JP3631543B2 - Epoxy resin composition - Google Patents

Epoxy resin composition Download PDF

Info

Publication number
JP3631543B2
JP3631543B2 JP32252695A JP32252695A JP3631543B2 JP 3631543 B2 JP3631543 B2 JP 3631543B2 JP 32252695 A JP32252695 A JP 32252695A JP 32252695 A JP32252695 A JP 32252695A JP 3631543 B2 JP3631543 B2 JP 3631543B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
viscosity
weight
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32252695A
Other languages
Japanese (ja)
Other versions
JPH09137044A (en
Inventor
和也 後藤
和民 三谷
正裕 杉森
哲也 山本
西山  茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Heavy Industries Ltd
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Heavy Industries Ltd
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Heavy Industries Ltd, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP32252695A priority Critical patent/JP3631543B2/en
Publication of JPH09137044A publication Critical patent/JPH09137044A/en
Application granted granted Critical
Publication of JP3631543B2 publication Critical patent/JP3631543B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、主としてFRPまたはコンポジットと呼ばれる繊維強化複合材料用のマトリックス樹脂として使用するのに好適なエポキシ樹脂組成物に関する。
【0002】
【従来の技術】
硬化させたエポキシ樹脂形成体は、機械的特性及び電気的特性に優れており、エポキシ樹脂を繊維強化複合材料用のマトリックス樹脂として用いたFRPまたはコンポジットと呼ばれる成形体は、航空機から釣竿やゴルフクラブ用のシャフトに至る迄の広範囲に亙って利用されている。またエポキシ樹脂は接着特性等に優れており、例えば電子材料用封止材、塗料、及び舗装材料等としても使用されている。
【0003】
上記のFRP成形体の成形方法として、近年レジントランスファーモウルディング法(RTM成形法)が注目されている。このRTM成形法は、繊維強化材としてのプリフォームを型内に装填した後、前記型内に樹脂を注入、硬化させることによって目的の成形体を得る方法であり、生産性が高く、しかも一般の積層方法によっては得られない厚さ方向に補強された複合材料を得ることができる点で優れている。
【0004】
上記のRTM成形法による成形体用のマトリックス樹脂に要求される特性は、低粘度で長時間安定であり、しかも硬化の際の収縮応力が小さくクラックが硬化成形体に発生し難いことである。
【0005】
ところで熱硬化性樹脂は、通常雰囲気温度が上がると、初期の粘度は低下するが、粘度上昇速度が速くなる。また、逆に雰囲気温度が下がると、粘度上昇速度が遅くなって安定性を維持するが、粘度のレベルが成形には不適当な程に上昇する。これに対して、上記のRTM成形法による成形体のマトリックス樹脂は、10ポイズ以下の粘度となり、しかも2時間以上10ポイズ以下の粘度を保持していることが必要である。
【0006】
また、上記のRTM成形法による成形体におけるクラックの発生は、樹脂の硬化時の収縮応力が大きいことに起因するものである。この樹脂の硬化時の収縮には、樹脂の反応に伴う反応収縮と、成形温度から室温迄冷却するときに発生する熱収縮とがあり、更に熱収縮には、ゴム状収縮と呼ばれる成形温度からガラス転移温度(Tg)迄のゴム状態での収縮と、ガラス状収縮と呼ばれるガラス転移温度から室温迄のガラス状態での収縮とがある。そして上記のRTM成形法による成形体のマトリックス樹脂には、これらの全ての硬化収縮に対して発生する応力、すなわち硬化収縮応力が小さいことが必要である。
【0007】
上記の樹脂の硬化収縮応力を低減させる方法として、樹脂組成物中に高分子量ポリマーや無機物を配合するのが有効であるが、高分子ポリマーや無機物を配合した樹脂組成物によっては、低粘度のものにすることができない。このため、マトリックス樹脂としてエポキシ樹脂を使用するRTM成形法においては、通常のエポキシ樹脂組成物を使用し、成形条件を種々工夫することによって樹脂の硬化収縮に伴うクラックの発生を抑えているのが現状である。
【0008】
【発明が解決しようとする課題】
したがって本発明の目的は、10ポイズ以下の低粘度を長時間の間安定して保持しており、しかも硬化の際の収縮応力が小さく、硬化成形体にクラックが発生し難いエポキシ樹脂組成物を提供することであり、特にRTM成形法による成形体のマトリックス樹脂として使用するのに好適なエポキシ樹脂組成物を提供することにある。
【0009】
【課題を解決するための手段】
上記の目的は、以下の構成による本発明のエポキシ樹脂組成物によって達成される。すなわち本発明は、ビスフェノール型エポキシ樹脂(A)100重量部、ナフタレン骨格を具備する2官能エポキシ樹脂(B)50〜250重量部、粒径0.5μm以下の架橋ゴム微粒子(C)5〜60重量部、及びジアミノジフェニルスルホン(D)からなり、その硬化物のTgが180℃以上であって、しかも10ポイズ以下の粘度に2時間以上保持することが可能なことを特徴とするエポキシ樹脂組成物にある。
【0010】
【発明の実施の形態】
上記の本発明のエポキシ樹脂組成物において、ビスフェノール型エポキシ樹脂(A)は、単独のビスフェノール型エポキシ樹脂であっても、あるいは種類の相違するビスフェノール型エポキシ樹脂の混合物であってもよく、このビスフェノール型エポキシ樹脂(A)としては、エポキシ当量200以下のビスフェノールF型のエポキシ樹脂やビスフェノールA型のエポキシ樹脂が好ましい。これらのエポキシ樹脂は単独で、または2以上を混合して用いてもよい。
【0011】
ナフタレン骨格を具備するエポキシ樹脂(B)としては、分子内にナフタレン骨格を具備する2官能のエポキシ樹脂を使用する。なおナフタレン骨格を具備する2官能エポキシ樹脂(B)としては、市販品であるエピクロンHP−4032「大日本インキ化学工業 (株) 製」を挙げることができる。
【0012】
ビスフェノール型エポキシ樹脂(A)100重量部に対して、上記のナフタレン骨格を具備するエポキシ樹脂(B)が50重量部未満になると、十分な耐クラック性及び剛性のある成形体が得られなくなり、また250重量部を超えると、成形体の靭性が低下するようになる。このため、ナフタレン骨格を具備するエポキシ樹脂(B)は、ビスフェノール型エポキシ樹脂(A)100重量部に対して50〜250重量部、好ましく75〜150重量部の範囲内で配合する。
【0013】
粒径0.5μm以下の架橋ゴム微粒子(C)は、ゴムの種類に制限されるものではなく、例えばアクリルゴム、シリコンゴム、ブチルゴム、NBR、SBR、IR、EPR等の架橋ゴム微粒子を使用することができ、含浸不良を避けるために粒径0.5μm以下、好ましくは0.3μm以下のものを配合する。
【0014】
ビスフェノール型エポキシ樹脂(A)100重量部に対して、上記の粒径0.5μm以下の架橋ゴム微粒子(C)が5重量部未満になると、樹脂組成物の低応力効果が小さくなり過ぎ、また60重量部を超えると、樹脂組成物の粘度が高くなり過ぎて含浸性が低下する。このため、粒径0.5μm以下の架橋ゴム微粒子(C)は、ビスフェノール型エポキシ樹脂(A)100重量部に対して、5〜60重量部、好ましくは10〜50重量部の範囲内で配合する。
【0015】
粒径0.5μm以下の架橋ゴム微粒子(C)は、本発明のエポキシ樹脂組成物を調整する際に、ビスフェノール型エポキシ樹脂(A)、ナフタレン骨格を具備するエポキシ樹脂(B)、あるいはこれらの混合樹脂中に配合してもよいが、ビスフェノール型エポキシ樹脂(A)中に予め粒径0.5μm以下の架橋ゴム微粒子(C)を配合して市販されている樹脂組成物、例えばBPA328「日本触媒 (株) 製」、BPF307「日本触媒 (株) 製」、BPA601「日本触媒 (株) 製」、架橋NBR変性エポキシ樹脂「日本合成ゴム (株) 製」等を使用してもよい。
【0016】
硬化剤(D)としては、ジアミノジフェニルスルホンを使用することが好ましい。
【0017】
本発明のエポキシ樹脂組成物は、上記のビスフェノール型エポキシ樹脂(A)100重量部、ナフタレン骨格を具備する2官能エポキシ樹脂(B)50〜250重量部、粒径0.5μm以下の架橋ゴム微粒子(C)5〜60重量部、及び硬化剤(D)からなり、しかも10ポイズ以下の粘度に2時間以上安定に保持することが可能であり、より好ましくは5ポイズ以下の粘度に2時間以上保持することが可能である。
【0018】
なお、エポキシ樹脂組成物が10ポイズ以下の粘度に2時間以上保持することが可能か否かの基準は、エポキシ樹脂組成物の2時間の等温粘度を、レオメトリックス製の測定装置RDA−700により、Disk Plate 25mmφ、Gap 0.5mm、Rate 10rad/secの測定条件で測定したときのものである。
【0019】
【実施例】
以下、本発明のエポキシ樹脂組成物の具体的な構成を説明し、該エポキシ樹脂組成物の特性について、比較例のエポキシ樹脂組成物の特性と比較して説明する。
【0020】
以下の実施例及び比較例で使用した各成分は以下の通りである。
Ep828 :ビスフェノールA型エポキシ樹脂「油化シェル (株) 製」
HP−4032 :ナフタレン骨格を具備する2官能のエポキシ樹脂「大日本インキ化学工業 (株) 製」
BPA328 :ビスフェノール型エポキシ樹脂100重量部中に粒径0.3μmの架橋ゴム微粒子であるアクリルゴム微粒子20重量部を分散配合させてあるエポキシ樹脂組成物「日本触媒 (株) 製」
BPF307 :ビスフェノール型エポキシ樹脂100重量部中に粒径0.3μmの架橋ゴム微粒子であるアクリルゴム微粒子20重量部を分散配合させてあるエポキシ樹脂組成物「日本触媒 (株) 製」
DDS :ジアミノジフェニルスルホン
MNA :メチルナジック酸無水物
2E4MZ :4−エチル−2−メチルイミダゾール
DCMU :ジクロロジメチルウレア
Dicy :ジシアンジアミド
アクリルゴム :粒径0.5μm以下の架橋ゴム微粒子
【0021】
[実施例1〜11]、[比較例1〜5]
表1の所定欄に記載した各成分の配合物によるエポキシ樹脂組成物を調製した。なお、表1中には配合組成物中の各成分の重量部を記載した。
【0022】
【表1】

Figure 0003631543
【0023】
[実施例12〜17]、[比較例6〜7]
表2の所定欄に記載した各成分の配合率によるエポキシ樹脂組成物を調製した。なお、表2中には、配合組成物中の各成分の重量部を記載した。
【表2】
Figure 0003631543
【0025】
以上の各実施例、比較例で調製したエポキシ樹脂組成物について、表3、4に示した各種の測定、評価を行った。その結果を一括して表3、表4に示した。
測定方法、評価は次のように行った。
【0026】
[樹脂組成物の粘度測定及び評価]
エポキシ樹脂組成物の2時間の等温粘度を、レオメトリックス製の測定装置RDA−700により、Disk Plate 25mmφ、Gap 0.5mm、Rate 10rad/secの測定条件によって測定し、粘度10ポイズ以下になる温度に2時間保持し、2時間後においても粘度が10ポイズ以下を保持している組成物を、表3及び表4の粘度安定性の欄に○で表示し、10ポイズを超えたものを、同じく表3及び表4の粘度安定性の欄に×で示した。
【0027】
これを具体例で示すと、ある組成の樹脂を保持温度60℃、80℃、100℃及び120℃で等温粘度を測定したところ下表の結果が得られたとする。この樹脂組成においては80℃と100℃との間の温度で2時間以上10ポイズ以下の粘度を保持できたことになる。このような温度を有する樹脂組成物を○とした。
保持温度 初期粘度 2時間保持後の粘度
60℃ >10ポイズ 測定せず
80℃ <10ポイズ <10ポイズ
100℃ <10ポイズ <10ポイズ
120℃ <10ポイズ >10ポイズ
【0028】
また、別の樹脂組成の樹脂について同じ測定をした場合下表のような結果を得たとする。このような場合は60℃と80℃との間の温度に初期粘度と2時間保持後の粘度が共に10ポイズ以下となることが考えられるので、この間温度を更に細分して同様の測定をする。その結果ある温度においてさきの条件が満足されれば○とする。
保持温度 初期粘度 2時間保持後の粘度
60℃ >10ポイズ 測定せず
80℃ <10ポイズ >10ポイズ
100℃ <10ポイズ >10ポイズ
120℃ <10ポイズ >10ポイズ
以上の操作を繰り返してもさきの条件が満足される温度が見いだせなかった樹脂組成物は×とした。
【0029】
[Tgの測定及び結果]
実施例及び比較例のエポキシ樹脂組成物により、60mm(1)×12mm(w)×2mm(t)のサンプル成形体を硬化成形した。硬化成形の硬条件は、実施例1〜12、実施例13〜17及び比較例1〜5のエポキシ樹脂組成物については、120℃×1時間+150℃×1時間+180℃×2時間+200℃×3時間、比較例6のエポキシ樹脂組成物については、120℃×1時間+150℃×2時間+180℃×3時間、比較例7のエポキシ樹脂組成物については、100℃×1時間+120℃×2時間+150℃×3時間である。
【0030】
得られたサンプル成形体の温度−G’のカーブを、レオメトリックス製の測定装置RDA−700により、5℃/STEP 昇温、Rate 10rad/sec の測定条件にて取得し、ガラス状態領域でのG’に引いた接線と、G’が大きく変化している転移領域でG’に引いた接線との交点により、ガラス転移温度(Tg)を求めた。結果を表3、4に示した。
【0031】
[曲げ強度、弾性率、伸度(3点曲げ)]
上記Tg測定の項と同様にエポキシ樹脂組成物を成形した60mm(l)×8mm(w)×2mm(t)の各サンプル成形体を、オリエンテック製テンシロンによる3点曲げ試験によって、L/D(=支点間距離/厚み):16、圧子先端半径:3.2mm、CROSS HEAD SPEED:2mm/min.の測定条件で測定して得られた、荷重−CROSS HEAD移重量曲線から曲げ強度、弾性率、伸度を求めた。結果を表3及び表4に示す。
【0032】
[FRP硬化成形体の断面(クラック、ボイド)評価]
100mm×100mm×10mmの炭素繊維プリフォームをプレス型に装填し、加熱して粘度10ポイズとした上記の各例のエポキシ樹脂組成物を含浸させた後、5kg/cm のプレス形成に付し、FRPサンプル成形体を得た。なお、炭素繊維プリフォームとして、実施例4と実施例6のエポキシ樹脂組成物については三次元織物を、それ以外の実施例及び比較例のエポキシ樹脂組成物については平織ステッチ材を使用した。
【0033】
このFRP硬化成形体の硬化条件は、実施例1〜12、実施例13〜17及び比較例1〜5のエポキシ樹脂組成物については、120℃×1時間+180℃×2時間+200℃×2時間、比較例6のエポキシ樹脂組成物については、120℃×1時間+150℃×2時間+180℃×3時間、比較例7のエポキシ樹脂組成物については、100℃×1時間+120℃×2時間+150℃×3時間である。
【0034】
得られたFRPサンプル成形体をカット研磨した後の断面を顕微鏡で観察し、クラックとボイドの発生の状況を観察した。その結果、クラックあるいはボイドの発生が全く無いものを○、少しみられたものを△、やや多くみられたものを×により、表3及び表4に示す。
【0035】
【表3】
Figure 0003631543
【0036】
【表4】
Figure 0003631543
【0037】
以上の通り、実施例1〜実施例11のエポキシ樹脂組成物による硬化樹脂の物性は良好であり、またプリフォームによる繊維強化材を使用したFRP成形体にもクラックやボイドの発生は無かった。
【0038】
これに対して、比較例1のエポキシ樹脂組成物によるFRP成形体には、クラックの発生が観察され、また比較例2のエポキシ樹脂組成物によるFRP成形体には、クラックの発生が若干観察された。更に、比較例3のエポキシ樹脂組成物は粘度安定性が悪く、該エポキシ樹脂組成物によるFRP成形体にはボイドが発生していた。また、比較例4のエポキシ樹脂組成物による硬化成形体は、曲げ強度及び弾性率が極端に低く、比較例5のエポキシ樹脂組成物による硬化成形体は伸度が低く、FRP成形体にはクラックが発生していた。
【0039】
実施例12〜17のエポキシ樹脂組成物による硬化成形体の物性は、実施例1〜11のエポキシ樹脂組成物によるものと同様に良好であり、またプリフォームによる炭素繊維強化材を使用したFRP成形体にもクラックやボイドの発生は無かった。
【0040】
【発明の効果】
本発明のエポキシ樹脂組成物によれば、諸物性に優れた硬化成形体に成形することができ、また、繊維強化複合材料用のマトリックス樹脂として使用することにより、成形時にクラックやボイドの発生が極めて少ないFRP成形体に成形することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an epoxy resin composition suitable for use as a matrix resin for a fiber-reinforced composite material mainly called FRP or composite.
[0002]
[Prior art]
The cured epoxy resin molded article is excellent in mechanical properties and electrical characteristics, and a molded product called FRP or composite using an epoxy resin as a matrix resin for a fiber reinforced composite material is used for fishing rods and golf clubs from aircraft. It is used over a wide range up to the shaft for use. Epoxy resins are excellent in adhesive properties and are used as, for example, sealing materials for electronic materials, paints, and paving materials.
[0003]
In recent years, the resin transfer moulding method (RTM molding method) has attracted attention as a method for molding the FRP molded body. This RTM molding method is a method in which a preform as a fiber reinforcing material is loaded into a mold, and then a resin is injected into the mold and cured to obtain a desired molded body. This method is excellent in that a composite material reinforced in the thickness direction, which cannot be obtained by the lamination method, can be obtained.
[0004]
The characteristics required for the matrix resin for a molded body by the above RTM molding method are that it has a low viscosity and is stable for a long time, has a small shrinkage stress upon curing, and hardly causes cracks in the cured molded body.
[0005]
By the way, as for the thermosetting resin, when the ambient temperature is increased, the initial viscosity is decreased, but the viscosity increasing rate is increased. On the other hand, when the ambient temperature is lowered, the rate of viscosity increase is slowed to maintain stability, but the viscosity level is increased to an extent inappropriate for molding. On the other hand, the matrix resin of the molded body obtained by the above RTM molding method needs to have a viscosity of 10 poises or less and to maintain a viscosity of 2 to 10 poises.
[0006]
Moreover, the occurrence of cracks in the molded body by the above RTM molding method is caused by a large shrinkage stress at the time of curing of the resin. The shrinkage at the time of curing of the resin includes a reaction shrinkage accompanying the reaction of the resin and a heat shrinkage that occurs when the resin is cooled from the molding temperature to room temperature. Further, the heat shrinkage is caused by a molding temperature called rubber-like shrinkage. There are shrinkage in the rubber state up to the glass transition temperature (Tg) and shrinkage in the glass state from the glass transition temperature to room temperature, called glassy shrinkage. The matrix resin of the molded body obtained by the above RTM molding method needs to have a small stress generated with respect to all of these shrinkage, that is, cure shrinkage stress.
[0007]
As a method of reducing the curing shrinkage stress of the above resin, it is effective to blend a high molecular weight polymer or an inorganic substance in the resin composition, but depending on the resin composition containing the high molecular polymer or the inorganic substance, a low viscosity I can't make it. For this reason, in the RTM molding method using an epoxy resin as a matrix resin, a normal epoxy resin composition is used, and various molding conditions are used to suppress the occurrence of cracks due to the curing shrinkage of the resin. Currently.
[0008]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide an epoxy resin composition that stably maintains a low viscosity of 10 poises or less for a long period of time, has a small shrinkage stress during curing, and is less likely to cause cracks in a cured molded body. In particular, it is to provide an epoxy resin composition suitable for use as a matrix resin of a molded body by an RTM molding method.
[0009]
[Means for Solving the Problems]
The above object is achieved by the epoxy resin composition of the present invention having the following constitution. That is, the present invention relates to 100 parts by weight of a bisphenol type epoxy resin (A), 50 to 250 parts by weight of a bifunctional epoxy resin (B) having a naphthalene skeleton, and 5 to 60 crosslinked rubber fine particles (C) having a particle size of 0.5 μm or less. An epoxy resin composition comprising a part by weight and diaminodiphenylsulfone (D), wherein the Tg of the cured product is 180 ° C. or higher and can be maintained at a viscosity of 10 poise or lower for 2 hours or longer. It is in the thing.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the above epoxy resin composition of the present invention, the bisphenol type epoxy resin (A) may be a single bisphenol type epoxy resin or a mixture of bisphenol type epoxy resins of different types. The type epoxy resin (A) is preferably a bisphenol F type epoxy resin or a bisphenol A type epoxy resin having an epoxy equivalent of 200 or less. These epoxy resins may be used alone or in admixture of two or more.
[0011]
As the epoxy resin (B) having a naphthalene skeleton, a bifunctional epoxy resin having a naphthalene skeleton in the molecule is used. In addition, as bifunctional epoxy resin (B) which comprises a naphthalene skeleton, commercially available Epiklon HP-4032 "Dainippon Ink Chemical Co., Ltd. product" can be mentioned.
[0012]
When the epoxy resin (B) having the naphthalene skeleton is less than 50 parts by weight with respect to 100 parts by weight of the bisphenol-type epoxy resin (A), a molded body having sufficient crack resistance and rigidity cannot be obtained. Moreover, when it exceeds 250 weight part, the toughness of a molded object will come to fall. Therefore, the epoxy resin (B) having a naphthalene skeleton is blended within a range of 50 to 250 parts by weight, preferably 75 to 150 parts by weight, with respect to 100 parts by weight of the bisphenol type epoxy resin (A).
[0013]
The crosslinked rubber fine particles (C) having a particle size of 0.5 μm or less are not limited to the type of rubber, and for example, crosslinked rubber fine particles such as acrylic rubber, silicon rubber, butyl rubber, NBR, SBR, IR, and EPR are used. In order to avoid poor impregnation, particles having a particle size of 0.5 μm or less, preferably 0.3 μm or less are blended.
[0014]
When the crosslinked rubber fine particles (C) having a particle size of 0.5 μm or less are less than 5 parts by weight with respect to 100 parts by weight of the bisphenol-type epoxy resin (A), the low stress effect of the resin composition becomes too small. When the amount exceeds 60 parts by weight, the viscosity of the resin composition becomes too high, and the impregnation property is lowered. For this reason, the crosslinked rubber fine particles (C) having a particle diameter of 0.5 μm or less are blended within a range of 5 to 60 parts by weight, preferably 10 to 50 parts by weight, with respect to 100 parts by weight of the bisphenol type epoxy resin (A). To do.
[0015]
The crosslinked rubber fine particles (C) having a particle size of 0.5 μm or less are obtained when the epoxy resin composition of the present invention is prepared by using the bisphenol type epoxy resin (A), the epoxy resin (B) having a naphthalene skeleton, or these Although it may be blended in the mixed resin, a commercially available resin composition obtained by blending crosslinked rubber fine particles (C) having a particle size of 0.5 μm or less in the bisphenol type epoxy resin (A) in advance, such as BPA328 “Japan “Catalyst Co., Ltd.”, BPF307 “Nippon Shokubai Co., Ltd.”, BPA601 “Nippon Shokubai Co., Ltd.”, cross-linked NBR-modified epoxy resin “Nippon Synthetic Rubber Co., Ltd.” and the like may be used.
[0016]
As the curing agent (D), diaminodiphenyl sulfone is preferably used.
[0017]
The epoxy resin composition of the present invention comprises 100 parts by weight of the above bisphenol type epoxy resin (A), 50 to 250 parts by weight of a bifunctional epoxy resin (B) having a naphthalene skeleton, and a crosslinked rubber fine particle having a particle size of 0.5 μm or less. (C) It consists of 5 to 60 parts by weight and a curing agent (D), and can be stably maintained at a viscosity of 10 poise or less for 2 hours or more, more preferably at a viscosity of 5 poise or less for 2 hours or more. It is possible to hold.
[0018]
In addition, the standard of whether or not the epoxy resin composition can be maintained at a viscosity of 10 poise or less for 2 hours or more is based on the isothermal viscosity of the epoxy resin composition for 2 hours by a measuring device RDA-700 made by Rheometrics. , Disk Plate 25 mmφ, Gap 0.5 mm, Rate 10 rad / sec.
[0019]
【Example】
Hereinafter, the specific structure of the epoxy resin composition of the present invention will be described, and the characteristics of the epoxy resin composition will be described in comparison with the characteristics of the epoxy resin composition of the comparative example.
[0020]
Each component used in the following examples and comparative examples is as follows.
Ep828: Bisphenol A type epoxy resin “Oilized Shell Co., Ltd.”
HP-4032: Bifunctional epoxy resin having a naphthalene skeleton “Dainippon Ink Chemical Co., Ltd.”
BPA328: An epoxy resin composition "manufactured by Nippon Shokubai Co., Ltd." in which 20 parts by weight of acrylic rubber fine particles, which are crosslinked rubber fine particles having a particle diameter of 0.3 µm, are dispersed in 100 parts by weight of a bisphenol type epoxy resin.
BPF307: Epoxy resin composition “manufactured by Nippon Shokubai Co., Ltd.” in which 20 parts by weight of acrylic rubber fine particles, which are crosslinked rubber fine particles having a particle size of 0.3 μm, are dispersed in 100 parts by weight of a bisphenol type epoxy resin.
DDS: diaminodiphenylsulfone MNA: methyl nadic anhydride 2E4MZ: 4-ethyl-2-methylimidazole DCMU: dichlorodimethylurea Dicy: dicyandiamide acrylic rubber: crosslinked rubber fine particles having a particle size of 0.5 μm or less
[Examples 1 to 11], [Comparative Examples 1 to 5]
An epoxy resin composition was prepared by blending each component described in the predetermined column of Table 1. In Table 1, the weight parts of each component in the blended composition are shown.
[0022]
[Table 1]
Figure 0003631543
[0023]
[Examples 12 to 17], [Comparative Examples 6 to 7]
An epoxy resin composition was prepared according to the blending ratio of each component described in the predetermined column of Table 2. In Table 2, the parts by weight of each component in the blended composition are shown.
[Table 2]
Figure 0003631543
[0025]
Various measurements and evaluations shown in Tables 3 and 4 were performed on the epoxy resin compositions prepared in the above Examples and Comparative Examples. The results are collectively shown in Tables 3 and 4.
The measurement method and evaluation were performed as follows.
[0026]
[Measurement and evaluation of viscosity of resin composition]
The isothermal viscosity of the epoxy resin composition for 2 hours is measured with a measuring device RDA-700 manufactured by Rheometrics under the measurement conditions of Disk Plate 25 mmφ, Gap 0.5 mm, Rate 10 rad / sec, and the viscosity becomes 10 poise or less. The composition in which the viscosity is maintained for 2 hours and the viscosity is maintained at 10 poise or less after 2 hours is indicated by ○ in the viscosity stability column of Tables 3 and 4, and the composition exceeding 10 poises. Similarly, the viscosity stability column in Tables 3 and 4 is indicated by x.
[0027]
As a specific example, when the isothermal viscosity of a resin having a certain composition was measured at holding temperatures of 60 ° C., 80 ° C., 100 ° C. and 120 ° C., the results shown in the table below were obtained. In this resin composition, a viscosity of not less than 2 hours and not more than 10 poise could be maintained at a temperature between 80 ° C. and 100 ° C. A resin composition having such a temperature was rated as ◯.
Holding temperature Initial viscosity Viscosity after 2 hours 60 ° C.> 10 poise Not measured 80 ° C. <10 poise <10 poise 100 ° C. <10 poise <10 poise 120 ° C. <10 poise> 10 poise [0028]
In addition, when the same measurement is performed on a resin having a different resin composition, the results shown in the table below are obtained. In such a case, it is considered that both the initial viscosity and the viscosity after holding for 2 hours at temperatures between 60 ° C. and 80 ° C. are 10 poises or less. . As a result, if the above condition is satisfied at a certain temperature, it is evaluated as “◯”.
Holding temperature Initial viscosity Viscosity after holding for 2 hours 60 ° C.> 10 poise Not measured 80 ° C. <10 poise> 10 poise 100 ° C. <10 poise> 10 poise 120 ° C. <10 poise> 10 poise or more The resin composition that could not find a temperature that satisfies the above condition was marked with x.
[0029]
[Measurement and result of Tg]
Sample molded bodies of 60 mm (1) × 12 mm (w) × 2 mm (t) were cured and molded with the epoxy resin compositions of Examples and Comparative Examples. The hard conditions of the curing molding were 120 ° C. × 1 hour + 150 ° C. × 1 hour + 180 ° C. × 2 hours + 200 ° C. × for the epoxy resin compositions of Examples 1-12, Examples 13-17 and Comparative Examples 1-5. 3 hours, about 120 ° C. × 1 hour + 150 ° C. × 2 hours + 180 ° C. × 3 hours for the epoxy resin composition of Comparative Example 6, and 100 ° C. × 1 hour + 120 ° C. × 2 for the epoxy resin composition of Comparative Example 7 Time + 150 ° C. × 3 hours.
[0030]
The temperature-G ′ curve of the obtained sample molded body was obtained under a measurement condition of 5 ° C./STEP temperature rise and Rate 10 rad / sec by a measuring device RDA-700 made by Rheometrics, and in the glass state region. The glass transition temperature (Tg) was determined by the intersection of the tangent drawn to G ′ and the tangent drawn to G ′ in the transition region where G ′ changed greatly. The results are shown in Tables 3 and 4.
[0031]
[Bending strength, elastic modulus, elongation (3 point bending)]
Each sample molded body of 60 mm (l) × 8 mm (w) × 2 mm (t) obtained by molding the epoxy resin composition in the same manner as in the above Tg measurement was subjected to L / D by a three-point bending test using Tensilon manufactured by Orientec. (= Distance between supporting points / thickness): 16, indenter tip radius: 3.2 mm, CROSS HEAD SPEED: 2 mm / min. The bending strength, elastic modulus, and elongation were determined from the load-CROSS HEAD transfer weight curve obtained by measurement under the measurement conditions. The results are shown in Tables 3 and 4.
[0032]
[Cross section (crack, void) evaluation of FRP cured molded body]
A carbon fiber preform having a size of 100 mm × 100 mm × 10 mm was loaded into a press mold, heated and impregnated with the epoxy resin composition of each of the above examples having a viscosity of 10 poise, and then subjected to 5 kg / cm 2 press formation. A FRP sample molded body was obtained. As the carbon fiber preform, a three-dimensional woven fabric was used for the epoxy resin compositions of Examples 4 and 6, and a plain woven stitch material was used for the epoxy resin compositions of the other Examples and Comparative Examples.
[0033]
The curing conditions of this FRP cured molded body were 120 ° C. × 1 hour + 180 ° C. × 2 hours + 200 ° C. × 2 hours for the epoxy resin compositions of Examples 1-12, Examples 13-17, and Comparative Examples 1-5. For the epoxy resin composition of Comparative Example 6, 120 ° C. × 1 hour + 150 ° C. × 2 hours + 180 ° C. × 3 hours, and for the epoxy resin composition of Comparative Example 7, 100 ° C. × 1 hour + 120 ° C. × 2 hours + 150 ° C x 3 hours.
[0034]
The cross section after the obtained FRP sample molded body was cut and polished was observed with a microscope, and the occurrence of cracks and voids was observed. As a result, Table 3 and Table 4 show the case where no cracks or voids are generated, ◯ for a little, and △ for a little, and X for a little.
[0035]
[Table 3]
Figure 0003631543
[0036]
[Table 4]
Figure 0003631543
[0037]
As described above, the physical properties of the cured resins by the epoxy resin compositions of Examples 1 to 11 were good, and no cracks or voids were generated in the FRP molded body using the fiber reinforcing material by the preform.
[0038]
On the other hand, the occurrence of cracks was observed in the FRP molded body made of the epoxy resin composition of Comparative Example 1, and the occurrence of cracks was slightly observed in the FRP molded body made of the epoxy resin composition of Comparative Example 2. It was. Furthermore, the epoxy resin composition of Comparative Example 3 had poor viscosity stability, and voids were generated in the FRP molded product made of the epoxy resin composition. Further, the cured molded body of the epoxy resin composition of Comparative Example 4 has extremely low bending strength and elastic modulus, the cured molded body of the epoxy resin composition of Comparative Example 5 has low elongation, and the FRP molded body has cracks. Had occurred.
[0039]
The physical properties of the cured molded bodies of the epoxy resin compositions of Examples 12 to 17 are as good as those of the epoxy resin compositions of Examples 1 to 11, and FRP molding using a carbon fiber reinforcement by a preform. There were no cracks or voids in the body.
[0040]
【The invention's effect】
According to the epoxy resin composition of the present invention, it can be molded into a cured molded article having excellent physical properties, and when used as a matrix resin for a fiber reinforced composite material, cracks and voids are generated during molding. It can be formed into very few FRP molded bodies.

Claims (1)

ビスフェノール型エポキシ樹脂(A)100重量部、ナフタレン骨格を具備する2官能エポキシ樹脂(B)50〜250重量部、粒径0.5μm以下の架橋ゴム微粒子(C)5〜60重量部、及びジアミノジフェニルスルホン(D)からなり、その硬化物のTgが180℃以上であって、しかも10ポイズ以下の粘度に2時間以上保持することが可能なことを特徴とするエポキシ樹脂組成物。100 parts by weight of a bisphenol type epoxy resin (A), 50 to 250 parts by weight of a bifunctional epoxy resin (B) having a naphthalene skeleton, 5 to 60 parts by weight of crosslinked rubber fine particles (C) having a particle size of 0.5 μm or less, and diamino An epoxy resin composition comprising a diphenylsulfone (D), wherein the cured product has a Tg of 180 ° C. or more and can be maintained at a viscosity of 10 poise or less for 2 hours or more.
JP32252695A 1995-11-17 1995-11-17 Epoxy resin composition Expired - Lifetime JP3631543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32252695A JP3631543B2 (en) 1995-11-17 1995-11-17 Epoxy resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32252695A JP3631543B2 (en) 1995-11-17 1995-11-17 Epoxy resin composition

Publications (2)

Publication Number Publication Date
JPH09137044A JPH09137044A (en) 1997-05-27
JP3631543B2 true JP3631543B2 (en) 2005-03-23

Family

ID=18144657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32252695A Expired - Lifetime JP3631543B2 (en) 1995-11-17 1995-11-17 Epoxy resin composition

Country Status (1)

Country Link
JP (1) JP3631543B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014049028A2 (en) 2012-09-26 2014-04-03 Hexcel Composites Limited Resin composition and composite structure containing resin

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6620510B1 (en) 1998-12-25 2003-09-16 Mitsubishi Rayon Co., Ltd. Epoxy resin composition, prepreg, and roll made of resin reinforced with reinforcing fibers
WO2003005118A1 (en) * 2001-07-02 2003-01-16 Loctite Corporation Epoxy-based composition
GB2460050A (en) * 2008-05-14 2009-11-18 Hexcel Composites Ltd Epoxy composite
WO2011039879A1 (en) * 2009-10-01 2011-04-07 株式会社Ihiエアロスペース Matrix resin composition for fiber-reinforced plastics, and fiber-reinforced plastic structures

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014049028A2 (en) 2012-09-26 2014-04-03 Hexcel Composites Limited Resin composition and composite structure containing resin
US9695312B2 (en) 2012-09-26 2017-07-04 Hexcel Composites Limited Resin composition and composite structure containing resin

Also Published As

Publication number Publication date
JPH09137044A (en) 1997-05-27

Similar Documents

Publication Publication Date Title
JPH09137043A (en) Epoxy resin composition
US7208228B2 (en) Epoxy resin for fiber reinforced composite materials
EP1734069B1 (en) Composite material
JP2007126637A (en) Resin composition, cured product of resin, prepreg and fiber-reinforced composite material
JP4687167B2 (en) Epoxy resin composition, prepreg and fiber reinforced composite material
KR20210013039A (en) Towpreg and its manufacturing method, and pressure vessel manufacturing method
JP2006131920A (en) Epoxy resin composition and prepreg made with the epoxy resin composition
JP3631543B2 (en) Epoxy resin composition
WO2011149556A2 (en) Composites
JP2010174073A (en) Epoxy resin composition for fiber-reinforced composite material and fiber-reinforced composite material using the same
JP2021116404A (en) Tow-preg
JP2604778B2 (en) Matrix resin composition
JP2002145986A (en) Epoxy resin composition and prepreg using the epoxy resin composition
US5128425A (en) Epoxy resin composition for use in carbon fiber reinforced plastics, containing amine or amide based fortifiers
JPH09216958A (en) Prepreg
JPH06329763A (en) Epoxy resin composition
JP2000191746A (en) Epoxy resin composition
JPH0778138B2 (en) Resin composition for fiber reinforced prepreg
JP2011057851A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JPH0827360A (en) Epoxy resin composition and fiber-reinforced composite material
JP3345963B2 (en) Epoxy resin composition for yarn prepreg and yarn prepreg
JP2008231288A (en) Epoxy resin composition for fiber-reinforced composite material, prepreg and fiber-reinforced composite material
JP2003096163A (en) Epoxy resin composition and prepreg made by using the epoxy resin composition
JP2006124555A (en) Epoxy resin composition for fiber-reinforced composite material, prepreg and fiber-reinforced composite material
JP2002020457A (en) Epoxy resin composition and prepreg therewith

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term