rate as a sheet is lower in the fiber orientation direction than the shrinkage rate in the fiber arrangement direction. By configuring the inner surface of the FRP plate with a 90 ° oriented sheet, the reinforcing fibers will be oriented so as to surround the outer periphery of the core material. Because it is not necessary.
[0041]
In addition, the sheet laminated on the upper layer (that is, the outer sheet) has a higher contribution rate to the properties of the robot hand member (that is, bending rigidity, etc.), so the 0 ° oriented sheet is higher than the 90 ° oriented sheet. It is preferable to laminate them on the viewpoint of the prevention of bending.
Considering this point, the combination of prepreg sheets to be used and the stacking order are determined.
[0042]
In this manner, the prepreg sheet pieces 33 are laminated and attached to all the surfaces of the core material 20, thereby forming the laminated member 40 in a state in which a prepreg sheet laminate is formed on the outer peripheral surface of the core material 20.
Thereafter, as shown in FIG.surface1 to the cross prepreg sheet 34AroundOrMultiple turnsWrap to cover. (Coating process).
[0043]
The cross prepreg sheet 34 is an uncured sheet obtained by impregnating the matrix resin into reinforcing fibers woven in a plurality of directions, and the reinforcing fibers include woven carbon fibers, glass fibers, aramid fibers, Or a silicon carbide fiber etc. are preferable. Further, a sheet having high flexibility and adhesiveness is preferable so that the laminated member 40 can be adhered and covered.
[0044]
And as shown in FIG.4 (d), the outer mold | types 41, 42, 43, and 44 are pressed on the laminated member 40 of the state covered with the cross prepreg sheet | seat 34 from four directions.
In this case, the outer mold includes two coating plates 41 and 42 and two thickness setting plates 43 and 44 interposed between the two coating plates. That is, the plates 41 and 42 are pressed against the upper and lower surfaces of the laminated member 40, and the thickness setting plates 43 and 44 are pressed against the left and right side surfaces of the laminated member 40.
[0045]
The FRP member 50 is formed by putting the laminated member 40 in this state into the vacuum bag 45 and heating it.
In this case, the heating condition is that the temperature is raised from room temperature at a rate of 2 to 10 ° C./min, held at about 100 to 190 ° C. for about 10 to 180 minutes, then the heating is stopped and the temperature is lowered by natural cooling to normal temperature. return.
[0046]
Since any of the prepreg sheets 33 and 34 includes a thermosetting resin, the prepreg sheets 33 and 34 are cured while being attached to each other on the sheet surface and the sheet edge.
The reason why the laminated member 40 is put in the vacuum bag 45 is to suck air bubbles generated between the sheets in the lamination process and to apply an external pressure (that is, atmospheric pressure) to the laminated member 40 substantially evenly. There is.
[0047]
Further, an external pressure in a specific direction may be applied to the laminated member 40. For example, the upper surface of the robot hand member 10 (that is, the workpiece support surface) is pressed by pressing with a weight or the like from above without causing a gap between the contact plates 41 and 42 and the thickness setting plates 43 and 44. The flatness is improved, the dimensional (particularly thickness) accuracy of the robot hand member 10 is increased, and the prepreg sheet piece 33 is pressed by a vise or the like in a direction in which the joining interface is pressed against each other. The bonding property at the edge of the film is improved.
[0048]
Then, as shown in FIG.4 (e), the core material 20 is extracted from the FRP member 50 formed by the said heating process (sampling process).
Thereby, the robot hand member 10 having a hollow structure is formed.
According to this embodiment, since the robot hand member 10 is configured as a hollow structure rather than as a solid FRP material, the robot hand member 10 is not reduced in volume (that is, reduced in thickness or width). It is possible to reduce the weight without making it narrow. Therefore, for example, in the case of a long robot hand member attached to an attachment member or the like, it is possible to prevent the tip portion from being bent or vibrated by its own weight or the load of the workpiece, and to improve the support accuracy and the conveyance accuracy of the workpiece. it can.
[0049]
In addition, the air supply path for supporting the workpiece in a non-contact manner, the suction path for supporting the workpiece by suction, or the wiring for attaching a sensor or the like to the tip of the robot hand member, etc. It can also be used as a road.
According to the present embodiment, the core member 20 has two functions as a so-called center plate when laminating the prepreg sheets and a so-called middle size when the robot hand member 10 is thermoformed. (That is, lamination of the prepreg sheet pieces) and molding of the robot hand member (that is, mutual joining with the prepreg sheet pieces on the adjacent wall portion) can be performed simultaneously.
[0050]
Therefore, the number of manufacturing steps can be reduced compared to a manufacturing method in which a skin layer made of a conventional CFRP plate is formed and then the skin layer is bonded to a core layer (ie, a core material). In particular, since the natural cooling time at the stage of forming the CFRP plate and the bonding time at the stage of forming the robot hand member are integrated, the required manufacturing time can be greatly reduced.
[0051]
Further, since the outer peripheral surface of the laminated member 40 is covered with the cross prepreg sheet 34, it is possible to prevent fluffing or flaking that occurs at the processing site when post-processing such as cutting or opening is performed. This improves the workability and has the advantage that there is no fear of damaging a precision workpiece such as a liquid crystal display, a plasma display, or a silicon wafer.
[0052]
Further, by covering with the cross prepreg sheet 34, it is possible to cover the burrs and steps generated at the joining portion of the edge portion of the prepreg sheet piece 33 to improve the aesthetics, and to reinforce the joining portion of the prepreg sheet piece 33. There is also.
As a method for manufacturing the robot hand member, a method of winding a long prepreg sheet around the outer peripheral surface of the core material and stacking it can be considered. In such a manufacturing method, in particular, when a prepreg sheet is wound and laminated on a core material having corner portions as in this embodiment, each corner portion tends to swell outward. In such a method, in order to maintain the corner shape, it is necessary to heat the dedicated outer mold formed in accordance with the outer surface shape of the robot hand member while being pressed from the outside of the laminated member.
[0053]
On the other hand, in the case of the present embodiment, since the situation where the corners bulge outward does not occur, the dedicated external mold as described above is not necessary, and a general-purpose external mold (that is, a contact plate, a thickness setting plate, etc.) is sufficient. It is. In particular, since the outer mold is generally larger and more expensive than the middle mold, it is costly to manufacture individually according to the shape of the robot hand member or to prepare various outer molds. According to this manufacturing method, there are few such inconveniences, the cost required for the design change of the robot hand member is suppressed, and the degree of design freedom is improved. As a result, a robot hand member that meets the user's requirements can be quickly manufactured, and the delivery time can be shortened.
[0054]
In addition, as a method for manufacturing a robot hand member having a hollow structure, a method in which four FRP plates formed in accordance with each wall surface of the robot hand member are bonded to each other at each edge portion is also conceivable.
Compared with such a manufacturing method, the method according to the present embodiment has an advantage that the work efficiency is high and the manufacturing time is short because the bonding step of joining the edges of the FRP plate is unnecessary.
[0055]
Further, since the operation of joining the edges of the FRP plate is relatively complicated, the robot hand member manufactured by the above method tends to have low dimensional accuracy and tends to have low strength at the bonded portion. In this embodiment, since the robot hand member can be formed by a relatively simple operation of attaching the prepreg sheet to the core material, there is no such inconvenience.
[0056]
In the present invention, the cross-sectional shape of the robot hand member may be a triangle, a polygon, a circle, a semicircle, or the like regardless of a square.
Moreover, the lamination | stacking process of a cross prepreg sheet is not necessarily required.
The robot hand member manufacturing method according to the second embodiment is a method for manufacturing the robot hand member 100 shown in FIG.A laminated member of prepreg sheets is formed and integrated on the entire outer peripheral surface of the core member 120,The robot hand member according to the first embodiment is different in that the core material 120 remains.
[0057]
In this case, in order to suppress the total weight of the robot hand member 100, the core material 120 is made of a resin that has heat non-deformability at a predetermined temperature or lower and has good adhesion to the thermally cured prepreg sheet.Rectangular cross sectionAnd using a lightweight member composed of a material lighter than the FRP member, epoxy resin, unsaturated polyester resin, phenol resin, polyurethane resin, polyimide resin, bismaleimide resin, or a combination of these, Or these foam materials are suitable. In addition, in order to improve the adhesiveness with the prepreg sheet piece 133, the core member 120 may be subjected to a surface roughening treatment using sandblasting, sandpaper, or the like. Moreover, you may apply | coat an adhesive agent as needed.
[0058]
The manufacturing method of the robot hand member 100 is the manufacturing method according to the first embodiment in the stacking process, covering process, heating process, and the like of the prepreg sheet pieces 133a, 133b, 133c, and 133d, except that the core extracting process is omitted. It is almost the same as the method.
In this embodiment, when it is desired to form the air supply path, the suction path, the wiring path, or the like, a groove is engraved in the laminated member after the lamination process or a tube is embedded, and then the prepreg is applied to the construction site. A means such as covering the sheet and heat-curing may be adopted, or a post-process such as engraving a groove or machining a hole in a desired part of the FRP member or opening a hole or a screw hole. You may give it.
[0059]
In the present embodiment, the core material extraction step is unnecessary, so that the required manufacturing time can be greatly shortened. Further, since the lightweight core material 120 remains in the robot hand member 100, the disadvantages of both the hollow structure robot hand member and the solid material are eliminated.
That is, in the case of a robot hand having a hollow structure, there is a problem that a dent or the like is deformed with time in the center portion with use, and when switching from a conventional robot hand member (that is, a solid material), Although there has been an inconvenience that the design change of the hole processing part is unavoidable, in the case of the present embodiment, such an inconvenience does not occur.
[0060]
Further, since the total weight of the member can be reduced while maintaining a volume equivalent to that of the solid robot hand member, it is possible to suppress load deflection in addition to its own weight deflection.
The robot hand member manufacturing method according to the third embodiment is a method for manufacturing the robot hand member 200 shown in FIG.Formed by integrally forming a laminated member of a prepreg sheet on a part of the outer peripheral surface of the core material 220,Core material220The prepreg sheet pieces 233a and 233b are laminated on the upper surface 221 and the lower surface 222 of the sheet. The prepreg sheet piece 233a or 233bThe surface to be laminated is the core material220In this case, only the upper surface 221 serving as a work supporting surface may be used, or the upper surface 221 and a part of the side surface may be used.
[0061]
In the method according to the present embodiment, in order to maintain the shape as the robot hand member 200, in addition to the core material 220 remaining, the bondability between the core material 220 and the lowermost prepreg sheet piece is ensured. Need to be done. In this case, bondability is ensured by thermosetting the prepreg sheet.
In addition, as an example of the core material 220 that is suitable for the present embodiment and has a light weight property and ensures a bonding property to the prepreg sheet, the light weight member obtained by applying a thermosetting adhesive to the laminated surfaces 221 and 222. , Thermosetting resin, urethane foam and the like.
[0062]
The manufacturing method of the robot hand member 200 is the second in the covering step and the heating step, except that the prepreg sheet pieces 233a and 233b are laminated and pasted on the upper side 221 and the lower side 222 of the core member 220 in the laminating step. This is substantially the same as the manufacturing method according to the embodiment. Note that the thickness setting plate may be omitted as the outer mold in the heating step.
[0063]
Prepreg sheet piece 233a, 233bThe core material 220 is cured and integrated by heating, so that a robot hand member having a solid structure can be formed.
According to the manufacturing method of the present embodiment, in addition to the effects of the manufacturing method of the second embodiment, since the amount of prepreg sheet used can be reduced, the material cost can be greatly reduced.
[0064]
【Example】
Below, the Example and comparative example of the robot hand member manufactured by the manufacturing method of the robot hand member concerning the present invention are described with reference to FIGS.
(1) Comparative example
A comparative example of the robot hand member shown in FIG. 8 is a robot hand member made of a solid CFRP material manufactured by a conventional method.
[0065]
In this example, a robot hand member having a thickness of 12 mm is formed by laminating about 1500 mm × 50 mm prepreg sheets and thermosetting them. In this case, the tensile modulus of 240 GpaPAN systemA prepreg B ′ sheet in which the carbon fiber is oriented 90 ° and a pitch-based carbon fiber having a tensile modulus of 800 Gpa are oriented 0 ° on both the upper and lower sides of the laminate of the prepreg B sheet in which the carbon fiber is oriented 0 °. A predetermined number of prepreg A sheets are laminated and the outermost layer is 0 ° / 90 ° cross prepreg.GusiA laminate of a total of 7 layers formed by pasting a sheet is heat-cured.
[0066]
The total weight of the robot hand member was 1.53 kg, and the self-weight deflection at the distal end when the projection was attached to the attachment member by about 1200 mm was 1.6 mm.
(2) Examples of the manufacturing method according to the first embodiment
The example shown in FIG. 9 is a robot hand member 10 having a hollow structure manufactured by the method of the first embodiment, and Table 2 shows an example of numerical values for manufacturing.
[0067]
In this embodiment, the core 20 having a length of 1500 mm, a width of 36 mm, and a thickness of about 6.9 mm is laminated by heating and curing the prepreg sheet pieces 33 on the four surfaces in the longitudinal direction. It was manufactured by extracting
In this case, after the wide prepreg sheet pieces 33 a and 33 b of about 1500 mm × 36 mm are laminated on the upper surface 21 and the lower surface 22 of the core material 20, the wide prepreg sheet pieces at both ends are placed on the left and right side surfaces 23 and 24 of the core material 20. A thin prepreg sheet of about 1500 mm × 11.5 mm is laminated so as to cover the edge of the laminated body, and the laminated member 40 is heated and cured.
[0068]
In this case, after forming a laminated member 40 by laminating a predetermined number of 90 ° -oriented prepreg B ′ sheets and laminating a predetermined number of 0 ° -oriented prepreg A sheets on each surface of the core material 20, A cross prep is provided on the outer peripheral surface of the laminated member 40.GusiA robot hand member having a hollow structure in which the thickness of the robot hand member 10 is about 12 mm and the thickness of the CFRP plate is about 2.55 mm by removing the core material 20 after being wound and covered and heated and cured. 10 was formed.
[0069]
The total weight of the robot hand member 10 was 0.75 kg, and the self-weight deflection was 0.47 mm. Although the thickness at the center of the robot hand member is 11.8 mm, which is slightly less than the thickness at the end (12.0 mm, 12.1 mm), there is no problem in workpiece support performance and transport performance. The flatness was excellent.
[0070]
According to the present embodiment, it can be understood that the robot hand member according to the comparative example is lighter and has a higher deflection preventing property.
(3) Examples of the manufacturing method according to the second embodiment
The example shown in FIG. 10 is a robot hand member 100 having a solid structure manufactured by the method of the second embodiment, and Table 3 shows an example of numerical values for manufacturing.
[0071]
In this example, a foamed urethane core material 120 having a length of 1500 mm, a width of 36 mm, and a thickness of about 6.9 mm was used.
The wide prepreg sheet pieces 133a and 133b and the narrow prepreg sheet pieces 133c and 133d having the same size as in the first embodiment are respectively laminated on the upper and lower surfaces of the foamed urethane core material 120 and coated with the cross prepreg sheet 134, followed by heat curing. Thus, the robot hand member 100 having a solid structure with a robot hand member 100 thickness of about 12 mm and a CFRP plate thickness of about 2.55 mm was formed.
[0072]
In this case, the laminated state of the prepreg sheet 133 is the same as the laminated state of the first embodiment.
The total weight of the robot hand member 100 was 1.06 kg, and the self-weight deflection was 0.77 mm.
Also in this example, it can be understood that it is lighter and has a higher anti-bending property than the robot hand member according to the comparative example.
[0073]
Also, the thickness of the robot hand member 100 is the same (12.0 mm) at the end and at the center, and the flatness is much superior to the hollow robot hand member 10 of the first embodiment. Understandable.
[0074]
【The invention's effect】
According to the first aspect of the present invention, a resin having heat non-deformability at a predetermined temperature or lower and good adhesion to a thermoset prepreg sheet is used.Rectangular cross sectionOf the outer peripheral surface of the core materialOn each of the four surfaces, a prepreg sheet having a PAN-based carbon fiber oriented in the innermost layer and an orientation direction of 90 ° with respect to the longitudinal direction of the core material is laminated. Laminated prepreg sheets with pitch-based carbon fibers that are higher than the fibers, with the orientation direction oriented at 0 degrees with respect to the longitudinal direction of the core, and oriented so that the carbon fibers in two directions intersect at 90 degrees in the outermost layer Wrap the covered cloth prepreg sheetThe core materialFull outer peripheral surfaceA prepreg sheet laminated member is formed, and the formed laminated member is heated and thermally cured to form an FRP member integrated with the core material.Of solid structureA robot hand member can be manufactured.
In this case, the core material is made of a resin that has heat non-deformability at a predetermined temperature or lower and has good adhesion to the thermoset prepreg sheet.Rectangular cross sectionIt is said that the core materialFor each of the four outer peripheral surfacesAdhesiveness with the laminated prepreg sheets can be improved. Therefore, a solid structure member can be manufactured by firmly integrating the FRP member thermally cured with respect to the core material. Also, aboveThe innermost prepreg sheet wound around the outer peripheral surface of the core material has an orientation direction of the PAN-based carbon fiber of 90 degrees with respect to the longitudinal direction of the core material. The pitch-based carbon fiber having a higher tensile elastic modulus than the PAN-based carbon fiber has an orientation direction of 0 degree with respect to the longitudinal direction of the core material., Prevents bending of the FRP member by heat curing in the longitudinal direction and improves vibration damping characteristicsbe able to. Furthermore, since the outermost layer prepreg sheet is a cross prepreg sheet oriented so that carbon fibers in two directions intersect at 90 degrees, fluffing occurs when cutting or polishing is performed as a post-processing of the robot hand member. Therefore, the processability as a member is reduced and the beauty as a product can be improved. From these things, the bending rigidity of the whole member made into the FRP member by thermosetting can be improved,The dimensional accuracy of the robot hand member can be improved.Also,Even a solid structure having a core material can be reduced in weight by using a resin that is lighter than the FRP member as the core material.
[0077]
Claim2According to the invention according to the present invention, using a metal or a resin that has non-deformability to heating at a predetermined temperature or less and has a larger thermal expansion coefficient than the FRP member.Rectangular cross sectionThe outer peripheral surface of the core materialOn each of the four surfaces, a prepreg sheet having a PAN-based carbon fiber oriented in the innermost layer and an orientation direction of 90 ° with respect to the longitudinal direction of the core material is laminated. A pitch-based carbon fiber higher than the carbon fiber is laminated with a prepreg sheet whose orientation direction is oriented at 0 degrees with respect to the longitudinal direction of the core material, and carbon fibers in two directions intersect at 90 degrees in the outermost layer. Wrap and coat an oriented cloth prepreg sheetA prepreg sheet laminated member is formed on the entire outer peripheral surface of the core material, and the formed laminated member is heated and thermally cured to form an FRP member, and the core material is extracted from the FRP member to form a hollow structure. A hand member can be manufactured.
In this case, the core material is made of a metal or a resin that has non-deformability to heat at a predetermined temperature or lower and has a larger coefficient of thermal expansion than the FRP member.Rectangular cross sectionTherefore, after heat curing, it shrinks and can be easily extracted from the FRP member. Also, on the entire outer peripheral surface of the core materialThe innermost prepreg sheet wound around multiple layers is made of PAN-based carbon fiber.Since the orientation direction is 90 degrees with respect to the longitudinal direction of the core material, the FRP member does not shrink much when heat-cured, and the core material can be easily extracted. Therefore, a robot hand member having a hollow structure can be easily manufactured. further,Since the prepreg sheet of the intermediate layer is a pitch-based carbon fiber having a tensile modulus higher than that of the PAN-based carbon fiber, the orientation direction is set to 0 degree with respect to the longitudinal direction of the core material., Prevention of bending in the longitudinal direction of materials made into FRP members by thermosetting and improving vibration damping characteristicsbe able to. Furthermore, since the outermost layer prepreg sheet is a cross prepreg sheet oriented so that carbon fibers in two directions intersect at 90 degrees, fluffing occurs when cutting or polishing is performed as a post-processing of the robot hand member. Therefore, the processability as a member is reduced and the beauty as a product can be improved. From these, the bending rigidity of the whole member made into the FRP member by thermosetting can be improved.The dimensional accuracy of the robot hand member can be improved. Further, by using the FRP member, it is possible to manufacture a robot hand member that is lighter than an aluminum robot hand, excellent in flatness, and excellent in bending rigidity, vibration damping characteristics, heat resistance, and the like.
[0079]
Claim3According to the invention according toThe prepreg sheet is laminated on the intermediate layer because the orientation direction of the carbon fibers of the prepreg sheet includes those oriented at 0 degrees and 90 degrees with respect to the longitudinal direction of the core material. It is possible to prevent the bending of the member having a rectangular cross section in the longitudinal direction and improve the vibration damping characteristics, and improve the bending rigidity of the entire member and the vibration damping characteristics of the bending vibration..
[Brief description of the drawings]
FIG. 1 is a perspective view of a robot hand manufactured by a method for manufacturing a robot hand member according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view of the robot hand member.
FIG. 3 is a cross-sectional view of a carbon fiber prepreg sheet used for the robot hand member.
4A and 4B are perspective views showing a method of manufacturing a robot hand member according to an embodiment of the present invention, where FIG. 4A is a state in which a prepreg sheet piece is formed, and FIG. 4B is a state in which the prepreg sheet piece is laminated on a core (C) is the state which coat | covers a cross prepreg sheet | seat on a laminated member, (d) shows the state which pressed the outer mold | type against the laminated member, (e) shows the state which extracts a core material.
FIG. 5 is a perspective view showing a stacked state of the prepreg sheet pieces.
FIG. 6 is a perspective view showing a robot hand member manufactured by a method for manufacturing a robot hand member according to a second embodiment of the present invention.
FIG. 7 is a perspective view showing a robot hand member manufactured by a method for manufacturing a robot hand member according to a third embodiment of the present invention.
FIG. 8 is a table 1 showing an example of numerical values for manufacturing a robot hand member made of a solid CFRP material as a comparative example of the robot hand member of the present invention.
FIG. 9 is a table 2 showing an example of numerical values for manufacturing a robot hand member having a hollow structure as an example of the robot hand member of the present invention.
FIG. 10 is a table 3 showing an example of numerical values for manufacturing a robot hand member having a solid structure as an example of the robot hand member of the present invention.
[Explanation of symbols]
10, 100, 200 ... Robot hand member
20, 120, 220 ... core material
30 ...Original prepreg sheet
31 ... Reinforcing fiber
33, 133, 233 ... prepreg sheet pieces
34, 134, 234 ... Cross prepreg sheet
40 ... Laminated member
50 ... FRP member

Claims (3)

炭素繊維を含むプリプレグシートを積層して矩形状断面とされたものを熱硬化させたFRP部材から成り、産業用ロボットのアーム部に取り付けられるロボットハンド部材を製造する方法において、
所定温度以下では加熱非変形性を有し且つ上記熱硬化されたプリプレグシートとの密着性が良好な樹脂を用いて矩形状断面とされた芯材の外周面の4面それぞれに、最内層にはPAN系炭素繊維をその配向方向が芯材の長手方向に対して90度に配向されたプリプレグシートを積層し、中間層には引張弾性率が上記PAN系炭素繊維よりも高いピッチ系炭素繊維をその配向方向が芯材の長手方向に対して0度に配向されたプリプレグシートを積層し、最外層には二方向の炭素繊維が90度で交わるように配向されたクロスプリプレグシートを巻掛けて被覆し、前記芯材の外周面にプリプレグシートの積層部材を形成する積層工程と、
前記積層工程で形成された積層部材を加熱し熱硬化させて前記芯材と一体化したFRP部材を形成する加熱工程と、
を行うことを特徴とするロボットハンド部材の製造方法。
In a method of manufacturing a robot hand member that is made of a FRP member obtained by laminating a prepreg sheet containing carbon fiber and having a rectangular cross-section and thermosetting, and attached to an arm portion of an industrial robot,
The innermost layer is formed on each of the four outer peripheral surfaces of the core material having a rectangular cross section using a resin having heat non-deformability at a temperature equal to or lower than the predetermined temperature and having good adhesion to the thermoset prepreg sheet. Is a PAN-based carbon fiber laminated with a prepreg sheet whose orientation direction is oriented at 90 degrees with respect to the longitudinal direction of the core material, and the intermediate layer has a pitch-based carbon fiber having a higher tensile elastic modulus than the PAN-based carbon fiber. A prepreg sheet whose orientation direction is oriented at 0 degrees with respect to the longitudinal direction of the core material is laminated, and a cross prepreg sheet oriented so that carbon fibers in two directions intersect at 90 degrees is wound on the outermost layer. a lamination step of covering, a laminated member of the prepreg sheets on all the outer peripheral surface of the core material Te,
A heating step of heating and thermosetting the laminated member formed in the laminating step to form an FRP member integrated with the core;
A method for manufacturing a robot hand member, characterized in that:
炭素繊維を含むプリプレグシートを積層して矩形状断面とされたものを熱硬化させたFRP部材から成り、産業用ロボットのアーム部に取り付けられるロボットハンド部材を製造する方法において、
所定温度以下では加熱非変形性を有し且つ上記FRP部材より熱膨張率が大きい金属又は樹脂を用いて矩形状断面とされた芯材の外周面の4面それぞれに、最内層にはPAN系炭素繊維をその配向方向が芯材の長手方向に対して90度に配向されたプリプレグシートを積層し、中間層には引張弾性率が上記PAN系炭素繊維よりも高いピッチ系炭素繊維をその配向方向が芯材の長手方向に対して0度に配向されたプリプレグシートを積層し、最外層には二方向の炭素繊維が90度で交わるように配向されたクロスプリプレグシートを巻掛けて被覆し、前記芯材の全外周面にプリプレグシートの積層部材を形成する積層工程と、
前記積層工程で形成された積層部材を加熱し熱硬化させてFRP部材を形成する加熱工程と、
前記FRP部材から前記芯材を抜き取り中空構造とする芯材抜取工程と、
を行うことを特徴とするロボットハンド部材の製造方法。
In a method of manufacturing a robot hand member that is made of a FRP member obtained by laminating a prepreg sheet containing carbon fiber and having a rectangular cross-section and thermosetting, and attached to an arm portion of an industrial robot,
Below the predetermined temperature, each of the four outer peripheral surfaces of the core material having a rectangular cross section using a metal or a resin having heat non-deformability and a thermal expansion coefficient larger than that of the FRP member , and the innermost layer is a PAN system A prepreg sheet in which the orientation direction of the carbon fiber is oriented at 90 degrees with respect to the longitudinal direction of the core material is laminated, and the pitch-type carbon fiber having a higher tensile elastic modulus than the PAN-based carbon fiber is oriented in the intermediate layer. A prepreg sheet whose direction is oriented at 0 degrees with respect to the longitudinal direction of the core material is laminated, and a cross prepreg sheet oriented so that carbon fibers in two directions intersect at 90 degrees is wrapped around the outermost layer and covered. A laminating step of forming a prepreg sheet laminating member on the entire outer peripheral surface of the core material;
A heating step to form a F RP member by heating thermoset laminated member formed in the laminating step,
A core material extraction step of extracting the core material from the FRP member to form a hollow structure;
A method for manufacturing a robot hand member, characterized in that:
上記中間層にプリプレグシートを積層するのは、該プリプレグシートの炭素繊維の配向方向が芯材の長手方向に対して0度と90度に配向されたものを含むことを特徴とする請求項1又は2記載のロボットハンド部材の製造方法。 To laminate a prepreg sheet on the intermediate layer, according to claim 1, characterized in that it comprises what orientation direction of the carbon fibers of the prepreg sheet is oriented at 0 degrees and 90 degrees relative to the longitudinal direction of the core member Or the manufacturing method of the robot hand member of 2 .
JP2001097479A 2001-03-29 2001-03-29 Manufacturing method of robot hand member Expired - Fee Related JP3632842B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001097479A JP3632842B2 (en) 2001-03-29 2001-03-29 Manufacturing method of robot hand member
KR1020020016981A KR20020077179A (en) 2001-03-29 2002-03-28 Robot hand member and method of producing the same
CNB021085870A CN100402246C (en) 2001-03-29 2002-03-28 Robot hand unit and its making method
US10/107,307 US20020180104A1 (en) 2001-03-29 2002-03-28 Robot hand member and method of producing the same
TW091106239A TW544383B (en) 2001-03-29 2002-03-29 Robot hand member and method of producing the same
US11/147,459 US7833455B2 (en) 2001-03-29 2005-06-08 Robot hand member and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001097479A JP3632842B2 (en) 2001-03-29 2001-03-29 Manufacturing method of robot hand member

Publications (2)

Publication Number Publication Date
JP2002292592A JP2002292592A (en) 2002-10-08
JP3632842B2 true JP3632842B2 (en) 2005-03-23

Family

ID=18951261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001097479A Expired - Fee Related JP3632842B2 (en) 2001-03-29 2001-03-29 Manufacturing method of robot hand member

Country Status (1)

Country Link
JP (1) JP3632842B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4980712B2 (en) * 2004-04-20 2012-07-18 Jx日鉱日石エネルギー株式会社 Robot hand member, manufacturing method thereof, and robot hand
JP2006173363A (en) * 2004-12-16 2006-06-29 Dainippon Printing Co Ltd Carrier
JP4563275B2 (en) * 2005-07-22 2010-10-13 鹿島建設株式会社 Cutable parts and cutable piles
JP2007153572A (en) * 2005-12-07 2007-06-21 Shinko Electric Co Ltd Liquid crystal substrate carrying fork
JP2009078422A (en) * 2007-09-26 2009-04-16 Toray Ind Inc Vibration-damping fiber-reinforced composite material
JP4805375B2 (en) * 2009-05-18 2011-11-02 東レ株式会社 Method for manufacturing FRP structure
JP2011110682A (en) * 2009-11-30 2011-06-09 Jx Nippon Oil & Energy Corp Robot hand and method of manufacturing the same
JP5773573B2 (en) * 2010-03-26 2015-09-02 バンドー化学株式会社 Auto tensioner and method of manufacturing movable member thereof
JP6026942B2 (en) * 2013-03-29 2016-11-16 積水化成品工業株式会社 Method for producing fiber-reinforced molded body and fiber-reinforced molded body
EP3274136B1 (en) * 2015-03-23 2019-09-18 Soft Robotics, Inc. Improvements to soft robotic actuators and methods of manufacturing the same
KR200490752Y1 (en) * 2018-06-01 2020-02-11 조성원 Flat panel support bar having vibration damping structure

Also Published As

Publication number Publication date
JP2002292592A (en) 2002-10-08

Similar Documents

Publication Publication Date Title
JP5189843B2 (en) CFRP conveyance member and robot hand using the same
US7833455B2 (en) Robot hand member and method of producing the same
JP3632841B2 (en) Manufacturing method of robot hand member
WO2005117100A1 (en) Support bar for substrate cassette
JP3632842B2 (en) Manufacturing method of robot hand member
JP2010524241A (en) End effector and robot for transporting substrates
JP4980712B2 (en) Robot hand member, manufacturing method thereof, and robot hand
JP2000343476A (en) Carrying member
JP2007281252A (en) Substrate cassette
WO2010086955A1 (en) Conveyance member made of cfrp and robot hand employing the same
JP5647993B2 (en) Molded composite assembly and manufacturing method thereof
JP4481855B2 (en) Hand for transfer device
JP3632846B2 (en) Robot hand member and manufacturing method thereof
JPH10278185A (en) Manufacture of sandwich structure
JPH11210937A (en) Cfrp-reinforced square pipe
JP7236245B2 (en) composite molding
JPH0671742A (en) Method of molding drape
JP5584271B2 (en) Manufacturing method of robot hand made of fiber reinforced resin
JP2002295737A (en) Square pipe made of carbon fiber-reinforced plastic and its manufacturing method
KR20060045394A (en) Cfrp surface plate
JP2023097542A (en) Method for manufacturing preform with three-dimensional shape configured by multiple preform elements
KR20240139176A (en) Cfrp support for foldable display and manufacturing method thereof
JP2018153972A (en) Laminate
JP2005297452A (en) Cantilevered beam manufacturing method

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20031204

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20031208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040326

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040716

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040722

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041215

R150 Certificate of patent or registration of utility model

Ref document number: 3632842

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees