JP3632254B2 - Foil cutter and brittle material plate cutting method - Google Patents

Foil cutter and brittle material plate cutting method Download PDF

Info

Publication number
JP3632254B2
JP3632254B2 JP24902295A JP24902295A JP3632254B2 JP 3632254 B2 JP3632254 B2 JP 3632254B2 JP 24902295 A JP24902295 A JP 24902295A JP 24902295 A JP24902295 A JP 24902295A JP 3632254 B2 JP3632254 B2 JP 3632254B2
Authority
JP
Japan
Prior art keywords
brittle material
foil
material plate
curve
angle formed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24902295A
Other languages
Japanese (ja)
Other versions
JPH0985734A (en
Inventor
誠 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP24902295A priority Critical patent/JP3632254B2/en
Publication of JPH0985734A publication Critical patent/JPH0985734A/en
Application granted granted Critical
Publication of JP3632254B2 publication Critical patent/JP3632254B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/10Glass-cutting tools, e.g. scoring tools
    • C03B33/105Details of cutting or scoring means, e.g. tips
    • C03B33/107Wheel design, e.g. materials, construction, shape
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/04Cutting or splitting in curves, especially for making spectacle lenses

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガラス等の脆性材料板に切断用のスクライブ溝を刻む回転ホイル型のカッタに関し、特に脆性材料を円形ないし曲線状に切断するに適したスクライブ溝を形成するホイルカッタに関する。
【0002】
【従来の技術】
従来、この種のガラスホイルカッタでは、図5に示すようにガラスホイルカッタホイル7の先端部は脆性材料3の表面と微小区間の直線で接するため、該ホイルを脆性材料に強く押し当てると、直線的な微小長さの凹キズ8が図6のように脆性材料3の表面に形成される。従って、該ホイルを凹キズ8の延長方向に直線的に移動させると凹キズ8は連続した直線となり、脆性材料表面に連続した直線のスクライブ溝が形成される。また該ホイルを緩やかな曲線に沿って移動した場合でも、その曲線の曲率半径がホイル直径に比べ十分に大きな場合は、同様の連続した曲線のスクライブ溝が形成され、特に問題は生じない。
【0003】
しかし、ホイル直径と同程度あるいはそれ以下の曲率半径をもつ曲線に沿ってホイルを移動させた場合、脆性材料表面には該曲線に接する接線の形の直線的な微小キズが該曲線に沿って無数に形成され、結果的に幅を持った連続性の良くないスクライブ溝となって、ガラスを破断する際、該曲線からそれて破断が進行し易く、所望の曲線形状通りに切断することが困難であるという問題があった。
【0004】
ホイル先端部と脆性材料表面の接触する微小直線長さを短くするためにホイルの直径を小さくすると、該曲線に沿うスクライブ溝を入れるという点では多少の改善が見込まれる。しかし、脆性材料を曲線状に容易かつ良好に破断するには、深い一様なスクライブ溝を入れることが必要であり、大径ホイルに比べホイル進行方向の前後における応力分布の変化が急激な小径ホイルでは、大径ホイルで可能な深いスクライブ溝と同等の深いスクライブ溝を入れようとすると、スクライブ溝が断続的に入り易くなって一様な深さになりにくいという点が問題になった。
【0005】
【発明が解決しようとする課題】
本発明は上記の問題を解決して、小さな曲率半径を有する曲線に沿って均一の深さを有し連続性の優れたスクライブ溝を形成して、所望の形状に脆性材料板を切断することができるホイルカッタを提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するために、
請求項1記載のホイルカッタは、脆性材料表面にスクライブ溝を形成するホイルカッタにおいて、前記ホイルカッタのホイルの回転軸が脆性材料板表面に対して10〜45°傾斜し、前記ホイルの先端刃先の両面のうち、前記回転軸の傾斜上手側の刃先面と脆性材料板表面とのなす角度をθ 1 、刃先の他方の面と脆性材料板表面とのなす角度をθ 2 とすると、θ 1 は10〜35°であり、θ 2 は3〜30°である(ただし、前記傾斜上手側の刃先面と前記回転軸に垂直な面とのなす角度と、前記刃先の他方の面と前記回転軸に垂直な面とのなす角度とが、同一である場合を除く)ことを特徴とする。
【0007】
請求項2記載のホイルカッタによれば、前記θ 1 は前記θ 2 よりも少なくとも2°大きいことが望ましい。
【0008】
請求項3記載の脆性材料板の切断方法は、
脆性材料板表面にホイルカッタにより曲線の形状を有するスクライブ溝を形成し、前記スクライブ溝に沿って破断する脆性材料板の破断方法において、前記曲線の最小曲率半径(R)は3.0〜50.0mmであり、前記ホイルは1.0〜10.0mmのホイル半径(r)を有し、前記ホイルカッタにおけるホイルの回転軸の傾斜角度を、脆性材料板表面に対して10〜45°の範囲内で、 arcsin (0.8r/R)〜 arcsin (1.2r/R)に調整し、前記ホイルの先端刃先の両面のうち、前記回転軸の傾斜上手側の刃先面と脆性材料板表面とのなす角度をθ 1 、刃先の他方の面と脆性材料板表面とのなす角度をθ 2 とすると、θ 1 は10〜35°とし、θ 2 は3〜30°とした(ただし、前記傾斜上手側の刃先面と前記回転軸に垂直な面とのなす角度と、前記刃先の他方の面と前記回転軸に垂直な面とのなす角度とが、同一である場合を除く)こと、を特徴とする。
【0009】
請求項4記載の脆性材料板の切断方法によれば、前記θ 1 は前記θ 2 よりも少なくとも2°大きいことが望ましい。
【0010】
請求項5記載の脆性材料板の切断方法は、円の円周の形状の切断に、好適に用いることができる。
【0011】
請求項6記載の脆性材料板の切断方法は、曲率半径の小さな曲線と曲率半径の大きな曲線ないし直線とからなる閉曲線の形状の切断に、好適に用いることができる。
【0012】
本発明によれば、ホイルの回転軸を脆性材料表面に対して10〜45°傾斜させているので、ホイル先端部は脆性材表面に円弧状に接触する。そのため、ホイルを該円弧と同じ向きに湾曲した曲線に沿って進行させると、該曲線の曲率半径がホイル直径と同程度に小さい円弧であっても、良質の連続したスクライブ溝が形成される。ホイルの回転軸の傾斜角が10°未満では、小さな曲率半径を有する良質の連続スクライブ溝の形成が困難である。
【0013】
逆に45°を超えると、ホイル先端部と脆性材料板3の表面との接触区間が急激に長くなるため、該ホイルを脆性材料板に押し当てる力も接触区間に比例して大きくしなければならず、従って該ホイル回転軸の剛性および該ホイル自体の剛性も、大幅に高める必要性が生じてきて実用的でない。半径(R)3.0〜50.0mmを有する円の円周の形状を有するスクライブ溝を形成する場合には、ホイルとして、1.0〜10.0mmの半径(r)を有するものを使用し、前記回転軸の傾斜角度をarcsin(0.8r/R)〜arcsin(1.2r/R)の範囲に調整することが好ましい。
【0014】
ホイル先端部刃先の両面の内、回転軸の傾斜上手側の刃先面(前記回転軸端部が脆性材料板表面に遠い方の刃先面)と、脆性材料板表面とのなす角度θ1および刃先の他方の面と脆性材料板表面とのなす角度θ 2は、ホイルの回転軸による傾き成分を考慮の上調整する。θ1とθ2を等しくすれば、スクライブ溝は脆性材料板表面に対して垂直に伸びるが、θ1をθ2よりも例えば10°大きくすれば、スクライブ溝は垂直から外側(回転軸の傾斜上手側)に約5°(θ1とθ2の差の半分)傾斜して伸び、逆に10°小さくすれば内側に約5°傾斜して伸びる。
【0015】
脆性材料板を曲線状のスクライブ溝に沿って破断するときは、破断面(厚み方向)はスクライブ溝よりも内側に進行する傾向があるので、破断面をできるだけ垂直にしたいときは、θ1をθ2よりも大きく保つことが好ましい。通常は、θ1は10〜35°、θ2は3〜30°で、かつθ1はθ2よりも2°以上大きくなるように調整する。
【0016】
本発明のホイルカッタは、0.5〜5mm厚みのガラス板のような脆性材料板の切断に適しており、特に5〜10mmの曲率半径を有する曲線、例えば5〜10mm半径の円形に切断することができる。0.5〜1.5mmの小さな厚みを有する脆性材料板に円形のスクライブ溝を形成させるには、1.0〜2.0mmの小さな半径のホイルを使用することが好ましい。
【0017】
【発明の実施の形態】
図1に本発明による傾斜回転ホイルカッタを示す。図2はその先端部拡大図である。ホイルカッタホイル1は直径5mm、ブロック11に回転軸2が約30°傾斜して取り付けられている。そしてホイル1の先端角度は、回転軸2が下がっている側で(回転軸に垂直な面から)53°、回転軸2が上がっている側で103°である。従ってガラス板表面から測って、刃先接触角度θ1=17°,θ2=7°とした。ホイル回転軸2は、脆性材料である厚み3mmのガラス板3の表面に対し、α=30°になるように傾けて取り付けてある。
【0018】
図3は、ガラス板3の表面に10kgの荷重でホイル1を押し当てた時の、ガラス表面へのホイルの食い込みによる凹キズの拡大図である。この凹キズ4は、上から見て、長さ約500μmで曲率半径5mm相当の円弧を描いていた。この円弧の曲率半径Rの値(5mm)は、回転軸2の傾斜角α(約30°)とホイルの半径r(2.5mm)から近似式R=r/sinαで計算される値と一致した。
【0019】
イル1を図4のように、曲率半径5mmの円形曲線5に沿って矢印6の方向に回転進行させることにより、ガラス板3の表面の下面に曲線5に沿って連続した一様の深さ約500μmで幅が30μmの円形のスクライブ溝が形成された。このスクライブ溝は、ガラス板表面から測った刃先接触角度θ1とθ2に差を設けたために、ガラス板に垂直ではなくガラス板上面から下方に向かって約5°前記曲線5の外側に傾斜しており、この曲線5に沿ってガラスを破断したところ、破断面は円錐台状となって、半径約5mmの円形ガラス板部分が下方向に簡単に抜き取ることができ、分離が容易であった。
【0020】
前記刃先接触角度θ1とθ2の値を逆に設定した場合には、スクライブ溝は、ガラス板上面から下方に向かって約5°前記曲線5の内側に傾斜しており、この曲線5に沿ってガラスを破断したところ、破断面は円錐台状となって半径約5mmの円形ガラス板部分が上方向に簡単に抜き取ることができた。なお、刃先接触角度θ1とθ2と同一値に設定したときには、スクライブ溝はガラス板に垂直に伸びる。
【0021】
なお、比較のため、図5の従来型のホイルカッタホイル7の場合、ガラス板3の表面にホイルを押し当てた時の、ホイルの食い込みによる凹キズの拡大図は図6のようになり、図3の凹キズ4に比べこの凹キズ8は幅方向に約6μmのズレがある。この幅方向の違いが曲線5に沿ったスクライブ溝を入れる上で、溝の深さと幅の違いとして表れ、不連続状の深さ500μmで幅が約45μmのスクライブ溝が形成された。そしてガラスを破断する際、該曲線からそれて破断が進行した。
【0022】
図7は別の曲線形状の例である。この閉曲線は直線部(曲率半径の大きな曲線ないし直線)9とコーナー部(曲率半径の小さな曲線)10から構成されている。コーナー部10は曲率半径5mmである。直線部9とコーナー部10に沿って、前記実施例で使用したものと同じホイルカッタを移動させスクライブ溝を形成し、これに沿ってガラス板を破断した。
【0023】
なお、直線部9は破断が容易なため、コーナー部10程に深いスクライブ溝を入れる必要がない。従って、ホイル1の荷重は、直線部9、コーナー部10とも一定値にしてもよいが、コーナー部10では10kgとし、直線部9は5kg程度に抑えてスクライブ溝を浅くすることも可能である。直線部9、コーナー部10とも荷重を5kgとした場合、図3のガラスへの食い込みによる凹キズ4の長さは約200μmであり、図6の凹キズ8からのズレも2μm程度に抑えられた。
【0024】
以上から、直線部9のスクライブ溝の品質を落とすことなく、コーナー部10のスクライブ溝の品質を向上でき、所望の形状通りに脆性材料板を切断することができた。
【0025】
【発明の効果】
本発明によると、ホイル直径と同程度あるいはそれ以下の曲率半径を有する曲線に沿ったスクライブ溝を入れることが可能となり、円形のスクライブ溝を入れる上で特に有効である。また、ホイル直径を大きくできるため、均一の深さの連続したスクライブ溝を入れることができる。
【0026】
従って所望の形状、例えば5mm程度の小さな曲率半径を有する曲線形状に脆性材料板を切断することができる。そして、小径のホイルに比べ刃先にかかる圧力の円周方向の変化が緩やかになるので、刃先が痛まずホイルの寿命を延ばすことができる。更に、小径ホイルに比べホイルの回転数が下がるので、ホイル中心軸も摩耗しにくい特徴も有する。
【図面の簡単な説明】
【図1】本発明の実施例のガラスホイルカッタを示す断面図
【図2】第1図のホイルの先端部の拡大断面図
【図3】本発明のガラスホイルカッタによる脆性材料表面に生じた凹キズを示す斜視図
【図4】本発明の実施例のホイルと曲線スクライブ溝との関係を示す斜視図
【図5】従来のガラスホイルカッタを示す断面図
【図6】従来のガラスホイルカッタによって脆性材料表面に生じた凹キズを示す斜視図
【図7】本発明の実施例のガラスホイルカッタにより直線及び曲線スクライブ溝を形成する閉曲線形状を示す斜視図
【符号の説明】
1 ガラスホイルカッタホイル
2 回転軸
3 脆性材料(ガラス板)
4、8 凹キズ
5 進行方向
7 従来のガラスホイルカッタホイル
9 曲率半径の大きな曲線ないし直線
10 曲率半径の小さな曲線
11 ガラスホイルカッタのホルダ部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rotating foil cutter that cuts a scribe groove for cutting on a brittle material plate such as glass, and more particularly to a foil cutter that forms a scribe groove suitable for cutting a brittle material into a circular or curved shape.
[0002]
[Prior art]
Conventionally, in this type of glass foil cutter, as shown in FIG. 5, the tip of the foil 7 of the glass foil cutter is in contact with the surface of the brittle material 3 by a straight line of a minute section, so that the foil is strongly pressed against the brittle material. A concave flaw 8 having a linear minute length is formed on the surface of the brittle material 3 as shown in FIG. Therefore, when the foil is linearly moved in the extending direction of the concave scratch 8, the concave scratch 8 becomes a continuous straight line, and a continuous linear scribe groove is formed on the brittle material surface. Even when the foil is moved along a gentle curve, if the radius of curvature of the curve is sufficiently larger than the foil diameter, the same continuous curved scribe groove is formed, and no particular problem occurs.
[0003]
However, if the foil is moved along a curve having a radius of curvature equal to or less than the foil diameter, the surface of the brittle material has linear micro-scratches in the form of a tangent that touches the curve along the curve. When the glass is broken, it is formed innumerably, resulting in a scribe groove having a width and poor continuity, and the glass breaks easily from the curve and can be cut according to a desired curve shape. There was a problem that it was difficult.
[0004]
Reducing the diameter of the e-yl in order to shorten the micro linear length of contact of the wheel tip portion and the brittle material surface, the some improvement is expected in terms of putting the scribed grooves along the curve. However, in order to easily and satisfactorily break a brittle material in a curved line, it is necessary to insert deep uniform scribe grooves, and the stress distribution changes before and after the foil traveling direction is smaller than the large diameter foil. In the case of a foil, when trying to insert a deep scribe groove equivalent to a deep scribe groove that is possible with a large-diameter foil, the scribe groove is likely to enter intermittently and it is difficult to achieve a uniform depth.
[0005]
[Problems to be solved by the invention]
The present invention solves the above problems, and forms a scribe groove having a uniform depth and excellent continuity along a curve having a small radius of curvature to cut a brittle material plate into a desired shape. An object of the present invention is to provide a foil cutter.
[0006]
[Means for Solving the Problems]
To achieve the above objective,
The foil cutter according to claim 1 is a foil cutter in which a scribe groove is formed on the surface of the brittle material, and the rotation axis of the foil cutter is inclined by 10 to 45 ° with respect to the surface of the brittle material plate , Of these, assuming that the angle formed between the blade edge surface on the inclined upper side of the rotating shaft and the brittle material plate surface is θ 1 , and the angle formed between the other surface of the blade blade and the brittle material plate surface is θ 2 , θ 1 is 10 to 10 35 °, and θ 2 is 3 to 30 ° (provided that the angle formed by the blade surface on the inclined upper side and the surface perpendicular to the rotation axis, the other surface of the blade edge and the rotation axis perpendicular to the rotation surface) and an angle between a plane, unless it is the same) that you characterized.
[0007]
According to the foil cutter of claim 2, it is desirable that the θ 1 is at least 2 ° larger than the θ 2 .
[0008]
The method for cutting a brittle material plate according to claim 3,
In the method of breaking a brittle material plate in which a scribe groove having a curved shape is formed on a surface of the brittle material plate by a foil cutter, and the fracture is performed along the scribe groove, the minimum curvature radius (R) of the curve is 3.0 to 50. The foil has a foil radius (r) of 1.0 to 10.0 mm, and the inclination angle of the rotation axis of the foil in the foil cutter is in the range of 10 to 45 ° with respect to the brittle material plate surface. Then, it is adjusted to arcsin (0.8r / R) to arcsin (1.2r / R), and among the both ends of the tip edge of the foil, the cutting edge surface on the inclined upper side of the rotating shaft and the brittle material plate surface Assuming that the angle formed is θ 1 and the angle formed between the other surface of the blade edge and the brittle material plate surface is θ 2 , θ 1 is set to 10 to 35 ° and θ 2 is set to 3 to 30 ° (provided that The angle between the side edge surface and the surface perpendicular to the axis of rotation When the angle between the other surface and a plane orthogonal to the axis of rotation of the cutting edge, unless the same) that features a.
[0009]
According to the method for cutting a brittle material plate according to claim 4, it is desirable that the θ 1 is at least 2 ° larger than the θ 2 .
[0010]
The method for cutting a brittle material plate according to claim 5 can be suitably used for cutting the shape of the circumference of a circle.
[0011]
The method for cutting a brittle material plate according to claim 6 can be suitably used for cutting a closed curve shape composed of a curve having a small radius of curvature and a curve or a straight line having a large radius of curvature.
[0012]
According to the present invention, the rotation axis of the foil is inclined by 10 to 45 ° with respect to the brittle material surface, so that the foil tip contacts the brittle material surface in an arc shape. For this reason, when the foil is advanced along a curve curved in the same direction as the arc, even if the curvature radius of the curve is an arc as small as the foil diameter, a continuous scribe groove of good quality is formed. When the inclination angle of the rotation axis of the foil is less than 10 °, it is difficult to form a high-quality continuous scribe groove having a small radius of curvature.
[0013]
On the other hand, if the angle exceeds 45 °, the contact section between the tip of the foil and the surface of the brittle material plate 3 becomes abruptly long. Therefore, the force pressing the foil against the brittle material plate must be increased in proportion to the contact section. Therefore, the rigidity of the foil rotating shaft and the rigidity of the foil itself are not practical because it is necessary to greatly increase the rigidity. When forming a scribe groove having a circumferential shape of a circle having a radius (R) 3.0~50.0mm, as ho yl, those having a radius (r) of 1.0~10.0mm It is preferable to use and adjust the inclination angle of the rotating shaft in the range of arcsin (0.8r / R) to arcsin (1.2r / R).
[0014]
The angle θ 1 formed by the blade tip surface on the inclined upper side of the rotating shaft (the blade surface on the side where the rotating shaft end portion is far from the brittle material plate surface) and the brittle material plate surface among the both surfaces of the blade tip portion and the blade tip angle of theta 2 between the other face and the brittle material plate surface is adjusted in consideration of the gradient component according to the axis of rotation of the wheel. If θ 1 is equal to θ 2 , the scribe groove extends perpendicularly to the brittle material plate surface. However, if θ 1 is made larger than θ 2 by, for example, 10 ° , the scribe groove extends outward from the vertical (inclination of the rotation axis). The upper side is inclined by about 5 ° (half of the difference between θ 1 and θ 2 ), and conversely, if it is reduced by 10 °, the inner side is inclined by about 5 ° .
[0015]
When a brittle material plate is ruptured along a curved scribe groove, the fracture surface (thickness direction) tends to progress inward from the scribe groove. Therefore, if you want the fracture surface to be as vertical as possible, θ 1 It is preferable to keep it larger than θ 2 . Normally, θ 1 is adjusted to 10 to 35 °, θ 2 to 3 to 30 °, and θ 1 is adjusted to be 2 ° or more larger than θ 2 .
[0016]
The foil cutter of the present invention is suitable for cutting a brittle material plate such as a glass plate having a thickness of 0.5 to 5 mm, and in particular, cutting into a curve having a radius of curvature of 5 to 10 mm, for example, a circle having a radius of 5 to 10 mm. Can do. To form the circular scribe groove to the brittle material plate having a small thickness of 0.5 to 1.5 mm, it is preferable to use a smaller radius ho yl 1.0 to 2.0 mm.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Indicating the tilt rotation wheel cut motor according to the present invention. FIG. FIG. 2 is an enlarged view of the tip. Foil 1 Foil cutter is mounted to the rotary shaft 2 is inclined about 30 ° in diameter 5 mm, the block 11. Tip angle of Ho yl 1 element (from a plane perpendicular to the rotation axis) on the side where the rotating shaft 2 is down 53 °, a 103 ° on the side of the rotation shaft 2 is turned up. Therefore, when measured from the glass plate surface, the blade edge contact angles were set to θ 1 = 17 ° and θ 2 = 7 °. The wheel rotating shaft 2 is attached to the surface of the glass plate 3 having a thickness of 3 mm, which is a brittle material, so that α = 30 °.
[0018]
3, when the pressing load Deho yl 1 of 10kg on the surface of the glass plate 3 is an enlarged view of the concave scratch by bite of the foil to the glass surface. The concave scratch 4 was an arc having a length of about 500 μm and a radius of curvature of 5 mm when viewed from above. The value (5 mm) of the radius of curvature R of the arc coincides with the value calculated by the approximate expression R = r / sin α from the inclination angle α (about 30 °) of the rotating shaft 2 and the radius r (2.5 mm) of the foil. did.
[0019]
The e-yl 1 as shown in FIG. 4, by rotating traveling along a circular curve 5 of curvature radius 5mm in the direction of the arrow 6, uniform depth which is continuous along the curve 5 to the lower surface of the surface of the glass plate 3 A circular scribe groove having a thickness of about 500 μm and a width of 30 μm was formed. Since the scribe groove has a difference in the blade contact angles θ 1 and θ 2 measured from the surface of the glass plate, it is not perpendicular to the glass plate, but is inclined about 5 ° downward from the upper surface of the glass plate to the outside of the curve 5. When the glass was broken along this curve 5, the fracture surface became a frustoconical shape, and the circular glass plate portion with a radius of about 5 mm could be easily pulled down and separated easily. It was.
[0020]
When the values of the blade edge contact angles θ 1 and θ 2 are set in reverse, the scribe groove is inclined about 5 ° downward from the upper surface of the glass plate toward the inside of the curve 5. When the glass was broken along, the fracture surface became a truncated cone shape, and a circular glass plate portion having a radius of about 5 mm could be easily extracted upward. When the blade edge contact angles θ 1 and θ 2 are set to the same value, the scribe groove extends perpendicular to the glass plate.
[0021]
For comparison, when the wheel 7 of conventional foil cutter of Figure 5, when pressed against host yl on the surface of the glass plate 3, enlarged view of the concave scratch by bite foils as shown in FIG. 6 Thus, the concave scratch 8 has a shift of about 6 μm in the width direction as compared with the concave scratch 4 in FIG. This difference in the width direction appeared as a difference in the depth and width of the groove when the scribe groove along the curve 5 was inserted, and a scribe groove having a discontinuous depth of 500 μm and a width of about 45 μm was formed. When the glass was broken, the breakage proceeded away from the curve.
[0022]
FIG. 7 is an example of another curved shape. This closed curve is composed of a straight portion (curve or straight line having a large radius of curvature) 9 and a corner portion (curve having a small radius of curvature) 10. The corner portion 10 has a curvature radius of 5 mm. Along the straight portion 9 and the corner portion 10, the moving the same wheel cut data as that used in Example to form a scribe groove was broken glass plate along which.
[0023]
Since the straight portion 9 is easy to break, it is not necessary to insert a scribe groove as deep as the corner portion 10. Therefore, the load of the host-yl 1, straight portions 9, but may be in both the corner portions 10 a constant value, and 10kg at the corner portion 10, the linear portion 9 it is also possible to shallow the scribed groove suppressed to about 5kg is there. When the load is 5 kg for both the straight portion 9 and the corner portion 10, the length of the concave scratch 4 due to the bite into the glass of FIG. 3 is about 200 μm, and the deviation from the concave scratch 8 of FIG. 6 is also suppressed to about 2 μm. It was.
[0024]
From the above, it was possible to improve the quality of the scribe groove of the corner portion 10 without degrading the quality of the scribe groove of the straight portion 9, and to cut the brittle material plate according to the desired shape.
[0025]
【The invention's effect】
According to the present invention, it is possible to insert a scribe groove along a curve having a radius of curvature equal to or less than the foil diameter, which is particularly effective for forming a circular scribe groove. Further, since the foil diameter can be increased, continuous scribe grooves having a uniform depth can be formed.
[0026]
Therefore, the brittle material plate can be cut into a desired shape, for example, a curved shape having a small radius of curvature of about 5 mm. And since the change of the circumferential direction of the pressure applied to a blade edge becomes gentle compared with a small diameter foil, the blade edge does not hurt and the life of the foil can be extended. Furthermore, since the rotational speed of the foil is lower than that of the small-diameter foil, the foil central shaft is also less likely to be worn.
[Brief description of the drawings]
Brittle material by glass foil cut data in FIG. 1 is a cross-sectional view and FIG. 2 is an enlarged cross-sectional view of the distal end portion of the first view of the ho yl showing a glass foil cut another embodiment of the present invention [3] The present invention sectional view showing a perspective view and FIG. 5 conventional glass foil cut data showing the relationship between e-yl and the curve scribed groove embodiment of a perspective view showing a concave flaws generated on the surface [4] the present invention Figure 6 is a perspective showing a closed curve shape which forms a more linear and curved scribe grooves to the glass foil cut another embodiment of the conventional glass foil cut data thus perspective view 7 the invention showing a concave scratches generated on the brittle material surface Figure [Explanation of symbols]
1 glass foil cutter wheel 2 rotating shaft 3 brittle material (glass plates)
4,8 concave scratches 5 traveling direction 7 the holder portion of the small curve 11 glass foil cut other large curve to a straight line 10 radius of curvature of 9 curvature wheel radius of conventional glass foil cutter

Claims (6)

脆性材料板表面にスクライブ溝を形成するホイルカッタにおいて、
前記ホイルカッタのホイルの回転軸が脆性材料板表面に対して10〜45°傾斜し
前記ホイルの先端刃先の両面のうち、前記回転軸の傾斜上手側の刃先面と脆性材料板表面とのなす角度をθ 1 、刃先の他方の面と脆性材料板表面とのなす角度をθ 2 とすると、θ 1 は10〜35°であり、θ 2 は3〜30°である(ただし、前記傾斜上手側の刃先面と前記回転軸に垂直な面とのなす角度と、前記刃先の他方の面と前記回転軸に垂直な面とのなす角度とが、同一である場合を除く)ことを特徴とするホイルカッタ。
In foil cutters that form scribe grooves on the brittle material plate surface,
The foil cutter's foil rotation axis is inclined by 10 to 45 ° with respect to the brittle material plate surface ;
The angle formed between the blade edge surface on the inclined upper side of the rotating shaft and the brittle material plate surface among both surfaces of the tip blade edge of the foil is θ 1 , and the angle formed between the other surface of the blade edge and the brittle material plate surface is θ 2 Then, θ 1 is 10 to 35 °, and θ 2 is 3 to 30 ° (provided that the angle formed between the blade surface on the inclined upper side and the surface perpendicular to the rotation axis and the other of the blade edges) And the angle formed by the plane perpendicular to the rotation axis is the same) .
記θ 1は前記θ2よりも少なくとも2°大きい請求項1記載のホイルカッタ。Hoirukatta before Symbol theta 1 is at least 2 ° greater claim 1 than the theta 2. 脆性材料板表面にホイルカッタにより曲線形状を有するスクライブ溝を形成し、前記スクライブ溝に沿って破断する脆性材料板の破断方法において、
前記曲線の最小曲率半径(R)3.0〜50.0mmであり、
前記ホイル1.0〜10.0mmのホイル半径(r)を有し、
前記ホイルカッタにおけるホイルの回転軸の傾斜角度を、脆性材料板表面に対して10〜45°の範囲内で、arcsin(0.8r/R)〜arcsin(1.2r/R)に調整し、
前記ホイルの先端刃先の両面のうち、前記回転軸の傾斜上手側の刃先面と脆性材料板表面とのなす角度をθ 1 、刃先の他方の面と脆性材料板表面とのなす角度をθ 2 とすると、θ 1 は10〜35°とし、θ 2 は3〜30°とした(ただし、前記傾斜上手側の刃先面と前記回転軸に垂直な面とのなす角度と、前記刃先の他方の面と前記回転軸に垂直な面とのなす角度とが、同一である場合を除く)ことを特徴とする脆性材料板の切断方法
In the fracture method of a brittle material plate, a scribe groove having a curved shape is formed by a foil cutter on the brittle material plate surface, and the fracture is performed along the scribe groove.
The minimum curvature radius (R) of the curve is 3.0-50.0 mm ;
The foil has a foil radius (r) of 1.0-10.0 mm;
The tilt angle of the rotation axis of the foil in the foil cutter is adjusted to arcsin (0.8r / R) to arcsin (1.2r / R) within a range of 10 to 45 ° with respect to the brittle material plate surface ,
The angle formed between the blade edge surface on the inclined upper side of the rotating shaft and the brittle material plate surface among both surfaces of the tip blade edge of the foil is θ 1 , and the angle formed between the other surface of the blade edge and the brittle material plate surface is θ 2 Then, θ 1 is set to 10 to 35 °, and θ 2 is set to 3 to 30 ° (however, an angle formed by the blade surface on the inclined upper side and a surface perpendicular to the rotation axis, and the other angle of the blade tip) The angle formed by the surface and the surface perpendicular to the rotation axis is the same), the method for cutting a brittle material plate .
前記θΘ 11 を前記θThe θ 22 よりも少なくとも2°大きくした請求項3記載の脆性材料板の切断方法。4. The method for cutting a brittle material plate according to claim 3, wherein the brittle material plate is at least 2 ° larger than the angle. 前記曲線形状を円の円周の形状とした請求項3または4記載の脆性材料板の切断方法。The method for cutting a brittle material plate according to claim 3 or 4, wherein the curved shape is a shape of a circumference of a circle. 前記曲線形状を曲率半径の小さな曲線と曲率半径の大きな曲線ないし直線とからなる閉曲線とした請求項3または4記載の脆性材料板の切断方法。The method of cutting a brittle material plate according to claim 3 or 4, wherein the curved shape is a closed curve composed of a curve having a small radius of curvature and a curve or a straight line having a large radius of curvature.
JP24902295A 1995-09-27 1995-09-27 Foil cutter and brittle material plate cutting method Expired - Fee Related JP3632254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24902295A JP3632254B2 (en) 1995-09-27 1995-09-27 Foil cutter and brittle material plate cutting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24902295A JP3632254B2 (en) 1995-09-27 1995-09-27 Foil cutter and brittle material plate cutting method

Publications (2)

Publication Number Publication Date
JPH0985734A JPH0985734A (en) 1997-03-31
JP3632254B2 true JP3632254B2 (en) 2005-03-23

Family

ID=17186851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24902295A Expired - Fee Related JP3632254B2 (en) 1995-09-27 1995-09-27 Foil cutter and brittle material plate cutting method

Country Status (1)

Country Link
JP (1) JP3632254B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5332344B2 (en) * 2008-06-30 2013-11-06 三星ダイヤモンド工業株式会社 Chip holder and holder unit
JP2009023351A (en) * 2008-08-08 2009-02-05 Beldex Corp Method of scribing
KR101174876B1 (en) * 2010-01-19 2012-08-17 삼성디스플레이 주식회사 Cutting wheel for glass substrate
JP5440809B2 (en) * 2011-08-01 2014-03-12 三星ダイヤモンド工業株式会社 Tip holder
US9908806B2 (en) 2012-07-27 2018-03-06 Nippon Electric Glass Co., Ltd. Sheet glass, method for manufacturing sheet glass, and device for manufacturing sheet glass
JP2015027933A (en) * 2013-06-27 2015-02-12 日本電気硝子株式会社 Scribing method of strengthened glass plate
CN105189379A (en) * 2013-06-27 2015-12-23 日本电气硝子株式会社 Method for scribing tempered glass sheet
WO2015063960A1 (en) * 2013-10-30 2015-05-07 坂東機工株式会社 Glass plate scribing device
EP2871034A1 (en) * 2013-11-12 2015-05-13 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Cutting tool and cutting method for laminates.
JP2016079077A (en) * 2014-10-20 2016-05-16 坂東機工株式会社 Scribing method and scribing device
WO2016059794A1 (en) * 2014-10-15 2016-04-21 坂東機工株式会社 Scribing method and scribing device
JP5939290B2 (en) * 2014-10-15 2016-06-22 坂東機工株式会社 Scribing method and scribing apparatus
JP2015086133A (en) * 2015-01-28 2015-05-07 坂東機工株式会社 Scribe device of glass plate
WO2017115871A1 (en) * 2015-12-28 2017-07-06 Hoya株式会社 Annular glass blank, method for manufacturing annular glass blank, method for manufacturing annular glass substrate, and method for manufacturing glass substrate for magnetic disc
JP6727673B2 (en) * 2019-05-31 2020-07-22 三星ダイヤモンド工業株式会社 Scribing device and holder unit

Also Published As

Publication number Publication date
JPH0985734A (en) 1997-03-31

Similar Documents

Publication Publication Date Title
JP3632254B2 (en) Foil cutter and brittle material plate cutting method
JP3074143B2 (en) Glass cutter wheel
TWI447005B (en) Cutter and cutting method using its brittle material substrate
TWI782044B (en) scoring wheel
TWI447084B (en) With a groove of the wheel
JP2009234874A (en) Cutter wheel and method for manufacturing the same
TWI592379B (en) Full-edged scribing wheel
JP2005515905A5 (en)
JP4132569B2 (en) Slitter blade
WO2019161744A1 (en) Ultrasonic cutting method employing straight-blade sharp knife and application thereof
JP2007152936A (en) Wheel cutter for brittle material
KR101737581B1 (en) Double-edged scribing wheel for cutting coated glass
JPH09278474A (en) Glass wheel cutter and glass plate cutting method
CN108341589A (en) A kind of break bar with platform
JP2010126387A (en) Cutter wheel
JP7008959B2 (en) Scribing wheel
JP2004268230A (en) Drill
JPH09267299A (en) Rotary die cutter
JP4582774B2 (en) Cutter wheel for glass cutting
TWI389857B (en) And a method of forming a through hole in a brittle material substrate
CN113045194A (en) Scribing wheel
KR200387033Y1 (en) Glass cutter wheel
TWI637923B (en) Scoring wheel
JPH07246590A (en) Cutting device for plastic film
JP2008183688A (en) Sheet cutting method and sheet cutting device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees