JP3627454B2 - 2-cylinder rotary compressor - Google Patents

2-cylinder rotary compressor Download PDF

Info

Publication number
JP3627454B2
JP3627454B2 JP17358897A JP17358897A JP3627454B2 JP 3627454 B2 JP3627454 B2 JP 3627454B2 JP 17358897 A JP17358897 A JP 17358897A JP 17358897 A JP17358897 A JP 17358897A JP 3627454 B2 JP3627454 B2 JP 3627454B2
Authority
JP
Japan
Prior art keywords
vane
connecting member
piston
cylinder
compression mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17358897A
Other languages
Japanese (ja)
Other versions
JPH1122678A (en
Inventor
学 阪井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP17358897A priority Critical patent/JP3627454B2/en
Publication of JPH1122678A publication Critical patent/JPH1122678A/en
Application granted granted Critical
Publication of JP3627454B2 publication Critical patent/JP3627454B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、空気調和装置あるいは冷蔵庫などに用いられる2気筒回転式圧縮機に関するものである。
【0002】
【従来の技術】
従来の技術として、実開昭第62−186号公報に開示されている2気筒回転式圧縮機を例にとり、図面とともに説明する。
【0003】
図4において、密閉容器101内に、電動機部102と、この電動機部102によって駆動される中間仕切板106を介して軸方向に設置された2個の圧縮機構部103a,103bと、前記電動機部102の回転力をこれら圧縮機構部103a,103bに伝達するための互いに180度対向する2個の偏心軸部105a,105bを有するクランク軸104とが設置されている。
【0004】
各圧縮機構部103a,103bは、各々、シリンダ107a,107bと、これらシリンダ107a,107bに設けられたベーン溝108a,108bに摺動自在に設置されたベーン109a,109bと、前記クランク軸104の偏心軸部105a,105bに回転自在に嵌合して設置されたピストン110a,110bとで構成されている。
【0005】
また、各圧縮機構部103a,103bの軸方向両端には、前記クランク軸104の主軸受111と副軸受112とが設置されている。
【0006】
さらに、ベーン109a,109bの一端には弾性部材113a,113bが設置されており、その力は、ベーン109a,109bを各々ピストン110a,110bの外周に押しつけるように作用する。そして、シリンダ107a,107b内は、吸入室側空間と吐出室側空間とに仕切られている。
【0007】
上記構成により、電動機部102が駆動することによって、その回転力がクランク軸104を介して互いに180度対向する2個の偏心軸部105a,105bに伝達し、その結果、各々ピストン110a,110bがシリンダ107a,107b内で偏心回転運動を行う。
【0008】
その結果、吸入孔(図示せず)から各々吸入された低圧冷媒ガスは、ピストン110a,110bの偏心回転運動に伴って圧縮され、吐出孔(図示せず)から高圧冷媒ガスとなって、一旦、密閉容器101内部に吐出される。この高圧冷媒ガスは、前記ベーン109a,109bの一端に作用し、その圧力による力は、前記弾性部材113a,113bによる力とともに、ピストン110a,110bの外周に押しつけられるように作用する。
【0009】
その後、高圧冷媒ガスは、電動機102の隙間を通って、吐出管114から密閉容器101外部へと吐出される。
【0010】
【発明が解決しようとする課題】
しかしながら、上記従来の構成では、ベーン109a,109bがピストン110a,110bに押しつけられる力は、各々ベーン109a,109bの一端に設置された弾性部材113a,113bによる力と、同じくベーン109a,109bの一端に作用する高圧冷媒ガスの圧力による力との和となるが、このうち、弾性部材113a,113bによる押しつけ力は、ピストン110a,110bの偏心回転運動によって、ベーン109a,109bが並進往復運動し、弾性部材113a,113b自身が伸縮するのに伴って変化する。
【0011】
ピストン110a,110bがシリンダ107a,107bに設けられたベーン溝108a,108b方向の角度と180度反対側になったとき、弾性部材113a,113bが最も伸びた状態(以下、この状態を下死点という。)となり、その逆に、ピストン110a,110bがベーン溝108a,108b方向の角度になったとき、弾性部材113a,113bが最も縮んだ状態(以下、この状態を上死点という。)となる。従って、下死点では、ベーン109a,109bがピストン110a,110bに押しつけられる力が最も弱くなり、逆に上死点では最も強くなる。
【0012】
なお、圧縮機構部103aと103bは、それぞれピストン110a,110bが、180度対向するクランク軸104の偏心軸部105a,105bに回転自在に勘合しているので、一方の圧縮機構部で上死点の状態のとき、他方の圧縮機構部では下死点の状態となる。
【0013】
また、ベーン109a,109bの一端には、上記弾性部材113a,113bによる力に加えて、高圧冷媒ガスによる力が、ピストン110a,110bの外周に押しつけられる方向に作用する。
【0014】
上記のような構成のために、圧縮機が極めて高い負荷で運転されるとき、すなわち高圧冷媒ガスの圧力と低圧冷媒ガスの圧力との差が大きいとき、上死点の状態では、非常に強い力でベーン109a,109bがピストン110a,110bに押しつけられることになる。このような運転状態が続くことにより、ベーン109a,109bの先端の摩耗が異常に進行し、その結果、信頼性の低下を招いていた。特に近年、従来の冷媒に代わって用いられつつあるHFC系の冷媒を用いた圧縮機では、一般的に摺動条件がより厳しくなることが知られており、前記ベーン109a,109b先端の摩耗は大きな課題の一つとなっていた。
【0015】
また、弾性部材113a,113bは繰り返し伸縮されるので、十分な安全率を見込んだ設計を行わないと、疲労によって折損してしまうという課題を有していた。
【0016】
さらに、圧縮機の始動時には、比較的大きなトルクが必要となるために、例えば特開昭第62−29788号公報に開示されているように、弾性部材を一方の圧縮機構部のベーンのみに設置し、他方の圧縮機構部のベーンには設置せず、密閉容器内部の高圧冷媒ガスの圧力による力のみを作用させて、始動トルクを低減させるという技術がある。しかしながら、このような方法では、高圧冷媒ガスの圧力が小さいような場合、ベーンがピストンの外周部に押しつけられる力が小さ過ぎ、その結果、このベーンとピストンとの間から冷媒ガスが漏れ、圧縮効率の低下を招く恐れがあった。
【0017】
本発明は、上記のような従来の課題を解決するものであり、比較的簡単な構造によってベーンをピストンに確実かつ適度な力で押しつけることのできる2気筒回転式圧縮機を提供することを目的とする。
【0018】
【課題を解決するための手段】
上記課題を解決するために本発明は、各ベーンのシリンダ外周方向側端部に円弧状連結部材の端部をそれぞれベーン端部に対して回転自在に連結し、前記円弧状連結部材はその中間部分外周側で前記密閉容器内壁に当接してなるものである。この連結部材によって、一方の圧縮機構部のベーンが、クランク軸の偏心軸部に回転自在に勘合したピストンの偏心回転運動によって、押し上げられることにより、その動作が連結部材を介して他方の圧縮機構部のベーンを押し下げ、その結果、ピストンに押しつけられる。これにより、ベーンをピストンに押しつけるための弾性部材が不要となるばかりでなく、ベーンをピストンに確実にかつ適度な力で押しつけることができる。
【0019】
本発明は、各ベーンのシリンダ外周方向側端部に円弧状連結部材の端部をそれぞれベーン端部に対して回転自在に連結し、前記円弧状連結部材はその中間部分外周側で前記密閉容器内壁に当接してなるものである。そして、この構成によれば、一方の圧縮機構部のベーンが、クランク軸の偏心軸部に回転自在に勘合したピストンの偏心回転運動によって押し上げられ、その動作がベーンの一端に回転自在に接続された円弧状の連結部材に伝達する。この円弧状の連結部材の他端は、他方の圧縮機構部のベーンの一端と回転自在に接続されており、また、連結部材の一部を密閉容器内壁に当接させているので、前記円弧状の連結部材の動作によって、他方の圧縮機構部のベーンを押し下げ、その結果、ベーンはピストンに押しつけられる。
【0020】
また本発明は、円弧状の連結部材を弾性部材としたものである。そして、この構成によれば、円弧状の弾性部材の剛性を適当に設定してやることにより、ベーンをピストンに最適かつ一定の力で押しつけてやることができる。
【0021】
【実施例】
以下、本発明の実施例について図面を参照して説明する。
【0022】
(実施例1)
図1において、密閉容器1内に、電動機部2と、この電動機部2によって駆動される中間仕切板6を介して軸方向に設置された2個の圧縮機構部3a,3bと、前記電動機部2の回転力をこれら圧縮機構部3a,3bに伝達するための互いに180度対向する2個の偏心軸部5a,5bを有するクランク軸4とが設置されている。
【0023】
各圧縮機構部3a,3bは、各々、シリンダ7a,7bと、これらシリンダ7a,7bに設けられたベーン溝8a,8bに摺動自在に設置されたベーン9a,9bと、前記クランク軸4の偏心軸部5a,5bに回転自在に嵌合して設置されたピストン10a,10bとで構成されている。
【0024】
また、各圧縮機構部3a,3bの軸方向両端には、前記クランク軸4の主軸受11と副軸受12とが設置されている。
【0025】
さらに、ベーン9a,9bの一端には、凹部13a,13bが設けてあり、連結部材14の両端部14a,14bが回転自在に接続されているとともに、この連結部材14の軸方向高さ中央部に支持点15を設けている。ベーン9a,9bの凹部13a,13bが設けられている一端と反対の端部は、各々ピストン10a,10bの外周と接しており、各シリンダ7a,7b内は、吸入室側空間と吐出室側空間とに仕切られている。
【0026】
上記構成により、電動機部2が駆動することによって、その回転力がクランク軸4を介して互いに180度対向する2個の偏心軸部5a,5bに伝達し、その結果、各々ピストン10a,10bがシリンダ7a,7b内で偏心回転運動を行う。その結果、吸入孔(図示せず)から各々吸入された低圧冷媒ガスは、ピストン10a,10bの偏心回転運動に伴って圧縮される。その後、圧縮機構部3aで圧縮された冷媒ガスは、吐出孔(図示せず)から高圧冷媒ガスとなって、一旦、主軸側吐出空間16に吐出される。また、圧縮機構部3bで圧縮された冷媒ガスは、吐出孔(図示せず)から同じく高圧冷媒ガスとなって、一旦、副軸側吐出区間17に吐出された後、連通孔18と通って、前記主軸側吐出空間16に吐出される。その後、環状隙間19から密閉容器1内部に吐出され、電動機2の隙間を通って、吐出管20から密閉容器1外部へと吐出される。
【0027】
また、ピストン10a,10bがシリンダ7a,7b内偏心旋回運動するのに伴って、ベーン9a,9bが往復並進運動を行う。一方の圧縮機構部3a(3b)のベーン9a(9b)が、ピストン10a(10b)によって押し上げられると、ベーンの凹部13a(13b)を介して、連結部材14の一端14a(14b)にその動きが伝達される。連結部材14の軸方向高さ中央部には支持点15が設けられているので、前記動きは連結部材14の他端14b(14a)を経て、他方の圧縮機構部3b(3a)のベーンの凹部13b(13a)を押し下げるように伝達される。その結果、ベーン9b(9a)は押し下げられ、ベーン9b(9a)の一端はピストン10b(10a)に押しつけられる。また、クランク軸4の回転に伴って、これらの動作が交互に繰り返される。
【0028】
従って、一方のピストンがベーンを押し上げることにより、連結部材を介して確実に他方のベーンがピストンに押しつけられるので、従来のようにベーンをピストンに押しつけるための弾性部材が不要となり、またこの弾性部材の折損などの課題は生じない。
【0029】
なお、ベーン9a,9bの連結部材14との接続部13a,13bを球面状の凹部とし、連結部材14の両端14a,14bを球面状の凸部とすることにより、ベーン9a,9bと連結部材14の接続部での面圧を低減することができ、この部分での摩耗を抑制することが可能となる。
【0030】
さらに、連結部材14の支持点15を中間仕切板6の一部に設置することにより、別段支持点を設けるための部品を追加するなどの必要がない。
【0031】
(実施例2)
図2に示す実施例において、実施例1に示した構成と同一箇所については、同一の符号を付して、詳細な説明を省略する。
【0032】
同図において、ベーン9a,9bの一端には、凹部13a,13bが設けてあり、弾性部材21a,21bを介して、連結部材14の両端部14a,14bが接続されているとともに、この連結部材14の軸方向高さ中央部に支点15を設けている。
【0033】
上記構成により、ピストン10a,10bがシリンダ7a,7b内偏心旋回運動するのに伴って、ベーン9a,9bが往復並進運動を行う。一方の圧縮機構部3a(3b)のベーン9a(9b)が、ピストン10a(10b)によって押し上げられると、ベーンの凹部13a(13b)から弾性部材21a(21b)を介して、連結部材14の一端14a(14b)にその動きが伝達される。連結部材14の軸方向高さ中央部には支持点15が設けられているので、前記動きは連結部材14の他端14b(14a)から弾性部材21b(21a)を介して、他方の圧縮機構部3b(3a)のベーンの凹部13b(13a)を押し下げるように伝達される。その結果、ベーン9b(9a)は押し下げられ、ベーン9b(9a)の一端はピストン10b(10a)に押しつけられる。また、クランク軸4の回転に伴って、これらの動作が交互に繰り返される。
【0034】
従って、一方のピストンがベーンを押し上げることにより、弾性部材と連結部材を介して確実に他方のベーンがピストンに押しつけられる。また、弾性部材自体の変位はほとんど変化せず、常に一定の力が作用するので、予めこの弾性部材の剛性を適当に設定してやることにより、ベーンをピストンに最適かつ一定の力で押しつけてやることができる。
【0035】
さらに、部品公差、あるいは組立公差などによる部品同士の隙間などが生じても、この弾性部材21a,21bによってそれらが吸収されるので、部品加工あるいは組立が容易となる。
【0036】
(実施例3)
図3に示す実施例において、実施例1に示した構成と同一箇所については、同一の符号を付して、詳細な説明を省略する。
【0037】
同図において、ベーン9a,9bの一端には、凹部13a,13bが設けてあり、円弧状の連結部材22の両端部が回転自在に接続されているとともに、この連結部材22の一部を密閉容器1内壁に当接させている。
【0038】
上記構成により、ピストン10a,10bがシリンダ7a,7b内偏心旋回運動するのに伴って、ベーン9a,9bが往復並進運動を行う。一方の圧縮機構部3a(3b)のベーン9a(9b)が、ピストン10a(10b)によって押し上げられると、ベーンの凹部13a(13b)を介して、円弧状の連結部材22の一端にその動きが伝達される。この連結部材22の軸方向高さ中央付近は、密閉容器1の内壁に当接しているので、前記動きは連結部材22の他端から、他方の圧縮機構部3b(3a)のベーンの凹部13b(13a)を押し下げるように伝達される。その結果、ベーン9b(9a)は押し下げられ、ベーン9b(9a)の一端はピストン10b(10a)に押しつけられる。また、クランク軸4の回転に伴って、これらの動作が交互に繰り返される。
【0039】
従って、一方のピストンがベーンを押し上げることにより、円弧状の連結部材を介して確実に他方のベーンがピストンに押しつけられるので、従来のようにベーンをピストンに押しつけるための弾性部材が不要となる。
【0040】
また、円弧状の連結部材22自体に弾性を持たせてやることにより、ベーンをピストンに最適かつ一定の力で押しつけてやることができる。また、部品公差、あるいは組立公差などによる部品同士の隙間などが生じても、この弾性部材22によってそれらが吸収されるので、部品加工あるいは組立が容易となる。
【0041】
【発明の効果】
本発明によれば、各圧縮機構部のベーンの一端同士を円弧状の連結部材で接続するとともに、この連結部材の一部を密閉容器内壁に当接させているので、一方の圧縮機構部のベーンが、ピストンの偏心回転運動によって押し上げられ、その動作がベーンの一端に回転自在に接続された円弧状の連結部材に伝達し、他方の圧縮機構部のベーンを押し下げ、その結果、ベーンはピストンに押しつけられる。従って、ベーンをピストンに確実に押しつけることができる。
【0042】
また、円弧状の連結部材自体に弾性を持たせているので、予めこの円弧状の連結部材の剛性を適当に設定してやることにより、ベーンをピストンに最適かつ一定の力で押しつけてやることができ、ベーン先端の摩耗の進行を低減することができる。また、部品公差、あるいは組立公差などによる部品同士の隙間などが生じても、この弾性部材によってそれらが吸収されるので、部品加工あるいは組立が容易となる。
【0043】
以上、説明したように、従来のように、ベーンをピストンに押しつけるための弾性部材を用いなくても、比較的簡単な構造によってベーンをピストンに確実かつ適度な一定力で押しつけることができるという効果を得ることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施例を示す2気筒回転式圧縮機の縦断面図
【図2】本発明の第2の実施例を示す2気筒回転式圧縮機の要部縦断面図
【図3】本発明の第3の実施例を示す2気筒回転式圧縮機の要部縦断面図
【図4】従来の2気筒回転式圧縮機の縦断面図
【符号の説明】
1 密閉容器
6 中間仕切板
9a,9b ベーン
10a,10b ピストン
13a,13b ベーン凹部
14 連結部材
14a,14b 連結部材凸部
15 連結部材支持点
21a,21b 弾性部材
22 円弧状連結部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a two-cylinder rotary compressor used in an air conditioner or a refrigerator.
[0002]
[Prior art]
As a conventional technique, a two-cylinder rotary compressor disclosed in Japanese Utility Model Publication No. 62-186 will be described as an example with reference to the drawings.
[0003]
In FIG. 4, in an airtight container 101, an electric motor unit 102, two compression mechanism units 103a and 103b installed in an axial direction via an intermediate partition plate 106 driven by the electric motor unit 102, and the electric motor unit A crankshaft 104 having two eccentric shaft portions 105a and 105b facing each other by 180 degrees for transmitting the rotational force of 102 to the compression mechanism portions 103a and 103b is provided.
[0004]
Each compression mechanism 103a, 103b includes cylinders 107a, 107b, vanes 109a, 109b slidably installed in vane grooves 108a, 108b provided in the cylinders 107a, 107b, and the crankshaft 104, respectively. It comprises pistons 110a and 110b that are rotatably fitted to the eccentric shaft portions 105a and 105b.
[0005]
Further, a main bearing 111 and a sub-bearing 112 of the crankshaft 104 are installed at both ends in the axial direction of the compression mechanism portions 103a and 103b.
[0006]
Further, elastic members 113a and 113b are installed at one ends of the vanes 109a and 109b, and the force acts to press the vanes 109a and 109b against the outer circumferences of the pistons 110a and 110b, respectively. The cylinders 107a and 107b are partitioned into a suction chamber side space and a discharge chamber side space.
[0007]
With the above configuration, when the motor unit 102 is driven, the rotational force is transmitted to the two eccentric shaft portions 105a and 105b facing each other through the crankshaft 104, and as a result, the pistons 110a and 110b are respectively Eccentric rotation is performed in the cylinders 107a and 107b.
[0008]
As a result, the low-pressure refrigerant gas sucked from the suction holes (not shown) is compressed with the eccentric rotational movement of the pistons 110a and 110b, and becomes high-pressure refrigerant gas from the discharge holes (not shown). The liquid is discharged into the sealed container 101. The high-pressure refrigerant gas acts on one end of the vanes 109a and 109b, and the force due to the pressure acts together with the force of the elastic members 113a and 113b so as to be pressed against the outer periphery of the pistons 110a and 110b.
[0009]
Thereafter, the high-pressure refrigerant gas is discharged from the discharge pipe 114 to the outside of the sealed container 101 through the gap of the electric motor 102.
[0010]
[Problems to be solved by the invention]
However, in the above-described conventional configuration, the force with which the vanes 109a and 109b are pressed against the pistons 110a and 110b is the same as the force by the elastic members 113a and 113b installed at one end of the vanes 109a and 109b, respectively. Of these, the pressing force by the elastic members 113a and 113b causes the vanes 109a and 109b to reciprocate in translation due to the eccentric rotational movement of the pistons 110a and 110b, It changes as the elastic members 113a and 113b themselves expand and contract.
[0011]
When the pistons 110a and 110b are 180 degrees opposite to the angles in the vane grooves 108a and 108b provided in the cylinders 107a and 107b, the elastic members 113a and 113b are in the most extended state (hereinafter, this state is referred to as bottom dead center). On the contrary, when the pistons 110a and 110b are at an angle in the direction of the vane grooves 108a and 108b, the elastic members 113a and 113b are most contracted (hereinafter, this state is referred to as top dead center). Become. Therefore, at the bottom dead center, the force with which the vanes 109a and 109b are pressed against the pistons 110a and 110b is the weakest, and conversely the strongest at the top dead center.
[0012]
The compression mechanisms 103a and 103b are engaged with the eccentric shafts 105a and 105b of the crankshaft 104 that the pistons 110a and 110b are opposed to each other by 180 degrees so that the top dead center is at one compression mechanism. In this state, the other compression mechanism is in the bottom dead center state.
[0013]
Moreover, in addition to the force by said elastic member 113a, 113b, the force by a high pressure refrigerant gas acts on the end of vane 109a, 109b in the direction pressed on the outer periphery of piston 110a, 110b.
[0014]
Due to the above configuration, when the compressor is operated at an extremely high load, that is, when the difference between the pressure of the high-pressure refrigerant gas and the pressure of the low-pressure refrigerant gas is large, the top dead center state is very strong. The vanes 109a and 109b are pressed against the pistons 110a and 110b by force. When such an operating state continues, the wear of the tips of the vanes 109a and 109b proceeds abnormally, resulting in a decrease in reliability. In particular, in recent years, compressors using HFC-based refrigerants that are being used in place of conventional refrigerants are generally known to have severer sliding conditions, and wear at the tips of the vanes 109a and 109b It was one of the big challenges.
[0015]
Further, since the elastic members 113a and 113b are repeatedly expanded and contracted, there is a problem that the elastic members 113a and 113b may be broken due to fatigue unless a design with a sufficient safety factor is performed.
[0016]
Further, since a relatively large torque is required when starting the compressor, an elastic member is installed only on the vane of one compression mechanism, as disclosed in, for example, Japanese Patent Application Laid-Open No. 62-29788. However, there is a technique in which the starting torque is reduced by applying only the force due to the pressure of the high-pressure refrigerant gas inside the hermetic container without being installed in the vane of the other compression mechanism. However, in such a method, when the pressure of the high-pressure refrigerant gas is small, the force with which the vane is pressed against the outer periphery of the piston is too small, and as a result, the refrigerant gas leaks from between the vane and the piston and is compressed. There was a risk of reducing efficiency.
[0017]
The present invention solves the above-described conventional problems, and an object of the present invention is to provide a two-cylinder rotary compressor capable of pressing a vane against a piston with a relatively simple structure with a moderate force. And
[0018]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention is configured to connect the end of each arc-shaped connecting member to the end of each vane in the cylinder outer peripheral direction so as to be rotatable with respect to the end of the vane. It is formed in contact with the inner wall of the sealed container on the partial outer peripheral side . By this connecting member, the vane of one compression mechanism part is pushed up by the eccentric rotational movement of the piston that is rotatably fitted to the eccentric shaft part of the crankshaft. Part of the vane is pushed down, so that it is pressed against the piston. Thereby, not only an elastic member for pressing the vane against the piston becomes unnecessary, but also the vane can be reliably pressed against the piston with an appropriate force.
[0019]
In the present invention, the end of each arc-shaped connecting member is rotatably connected to the end of each vane in the cylinder outer circumferential direction, and the arc-shaped connecting member is connected to the closed container on the outer peripheral side of the intermediate portion thereof. It is in contact with the inner wall . And according to this structure, the vane of one compression mechanism part is pushed up by the eccentric rotational movement of the piston rotatably fitted to the eccentric shaft part of the crankshaft, and the operation is rotatably connected to one end of the vane. Is transmitted to the connecting member having a circular arc shape. The other end of the arc-shaped connecting member is rotatably connected to one end of the vane of the other compression mechanism portion, and a part of the connecting member is brought into contact with the inner wall of the sealed container. The operation of the arc-shaped connecting member pushes down the vane of the other compression mechanism, and as a result, the vane is pressed against the piston.
[0020]
In the present invention, the arc-shaped connecting member is an elastic member. According to this configuration, the vane can be pressed against the piston with an optimum and constant force by appropriately setting the rigidity of the arc-shaped elastic member.
[0021]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0022]
(Example 1)
In FIG. 1, in an airtight container 1, an electric motor unit 2, two compression mechanism units 3a and 3b installed in an axial direction via an intermediate partition plate 6 driven by the electric motor unit 2, and the electric motor unit A crankshaft 4 having two eccentric shaft portions 5a and 5b opposed to each other by 180 degrees for transmitting the rotational force of 2 to the compression mechanism portions 3a and 3b is provided.
[0023]
The compression mechanism portions 3a and 3b include cylinders 7a and 7b, vanes 9a and 9b slidably installed in vane grooves 8a and 8b provided in the cylinders 7a and 7b, and the crankshaft 4 It consists of pistons 10a and 10b that are rotatably fitted to the eccentric shaft portions 5a and 5b.
[0024]
A main bearing 11 and a sub-bearing 12 of the crankshaft 4 are installed at both axial ends of the compression mechanism portions 3a and 3b.
[0025]
Further, at one end of the vanes 9a and 9b, concave portions 13a and 13b are provided, both end portions 14a and 14b of the connecting member 14 are rotatably connected, and the axial height central portion of the connecting member 14 is provided. Is provided with a support point 15. The ends of the vanes 9a and 9b opposite to the ones where the recesses 13a and 13b are provided are in contact with the outer circumferences of the pistons 10a and 10b, respectively, and the cylinders 7a and 7b have a suction chamber side space and a discharge chamber side. It is partitioned into a space.
[0026]
With the above configuration, when the electric motor unit 2 is driven, the rotational force is transmitted to the two eccentric shaft portions 5a and 5b facing each other through the crankshaft 4, and as a result, the pistons 10a and 10b respectively Eccentric rotation is performed in the cylinders 7a and 7b. As a result, the low-pressure refrigerant gas sucked from the suction holes (not shown) is compressed with the eccentric rotational motion of the pistons 10a and 10b. Thereafter, the refrigerant gas compressed by the compression mechanism portion 3a becomes high-pressure refrigerant gas from a discharge hole (not shown) and is temporarily discharged into the main shaft-side discharge space 16. In addition, the refrigerant gas compressed by the compression mechanism 3b becomes high-pressure refrigerant gas from a discharge hole (not shown) and is once discharged into the countershaft side discharge section 17, and then passes through the communication hole 18. , And are discharged into the spindle-side discharge space 16. Thereafter, the gas is discharged from the annular gap 19 into the sealed container 1, passes through the gap of the electric motor 2, and is discharged from the discharge pipe 20 to the outside of the sealed container 1.
[0027]
Further, as the pistons 10a and 10b perform eccentric turning motion in the cylinders 7a and 7b, the vanes 9a and 9b perform reciprocal translational motion. When the vane 9a (9b) of one compression mechanism 3a (3b) is pushed up by the piston 10a (10b), the movement of the vane 9a (9b) moves to the one end 14a (14b) of the connecting member 14 via the recess 13a (13b) of the vane. Is transmitted. Since the supporting point 15 is provided in the central portion of the axial height of the connecting member 14, the movement passes through the other end 14b (14a) of the connecting member 14 and the vane of the other compression mechanism 3b (3a). It transmits so that the recessed part 13b (13a) may be pushed down. As a result, the vane 9b (9a) is pushed down, and one end of the vane 9b (9a) is pressed against the piston 10b (10a). Further, as the crankshaft 4 rotates, these operations are repeated alternately.
[0028]
Therefore, when one piston pushes up the vane, the other vane is reliably pressed against the piston via the connecting member, so that an elastic member for pressing the vane against the piston as in the prior art becomes unnecessary, and this elastic member There are no issues such as breakage.
[0029]
The connecting portions 13a and 13b of the vanes 9a and 9b with the connecting member 14 are formed as spherical concave portions, and both ends 14a and 14b of the connecting member 14 are formed as spherical convex portions, whereby the vanes 9a and 9b and the connecting members are formed. The surface pressure at the 14 connecting portions can be reduced, and wear at this portion can be suppressed.
[0030]
Furthermore, by installing the support point 15 of the connecting member 14 in a part of the intermediate partition plate 6, there is no need to add a part for providing a separate support point.
[0031]
(Example 2)
In the embodiment shown in FIG. 2, the same components as those shown in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
[0032]
In the figure, recesses 13a and 13b are provided at one ends of vanes 9a and 9b, and both end portions 14a and 14b of a connecting member 14 are connected via elastic members 21a and 21b. A fulcrum 15 is provided at the center of the axial height of 14.
[0033]
With the above configuration, the vanes 9a and 9b perform reciprocal translational movements as the pistons 10a and 10b perform eccentric turning motions in the cylinders 7a and 7b. When the vane 9a (9b) of one compression mechanism part 3a (3b) is pushed up by the piston 10a (10b), one end of the connecting member 14 from the recess 13a (13b) of the vane via the elastic member 21a (21b). The movement is transmitted to 14a (14b). Since the support point 15 is provided in the central portion of the connecting member 14 in the axial direction, the movement is performed from the other end 14b (14a) of the connecting member 14 through the elastic member 21b (21a) to the other compression mechanism. It transmits so that the recessed part 13b (13a) of the vane of the part 3b (3a) may be pushed down. As a result, the vane 9b (9a) is pushed down, and one end of the vane 9b (9a) is pressed against the piston 10b (10a). Further, as the crankshaft 4 rotates, these operations are repeated alternately.
[0034]
Therefore, when one piston pushes up the vane, the other vane is reliably pressed against the piston via the elastic member and the connecting member. In addition, since the displacement of the elastic member itself hardly changes and a constant force always acts, the vane can be pressed against the piston with an optimal and constant force by setting the rigidity of the elastic member appropriately in advance. Can do.
[0035]
Furthermore, even if there are gaps between parts due to part tolerance or assembly tolerance, they are absorbed by the elastic members 21a and 21b, so that part processing or assembly is facilitated.
[0036]
(Example 3)
In the embodiment shown in FIG. 3, the same components as those shown in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
[0037]
In the figure, recesses 13a and 13b are provided at one ends of vanes 9a and 9b, both ends of an arc-shaped connecting member 22 are rotatably connected, and a part of the connecting member 22 is hermetically sealed. It is made to contact the inner wall of the container 1.
[0038]
With the above configuration, the vanes 9a and 9b perform reciprocal translational movements as the pistons 10a and 10b perform eccentric turning motions in the cylinders 7a and 7b. When the vane 9a (9b) of one compression mechanism part 3a (3b) is pushed up by the piston 10a (10b), the movement is caused at one end of the arc-shaped connecting member 22 via the recess 13a (13b) of the vane. Communicated. Since the vicinity of the center of the height of the connecting member 22 in the axial direction is in contact with the inner wall of the hermetic container 1, the movement from the other end of the connecting member 22 to the recess 13b of the vane of the other compression mechanism 3b (3a). (13a) is transmitted to be pushed down. As a result, the vane 9b (9a) is pushed down, and one end of the vane 9b (9a) is pressed against the piston 10b (10a). Further, as the crankshaft 4 rotates, these operations are repeated alternately.
[0039]
Therefore, when one piston pushes up the vane, the other vane is surely pressed against the piston via the arc-shaped connecting member, so that the conventional elastic member for pressing the vane against the piston becomes unnecessary.
[0040]
Further, by giving elasticity to the arc-shaped connecting member 22 itself, the vane can be pressed against the piston with an optimum and constant force. Further, even if gaps between parts due to part tolerance or assembly tolerance occur, these are absorbed by the elastic member 22, so that parts can be processed or assembled easily.
[0041]
【The invention's effect】
According to the present invention, one end of the vanes of each compression mechanism portion is connected to each other by the arc-shaped connection member, and a part of the connection member is brought into contact with the inner wall of the sealed container. The vane is pushed up by the eccentric rotational movement of the piston, and its movement is transmitted to an arc-shaped coupling member rotatably connected to one end of the vane, and the vane of the other compression mechanism part is pushed down. Pressed against. Therefore, the vane can be reliably pressed against the piston.
[0042]
Also, since the arc-shaped connecting member itself has elasticity, the vane can be pressed against the piston with an optimum and constant force by appropriately setting the rigidity of the arc-shaped connecting member in advance. The progress of wear at the vane tip can be reduced. Further, even if there are gaps between parts due to part tolerance or assembly tolerance, they are absorbed by the elastic member, so that part processing or assembly is facilitated.
[0043]
As described above, the effect of being able to reliably press the vane against the piston with a constant force with a relatively simple structure without using an elastic member for pressing the vane against the piston as in the prior art. Can be obtained.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a two-cylinder rotary compressor showing a first embodiment of the present invention. FIG. 2 is a longitudinal sectional view of an essential part of a two-cylinder rotary compressor showing a second embodiment of the present invention. FIG. 3 is a longitudinal sectional view of an essential part of a two-cylinder rotary compressor showing a third embodiment of the present invention. FIG. 4 is a longitudinal sectional view of a conventional two-cylinder rotary compressor.
DESCRIPTION OF SYMBOLS 1 Airtight container 6 Intermediate | middle partition plates 9a and 9b Vane 10a, 10b Piston 13a, 13b Vane recessed part 14 Connection member 14a, 14b Connection member convex part 15 Connection member support point 21a, 21b Elastic member 22 Arc-shaped connection member

Claims (2)

密閉容器内に、電動機部と、中間仕切板を介して軸方向に設置された2個の圧縮機構部と、前記電動機部の回転力をこの圧縮機構部に伝達するための互いに180度対向する2個の偏芯軸部を有するクランク軸とを設置し、前記各圧縮機構部を、前記それぞれの偏芯軸部を収納する円筒形状の気筒を有するシリンダと、このシリンダに径方向に貫通して設けられた溝に摺動自在に設置されたベーンと、前記クランク軸の偏芯軸部に回転自在に嵌合して設置されたピストンとで構成し、前記ベーンはシリンダ内周方向側端部が前記ピストンの外周面に接する様に配置され、これら2個の圧縮機構部の軸方向両端に、前記クランク軸を軸承する主軸受と副軸受とを設置してなる2気筒回転式圧縮機であって、前記各ベーンのシリンダ外周方向側端部には円弧状連結部材の端部がそれぞれベーン端部に対して回転自在に連結され、前記円弧状連結部材はその中間部分外周側で前記密閉容器内壁に当接されてなることを特徴とする2気筒回転式圧縮機。In the sealed container, the motor part, two compression mechanism parts installed in the axial direction via the intermediate partition plate, and 180 degrees opposite each other for transmitting the rotational force of the motor part to the compression mechanism part A crankshaft having two eccentric shaft portions, and a cylinder having a cylindrical cylinder for housing each of the eccentric shaft portions and a radial passage through each of the compression mechanism portions. and slidably installed the vane groove provided Te, wherein constituted by a rotatably fitted the installed piston eccentric shaft portion of the crank shaft, the vane cylinder circumferential end A two-cylinder rotary compressor in which a portion is disposed so as to be in contact with the outer peripheral surface of the piston, and a main bearing and a sub-bearing that support the crankshaft are installed at both axial ends of the two compression mechanisms. And the end of each vane in the cylinder outer circumferential direction End of the arc-shaped connecting member is rotatably coupled to the vane ends respectively, the arcuate connecting member is characterized by comprising abuts on the closed container inner wall at the intermediate portion outer peripheral side of the 2-cylinder rotary compressor. 円弧状の連結部材を弾性部材とした請求項1記載の2気筒回転式圧縮機。The two-cylinder rotary compressor according to claim 1, wherein the arc-shaped connecting member is an elastic member.
JP17358897A 1997-06-30 1997-06-30 2-cylinder rotary compressor Expired - Fee Related JP3627454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17358897A JP3627454B2 (en) 1997-06-30 1997-06-30 2-cylinder rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17358897A JP3627454B2 (en) 1997-06-30 1997-06-30 2-cylinder rotary compressor

Publications (2)

Publication Number Publication Date
JPH1122678A JPH1122678A (en) 1999-01-26
JP3627454B2 true JP3627454B2 (en) 2005-03-09

Family

ID=15963374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17358897A Expired - Fee Related JP3627454B2 (en) 1997-06-30 1997-06-30 2-cylinder rotary compressor

Country Status (1)

Country Link
JP (1) JP3627454B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101002555B1 (en) 2004-12-30 2010-12-17 엘지전자 주식회사 Multi-stage rotary compressor and refrigeration cycle having the same
WO2006132053A1 (en) * 2005-06-08 2006-12-14 Matsushita Electric Industrial Co., Ltd. Multi stage rotary expander and refrigeration cycle with the same
KR101322511B1 (en) * 2007-07-31 2013-10-25 엘지전자 주식회사 Twin rotary compressor
JP5925136B2 (en) * 2013-01-10 2016-05-25 三菱電機株式会社 Refrigerant compressor and heat pump equipment
CN105736375A (en) * 2016-03-07 2016-07-06 广东美芝制冷设备有限公司 Compressor
CN107989794B (en) * 2017-11-23 2023-10-03 珠海格力节能环保制冷技术研究中心有限公司 Multistage compressor and air conditioner with same

Also Published As

Publication number Publication date
JPH1122678A (en) 1999-01-26

Similar Documents

Publication Publication Date Title
AU2005240932B2 (en) Rotary fluid machine
KR100318157B1 (en) Displacement type fluid machine
KR101510697B1 (en) Rotation shaft and hermetic compressor having the same and refrigerator having the same
KR101409874B1 (en) Rotary compressor
JP3627454B2 (en) 2-cylinder rotary compressor
CN203548223U (en) Rotary compressor
KR20020034883A (en) Plural cylinder rotary compressor
KR101667710B1 (en) Rotary compressor
KR20100023634A (en) Hermetic compressor and refrigerator having the same
KR101462935B1 (en) Hermetic compressor and refrigerator having the same
JP4065654B2 (en) Multi-cylinder rotary compressor
KR101549863B1 (en) Hermetic compressor having the same and refrigerator having the same
KR100531271B1 (en) Rotary Type Compressor Having Dual Capacity
KR101444784B1 (en) Reciproating compressor
KR101452501B1 (en) Compressor
CN220248359U (en) Shaft sleeve structure of compressor pump body and compressor
KR20000009656U (en) Friction loss reduction structure of hermetic rotary compressor
KR101698086B1 (en) Hermetic compressor
WO2022004028A1 (en) Rotary compressor and refrigeration cycle device
CA2525814A1 (en) Drive shaft for compressor
KR20090129820A (en) Compressing mechanism for scroll compressor
KR100518018B1 (en) Apparatus welding compression part for hermetic rotary compresser
JP4208239B2 (en) Positive displacement machine
JPH09137785A (en) Rotary compressor
KR100715261B1 (en) Variable displacement swash plate type compressor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121217

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees