JP3629810B2 - 投影露光装置 - Google Patents

投影露光装置 Download PDF

Info

Publication number
JP3629810B2
JP3629810B2 JP11199196A JP11199196A JP3629810B2 JP 3629810 B2 JP3629810 B2 JP 3629810B2 JP 11199196 A JP11199196 A JP 11199196A JP 11199196 A JP11199196 A JP 11199196A JP 3629810 B2 JP3629810 B2 JP 3629810B2
Authority
JP
Japan
Prior art keywords
mark
opening
projection
exposure apparatus
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11199196A
Other languages
English (en)
Other versions
JPH09283421A (ja
Inventor
健爾 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP11199196A priority Critical patent/JP3629810B2/ja
Priority to KR1019970013458A priority patent/KR970072024A/ko
Publication of JPH09283421A publication Critical patent/JPH09283421A/ja
Priority to US09/425,938 priority patent/US6151102A/en
Priority to US09/672,784 priority patent/US6654097B1/en
Application granted granted Critical
Publication of JP3629810B2 publication Critical patent/JP3629810B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7023Aligning or positioning in direction perpendicular to substrate surface
    • G03F9/7026Focusing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、IC、LSI、液晶基板等の製造に使用される投影露光装置に関し、特に、マスク上のパターンを感光基板上に転写する際のマスクと感光基板の合焦位置の計測技術に関するものである。
【0002】
【背景技術】
近年、半導体デバイスの高集積化に伴い、投影露光装置においてはマスクパターンの更なる微細化が要求されてきている。マスクパターンの微細化を図るためには、投影光学系を介したマスクパターンの像の合焦精度の更なる向上が必須である。すなわち、感光基板の露光面を投影光学系の結像面の焦点深度内に正確に位置決めする必要がある。このような要求に応えるべく、従来より種々の方法が提案されている。例えば、投影光学系に対するステージ(感光基板)の高さを計測する計測手段を設け、この計測手段の原点を基準に感光基板の露光面の位置合わせを行う。この場合、基板ステージ上に設けた基準プレート面(基準面)におけるマスクパターンの像の合焦点を予め計測しておき、この合焦点に計測手段の原点を合わせておく。
【0003】
上記のような方法においては、露光装置の環境の変化、使用するマスクの種類、又は経時変化に起因する投影光学系の結像特性の変化等により計測手段の原点と、投影光学系の実際の合焦点との間にずれが生じる。そこで、ある一定のタイミング毎に、計測手段の原点の再調整、即ちキャリブレーションを行う必要がある。このような計測手段の原点のキャリブレーションを行う方法の1つが、特開平5−160003号公報に開示されている。この発明においては、基板ステージ上の基準プレートから発光した光を投影光学系を介してマスク面に導き、そこで反射した戻り光を発光部にて受光した時の透過光量を検出する。そして、検出された透過光量に基づいて、基準プレート(基板)の合焦状態を計測するようになっている。
【0004】
【発明が解決しようとする課題】
上記のような従来の技術においては、露光用とアライメント用(焦点位置計測用)とで照明系が異なり、露光と異なる条件でフォーカス計測をすることとなり、計測誤差が生じてしまう。また、基準プレート上に配置されるマークの幅には製造限界があり、マスク上での最小線幅を用いた計測は殆ど不可能であった。このため、例えば、マークとして基準プレート状に形成されたL/S(ライン・アンド・スペース)マークを使用した場合に、マスク上での最小線幅のマーク(L/Sマーク)と基準板上のL/Sマークとの間のL/S線幅差によるフォーカス・オフセットが生じてしまう。
【0005】
本発明は上記のような状況に鑑みてなされたものであり、マスクと感光基板の焦点位置の計測を高精度で行い得る投影露光装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記課題を解決するために、本発明は、露光用の光を所定パターンが形成されたマスクに照明する照明系と、マスク上のパターンの像をステージ上に配置された感光基板に投影転写する投影光学系とを有する投影露光装置において、マスク上に形成されたフォーカス計測用のマークと;ステージ上に形成され、投影光学系を介して照明される露光光を透過する開口部と;開口部とマークの投影光学系を介した像とを相対走査する走査手段と;ステージの前記相対走査方向への移動によって生じる、開口部を透過する光の光量変化に基づいて投影光学系の焦点位置を検出する検出手段とを備え;マークは、相対走査の方向に対して所定角度だけ傾斜して配置され、開口部は前記所定角度だけ傾斜したエッジ部分を有している。
【0007】マスク上に形成されるフォーカス計測用のマークとしては、格子状の複数のL/S(ライン・アンド・スペース)マークを使用することができる。この時、これらのマークは相対走査の方向と平行に1列に配置され、各L/Sマークの像の間隔は開口部よりも広く設定することが望ましい。
【0008】
検出手段としては、マークの像と開口部とを1方向に相対走査することによって、当該走査の方向及びこれと直交する方向の焦点位置をそれぞれ求め、これら直交する両方向の焦点位置から適正焦点位置を求めるような構成とすることができる。
【0009】
【作用及び効果】
上述したように、本発明においては、フォーカス計測用のマークを相対走査の方向(例えば、X方向)に対して所定角度だけ傾斜させ、開口部は所定角度だけ傾斜したエッジ部分を有するように構成したので、X又はY何れかの方向に1回走査する事で計測を行うことができ、XYの非点収差の影響でXY別々にフォーカス計測を行う場合に比べて、処理時間の短縮化を図ることができる。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態を実施例に従って説明する。なお、本実施例は、半導体集積回路製造用の投影露光装置に本発明を適用したものである。
【0012】
【実施例】
図1は、本実施例にかかる投影露光装置の全体的な構成を示す。図1において、KrFエキシマレーザ、またはArFエキシマレーザ等のようなレーザ光源35より射出した光は、ビームエキスパンダー系(34,33)によって一定の径に形成された後、ミラー32により偏向されてシャッタ29に達する。光源としては、レーザ光源の他に、水銀ランプ等の照明光源を使用することも可能である。シャッタ29を透過した光は、レンズ28の作用により、第1フライアイレンズ27の入射面とほぼ同じ大きさに成形される。レンズ28を透過した光は、第1フライアイレンズ27、スペックル除去用の振動ミラー26、レンズ25、第2フライアイレンズ22によって、照明フィールドとほぼ同じ形状である均一な照明光に形成される。第2フライアイレンズ22を透過した光は、投影光学系11の瞳面と共役な位置に設けられた瞳照明アパーチャ(ターレット板)19、ハーフミラー18を透過し、リレーレンズ、結像ブラインド、コンデンサーレンズ等の光学素子を有する照明光学系49によってレチクル12に照射される。瞳照明アパーチャ19には、開口径の互いに異なる複数の開口絞り、輪帯状の開口を有する輪帯絞り、照明光学系の光軸から偏心した位置に開口部を有する傾斜照明用の開口絞り(特開平4−225357参照)が設けられている。照明条件切換部21の制御によりモータ20によって瞳照明アパーチャ19を回転し、所望の開口絞りを照明光の光路中に配置することができる。照明条件切換部21は、制御装置110により制御される。
【0013】
2次元移動可能なレチクルステージ50上に載置されたレチクル12上には、露光用の回路パターンPA(図2(D)参照)の他にレチクルアライメント用のアライメントマーク43と、フォーカス計測用のパターンマーク100が形成されている。パターンマーク100は複数のL/S(ライン・アンド・スペース)マークで構成され、回路パターンとともに、投影レンズ11を介してウェハ7上に転写されるように構成されている。ウエハ7は、投影レンズ11の光軸方向(Z方向)への移動及びチルト駆動が可能なZチルトステージ3上に配置されたウエハホルダ6に保持されている。Zチルトステージ3は、エアガイド及びリニアモータによって定盤1上をXY2次元方向に自由に移動可能なXYステージ2上に配置されている。Zチルトステージ3上には、干渉計用の移動鏡4が配置されており、ウエハ干渉計5によってウエハ7のXY平面内の位置(XYステージ2の位置)をモニターするようになっている。すなわち、制御装置110の制御により、XYステージ2が2次元方向に移動することによってウエハ7は任意の座標に移動でき、レチクル12上のパターンをステップ・アンド・リピート方式またはステップ・アンド・スキャン方式のいずれかの方法で繰返し露光を行うようになっている。
【0014】
ここで、レチクル12のアライメント機構について説明する。上述したシャッタ29は、露光とアライメントの照明切り換え手段であり、シャッタ制御装置31及びシャッタ駆動装置30の制御により、レーザ光源35から出力された照明光を偏向し、レンズ36を介して光ファイバ10に導く。光ファイバ10に入射した光は、ミラー40、レンズ39、拡散板42を介して基準プレート8をステージ側(下方)から上方に向かって照明することで基準プレート8の開口部38(図2参照)を発光させる。開口部38を下方から上方に向かって透過した光は、投影レンズ11を介してレチクル12上のアライメントマーク43を照明する。アライメントマーク43を照明した光は、レチクル12を透過し、ミラー13,アライメント受光系14を経てCCDアレイセンサ15上に、開口部38の像と共にアライメントマーク43の像を再結像する。CCDアレイセンサ15によって得られた情報は、アライメント制御装置16に転送され、A/D変換の後に画像処理されて、その結果により基準プレート8の開口部38とレチクルアライメントマーク43の位置を算出する。これによって、レチクル12の座標とウェハステージ座標の相対位置が計測される。
【0015】
レチクル12上のパターンをウェハ7の被露光面上に露光する際には、レチクル12上のパターンの投影レンズ11を介した像がウェハ7の被露光面と一致するように制御する必要がある。以下、本実施例のフォーカス計測手段について説明する。本実施例のフォーカス計測手段においては、露光時と同じ照明系を用いて投影光学系11の合焦位置を計測する。すなわち、照明光学系49から射出された光によってレチクル12上のパターンマーク100を照明し、投影レンズ11を介してウェハステージ3上の基準プレート8にレチクル上のパターンマーク100を投影し、その投影像を基準プレート8上の開口部38で相対走査するようになっている。
【0016】
開口部38を透過した光は、受光系9、光ファイバ10,10Aを介してセンサ17に受光される。そして、センサ17に達する光の光量変化を、開口部38による走査に同期してサンプリングする(走査型計測法)。このようなレチクル12のパターンマーク100と開口部38との相対的な走査を行うには、ウェハステージ3とレチクルステージ50の何れを駆動しても良い。
【0017】
なお、光源35としてKrFエキシマレーザやArFエキシマレーザのパルス発光の光源を利用した場合には、センサ17における光量変化のサンプリング時にパルス発光のタイミングを合わせる必要がある。また、パルス毎のバラツキを補正するために、照明光学系49の手前のハーフミラー18で偏向された1%以下の光をレンズ23で集光後、インテグレータセンサ24で受光し、この受光された光の光量でセンサ17で受光した光量を逐次割算する。本実施例においては、センサ17によって得られた波形信号のコントラストがフォーカス位置でどの様に変化するかを調べ、これによって投影光学系11の焦点位置の検出を行う。
【0018】
図1において、符号117は投影光学系11の光軸に対して斜めに検出光を射出する光源(投光系)を示し、この光源117からの検出光を図示しない斜入射光学系を介して投影光学系11のイメージフィールドの中央部に集束する。図1の状態では、イメージフィールドには基準プレート8が配置されているので、検出光は基準プレート8の表面に集束される。基準プレート8からの反射光を図示しない受光光学系を介して、例えば位置検出型受光素子(PSD)等よりなる光電センサ118の受光面に入射する。基準プレート8が投影光学系11の光軸方向に移動すると、光電センサ118の受光面での光束の重心位置が変化する。そして、この重心位置より基準プレート8の光軸方向の位置を検出することができる。例えば、光電センサ118の出力が常にゼロになるときに、基準プレート8が投影レンズ11のベストフォーカス位置となるように、平行平板51の傾きを調整する。そして、露光時は、光電センサ118の出力が常にゼロとなるようにウエハ7の高さ位置を調整する。なお、以上説明した斜入射光方式の焦点位置検出光学系の詳細については、例えば、特開昭60−168112号公報に開示されている。
【0019】
次に、基準プレート8に形成された開口部38について詳細に説明する。図2は、基準プレート8の拡大した側面を示しており、Zチルトステージ3上の基準プレート8の表面が低反射クロム部37と開口部(透過部)38の2か所に分かれている。そして、照明光学系49から射出される光のうち、開口部38を透過する光のみを拡散板42,レンズ39,ミラー40を有する受光系9に導くようになっている。受光系9のミラー40で反射した光は、支持部41でZチルトステージ3上に固定された光ファイバー10に導かれるようになっている。Zチルトステージ3の上面に拡散板42を配置している理由は、ウェハ7を露光する際の照明系NA(開口数)が0.6程度と大きいため、レンズ39から外れる光が多くなってしまうことを防ぐためであり、また、開口部38で散乱した光をすべての方向に対して均等に受光するためである。仮に、開口部38下のレンズ39が前記散乱光をすべて受光できるような球率(大きさ)を持ち、光ファイバの径を十分に大きくできる場合には、拡散板42を用いる必要はないが、装置の小型化等を考えると拡散板42を用いた方が有利である。また、光ファイバ10の代わりに、光学レンズをリレーすることによって、開口部38を透過した光をステージ3の外部に導き出すようにしても良い。以上のような構成により、開口部38を透過した光は、光ファイバ10を通って略全てセンサー17で受光されることになる。
【0020】
次に、図3、図4、図5及び図6を参照して本実施例の焦点位置計測のための基本原理について説明する。図3は、レチクル12上のパターンマーク100を構成する複数のL/Sマーク(100a1,100b1,100c1)の内の1つの像100aと開口部38との関係を示す。照明光学系49より照明されたL/Sマーク(図3(D))は、投影レンズ11を介して基準プレート8上に投影像100aとして再結像する。この投影像100aは、本露光装置の最小パターンである0.15〜0.25μm のL/S(ライン・アンド・スペース)マークであり、開口部38は走査方向(図3のX方向)に対して投影像100aよりも大きく設計されている。但し、非走査方向(図3のY方向)に対しては、必ずしも開口部38は投影像100aよりも大きく設計する必要はない。
【0021】
本実施例においては、L/Sパターン像100aに対し、開口部38を図3の(A)→(B)→(C)のようにX方向に沿って相対走査する。このような走査により、センサ17に受光される光量は徐々に増加し、図3(B)の状態(開口部38とパターン像100aが一致した状態)で最大となり、その後徐々に減少することになる。この時にセンサ17から得られる出力値を、インテグレータセンサ24の出力値で割算した後に、A/D変換すると、図4(A)に示すような段階的に変化し、且つ、所定の傾きの立ち上がり部と立ち下がり部とを有する波形信号S100が得られる。更に、図4(A)の波形信号を微分信号に変換すると、図4(B)のような微分信号が得られる。そして、Zチルトステージ3の高さ位置を変えて、同様にして、図4(B)のような微分信号を得ることを複数回繰り返す。例えば、投影光学系11のベストフォーカス位置と思われる高さ位置に対してマイナス方向からプラス方向に高さ位置を変える。そして、最も微分値の大きくなるZチルトステージ3の位置が投影光学系11の焦点位置(ベストフォーカス位置)として求まる。
【0022】
また、図4(A)に示すように、一般に、開口部38の両側エッヂ部に対してダウンスロープとアップスロープが得られる。しかし、それぞれの結像収差が異なる場合があるため、両方のデータよりマーク位置計測(アップスロープにおける微分信号を示す+マークと、ダウンスロープにおける微分信号を示す−マークのそれぞれの位置の平均値)を求めたり、L/S幅(+マークと−マークの幅の平均)を求めることで精度向上を図ることができる。但し、この+マークと−マークの差異を調べることで収差特性を求める時は、別々に取扱いデータ処理する。
【0023】
図5は、本実施例のパターンマーク100を構成する複数のL/Sマーク(100a1,100b1,100c1)の複数の像100a,100b,100cと開口部38との関係を示す。本実施例においては、像100a,100b,100cに対応する複数のL/Sマークをレチクル12上に一列に配置し、各L/Sマーク像100a,100b,100cをZチルトステージ3上の基準プレート8に形成された開口部38で相対走査し、図6(A)に示すような所定の傾斜を有する立ち上がり部と立ち下がり部とを有する波形信号(S100a,S100b,S100c)を得る。図5において、L/Sマーク像100a,100b,100cの少なくとも走査方向の各間隔は、開口部38よりも大きく形成されている(同図(C)参照)。
【0024】
図6(A)には、L/Sマーク像100a,100b,100cを図5の(A)→(B)→(C)…→(D)のように、開口部38に対して相対走査した時の各L/Sマーク像100a,100b,100cに対する波形信号(順にS100a,S100b,s100c)が示されている。また、図6(B)は、同図(A)の波形を微分したものである。なお、基本的な原理は図3及び図4に示したものと同一であるため、重複する説明は省略する。
【0025】
上記のように、本実施例においては、L/Sマーク像100a,100b,100cの走査方向の各間隔を開口部38よりも大きくしているため、L/Sマーク像100a,100b,100cが(A)→(B)→(C)…→(D)のように、開口部38に対して相対走査した時に、波形信号がそれぞれ独立に求められることになる(図6参照)。また、一般に、センサー17として光量の非常に小さなホトマル(フォトマルチプライヤ)を使用した場合には、ダイナミックレンジがとれず、長いL/Sマークを長い開口部で走査すると、S/N比が悪くなるが、本実施例のように、複数のL/Sマークを用いると、このような問題が生じない。また、1つのL/Sマークをフォーカス位置を変えて繰り返し計測する方法に比べてスループットが向上し、時間差による影響も解消される。以上のような計測法方を用いて、更に、複数L/Sマークの間隔と開口部38の大きさを最適に設計し、それぞれを同一ラインに配置し、L/Sマーク像100a,100b,100cと開口部38とを一度に走査しながら同時に、Zチルトステージ3(開口部38)をZ方向に移動すること(フォーカスを同時に調整すること)により、高速度の焦点位置計測が行えることになる。
【0026】
次に、本実施例のフォーカス計測の動作(シーケンス)について説明する。図7は、5つのL/Sマーク100a,100b,100c,100d,100eでパターンマーク100を構成した場合の例を示す。図において、開口部38がL/Sマークの像100a,100b,100c,100d,100eの順で走査するのと同時に、パターンマーク100の投影レンズ11による合焦状態を一定速度で変化させていく。この時に、センサ17で検出される波形データを同図(B)に示す。パターンマーク100の合焦状態の変化は、Zチルトステージ3を所定の位置から徐々に上昇させ、又は降下させることによって行う。なお、パターンマーク100の合焦状態を変化させるためのZチルトステージ3の駆動は、必ずしもリニアな変化率で行う必要はなく、段階的に行っても良く、また、フォーカス状態を固定して、基準プレート8を所定の角度チルトさせて行っても良い。
【0027】
図7(C)は、同図(B)の波形を微分した値を示す。図7(C)の微分値から、各L/Sマーク像100a〜100eのスロープ信号S1〜S5の微分信号のコントラストW〜W(100a:W とW ,100b:W とW ,100c:W とW ,100d:W とW ,100e:W とW )を算出し、Wn=(W +W )/2(n=1〜5)として各位置における各マークのコントラストW〜Wを算出する。この様に求めたコントラスト値Wを図8のようにプロットし、2次曲線でフィッティングした後、その頂点の位置ΔFを求める。今、斜入射フォーカス系117、118のゼロ点が擬似的に投影レンズ11のベストフォーカス位置(焦点位置)を示しているものとすると、斜入射フォーカス系117,118のゼロ点がΔFだけ、実際のレチクル投影面に対してずれていることが分る。そして、このΔFをフォーカスオフセットとして斜入射フォーカス系117,118を校正することでフォーカスキャリブレーションが完了する。この動作をレチクル12上全面に対して実行することにより、特開平6−283403に示されているような、斜入射フォーカス及びレベリング機構の双方についてのキャリブレーションを行うことが可能となる。フォーカス系117,118のキャリブレーションの方法としては、例えば、光源117の位置を微調整する方法、或いは、基準プレート18のクロム部37をフォーカス系117、118の出力が△Fとなるような位置に持ってきた状態で、平行平板ガラス51の傾きを変えることによって、検出光と光電センサ118との相対位置をずらすことにより、信号をゼロとしたり、電気的に△Fのオフセットを加える方法がある。
【0028】
図9は本発明の他の実施例を示し、基準プレート8上の開口部(138,238)とレチクル12上のL/Sマーク(200a,300a)との位置関係を示す。本実施例における開口部(138,238)としては、図3等に示した開口部38をXY水平面内で45°傾斜させたものを使用する。これに対応して、レチクル12上のL/Sマーク(200a,300a)もXY水平面内で45°傾斜させる。なお、開口部及びL/Sマークの傾斜角度は±45°に限定されるものではなく、±30°や±60°に設定しても良い。図9において、(A)はX方向走査型開口部138であり、L/Sマーク200aに対してX方向(紙面の左右方向)に走査し、(B)はY方向走査型開口部238であり、L/Sマーク300aに対してY方向(紙面の上下方向)に走査するようになっている。
【0029】
本実施例によれば、一度のスキャンでX方向のエッジに関する像情報とY方向のエッジに関する像情報との平均的な像を計測できることになる。すなわち、図9(A),(B)共に、X,Y何れか一方向の走査により、それぞれX,Y方向のフォーカス情報を別々に計測し、後で平均化することによりL/Sマーク(200a,300a)の像を計測する。なお、L/Sマーク200a(同図(A)参照)は、開口部138に対して傾斜方向に短く、また、L/Sマーク300a(同図(B)参照)は、開口部238に対して傾斜方向に長く設定されている。また、デバイス工程の中には±20°や±30°のL/Sマークに対て微細パターンが必要な場合もあるため、基準プレート8上には0°,±45°,90°以外の開口部(パターン)を形成しておいてもよい。
【0030】
以上説明したように、本発明によれば、特開平5−160003号のような高再現性、高速処理の機能を保持したまま、変形照明や線幅の差異によるオフセットを補正した高精度・高速フォーカスキャリブレーションが行える。また、開口部の形状やレチクルマークとの配置を最適化した結果、特開平6−283403に示すようなレベリングキャリブレーションも高速、高精度で行うことが可能となる。更に、図8のコントラスト形状を調べることで、投影レンズの結像特性(特に焦点深度や非点収差)を計測することもできる。例えば、像面湾曲、像面傾斜を計測し、この結果に基づいて焦点深度や非点収差を計測できる。
【0031】
以上、本発明の実施例について説明したが、本発明は上記実施例に限定されるものではなく、特許請求の範囲に記載された技術的思想としての要旨を逸脱しない範囲で改良、変更可能である。例えば、図1に示したセンサ17をステージ3内に収納し、その分の光ファイバーを省略しても良い。また、上記実施例においては、1つの開口38に対して複数のL/Sマークを対応させているが、逆に1つのL/Sマーク(100a)に対して複数の開口38a〜38dを基準プレート8上に形成しても良い(図10)。
【図面の簡単な説明】
【図1】図1は、本発明の実施例にかかる投影露光装置を示す構成図である。
【図2】図2は、実施例の要部の構成を示す説明図(一部断面)である。
【図3】図3(A),(B),(C)は、それぞれ本発明の基本的な動作を示す説明図である。
【図4】図4(A),(B)は、それぞれ本発明の基本的な作用を示すグラフである。
【図5】図5(A),(B),(C),(D)は、それぞれ本実施例の動作を示す説明図である。
【図6】図6(A),(B)は、それぞれ本実施例の作用を示すグラフである。
【図7】図7(A)は、本発明の他の実施例の動作を示す説明図であり、同図(B),(C)は、それぞれ本実施例の作用を示すグラフである。
【図8】図8は、上記他の実施例の作用を示すグラフである。
【図9】図9(A),(B)は、それぞれ本発明の更に他の実施例の動作を示す説明図である。
【図10】図10は、本発明の他の実施例の配置を示す図である。
【符号の説明】
3・・・Zチルトステージ
7・・・ウエハ
8・・・基準プレート
11・・・投影レンズ
12・・・レチクル
16・・・アライメント制御装置
35・・・レーザ光源
38・・・開口部
49・・・照明系
100・・・パターンマーク
100a〜100e,200a,300a・・・L/Sマーク像
110・・・制御装置
117,118・・・オートフォーカス系

Claims (5)

  1. 露光用の光を所定パターンが形成されたマスクに照明する照明系と、前記マスク上のパターンの像をステージ上に配置された感光基板に投影転写する投影光学系とを有する投影露光装置において、
    前記マスク上に形成されたフォーカス計測用のマークと;前記ステージ上に形成され、前記投影光学系を介して照明される前記露光光を透過する開口部と;前記開口部と前記マークの前記投影光学系を介した像とを相対走査する走査手段と;前記ステージの前記相対走査方向への移動によって生じる、前記開口部を透過する光の光量変化に基づいて前記投影光学系の焦点位置を検出する検出手段とを備え;前記マークは、前記相対走査の方向に対して所定角度だけ傾斜して配置され、前記開口部は前記所定角度だけ傾斜したエッジ部分を有することを特徴とする投影露光装置。
  2. 前記投影露光装置は、前記感光基板の前記光軸方向の位置に応じて変化する信号を出力する焦点位置検出手段を更に有し、
    前記検出手段により検出された焦点位置と前記焦点位置検出手段の出力信号との対応付を行う校正手段とを有することを特徴とする請求項1に記載の投影露光装置。
  3. 前記マークは、格子状のL/S(ライン・アンド・スペース)マークを複数含み、前記相対走査の方向と平行に配置され、各L/Sマークの像の間隔は前記開口部よりも広く設定されていることを特徴とする請求項1又は2に記載の投影露光装置。
  4. 前記検出手段は、前記マークと前記開口部との相対走査と前記ステージの前記光軸方向の移動を行っている間に、前記各L/Sマークに対する焦点位置をそれぞれ検出し、
    前記各L/Sマークに対する実際の焦点位置に基づいて、前記対応付を行うことを特徴とする請求項3に記載の投影露光装置。
  5. 前記検出手段は、前記マークの像と前記開口部とを1方向に相対走査することによって、当該走査の方向及びこれと直交する方向のマーク像に関する焦点位置をそれぞれ求めることを特徴とする請求項1〜4の何れか一項に記載の投影露光装置。
JP11199196A 1996-04-09 1996-04-09 投影露光装置 Expired - Fee Related JP3629810B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP11199196A JP3629810B2 (ja) 1996-04-09 1996-04-09 投影露光装置
KR1019970013458A KR970072024A (ko) 1996-04-09 1997-04-09 투영노광장치
US09/425,938 US6151102A (en) 1996-04-09 1999-10-25 Projection exposure apparatus
US09/672,784 US6654097B1 (en) 1996-04-09 2000-09-29 Projection exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11199196A JP3629810B2 (ja) 1996-04-09 1996-04-09 投影露光装置

Publications (2)

Publication Number Publication Date
JPH09283421A JPH09283421A (ja) 1997-10-31
JP3629810B2 true JP3629810B2 (ja) 2005-03-16

Family

ID=14575215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11199196A Expired - Fee Related JP3629810B2 (ja) 1996-04-09 1996-04-09 投影露光装置

Country Status (1)

Country Link
JP (1) JP3629810B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010089453A (ko) 1998-11-18 2001-10-06 시마무라 테루오 노광방법 및 장치
JP5121096B2 (ja) * 2001-04-27 2013-01-16 キヤノン株式会社 合焦位置検出方法、合焦位置検出装置及び露光装置
JP2005175383A (ja) * 2003-12-15 2005-06-30 Canon Inc 露光装置、アライメント方法、及び、デバイスの製造方法
US20080192017A1 (en) * 2005-04-11 2008-08-14 Polyvision Corporation Automatic Projection Calibration
JP2015050199A (ja) * 2013-08-29 2015-03-16 株式会社ピーエムティー 基準面を用いて露光対象物を高速位置決めする露光装置

Also Published As

Publication number Publication date
JPH09283421A (ja) 1997-10-31

Similar Documents

Publication Publication Date Title
JP3181050B2 (ja) 投影露光方法およびその装置
US6992751B2 (en) Scanning exposure apparatus
US6654097B1 (en) Projection exposure apparatus
US6706456B2 (en) Method of determining exposure conditions, exposure method, device manufacturing method, and storage medium
KR100471524B1 (ko) 노광방법
JP4724470B2 (ja) 露光方法
US6975384B2 (en) Exposure apparatus and method
US6744512B2 (en) Position measuring apparatus and exposure apparatus
US6657725B1 (en) Scanning type projection exposure apparatus and device production method using the same
US5936711A (en) Projection exposure method and projection exposure apparatus
JP3629810B2 (ja) 投影露光装置
JP3551570B2 (ja) 走査型露光装置及び露光方法
US6539326B1 (en) Position detecting system for projection exposure apparatus
US7106419B2 (en) Exposure method and apparatus
KR100391345B1 (ko) 노광방법및스테퍼
JP3376219B2 (ja) 面位置検出装置および方法
JPH104055A (ja) 自動焦点合わせ装置及びそれを用いたデバイスの製造方法
JPH10284414A (ja) 結像位置検出装置及び半導体デバイスの製造方法
JP3667009B2 (ja) 露光装置及びそれを用いたデバイスの製造方法
JP2006013266A (ja) 計測方法、露光方法、及び露光装置
KR100414575B1 (ko) 투영노광장치
JP2787711B2 (ja) 投影露光装置
JPH0640539B2 (ja) パタ−ン検出方法と該方法を用いた投影光学装置
JP2005243710A (ja) 露光装置及びその制御方法、デバイス製造方法
JPH1050593A (ja) 投影露光装置及びそれを用いた半導体デバイスの製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees