JP3630191B2 - Organic thin film light emitting device - Google Patents

Organic thin film light emitting device Download PDF

Info

Publication number
JP3630191B2
JP3630191B2 JP23366395A JP23366395A JP3630191B2 JP 3630191 B2 JP3630191 B2 JP 3630191B2 JP 23366395 A JP23366395 A JP 23366395A JP 23366395 A JP23366395 A JP 23366395A JP 3630191 B2 JP3630191 B2 JP 3630191B2
Authority
JP
Japan
Prior art keywords
light emitting
thin film
organic thin
emitting device
compound represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23366395A
Other languages
Japanese (ja)
Other versions
JPH0978059A (en
Inventor
正志 山崎
洋太郎 白石
昌美 黒田
春雄 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP23366395A priority Critical patent/JP3630191B2/en
Publication of JPH0978059A publication Critical patent/JPH0978059A/en
Application granted granted Critical
Publication of JP3630191B2 publication Critical patent/JP3630191B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、各種表示装置の発光源として用いられる有機薄膜発光素子に係り、特に電子注入層あるいは発光層に用いられる物質に関する。
【0002】
【従来の技術】
従来のブラウン管に代わるフラットディスプレイの需要の急増に伴い、各種表示素子の開発及び実用化が精力的に進められている。エレクトロルミネッセンス素子(以下EL素子とする)もこうしたニ−ズに即するものであり、特に全固体の自発発光素子として、他のディスプレイにはない高解像度及び高視認性により注目を集めている。
【0003】
現在実用化されているものは、発光層に主にZnS/Mn系を用いた無機材料からなるEL素子である。しかしながらこの種の無機EL素子は交流駆動であり、駆動電圧が200V程度以上と高いため、駆動方法が複雑となり製造コストが高い、また実用上十分な発光能を有する青色発光材料の開発が未だ見出されていないため、フルカラ−化が困難であるなどの問題点を抱えている。
【0004】
これに対して、有機材料を用いた有機発光素子は、発光に必要な駆動電圧が大幅に低減でき、かつ各種発光材料の適応によりフルカラ−化の可能性を充分に持つことから、近年研究が活発化している(例えば米国特許3,530,325号、 Mol. Cryst. Liq. Cryst., 135, 355(1986))。その中でも発光効率を向上させる目的で陽極/正孔注入層/発光層/負極からなる積層型の有機薄膜発光素子に、特定有機化合物からなる発光層と特定有機化合物からなる正孔注入層の積層薄膜を用いて、10V以下の印加電圧で1,000cd/m2 以上の輝度が得られたという報告(Appl.Phys.Lett., 51, 913,(1987),特開昭57─51781号公報,特開昭59─194393号公報) がなされて以来、研究に拍車がかけられた。
【0005】
また一層の性能向上を目指して、負極に用いる金属材料を最適化した素子(特開昭63─264692号公報,特開平2─15595号公報),発光層として特定有機化合物からなるホスト材料中にレーザー色素をドープした素子(J. Appl. Phys., 65, 3610(1989),米国特許4,769,292号),特定有機化合物からなる電子注入層をさらに設けて陽極/正孔注入層/発光層/電子注入層/負極の積層型とした3原色の発光素子(Jpn. J. Appl. Phys., 27, 4, 713(1988))などの試みがなされている。
【0006】
【発明が解決しようとする課題】
以上のように有機薄膜発光素子は高輝度発光,低電圧駆動,三原色発光などフルカラー表示デバイスの可能性を強く示唆しているものの、実用化には多くの課題が残されている。特に連続駆動時の特性劣化(詳しくは所謂ダークスポットの発生と成長に伴う表示品質の低下,輝度の経時変化)は解決せねばならない課題である。また他の表示方式と競合しうる消費電力、耐候性など諸性能の向上も課題として挙げられる。
【0007】
これら諸問題の原因の一つとして、有機化合物を用いた薄膜の機械的熱的不安定性および光―電子的機能の不足が指摘されている(例えばIEICE Technical Report, OME-92-9(1992),日本学振光電相互変換第 125委第11回EL分科会資料, 7(1994))。
この発明は上述の点に鑑みてなされその目的は、薄膜状態での機械的熱的安定性に優れる上に、光電変換能や電荷注入性/輸送能の良好な有機物質を提供することにより、連続駆動時の特性劣化の少ない有機薄膜発光素子を提供することにある。
【0008】
【課題を解決するための手段】
上述の目的はこの発明によれば、下記の個の化学式のいずれかで表されるチアジアゾール系化合物を電子注入層または発光層に含有することにより達成される。
【0009】
【化4】
【0010】
また、上述の目的はこの発明によれば、下記の化学式で表されるジアミン化合物と、下記一般式で表されるチアジアゾール系化合物とを共蒸着して混合膜として形成される発光層を有することにより達成される。
【0011】
【化5】
【0012】
【化6】
〔式中Ar1 ,Ar2 は置換基を有しても良いアリール基または複素環基を表す。〕
一般式で表されるチアジアゾール系化合物の具体例がそれぞれ化学式(1)ないし化学式(91)に示される。
【0013】
【化7】
【0014】
【化8】
【0015】
【化9】
【0016】
【化10】
【0017】
【化11】
【0018】
【化12】
【0019】
一般式に示したチアジアゾール系化合物は、例えばヒドラジド化合物と酸クロライド化合物をピリジン還流下に反応させて前駆体を合成し、次いで得られた前駆体とLawesson試薬をトルエン還流下に反応させる二段階反応で合成され、一般的な分離精製手法によって容易に精製することができる。
【0020】
【化13】
【0021】
一般式に示されるチアジアゾール系化合物は電子注入層に用いたときに陰極から発光層への電子注入性/輸送能を向上させる。
一般式に示されるチアジアゾール系化合物は発光層に用いたときに電子注入性/輸送能を向上させる。この際に発光物質としても機能するものがある。
またチアジアゾール系化合物は融点および結晶化点が高く(結晶化点は125℃以上,融点は255℃以上)、熱に起因する凝集や結晶化が生じにくい。
【0022】
【発明の実施の形態】
次にこの発明の実施例を図面に基づいて説明する。
図1はこの発明の実施例に係る有機薄膜発光素子を示す断面図である。
図2はこの発明の異なる実施例に係る有機薄膜発光素子を示す断面図である。 図3はこの発明のさらに異なる実施例に係る有機薄膜発光素子を示す断面図である。
【0023】
図4はこの発明のさらに異なる実施例に係る有機薄膜発光素子を示す断面図である。
上図で1は基板、2は陽極、3は正孔注入層、4は発光層、5は電子注入層、6は陰極、7は封止層、8は電源である。
基板1は有機薄膜発光素子の支持体であり、かつ発光を取り出す光学部材ともなるもので可視光に対して透明性が高いガラス,透明性樹脂等を用い、単一または複数の材料からなる積層体あるいは混合体,複合体であってもよい。
【0024】
陽極2は効率良く正孔を注入し、低抵抗かつ可視光に対して透明性を有し、安定性が高いことが望ましい。陽極としては金属の半透膜,インジウムスズ酸化物(ITO),酸化スズ,酸化亜鉛などの透明導電膜やポリピロール,ポリチオフェンなどの導電性高分子を用い、単一または複数種の材料からなる積層体あるいは混合体、複合体であってもよい。陽極の形成方法は抵抗加熱蒸着,電子ビーム蒸着,スパッタ, ゾルゲル, イオンプレーティングまたはキャスティング,電解重合,化学重合法が用いられる。陽極の膜厚は、発光を取り出す方向については透光性の見地から、発光波長領域での透過率が80%以上となる範囲であることが望ましい。
【0025】
正孔注入層3は正孔を効率良く輸送、注入することが必要で、可視光に対して透明であることが望ましい。正孔注入層には、イオン化ポテンシャルが大であり、且つ光学的エネルギーギャップが大である有機化合物,有機高分子化合物,無機高分子化合物等が用いられ、これらの少なくとも一つを積層体あるいは混合体、複合体として用いることができる。また正孔注入層には薄膜安定性等の他の機能性を付与し強化する目的で、他の化合物を含有せしめることもできる。正孔注入層の成膜方法としては抵抗加熱蒸着,分子線エピタキシー,スピンコート,キャスティング,LB法が用いられるが、生産性の見地から抵抗加熱蒸着法あるいはスピンコート法が好ましい。素子の動作電圧を下げる必要から正孔注入層の電界が印加される方向の膜厚は 5nmないし 100nmの範囲であることが好ましい。
【0026】
電子注入層5は電子を効率良く輸送、注入することが必要で、可視光に対して透明であることが望ましい。電子注入層にはイオン化ポテンシャルが大であり、且つ電子親和力が大である有機化合物,有機高分子化合物,無機高分子化合物等が用いられ、これらの少なくとも一つを積層体あるいは混合体、複合体として用いることができる。また電子注入層には薄膜安定性等の他の機能性を付与し強化する目的で、他の化合物を含有せしめることもできる。電子注入層の成膜方法としては抵抗加熱蒸着,分子線エピタキシー,スピンコート,キャスティング,LB法が用いられるが、生産性の見地から抵抗加熱蒸着法あるいはスピンコート法が好ましい。素子の動作電圧を下げる必要から、電子注入層の電界が印加される方向の膜厚は 5nmないし 100nmの範囲であることが好ましい。
【0027】
発光層4は正孔注入層3または陽極2から注入される正孔と、陰極6または電子注入層5から注入される電子との再結合により効率良く発光することが望ましい。発光層は、可視領域に発光帯をする必要があり、一般的には近紫外から可視領域に蛍光帯を有しかつ高い蛍光量子効率を有する有機化合物,有機高分子化合物,無機高分子化合物等が用いられ、これらの少なくとも一つを積層体あるいは混合体、複合体として用いることができる。また電子注入層には薄膜安定性等の他の機能性を付与し強化する目的で、他の化合物を含有せしめることもできる。
【0028】
特に上述の正孔注入層もしくは電子注入層に用いられる化合物の少なくとも一つを発光層に含有せしめるか、または上述の正孔注入性能または電子注入性能の電荷注入性能と発光性能を具備する物質を発光層に含有せしめることで、電荷注入性の良好な発光層とすることも可能である。発光層の成膜方法としては抵抗加熱蒸着,分子線エピタキシー,スピンコート,キャスティング,LB法などが用いられるが、生産性の見地から抵抗加熱蒸着法またはスピンコート法が好ましい。素子の動作電圧を下げる必要から、正孔注入層の電界が印加される方向の膜厚は 5nmないし 100nmの範囲であることが好ましい。
【0029】
陰極6は電子を効率良く有機層に注入することが必要である。陰極6としては仕事関数の小さいMg,Ag,In,Ca,Sc,Al等およびこれらの合金、複合体、積層体が用いられる。陰極の成膜方法としては抵抗加熱蒸着,電子ビーム蒸着,スパッタ,イオンプレーティング法などが用いられる。
封止層7は有機薄膜発光素子の最外層に位置し、素子への外部からの酸素、水分等の侵入を防止し、かつ陰極6の破損、剥離を抑制するための補強構造として機能する。封止層は、疎水性かつ酸素,水の透過性が低い薄膜を形成する有機化合物,有機高分子化合物,無機高分子化合物,金属酸化物,金属,無機非晶質の少なくとも一つを積層体あるいは混合体、複合体の形で用いる事ができる。封止層の形成方法としては抵抗加熱蒸着,分子線エピタキシー,スピンコート,キャスティング,LB,キャン封止法などが用いられるが、陰極6の酸化あるいは積層素子のガス吸収を最小限に抑える必要があるため、少なくとも1層以上の封止層を、陰極6の成膜直後に真空を破ることなく連続して成膜することが好ましい。
【0030】
【実施例】
実施例1
図1はこの発明の実施例に係る有機薄膜発光素子を示す断面図である。
膜厚1,000ÅのITOパターンを陽極2として設けた50mm角のガラス(NA45:NHテクノグラス製)基板1を洗浄した後、抵抗加熱蒸着装置内の基板ホルダーに装着し約10-6Paまで真空排気した後、150℃で2時間の基板ベーキングを行った。その後基板を50℃まで冷却し、温度と真空度を安定させて成膜を開始した。
【0031】
発光層4として化学式IIに示すジアミン化合物を、抵抗加熱式蒸発源にて加熱し、成膜速度を約3Å/秒として500Å厚さに形成した。続いて電子注入層5として化学式14に示すチアジアゾール系化合物を抵抗加熱式蒸発源にて加熱し、成膜速度を約1Å/秒として400Å厚さに形成した。さらに続いて陰極6としてMgIn合金(In含有率約5体積%)を共蒸着法により2,000Å厚さに形成した。さらに続いて封止層7としてフッ素樹脂をガラスウールに含浸させた試料を、抵抗加熱式蒸発源にて加熱し、成膜速度を約20Å/秒として5,000Å厚さに形成した。以上の全成膜工程は、5×10-6Pa以下の真空を維持して連続して行った。以上の方法で作製された積層試料を給電線を配したガラス容器内に装着し、窒素ガスで置換したのちに該容器を封じ切って最終封止をおこなった。
【0032】
【化14】
【0033】
実施例2
電子注入層として化学式26に示したチアジアゾール系化合物を用いる他は実施例1と同様にして有機薄膜発光素子を作製した。
実施例3
電子注入層として化学式29に示したチアジアゾール系化合物を用いる他は実施例1と同様にして有機薄膜発光素子を作製した。
参考例
電子注入層として化学式77に示したチアジアゾール系化合物を用いる他は実施例1と同様にして有機薄膜発光素子を作製した。
【0034】
実施例1〜3、参考例に従って作製した有機薄膜発光素子を直流電源に接続し、初期輝度を100cd/mとして500時間の連続駆動試験を実施した。各素子の発光色と、該試験開始時の輝度に対する終了時の輝度の保持率、および素子面積4mmに対する非発光欠陥部(所謂ダークスポット)の面積率を表1に示す。
【0035】
【表1】
【0036】
発光スペクトルから得られた有機薄膜発光素子の発光は化学式IIに示すジアミン化合物に由来することが確認された。以上の結果から化学式IIに示すジアミン化合物は正孔注入性発光物質として機能していること、電子注入層5に用いたチアジアゾール系化合物は有機薄膜発光素子の薄膜安定性と電子注入性を良好にしていることがわかる。
実施例5
図2はこの発明の異なる実施例に係る有機薄膜発光素子を示す断面図である(尚、本明細書において、実施例4は欠番とする)
【0037】
膜厚1,000ÅのITOパターンを陽極2として設けた50mm角のガラス(NA45:NHテクノグラス製)基板1を洗浄した後、抵抗加熱蒸着装置内の基板ホルダーに装着し約10-6Paまで真空排気した後、150℃で2時間の基板ベーキングを行った。その後基板を50℃まで冷却し、温度と真空度を安定させて成膜を開始した。
【0038】
正孔注入層3として化学式III に示すジアミン化合物を抵抗加熱式蒸発源にて加熱し、成膜速度を約3Å/秒として500Å厚さに形成した。続いて発光層4として化学式32に示したチアジアゾール系化合物を抵抗加熱式蒸発源にて加熱し、成膜速度を約1Å/秒として400Å厚さに形成した。さらに続けて陰極6としてMgIn合金(In含有率約5体積%)を共蒸着法により2,000Å厚さに形成した。さらに続けて封止層7としてフッ素樹脂をガラスウールに含浸させた試料を抵抗加熱式蒸発源にて加熱し、成膜速度を約20Å/秒として5,000Å厚さに形成した。以上の全成膜工程は、5×10-6Pa以下の真空を維持して連続して行った。以上のようにして作製された積層試料を給電線を配したガラス容器内に装着し、窒素ガスで置換したのちに該容器を封じ切って最終封止をおこなった。
【0039】
【化15】
【0040】
実施例6
発光層4として化学式37に示したチアジアゾール系化合物を用いる他は実施例5と同様にして有機薄膜発光素子を作製した。
実施例7
発光層4として化学式47に示したチアジアゾール系化合物を用いる他は実施例5と同様にして有機薄膜発光素子を作製した。
実施例8
発光層4として化学式79に示したチアジアゾール系化合物を用いる他は実施例5と同様にして有機薄膜発光素子を作製した。
【0041】
実施例5〜8に従って作製した有機薄膜発光素子を直流電源に接続し、初期輝度を100cd/m2 として500時間の連続駆動試験を実施した。各素子の発光色と該試験開始時の輝度に対する終了時の輝度の保持率および素子面積4mm2 に対する非発光欠陥部(所謂ダークスポット)の面積率を表2に示す。
【0042】
【表2】
【0043】
発光スペクトルから得られた有機薄膜発光素子の発光はチアジアゾール系化合物に由来することが確認された。以上の結果からチアジアゾール系化合物は発光物質として機能していること、有機薄膜発光素子の薄膜安定性と電子注入性を良好にしていることがわかる。
実施例9
図3はこの発明のさらに異なる実施例に係る有機薄膜発光素子を示す断面図である。
【0044】
膜厚1,000ÅのITOパターンを陽極2として設けた50mm角のガラス(NA45:NHテクノグラス製)基板1を洗浄した後、抵抗加熱蒸着装置内の基板ホルダーに装着し約10-6Paまで真空排気した後150℃で2時間の基板ベーキングを行った。その後基板を50℃まで冷却し、温度と真空度を安定させて成膜を開始した。
【0045】
発光層4として化学式IIに示すジアミン化合物と、化学式26に示すチアジアゾール系化合物をそれぞれ別の抵抗加熱式蒸発源にて加熱し、成膜速度をそれぞれ約3Å/秒として同時共蒸着を行い、混合膜を800Å厚さに形成した。続いて陰極6としてMgIn合金(In含有率約5体積%)を共蒸着法により2,000Å厚さに形成した。さらに続いて封止層7としてフッ素樹脂をガラスウールに含浸させた試料を抵抗加熱式蒸発源にて加熱し、成膜速度を約20Å/秒として5,000Å厚さに形成した。以上の全成膜工程は、5×10-6Pa以下の真空を維持して連続して行った。以上のようにして作製された積層試料を給電線を配したガラス容器内に装着し、窒素ガスで置換したのちに該容器を封じ切って最終封止を行った。
実施例10
化学式26に示すチアジアゾール系化合物に替えて化学式37に示すチアジアゾール系化合物を用いる他は実施例9と同様にして有機薄膜発光素子を作製した。
実施例11
化学式26に示すチアジアゾール系化合物に替えて化学式77に示すチアジアゾール系化合物を用いる他は実施例9と同様にして有機薄膜発光素子を作製した。
比較例1
化学式IIで示されるジアミン化合物を抵抗加熱式蒸発源にて加熱し、成膜速度を約4Å/秒として800Å厚さに形成して発光層4を形成する他は実施例9と同様にして有機薄膜発光素子を作製した。
【0046】
実施例9〜11および比較例1に従って作製した有機薄膜発光素子を直流電源に接続し、初期輝度を100cd/m2 として500時間の連続駆動試験を実施した。各素子の発光色と該試験開始時の輝度に対する終了時の輝度の保持率、ならびに素子面積4mm2に対する非発光欠陥部(所謂ダークスポット)の面積率を表3に示す。
【0047】
【表3】
【0048】
比較例1では最高輝度35cd/m2 であったため、初期輝度25cd/m2として試験を実施した。
発光スペクトルから得られた有機薄膜発光素子の発光は化学式IIに示すジアミン化合物に由来することが確認された。以上の結果から化学式IIに示すジアミン化合物は正孔注入性発光物質として機能していること、チアジアゾール系化合物は比較例1との対比から有機薄膜発光素子の薄膜安定性と電子注入性を良好にしていることがわかる。
【0049】
【発明の効果】
この発明によれば一般式で表されるチアジアゾール系化合物を有機薄膜発光素子の電子注入層または発光層に含有するので、薄膜の機械的熱的安定性とともに電子注入性/輸送能が向上し、連続駆動時に特性劣化の少ない有機薄膜発光素子が得られる。
【図面の簡単な説明】
【図1】この発明の実施例に係る有機薄膜発光素子を示す断面図
【図2】この発明の異なる実施例に係る有機薄膜発光素子を示す断面図
【図3】この発明のさらに異なる実施例に係る有機薄膜発光素子を示す断面図
【図4】この発明のさらに異なる実施例に係る有機薄膜発光素子を示す断面図
【符号の説明】
1 基板
2 陽極
3 正孔注入層
4 発光層
5 電子注入層
6 陰極
7 封止層
8 電源
[0001]
[Industrial application fields]
The present invention relates to an organic thin film light emitting element used as a light source of various display devices, and more particularly to a material used for an electron injection layer or a light emitting layer.
[0002]
[Prior art]
With the rapid increase in demand for flat displays replacing conventional cathode ray tubes, various display elements have been developed and put into practical use. Electroluminescence elements (hereinafter referred to as EL elements) are also in line with these needs, and are attracting attention as high-resolution and high-visibility that are not found in other displays, particularly as all-solid-state spontaneous light-emitting elements.
[0003]
What is currently put into practical use is an EL element made of an inorganic material mainly using a ZnS / Mn system for a light emitting layer. However, since this type of inorganic EL element is driven by alternating current and the driving voltage is as high as about 200 V or more, the driving method is complicated, the manufacturing cost is high, and the development of a blue light emitting material having sufficient light emitting ability for practical use has not yet been seen. Since it has not been issued, it has problems such as difficulty in full colorization.
[0004]
On the other hand, organic light emitting devices using organic materials have recently been researched because the driving voltage required for light emission can be greatly reduced, and the possibility of full coloration is fully achieved by adapting various light emitting materials. (For example, US Pat. No. 3,530,325, Mol. Cryst. Liq. Cryst., 135, 355 (1986)). Among them, for the purpose of improving luminous efficiency, a laminated organic thin film light emitting device composed of anode / hole injection layer / light emitting layer / negative electrode is laminated with a light emitting layer made of a specific organic compound and a hole injection layer made of a specific organic compound. A report that a luminance of 1,000 cd / m 2 or more was obtained with an applied voltage of 10 V or less using a thin film (Appl. Phys. Lett., 51, 913, (1987), Japanese Patent Laid-Open No. 57-51781) , JP 59-194393), research has been spurred on.
[0005]
Further, in order to further improve the performance, an element in which a metal material used for the negative electrode is optimized (Japanese Patent Laid-Open Nos. 63-264692 and 2-15595), and a host material composed of a specific organic compound as a light emitting layer is included. An element doped with a laser dye (J. Appl. Phys., 65, 3610 (1989), US Pat. No. 4,769,292), an electron injection layer made of a specific organic compound, and an anode / hole injection layer / Attempts have been made to produce a light emitting element of three primary colors (Jpn. J. Appl. Phys., 27, 4, 713 (1988)), which is a laminated type of light emitting layer / electron injection layer / negative electrode.
[0006]
[Problems to be solved by the invention]
As described above, although the organic thin film light emitting device strongly suggests the possibility of a full color display device such as high luminance light emission, low voltage drive, and three primary color light emission, many problems remain in practical use. In particular, characteristic deterioration during continuous driving (specifically, so-called dark spot generation and deterioration of display quality due to growth, luminance change with time) is a problem to be solved. Further, improvement of various performances such as power consumption and weather resistance that can compete with other display methods can be cited as problems.
[0007]
As one of the causes of these problems, mechanical thermal instability of thin films using organic compounds and lack of opto-electronic functions have been pointed out (for example, IEICE Technical Report, OME-92-9 (1992)). , Nippon Gakken Photoelectric Interconversion 125th Committee 11th EL Subcommittee Data, 7 (1994)).
The present invention has been made in view of the above points, and its object is to provide an organic material having excellent mechanical and thermal stability in a thin film state and having good photoelectric conversion ability and charge injection / transport ability. An object of the present invention is to provide an organic thin-film light-emitting element with little characteristic deterioration during continuous driving.
[0008]
[Means for Solving the Problems]
According to the present invention, the above object is achieved by containing a thiadiazole-based compound represented by any of the following six chemical formulas in the electron injection layer or the light emitting layer.
[0009]
[Formula 4]
[0010]
In addition, according to the present invention, the above object has a light emitting layer formed as a mixed film by co-evaporating a diamine compound represented by the following chemical formula and a thiadiazole compound represented by the following general formula. Is achieved.
[0011]
[Chemical formula 5]
[0012]
[Chemical 6]
[In the formula, Ar 1 and Ar 2 represent an aryl group or a heterocyclic group which may have a substituent. ]
Specific examples of the thiadiazole-based compound represented by the general formula are shown in chemical formula (1) to chemical formula (91), respectively.
[0013]
[Chemical 7]
[0014]
[Chemical 8]
[0015]
[Chemical 9]
[0016]
[Chemical Formula 10]
[0017]
Embedded image
[0018]
Embedded image
[0019]
The thiadiazole compound shown in the general formula is a two-step reaction in which, for example, a hydrazide compound and an acid chloride compound are reacted under reflux of pyridine to synthesize a precursor, and then the obtained precursor and Lawesson's reagent are reacted under reflux of toluene. And can be easily purified by a general separation and purification method.
[0020]
Embedded image
[0021]
When used in the electron injection layer, the thiadiazole compound represented by the general formula improves the electron injection property / transport ability from the cathode to the light emitting layer.
The thiadiazole-based compound represented by the general formula improves the electron injection / transport ability when used in the light emitting layer. At this time, there is a substance that also functions as a light-emitting substance.
In addition, thiadiazole compounds have a high melting point and crystallization point (crystallization point is 125 ° C. or higher, melting point is 255 ° C. or higher), and aggregation and crystallization due to heat hardly occur.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view showing an organic thin film light emitting device according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing an organic thin film light emitting device according to another embodiment of the present invention. FIG. 3 is a cross-sectional view showing an organic thin film light emitting device according to still another embodiment of the present invention.
[0023]
FIG. 4 is a cross-sectional view showing an organic thin film light emitting device according to still another embodiment of the present invention.
In the figure, 1 is a substrate, 2 is an anode, 3 is a hole injection layer, 4 is a light emitting layer, 5 is an electron injection layer, 6 is a cathode, 7 is a sealing layer, and 8 is a power source.
The substrate 1 is a support for an organic thin-film light-emitting element, and also serves as an optical member for extracting emitted light. The substrate 1 is made of a single material or a plurality of materials using glass, a transparent resin, etc. that are highly transparent to visible light. It may be a body, a mixture, or a complex.
[0024]
It is desirable that the anode 2 efficiently injects holes, has low resistance, is transparent to visible light, and has high stability. The anode is a semi-permeable metal film, a transparent conductive film such as indium tin oxide (ITO), tin oxide, or zinc oxide, or a conductive polymer such as polypyrrole or polythiophene. It may be a body, a mixture or a complex. The anode can be formed by resistance heating evaporation, electron beam evaporation, sputtering, sol-gel, ion plating or casting, electrolytic polymerization, or chemical polymerization. The film thickness of the anode is preferably in the range in which the transmittance in the emission wavelength region is 80% or more from the viewpoint of translucency in the direction of extracting light emission.
[0025]
The hole injection layer 3 needs to efficiently transport and inject holes, and is preferably transparent to visible light. For the hole injection layer, an organic compound, an organic polymer compound, an inorganic polymer compound or the like having a large ionization potential and a large optical energy gap is used, and at least one of these is laminated or mixed. It can be used as a body or a complex. Further, the hole injection layer may contain other compounds for the purpose of imparting and strengthening other functions such as thin film stability. As a method for forming the hole injection layer, resistance heating vapor deposition, molecular beam epitaxy, spin coating, casting, and LB method are used. From the viewpoint of productivity, the resistance heating vapor deposition method or the spin coating method is preferable. In order to reduce the operating voltage of the device, the thickness of the hole injection layer in the direction in which the electric field is applied is preferably in the range of 5 nm to 100 nm.
[0026]
The electron injection layer 5 needs to efficiently transport and inject electrons, and is preferably transparent to visible light. For the electron injection layer, an organic compound, an organic polymer compound, an inorganic polymer compound or the like having a large ionization potential and a large electron affinity is used, and at least one of them is a laminate, mixture, or composite. Can be used as Further, the electron injection layer may contain other compounds for the purpose of imparting and strengthening other functionalities such as thin film stability. As a method for forming the electron injection layer, resistance heating vapor deposition, molecular beam epitaxy, spin coating, casting, and LB method are used. From the viewpoint of productivity, the resistance heating vapor deposition method or the spin coating method is preferable. In order to reduce the operating voltage of the device, the thickness of the electron injection layer in the direction in which the electric field is applied is preferably in the range of 5 nm to 100 nm.
[0027]
The light emitting layer 4 desirably emits light efficiently by recombination of holes injected from the hole injection layer 3 or the anode 2 and electrons injected from the cathode 6 or the electron injection layer 5. The light emitting layer needs to have a light emission band in the visible region, and generally has an organic compound, an organic polymer compound, an inorganic polymer compound, etc. having a fluorescent band from the near ultraviolet to the visible region and having a high fluorescence quantum efficiency. And at least one of these can be used as a laminate, mixture, or composite. Further, the electron injection layer may contain other compounds for the purpose of imparting and strengthening other functionalities such as thin film stability.
[0028]
In particular, the light emitting layer contains at least one of the compounds used for the hole injection layer or the electron injection layer described above, or a substance having charge injection performance and light emission performance of the hole injection performance or electron injection performance described above. By containing it in the light emitting layer, a light emitting layer with good charge injection property can be obtained. As a method for forming the light emitting layer, resistance heating vapor deposition, molecular beam epitaxy, spin coating, casting, LB method, and the like are used. From the viewpoint of productivity, the resistance heating vapor deposition method or the spin coating method is preferable. In order to reduce the operating voltage of the device, the thickness of the hole injection layer in the direction in which the electric field is applied is preferably in the range of 5 nm to 100 nm.
[0029]
The cathode 6 needs to efficiently inject electrons into the organic layer. As the cathode 6, Mg, Ag, In, Ca, Sc, Al or the like having a small work function and alloys, composites, and laminates thereof are used. As a method for forming the cathode, resistance heating evaporation, electron beam evaporation, sputtering, ion plating, or the like is used.
The sealing layer 7 is located in the outermost layer of the organic thin film light emitting element, and functions as a reinforcing structure for preventing entry of oxygen, moisture, and the like from the outside into the element, and suppressing damage and peeling of the cathode 6. The sealing layer is a laminate of at least one of an organic compound, an organic polymer compound, an inorganic polymer compound, a metal oxide, a metal, and an inorganic amorphous material that forms a thin film that is hydrophobic and has low permeability to oxygen and water Alternatively, it can be used in the form of a mixture or a complex. As the forming method of the sealing layer, resistance heating vapor deposition, molecular beam epitaxy, spin coating, casting, LB, can sealing method, etc. are used, but it is necessary to minimize oxidation of the cathode 6 or gas absorption of the laminated element. Therefore, it is preferable to form at least one sealing layer continuously without breaking the vacuum immediately after the cathode 6 is formed.
[0030]
【Example】
Example 1
FIG. 1 is a cross-sectional view showing an organic thin film light emitting device according to an embodiment of the present invention.
After cleaning a 50 mm square glass (NA45: NH Techno Glass) substrate 1 provided with an ITO pattern having a thickness of 1,000 mm as the anode 2, it is mounted on a substrate holder in a resistance heating vapor deposition apparatus up to about 10 -6 Pa. After evacuation, the substrate was baked at 150 ° C. for 2 hours. Thereafter, the substrate was cooled to 50 ° C., the temperature and the degree of vacuum were stabilized, and film formation was started.
[0031]
A diamine compound represented by Chemical Formula II was heated as a light emitting layer 4 with a resistance heating evaporation source to form a film thickness of 500 mm with a film forming rate of about 3 mm / second. Subsequently, a thiadiazole compound represented by Chemical Formula 14 was heated as a resistance heating evaporation source as the electron injection layer 5 to form a thickness of 400 mm at a film formation rate of about 1 mm / second. Subsequently, an MgIn alloy (In content of about 5% by volume) was formed as a cathode 6 to a thickness of 2,000 mm by co-evaporation. Subsequently, a sample obtained by impregnating glass wool with a fluororesin as the sealing layer 7 was heated with a resistance heating evaporation source to form a thickness of 5,000 mm at a film forming rate of about 20 mm / sec. All the film forming steps described above were continuously performed while maintaining a vacuum of 5 × 10 −6 Pa or less. The laminated sample produced by the above method was mounted in a glass container provided with a power supply line, and after replacing with nitrogen gas, the container was sealed and final sealing was performed.
[0032]
Embedded image
[0033]
Example 2
An organic thin film light emitting device was fabricated in the same manner as in Example 1 except that the thiadiazole compound represented by Chemical Formula 26 was used as the electron injection layer.
Example 3
An organic thin film light emitting device was produced in the same manner as in Example 1 except that the thiadiazole compound shown in Chemical Formula 29 was used as the electron injection layer.
Reference Example An organic thin film light emitting device was produced in the same manner as in Example 1 except that the thiadiazole compound represented by Chemical Formula 77 was used as the electron injection layer.
[0034]
Examples 1 to 3, organic thin-film light-emitting devices manufactured according to Reference Examples were connected to a DC power source, and a continuous driving test for 500 hours was performed with an initial luminance of 100 cd / m 2 . Table 1 shows the luminescent color of each element, the retention ratio of luminance at the end of the test relative to the luminance at the start of the test, and the area ratio of non-luminous defect portions (so-called dark spots) with respect to the element area of 4 mm 2 .
[0035]
[Table 1]
[0036]
It was confirmed that the light emission of the organic thin film light-emitting element obtained from the emission spectrum was derived from the diamine compound represented by Chemical Formula II. From the above results, the diamine compound represented by the chemical formula II functions as a hole-injecting light-emitting substance, and the thiadiazole-based compound used for the electron-injecting layer 5 improves the thin-film stability and electron-injecting property of the organic thin-film light-emitting device. You can see that
Example 5
FIG. 2 is a cross-sectional view showing an organic thin film light emitting device according to another embodiment of the present invention (in the present specification, Example 4 is omitted) .
[0037]
After cleaning a 50 mm square glass (NA45: NH Techno Glass) substrate 1 provided with an ITO pattern having a thickness of 1,000 mm as the anode 2, it is mounted on a substrate holder in a resistance heating vapor deposition apparatus up to about 10 -6 Pa. After evacuation, the substrate was baked at 150 ° C. for 2 hours. Thereafter, the substrate was cooled to 50 ° C., the temperature and the degree of vacuum were stabilized, and film formation was started.
[0038]
A diamine compound represented by the chemical formula III was heated as a hole injection layer 3 by a resistance heating evaporation source to form a film thickness of 500 mm with a film forming rate of about 3 mm / second. Subsequently, the thiadiazole compound represented by Chemical Formula 32 was heated as a light emitting layer 4 with a resistance heating evaporation source to form a film thickness of 400 mm with a film forming rate of about 1 mm / second. Subsequently, an MgIn alloy (In content of about 5% by volume) was formed as a cathode 6 to a thickness of 2,000 mm by co-evaporation. Further, a sample in which glass wool was impregnated with fluororesin as the sealing layer 7 was heated with a resistance heating evaporation source to form a thickness of 5,000 mm at a film forming rate of about 20 mm / second. All the film forming steps described above were continuously performed while maintaining a vacuum of 5 × 10 −6 Pa or less. The laminated sample produced as described above was mounted in a glass container provided with a power supply line, and after replacing with nitrogen gas, the container was sealed and final sealing was performed.
[0039]
Embedded image
[0040]
Example 6
An organic thin-film light-emitting device was fabricated in the same manner as in Example 5 except that the thiadiazole compound represented by Chemical Formula 37 was used as the light-emitting layer 4.
Example 7
An organic thin film light emitting device was fabricated in the same manner as in Example 5 except that the thiadiazole compound represented by Chemical Formula 47 was used as the light emitting layer 4.
Example 8
An organic thin film light emitting device was fabricated in the same manner as in Example 5 except that the thiadiazole compound represented by Chemical Formula 79 was used as the light emitting layer 4.
[0041]
Organic thin-film light-emitting devices manufactured according to Examples 5 to 8 were connected to a DC power source, and a continuous driving test for 500 hours was performed with an initial luminance of 100 cd / m 2 . Table 2 shows the emission color of each element, the retention ratio of luminance at the end of the test relative to the luminance at the start of the test, and the area ratio of non-luminous defect portions (so-called dark spots) with respect to the element area of 4 mm2.
[0042]
[Table 2]
[0043]
It was confirmed that the light emission of the organic thin film light emitting device obtained from the emission spectrum was derived from the thiadiazole compound. From the above results, it can be seen that the thiadiazole-based compound functions as a luminescent substance, and that the thin film stability and the electron injection property of the organic thin film light emitting element are improved.
Example 9
FIG. 3 is a cross-sectional view showing an organic thin film light emitting device according to still another embodiment of the present invention.
[0044]
After cleaning a 50 mm square glass (NA45: NH Techno Glass) substrate 1 provided with an ITO pattern having a thickness of 1,000 mm as the anode 2, it is mounted on a substrate holder in a resistance heating vapor deposition apparatus up to about 10 -6 Pa. After evacuation, the substrate was baked at 150 ° C. for 2 hours. Thereafter, the substrate was cooled to 50 ° C., the temperature and the degree of vacuum were stabilized, and film formation was started.
[0045]
A diamine compound represented by Chemical Formula II and a thiadiazole-based compound represented by Chemical Formula 26 are heated as separate light-emitting evaporation sources as the light-emitting layer 4 and the film formation rate is set to about 3 mm / sec. A film was formed to a thickness of 800 mm. Subsequently, an MgIn alloy (In content of about 5% by volume) was formed as a cathode 6 to a thickness of 2,000 mm by co-evaporation. Subsequently, a sample obtained by impregnating glass wool with a fluororesin as the sealing layer 7 was heated with a resistance heating evaporation source to form a thickness of 5,000 mm at a film forming rate of about 20 mm / sec. All the film forming steps described above were continuously performed while maintaining a vacuum of 5 × 10 −6 Pa or less. The laminated sample produced as described above was mounted in a glass container provided with a power supply line, and after replacing with nitrogen gas, the container was sealed and final sealing was performed.
Example 10
An organic thin film light emitting device was produced in the same manner as in Example 9 except that the thiadiazole compound represented by Chemical Formula 37 was used instead of the thiadiazole compound represented by Chemical Formula 26.
Example 11
An organic thin film light emitting device was fabricated in the same manner as in Example 9 except that the thiadiazole compound represented by Chemical Formula 77 was used instead of the thiadiazole compound represented by Chemical Formula 26.
Comparative Example 1
The organic compound was formed in the same manner as in Example 9 except that the light-emitting layer 4 was formed by heating the diamine compound represented by the chemical formula II with a resistance heating evaporation source to form a light-emitting layer 4 with a film formation rate of about 4 mm / sec. A thin film light emitting device was fabricated.
[0046]
Organic thin-film light-emitting devices manufactured according to Examples 9 to 11 and Comparative Example 1 were connected to a DC power source, and a continuous driving test for 500 hours was performed with an initial luminance of 100 cd / m 2 . Table 3 shows the emission color of each element, the retention ratio of luminance at the end of the test relative to the luminance at the start of the test, and the area ratio of non-luminous defect portions (so-called dark spots) with respect to the element area of 4 mm 2 .
[0047]
[Table 3]
[0048]
Because it was a comparative example maximum luminance 35 cd / m 2 at 1, tests were carried out as the initial luminance 25 cd / m 2.
It was confirmed that the light emission of the organic thin film light-emitting device obtained from the emission spectrum was derived from the diamine compound represented by Chemical Formula II. From the above results, the diamine compound represented by the chemical formula II functions as a hole-injecting light-emitting substance, and the thiadiazole compound improves the thin-film stability and the electron-injecting property of the organic thin-film light-emitting element in comparison with Comparative Example 1. You can see that
[0049]
【The invention's effect】
According to this invention, since the thiadiazole-based compound represented by the general formula is contained in the electron injection layer or the light emitting layer of the organic thin film light emitting device, the electron injection property / transport ability is improved together with the mechanical and thermal stability of the thin film, An organic thin film light emitting device with little characteristic deterioration during continuous driving can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an organic thin film light emitting device according to an embodiment of the present invention. FIG. 2 is a cross sectional view showing an organic thin film light emitting device according to a different embodiment of the present invention. FIG. 4 is a cross-sectional view showing an organic thin-film light-emitting element according to another embodiment of the present invention.
DESCRIPTION OF SYMBOLS 1 Substrate 2 Anode 3 Hole injection layer 4 Light emitting layer 5 Electron injection layer 6 Cathode 7 Sealing layer 8 Power supply

Claims (2)

下記の個の化学式のいずれかで表されるチアジアゾール系化合物を電子注入層または発光層に含有することを特徴とする有機薄膜発光素子。
An organic thin film light emitting device comprising a thiadiazole compound represented by any one of the following six chemical formulas in an electron injection layer or a light emitting layer.
下記の化学式で表されるジアミン化合物と、下記一般式で表されるチアジアゾール系化合物とを共蒸着して混合膜として形成される発光層を有することを特徴とする有機薄膜発光素子。An organic thin film light-emitting element comprising a light-emitting layer formed as a mixed film by co-evaporating a diamine compound represented by the following chemical formula and a thiadiazole-based compound represented by the following general formula.
〔式中Ar[In the formula, Ar 11 ,Ar, Ar 2 2 は置換基を有しても良いアリール基または複素環基を表す。〕Represents an aryl group or a heterocyclic group which may have a substituent. ]
JP23366395A 1995-09-12 1995-09-12 Organic thin film light emitting device Expired - Lifetime JP3630191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23366395A JP3630191B2 (en) 1995-09-12 1995-09-12 Organic thin film light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23366395A JP3630191B2 (en) 1995-09-12 1995-09-12 Organic thin film light emitting device

Publications (2)

Publication Number Publication Date
JPH0978059A JPH0978059A (en) 1997-03-25
JP3630191B2 true JP3630191B2 (en) 2005-03-16

Family

ID=16958584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23366395A Expired - Lifetime JP3630191B2 (en) 1995-09-12 1995-09-12 Organic thin film light emitting device

Country Status (1)

Country Link
JP (1) JP3630191B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4472056B2 (en) * 1999-07-23 2010-06-02 株式会社半導体エネルギー研究所 Electroluminescence display device and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0978059A (en) 1997-03-25

Similar Documents

Publication Publication Date Title
US6010796A (en) Electroluminescent device
US6333521B1 (en) Oleds containing thermally stable glassy organic hole transporting materials
JP4061840B2 (en) Hole transporting compound and organic thin film light emitting device for organic thin film light emitting device
US20050276994A1 (en) Light-emitting device
JPH0963771A (en) Organic thin film luminescent element
WO2001058222A1 (en) Organic electroluminescent element and method of manufacture thereof
JPH113782A (en) El element of organic thin film
JPH1187068A (en) Organic el element and manufacture thereof
JP2004014511A (en) Organic light-emitting diode device
KR100515827B1 (en) Organic electroluminescence device
EP1195422B1 (en) Thin film el device
JPH11329732A (en) Organic thin film el element
JP3743229B2 (en) Organic thin film light emitting device and phosphor
JP3129200B2 (en) Light emitting element
WO2004045254A1 (en) Method for manufacturing organic electroluminescent display device
JPH10284252A (en) Organic el element
EP0818943B1 (en) Electroluminescent device
JP3697778B2 (en) Organic thin film light emitting device
US7029764B2 (en) Organic electroluminescent material and electroluminescent device by using the same
JP3630191B2 (en) Organic thin film light emitting device
JP2000188184A (en) Organic thin film el element and its manufacture
JP2000515926A (en) Organometallic complexes used in electroluminescent devices
JP3972584B2 (en) Organic electroluminescent device and manufacturing method thereof
JP2000173776A (en) Organic el element
JP2000091079A (en) Organic el element

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041208

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

EXPY Cancellation because of completion of term