JP3626450B2 - Power saving control method for air conditioner - Google Patents

Power saving control method for air conditioner Download PDF

Info

Publication number
JP3626450B2
JP3626450B2 JP2001372556A JP2001372556A JP3626450B2 JP 3626450 B2 JP3626450 B2 JP 3626450B2 JP 2001372556 A JP2001372556 A JP 2001372556A JP 2001372556 A JP2001372556 A JP 2001372556A JP 3626450 B2 JP3626450 B2 JP 3626450B2
Authority
JP
Japan
Prior art keywords
temperature
air conditioner
indoor
room temperature
wind direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001372556A
Other languages
Japanese (ja)
Other versions
JP2002206783A (en
Inventor
ホー ソン チョイ
チ ソプ リー
Original Assignee
エルジー電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エルジー電子株式会社 filed Critical エルジー電子株式会社
Publication of JP2002206783A publication Critical patent/JP2002206783A/en
Application granted granted Critical
Publication of JP3626450B2 publication Critical patent/JP3626450B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、空気調和機の節電制御方法に係るもので、詳しくは、空気調和機の上下風向装置及び左右風向装置の動作中に発生する気流渦流を調節することで、消費電力を節減し得る空気調和機の節電制御方法に関するものである。
【0002】
【従来の技術】
一般に、空気調和機とは、冷凍サイクルから発生する冷/温空気を利用して室内の空気を快適に維持する装置を言い、前記冷凍サイクルは、冷媒の圧縮、凝縮、膨張及び蒸発を可逆的に実行することによって冷房及び暖房を行うようになっている。
【0003】
そして、従来空気調和機の冷凍サイクルにおいては、図15に示したように、冷媒の圧力を降下させる毛細管10と、室内ファン11と、液体状態の冷媒を気体状態に変換させる蒸発器12と、冷媒を凝縮して気体状態を液体状態に変換させる凝縮機13と、冷媒を圧縮する圧縮機14と、により構成されていた。
【0004】
以下、このように構成された従来の冷凍サイクルの動作を説明する。
【0005】
先ず、使用者が空気調和機の運転キーを押すと圧縮機14が稼働して冷媒が圧縮され、圧縮された冷媒は凝縮機13により凝縮されて気体状態から液体状態に変換されながら熱を室外機に放出した後、毛細管10により圧力が降下される。
【0006】
次いで、圧力降下された冷媒は蒸発器12により液体状態から気体状態に蒸発されながら該蒸発器12の表面を冷やす一方、室内ファン11から吸入された室内空気が冷たくなった前記蒸発器12の表面を通過しながら熱交換を行うため、冷たい空気が室内に噴出されて室内の温度を低下させるようになっていた。
【0007】
そして、このような冷凍サイクルが装着された空気調和機においては、図16に示したように、空気調和機の吸入部25と、液体を気体に変換して蒸発させる蒸発器23と、室内温度を感知して制御する室内吸入温度センサー24と、室内機ファン22と、前記空気調和機の冷凍サイクルから放出される冷房気流をそれぞれ上下方向及び左右方向に調節する上下風向ベーン21及び左右風向ベーン20と、から構成され、使用者が所望の温度を設定すると、前記空気調和機の吸入部25側の前記室内吸入温度センサー24が室内温度を測定し、該測定温度が前記使用者の設定温度の下限値よりも低いとき前記圧縮機14の稼動を中断させ、前記測定温度が前記設定温度の上限値よりも高いとき前記圧縮機14を稼動させる動作を反復しながら、室内温度は設定温度の上限値と下限値間を維持する。
【0008】
次いで、このように前記圧縮機14の動作により冷房気流が放出されると、前記上下風向ベーン21及び左右風向ベーン20の揺動により前記放出された冷房気流の方向が調節される。
【0009】
このとき、従来の空気調和機から放出される冷房気流の室内分布状態においては、図17に示したように、前記空気調和機の上下風向ベーン21及び左右風向ベーン20が揺動しない場合は、使用者が位置する居間だけでなく台所及び厨房を包含するすべての室内に気流が流れるため、場合によっては不必要な領域まで冷房が行われ、従って、前記居間の温度のみを設定温度まで低下させたいときは前記空気調和機の稼動時間が長く掛かってエネルギーが浪費される。
【0010】
また、前記空気調和機は室内温度よりもかなり低くて冷たい放出空気を室内に送るため、必然的に上下温度差及び左右温度差が発生して在室者は不意に寒冷感を感じるという欠点がある。
【0011】
そこで、前記上下温度差及び左右温度差を減少させるために、図18(A)(B)に示したように、上下方向オートスイング機能を利用して、所定周期で上下風向ベーン21を上下方向に自動的に反復変化させて上下温度差を減少させ、または左右オートスイング機能を利用して、所定周期で左右風向ベーン20を左右方向に自動的に反復変化させて左右温度差を減少させるようになっていた。
【0012】
ここで、前記上下温度差とは、室内床面から0.lmの地点と、室内床面から1.1mの地点との温度をそれぞれ測定してそれらの差を示し、前記左右温度差とは、室内床面から所定高さの水平平面上の温度分布中最大温度と最小温度との差を示したものである。
【0013】
【発明が解決しようとする課題】
然るに、このような従来の空気調和機においては、上下方向オートスイング機能及び左右方向オートスイング機能が圧縮機の運転状態及び時間に拘わらず反復して行われて風向を調節するようになっているため、上下温度差及び左右温度差の低減を迅速に均一に行うには限界があるという不都合な点があった。
【0014】
本発明は、このような従来の課題に鑑みてなされたもので、空気調和機の放出気流を近距離で制御することによって、設定温度に到達する時間を短縮して迅速にし、消費電力を減少し得る空気調和機の節電制御方法を提供することを目的とする。
【0015】
また、本発明の他の目的は、空気調和機の上下方向の風向及び左右方向の風向と上下方向の温度差及び左右方向の温度差とを迅速に減少して均一化させると共に、空調環境に露出された時間をチェックして室内温度を自動的に制御して、在室者に快適な空調環境を提供し得る空気調和機の節電制御方法を提供することにある。
【0016】
【課題を解決するための手段】
このような目的を達成するため、本発明に係る空気調和機の節電制御方法においては、使用者が所望の室内温度を設定して空気調和機に入力する節電運転入力段階と、入力された室内温度を複数の所定領域に区分する区分段階と、区分された各領域に従って室内温度、室内風量、上下風向ベーン及び左右風向ベーンを自動的に制御する制御段階と、制御された室内温度に対応する空気調和機の運転時間をチェックし、自動的に室内温度を上昇させる上昇段階と、を順次行い、
区分段階では、
使用者が設定した温度が T5 (℃)と同様かまたは高いとき、第 1 領域として判断する段階と、
室内温度を測定して、その測定温度と使用者所望の設定温度との差に基づいて空気調和機の圧縮機の稼動可否を判断する段階と、
判断結果に基づいて、室内風量、上下風向ベーンの下降速度、上下風向ベーンの上昇速度及び左右風向ベーンの左右揺動速度を制御する段階と、
を順次行うか、
制御段階では、
空気調和機の圧縮機の稼働時には、室内風量を強風に制御し、上下風向ベーンの下降速度は上昇速度よりも 2 倍速く駆動させ、左右風向ベーンの揺動速度は同様になるように制御し、一方、圧縮機の停止時には、室内風量を弱風に制御し、上下風向ベーンの下降速度は上昇速度よりも 2 倍遅く駆動させ、左右風向ベーンの揺動速度は稼働時よりも 3 倍遅く揺動するように制御するか、
稼動可否を判断する段階では、
室内温度が使用者所望の設定温度よりも 0.5 (℃)以上高いとき圧縮機を稼動し、室内温度が使用者所望の設定温度よりも 0.5 (℃)以下低いとき圧縮機を停止させるか、
区分段階では、
使用者所望の設定温度が T5 (℃)より低く、 T1 (℃)よりも高いか同様であるとき、第 2 領域として判断する段階と、
室内温度を測定して、その測定温度と使用者所望の設定温度との差に基づいて空気調和機の圧縮機の稼動可否を判断する段階と、
判断結果に従って圧縮機を初期室内設定温度に対応する駆動時間の間運転し、室内風量、上下風向ベーンの下降速度、上下風向ベーンの上昇速度及び左右風向ベーンの左右揺動速度を制御する段階と、
駆動時間が終了すると、室内温度が T5 (℃)になるまで室内設定温度を 1 (℃)ずつ上昇させて制御する段階と、
を順次行うか、
区分段階では、
使用者の設定した温度が T1 (℃)よりも高いか同様であるとき、第 3 領域として判断する段階と、
室内温度を測定して、その測定温度と使用者所望の設定温度との差に基づいて空気調和機の圧縮機の稼動可否を判断する段階と、
圧縮機を稼動する場合は、初期室内設定温度を無条件 T1 (℃)に判断して、それに対応するた室内風量、上下風向ベーンの下降速度、上下風向ベーンの上昇速度及び左右風向ベーンの左右揺動速度を制御する段階と、
駆動時間が終了すると、室内温度が T5 (℃)に至るまで室内設定温度を 1 (℃)ずつ上昇させて制御する段階と、
を順次行うか、
制御段階で、空気調和機が暖房運転を行う場合は、
圧縮機の稼動時には、上下風向ベーンの下向揺動速度を上向揺動速度よりも遅く駆動させ、圧縮機の停止時には、上下風向ベーンの下向揺動速度を上向揺動速度よりも速く駆動 させることを特徴としている。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態について図面を用いて説明する。
【0018】
本発明に係る空気調和機においては、図1に示したように、室内温度を感知する室内温度センサー部501と、圧縮機の運転状態を感知して室内の風向を制御する圧縮機運転状態感知部502と、室内温度制御時間をチェックする温度制御時間チェック部503と、室内ファン509を駆動する室内ファン駆動部505と、上下風向ベーン510を駆動する上下風向ベーン駆動部506と、左右風向ベーン511を駆動する左右風向ベーン駆動部507と、圧縮機512を駆動する圧縮機駆動部508と、予め設定された制御ロジックに従って前記室内ファン駆動部505、上下風向ベーン駆動部506、左右風向ベーン駆動部507及び圧縮機駆動部508をそれぞれ制御するマイクロコンピュータ(以下、マイコンと略称す)504と、により構成されている。
【0019】
以下、このように構成された本発明に係る空気調和機の節電制御動作及び方法に対し、図面を用いて説明する。
【0020】
図2〜図5は、本発明に係る空気調和機の節電制御方法として、上下及び左右風向ベーンを利用して制御する過程を示したフローチャートである。また、図11(B)は、本発明に係る空気調和機の節電制御方法における節電制御タイムを示したテーブルであり、使用者が空気調和機の節電運転を選択した後、所望の室内温度を設定するが、このとき、その設定温度(Tu)は、18〜30℃の範囲内で1℃の単位に選択することができる。
【0021】
即ち、図2、図3に示すように、使用者により節電運転が選択されると、節電タイマーが動作されると同時に、図1のマイコン504は使用者の設定温度を三つの領域に区分し、各領域に対応して前記空気調和機の稼動時間及び室内温度をチェックして、室内温度、風量、上下風向及び左右風向を自動的に制御する。
【0022】
ここで、前記三つの領域とは設定温度(Tu)によって区分された領域で、第1領域は暖かい温度を好む人に対応する領域、第2領域は一般的な温度を好む人に対応する領域、第3領域はやや涼しい温度を好む人に対応する領域、をそれぞれ示したものである。
【0023】
次いで、使用者が所望の室内温度を設定すると、前記マイコン504は設定された温度を判断して、前記設定温度がT5(℃)よりも大きいかまたは同じであるとき第1領域にて前記圧縮機512を稼動させ、前記設定温度がT5(℃)より小さくT1(℃)よりも大きいか同じであるとき第2領域にて前記圧縮機512を稼動させ、前記設定温度がT1(℃)よりも小さい場合は、第3領域にて前記圧縮機512を稼動させる。
【0024】
(1)に示すように、例えば、使用者がT5(℃)と同じであるかまたは高い温度を選択した場合、前記マイコン504は、第1領域に対応するロジックで自動制御するために、前記空気調和機の室内熱交換器の前方側に付着された室内温度センサー部501を利用して室内の温度を測定し、測定された室内温度が設定温度(Tu)よりも0.5℃以上高いとき、設定温度に到達するまで前記圧縮機512を稼動させて、設定温度(T5)による稼動時間(time5)の間、室内風量は強風にし、前記上下風向ベーン510の下降速度(Vd.on)は1Vd.on(bps)、前記上下風向ベーン510の上昇速度(Vu.on)は0.5Vu.on(bps)、且つ、前記左右風向ベーン511の揺動速度(Vr.on)は3Vr.onにそれぞれ制御する(11)。
【0025】
このように前記空気調和機を稼動して室内の温度が前記設定温度(Tu)よりも0.5 ℃低下すると、前記圧縮機512の駆動を停止させる。
【0026】
ここで、前記風量の速度を表す単位のbps(Bit Per Second)は、ステッピングモータの制御単位であって、前記単位値が大きくなるほど、ステッピングモータに連結された前記上下及び左右風向ベーン510、511の揺動速度(Vr.on)が速くなることを意味する。
【0027】
即ち、前記上下風向ベーン510の上昇速度は下降速度よりも2倍遅く、前記左右風向ベーン511の揺動速度(Vr.on)は、左側への揺動速度と右側への揺動速度とが同じで、前記圧縮機512が停止したときよりも3倍速く揺動する。
【0028】
次いで、前記圧縮機512の駆動が停止すると、室内風量は弱風になり、前記上下風向ベーン510の下降速度(Vd、off)は1Vd、offになり、前記上下方向ベーン510の上昇速度(Vu、off)は2Vd、offになって、下降速度よりも2倍速く上昇する。また、前記左右風向ベーン511の揺動速度(Vr、off)は1Vr.offであって、前記圧縮機512の稼動時の前記左右風向ベーン511の揺動速度3Vr、onよりも3倍遅く往復揺動する(12)。
【0029】
一方、(2)に示すように、前記設定温度(Tu)がTl(℃)と同じであるかまたは大きく、T5(℃)よりも小さい場合は、第2領域に対応する節電運転に自動制御される。
【0030】
即ち、前記空気調和機を前記第2領域の節電モードで稼働するための前記空気調和機の初期室内設定温度(Tc)は前記設定温度(Tu)により制御されるため、前記圧縮機512の稼働により、室内風量は強風に制御され、前記上下風向ベーン510の下降速度(Vd、on)は1Vd、on(bps)で、前記上下風向ベーン510の上昇速度(Vu、on)は0.5Vd、on(bps)であり、よって、前記上下風向ベーン510の上昇速度は下降速度よりも2倍遅い。
【0031】
また、前記左右風向ベーン511の揺動速度(Vr、on)は3Vr.onであって、左側への揺動速度と右側への揺動速度とが同じで、前記圧縮機512が停止しているときより3倍速く揺動する(21)。
【0032】
次いで、室内温度が前記設定温度(Tu)になると、前記圧縮機512の駆動を停止させ、よって、室内風量は弱風になり、前記上下風向ベーン510の下降速度(Vd、off)は1Vd、offになり、前記上下風向ベーン510の上昇速度(Vu、off)は2Vd、offになって、下降速度よりも2倍速く上昇する。また、前記左右風向ベーン511の揺動速度(Vr、off)は1Vr.offになる。
【0033】
その後、節電タイマーを利用して前記空気調和機の初期室内設定温度(Tc)に該当する運転時間をチェックして、前記初期室内設定温度(Tc)から1℃ずつ上昇させながら前記圧縮機512を制御する。
【0034】
例えば、前記空気調和機がT3(℃)に制御されていると仮定すると、前記制御温度T3(℃)に対応する時間のtime3(分)になるまで前記圧縮機512を駆動させた後、前記室内温度がT5(℃)であるかを判断して、T5(℃)以下であるとき、前記初期室内設定温度(Tc)を設定温度(Tu)よりも1℃上昇させた制御温度(T4)に対応する時間のtime4(分)になるまで前記圧縮機512を駆動させ、該圧縮機512の駆動が終了すると、節電タイマーを利用して前記室内温度がT5(℃)であるかを判断して、T5(℃)でないとき、上述したように室内設定温度を制御温度(T4)よりも1℃上昇させた温度(T5)に対応する時間の間前記圧縮機512を駆動させる。
【0035】
前記判断結果、前記初期室内設定温度(Tc)がT5(℃)であるとき、前記圧縮機512を停止させ、よって、室内風量は弱風になり、前記上下風向ベーン510の下降速度(Vd、off)は1Vd、offになり、前記上下風向ベーン510の上昇速度(Vu、off)は2Vd、offになって、下降速度よりも2倍速く上昇する。また、前記左右風向ベーン511の揺動速度(Vr、off)は1Vr.offに制御される。
【0036】
このとき、前記室内温度の上昇可能温度の限界は最大T5(℃)であるため、前記室内温度はT5(℃)以上には上昇せず、前記空気調和機は終了命令が入力されるまで反復して自動的に運転される。ここで、前記室内温度が上昇されるほど運転時間(time)は長くなる。
【0037】
さらに、図3の(3)に示すように、前記設定温度(Tu)がTl(℃)より小さい場合は第3領域に対応する節電運転に自動的に制御される。
【0038】
即ち、前記設定温度(Tu)に拘わらず初期室内設定温度(Tc)は無条件にTl(℃)に制御され、該制御温度(T1)に対応する時間(time1)の間前記圧縮機512を駆動させる。前記圧縮機512の動作時、該圧縮機512の稼動条件によって、室内風量は強風になり、前記上下風向ベーン510の下降速度(Vd、off)は1Vd、offになり、前記上下風向ベーン510の上昇速度(Vu、off)は0.5Vd、offになって、下降速度よりも2倍遅く上昇する。また、前記左右風向ベーン511の揺動速度(Vr、off)は3Vr.offになって、前記圧縮機512が停止しているときの速度よりも3倍速く回転される。
【0039】
このように前記圧縮機512が駆動した後、前記室内設定温度がT5(℃)であるかを判断して、T5(℃)以下であるとき、前記初期室内設定温度(Tc)を設定温度(Tu)よりも1℃上昇させた制御温度(T2)に対応する時間のtime2(分)になるまで前記圧縮機512を駆動させ、該圧縮機512の駆動が停止すると、節電タイマーを利用して前記室内設定温度がT5(℃)であるかを判断して、T5(℃)でないとき、初期室内設定温度(Tc)がT5(℃)になるまで前記初期室内設定温度(Tc)を1℃ずつ上昇させながら、上昇させた制御温度に対応する節電時間の間前記圧縮機512を駆動させる。
【0040】
前記室内温度の上昇制御は最大T5(℃)までであるので、初期室内設定温度(Tc)がT5(℃)になると、前記圧縮機512を停止させ、よって、室内風量は弱風になり、前記上下風向ベーン510の下降速度(Vd、off)は1Vd、offになり、前記上下風向ベーン510の上昇速度(Vu、off)は2Vd、offになって、下降速度よりも2倍速く上昇する。また、前記左右風向ベーン511の揺動速度(Vr、off)は1Vr.offに制御する。
【0041】
前記室内温度はT5(℃)以上は上昇されないので、前記空気調和機は終了命令が入力されるまで反復して自動運転を行う。
【0042】
即ち、室内温度が基準値以上に上昇されると、前記圧縮機512の稼動条件によって、室内風量は強風になり、前記上下風向ベーン510の下降速度(Vd、off)は1Vd、offになり、前記上下風向ベーン510の上昇速度(Vu、off)は0.5Vd、offになって、下降速度よりも2倍遅く上昇する。また、前記左右風向ベーン511の揺動速度(Vr、off)は3Vr.offになって、前記圧縮機512が停止しているときの速度よりも3倍速く揺動され、前記室内温度が再びT5(℃)になると、前記圧縮機512が停止される過程を反復して行うようになっている。
【0043】
以下、本発明に係る空気調和機の上下及び左右風向ベーンの風向制御方法に対し、図6(A)〜(C)及び図7を参照して説明する。
【0044】
図6(A)は前記上下及び左右風向ベーン制御速度、(B)は前記上下風向ベーンの制御速度、(C)は前記左右風向ベーン制御速度、をそれぞれ示した説明図であり、図7は、前記空気調和機の前記上下風向ベーンの制御による渦流メカニズムを示した説明図である。
【0045】
即ち、前記上下風向ベーン510が下向きのとき、気流の方向は先立った気流の方向になるが、前記上下風向ベーン510の方向が変更されて上向きになると、気流の方向は後方で追い付いてくる気流の方向になる。このとき、追い付いてくる気流が先立った気流の終端部を押すため、先立った気流はモーメントを受けて渦流を発生する。
【0046】
そして、このように発生した渦流が気流の到達距離を短縮させ、また、前記空気調和機の下方側の吸入部を通って室内機ファンが気流を吸込むため、前記渦流により気流の方向が変更されると、前記空気調和機の周囲で気流の循環が一層良好に行われる。
【0047】
従って、前記圧縮機512の稼動時、前記上下風向ベーン510の下降速度を上昇速度よりも2倍速く制御し、前記左右風向ベーン511の揺動速度を前記圧縮機512の停止時よりも3倍速く制御し、また、前記圧縮機512の停止時、前記上下風向ベーン510の下降速度を上昇速度よりも2倍遅く制御し、前記左右風向ベーン511の揺動速度を前記圧縮機512の稼動時よりも3倍遅く制御することによって、気流の到達距離を縮小させることができる。
【0048】
このように風向を制御した結果に対する室内の気流分布状態に対し、図8(A)(B)に基づいて説明する。
【0049】
即ち、前記左右風向ベーン511が迅速に左右に揺動する場合は、通常よりも速度分布が大きく現れ(図8(A))、任意の地点が気流に露出される時間の合計値としてのPDF(Probability Density Function)は、揺動範囲の両方側で大きくなることがわかる。
【0050】
この現象を室内空間に拡大させると、気流分布が両方側に拡散されて、前記空気調和機の中心部分では気流の到達距離が短縮されることが分かる。即ち、前記左右風向ベーン511の揺動速度を速くすると気流到達距離が短縮して、前記空気調和機の周辺だけに気流を発生させる近距離気流を形成することができる。
【0051】
しかし、このとき、前記左右風向ベーン511の最適揺動速度は、空間特性及び駆動するステッピングモータの特性を考慮する必要がある。
【0052】
図9(A)〜(C)は、本発明に係る空気調和機の節電制御方法を適用したときと、従来の空気調和機の運転方法を適用したときと、における室内気流の発生及び渦流現象を比較した分布図で、上下及び左右風向ベーンの揺動がない場合は、図9(A)に示したように、通常のジェットの渦流以外の渦流は発生しない。
【0053】
また、従来のように前記上下及び左右風向ベーンが単純にオートスイングを行う場合は、図9(B)に示したように、前記上下及び左右風向ベーンの揺動方向が変更されるときに分散フロー(Separation Flow)が観察されるが、慣性力が強いため拡大されない。
【0054】
一方、本発明に係る節電制御方法を適用した場合は、図9(C)に示したように、前記左右及び上下風向ベーンの揺動方向が変更されるときに発生する渦流が拡大されて吸入口に気流が吸込まれるため、全体的に気流が拡散されることを抑制する。
【0055】
以下、このような気流制御による効果に対し、図10及び図11(A)及び(B)を参照して説明する。
【0056】
図10は、本発明に係る空気調和機の節電制御方法を適用したとき、人体の快適感及び温冷感の感知時間の実験結果を示したグラフで、図11(A)及び(B)は、本発明に係る空気調和機の節電制御方法を適用したときの室内温度と節電時間との特性を示したグラフである。
【0057】
図示したように、空気調和機が稼働中の室内に人間が入って所定時間が経過すると、人体は寒冷感を感じ、引いては不快感を感じるようになる。
【0058】
しかし、室内温度が高い場合は、寒冷感を感じるまでに要する時間が長くなり、近距離気流制御により気流感が向上すると、人体の温冷感及び快適感に良い影響を与える。このとき、前記温冷感及び快適感を感じる温度は人によって相違する。
【0059】
そこで、空気調和機を稼働したとき、人体が快適感及び温冷感を感じる限界時間を求めるために、国際標準技法に従って、室内温度がT4(℃)であるときの冷感は“暑い”から“寒い”までの7段階に、快適感は“非常に快適である”から“非常に不快である”までの7段階に区分して、被験者8人に10分ごとに設問を行って平均値を求めた。
【0060】
温冷感は、“やや肌寒い”と応答した地点の“−1”を基準にして時間を求め、且つ、快適感は、快適感が頂点に到達したときの時間を求めて、それぞれの時間を分析及び比較して、室内温度T4(℃)における節電運転時間time4(分)を求めて、前記室内温度に対応する節電時間として特性グラフに表した。
【0061】
図12(A)及び(B)及び図13(A)及び(B)は、本発明の節電制御方法と、従来の運転方法と、により空気調和機を稼働したとき、室内の上下、左右温度差を比較して示したもので、室内の片隅に前記空気調和機を設置した後、一般冷房で運転した場合(従来)よりも本発明に係る節電制御運転を行った場合に、上下方向温度差及び左右方向温度差がそれぞれ上昇した。
【0062】
即ち、点線部内(居間部分)における左右方向温度差の場合(図12(A)及び(B))、従来の一般冷房で運転した場合は4.7 ℃、本発明の節電制御運転を行った場合は2.8 ℃で、冷房効果は約41%が改善され、また、点線部内(居間部分)における上下方向温度差の場合(図13(A)及び(B))も、3.1 ℃から1.5 ℃に冷房効果が約52%程度が改善された。
【0063】
このような節電運転の効果は、近距離気流による制限冷房の結果、点線部内と点線部外との温度差が約1℃ほどであるため、エネルギーの節減効果もある。
【0064】
また、本発明に係る空気調和機の節電制御方法を適用したときの節電効果として、図14に示したように、従来の一般冷房の場合、前記空気調和機の設置された場所を設定温度に維持するためには5.064kwhの電力が消費されるが、本発明の節電運転を行う場合は3.419kwhの電力が消費されるので、従来の一般冷房よりも約32.5%のエネルギーを節減し得る効果がある。
【0065】
一方、前記空気調和機を利用して暖房を行う場合は、前記圧縮機512の稼動中には前記上下風向ベーン510の上向き速度を下向き速度よりも速く駆動させ、前記圧縮機512の停止中には前記上下風向ベーン510の上向き速度を下向き速度よりも遅く駆動させるので、前記冷房を行うときと同様に電力消費を低減し得る効果がある。
【0066】
【発明の効果】
以上説明したように、本発明に係る空気調和機の節電制御方法においては、圧縮機、上下風向ベーン及び左右風向ベーンを可変的に制御して前記空気調和機から放出される気流を近距離制御し、よって、前記空気調和機の周辺を制限的に冷房して使用者所望の設定温度に迅速に到達させるので節電効果を図り得るという効果がある。
【0067】
また、前記近距離気流は変動気流であるため気流感が向上されて快適感が向上され、左右方向温度差及び上下方向温度差が改善されるので局部的不快感が除去され、更に、人体の快適感及び温冷感を考慮して室内温度を自動に制御するため、在室者の快適感を最適に維持しながら電力の消費を低減し得るという効果がある。
【図面の簡単な説明】
【図1】本発明に係る空気調和機の構成を示したブロック図である。
【図2】本発明に係る空気調和機の節電制御方法において、上下及び左右風向ベーンを制御する過程を示したフローチャート(その1)である。
【図3】本発明に係る空気調和機の節電制御方法において、上下及び左右風向ベーンを制御する過程を示したフローチャート(その2)である。
【図4】本発明に係る空気調和機の節電制御方法において、上下及び左右風向ベーンを制御する過程を示したフローチャート(その3)である。
【図5】本発明に係る空気調和機の節電制御方法において、上下及び左右風向ベーンを制御する過程を示したフローチャート(その4)である。
【図6】(A)〜(C)は本発明に係る空気調和機の上下及び左右風向ベーンの制御方法を示した図で、(A)は上下及び左右風向ベーンの制御速度を示したテーブル、(B)は上下風向ベーンの制御方法を示した説明図、及び(C)は左右風向ベーン制御方法を示した説明図である。
【図7】本発明に係る上下風向ベーンを制御するとき発生する渦流メカニズムを示した概略説明図である。
【図8】(A)及び(B)は本発明に係る左右風向ベーンにより発生する気流の分布を示した説明図で、(A)は左右風向ベーンにより発生する気流の吐出速度分布を示した概略説明図、(B)は左右風向ベーンにより発生する室内気流分布を示した概略説明図である。
【図9】(A)〜(C)は本発明に係る空気調和機の節電制御方法を適用したときと、従来の運転方法を適用したときと、における室内気流の発生及び渦流現象を示した分布図である。
【図10】本発明に係る空気調和機の節電制御方法を適用したとき、人体の快適感及び温冷感の感知時間の実験結果を示したグラフである。
【図11】(A)及び(B)は本発明に係る空気調和機を稼働した場合の特性を示したグラフ及びテーブルで、(A)は室内温度及び節電時間の特性曲線を示したグラフ、(B)は節電制御タイムを示したテーブルである。
【図12】(A)及び(B)は本発明の節電制御方法と従来の運転方法とにより空気調和機を稼働したとき、室内の左右方向温度差を比較して示した特性図である。
【図13】(A)及び(B)は本発明の節電制御方法と従来の運転方法とにより空気調和機を稼働したとき、室内の上下方向温度差を比較して示した特性図である。
【図14】本発明に係る空気調和機の節電制御方法を適用したときと従来方法との電力消費を比較して示したグラフである。
【図15】一般の冷凍サイクルを示した構成図である。
【図16】従来の空気調和機の内部を示した概略構成図である。
【図17】従来の空気調和機から放出される冷房気流の室内分布状態を示した説明図である。
【図18】(A)及び(B)は従来空気調和機の上下/左右ベーンの揺動角度を示した図で、(A)は上下風向ベーンの揺動角度、(B)は左右風向ベーンの揺動角度を示した図である。
【符号の説明】
501…室内温度センサー部
502…圧縮機運転状態感知部
503…温度制御時間チェック部
504…マイクロコンピュータ
505…室内ファン駆動部
506…上下風向ベーン駆動部
507…左右風向ベーン駆動部
508…圧縮機駆動部
509…室内ファン
510…上下風向ベーン
511…左右風向ベーン
512…圧縮機
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power saving control method for an air conditioner, and more specifically, power consumption can be reduced by adjusting an air flow vortex generated during the operation of the vertical and horizontal wind direction devices of the air conditioner. The present invention relates to a power saving control method for an air conditioner.
[0002]
[Prior art]
In general, an air conditioner is a device that comfortably maintains indoor air using cold / hot air generated from a refrigeration cycle. The refrigeration cycle reversibly compresses, condenses, expands, and evaporates refrigerant. By performing the above, the cooling and heating are performed.
[0003]
And in the refrigeration cycle of the conventional air conditioner, as shown in FIG. 15, the capillary tube 10 that lowers the pressure of the refrigerant, the indoor fan 11, and the evaporator 12 that converts the liquid refrigerant into a gas state, It was comprised with the condenser 13 which condenses a refrigerant | coolant and converts a gaseous state into a liquid state, and the compressor 14 which compresses a refrigerant | coolant.
[0004]
Hereinafter, the operation of the conventional refrigeration cycle configured as described above will be described.
[0005]
First, when the user presses the operation key of the air conditioner, the compressor 14 is operated and the refrigerant is compressed, and the compressed refrigerant is condensed by the condenser 13 and converted into a liquid state from a gas state to heat the outdoor. After discharge into the machine, the pressure is reduced by the capillary tube 10.
[0006]
Next, the refrigerant whose pressure has been reduced cools the surface of the evaporator 12 while being evaporated from the liquid state to the gas state by the evaporator 12, while the surface of the evaporator 12 in which the indoor air sucked from the indoor fan 11 is cooled. In order to exchange heat while passing through, cold air is blown into the room to lower the temperature in the room.
[0007]
And like thisColdIn an air conditioner equipped with a refrigeration cycle, as shown in FIG. 16, the air intake unit 25, the evaporator 23 that converts liquid into gas and evaporates, and the indoor temperature is sensed and controlled. The indoor intake temperature sensor 24, the indoor unit fan 22, and the vertical airflow direction vane 21 and the horizontal airflow direction vane 20 that adjust the cooling airflow discharged from the refrigeration cycle of the air conditioner in the vertical direction and the horizontal direction, respectively. When the user sets a desired temperature, the indoor intake temperature sensor 24 on the intake unit 25 side of the air conditioner measures the indoor temperature, and the measured temperature is lower than the lower limit value of the set temperature of the user. When the temperature is low, the operation of the compressor 14 is interrupted, and when the measured temperature is higher than the upper limit value of the set temperature, while the operation of operating the compressor 14 is repeated, the indoor temperature is the upper limit value and lower limit value of the set temperature. Keep between.
[0008]
Next, when the cooling airflow is released by the operation of the compressor 14 in this way, the direction of the released cooling airflow is adjusted by the swinging of the up-and-down airflow direction vane 21 and the left-right airflow direction vane 20.
[0009]
At this time, in the indoor distribution state of the cooling airflow discharged from the conventional air conditioner, as shown in FIG. 17, when the up-and-down airflow direction vane 21 and the left-right airflow direction vane 20 of the air conditioner do not swing, Since airflow flows not only in the living room where the user is located, but also in all rooms including the kitchen and kitchen, in some cases, cooling is performed to unnecessary areas, and therefore only the temperature of the living room is reduced to the set temperature. When the air conditioner is desired, the operation time of the air conditioner takes a long time and energy is wasted.
[0010]
In addition, since the air conditioner sends cool discharge air that is considerably lower than the room temperature into the room, there is a drawback that the room temperature inevitably generates a difference in temperature between the top and bottom and the temperature difference between the left and right, and the occupants suddenly feel a cold feeling. is there.
[0011]
Therefore, in order to reduce the vertical temperature difference and the horizontal temperature difference, as shown in FIGS. 18A and 18B, the vertical wind vane 21 is moved in the vertical direction at a predetermined cycle by using the vertical swing function. The left and right temperature vane 20 is automatically and repeatedly changed in the left and right directions at a predetermined cycle by using the left and right auto swing function to reduce the left and right temperature difference. It was.
[0012]
Here, the vertical temperature difference is 0. 0 from the indoor floor surface. Measure the temperature at the point 1m and the point 1.1m from the indoor floor to show the difference between them. The left-right temperature difference is the temperature distribution on the horizontal plane at a predetermined height from the indoor floor. It shows the difference between the maximum temperature and the minimum temperature.
[0013]
[Problems to be solved by the invention]
However, in such a conventional air conditioner, the vertical direction automatic swing function and the horizontal direction automatic swing function are repeatedly performed regardless of the operating state and time of the compressor to adjust the wind direction. Therefore, there is a disadvantage in that there is a limit to quickly and uniformly reducing the vertical temperature difference and the horizontal temperature difference.
[0014]
The present invention has been made in view of such conventional problems, and by controlling the airflow of the air conditioner at a short distance, the time to reach the set temperature is shortened and speeded up, and the power consumption is reduced. An object of the present invention is to provide a power saving control method for an air conditioner.
[0015]
In addition, another object of the present invention is to quickly reduce and equalize the vertical and horizontal wind directions of the air conditioner, the vertical and horizontal temperature differences, and the temperature difference in the horizontal direction. An object of the present invention is to provide a power-saving control method for an air conditioner that can provide a comfortable air-conditioning environment to occupants by checking the exposed time and automatically controlling the room temperature.
[0016]
[Means for Solving the Problems]
In order to achieve such an object, in the power-saving control method for an air conditioner according to the present invention, a power-saving operation input stage in which a user sets a desired indoor temperature and inputs it to the air-conditioner; TemperaturepluralA division stage for dividing into predetermined areas, a control stage for automatically controlling the indoor temperature, the indoor air volume, the up / down air direction vanes and the left / right air direction vanes according to each of the divided areas, and an air conditioner corresponding to the controlled indoor temperature. The operation time is checked, and the rising stage to automatically increase the room temperature is sequentially performed,
At the segmentation stage
The temperature set by the user is T5 When the same as (℃) or higher, 1 Judging as an area,
Measuring the indoor temperature and determining whether or not the compressor of the air conditioner can be operated based on a difference between the measured temperature and a set temperature desired by the user;
Based on the determination result, controlling the indoor air volume, the descending speed of the vertical wind direction vane, the ascending speed of the vertical wind direction vane, and the horizontal swing speed of the horizontal wind direction vane;
SequentiallyDo or
In the control phase,
When the compressor of the air conditioner is in operation, the indoor air volume is controlled to be strong wind, and the descending speed of the vertical wind vane is higher than the ascending speed. 2 Driven twice as fast and controls the swing speed of the right and left wind direction vanes to be the same.On the other hand, when the compressor is stopped, the indoor air volume is controlled to be weak and the descending speed of the up and down wind direction vanes is higher than the rising speed. 2 Driven twice as slow, and the swing speed of the right and left wind direction vanes is faster than when operating Three Control to swing twice as slow,
At the stage of determining availability,
The room temperature is lower than the user's desired set temperature. 0.5 When the temperature is higher than (℃), the compressor is operated and the room temperature is lower than the user's desired set temperature. 0.5 (℃) When the temperature is lower than the compressor,
At the segmentation stage
The user's desired set temperature is T5 (C) lower than T1 (C) higher or similar, 2 Judging as an area,
Measuring the indoor temperature and determining whether or not the compressor of the air conditioner can be operated based on a difference between the measured temperature and a set temperature desired by the user;
Operating the compressor for a driving time corresponding to the initial indoor set temperature according to the determination result, and controlling the indoor air volume, the descending speed of the upper and lower wind direction vanes, the rising speed of the upper and lower wind direction vanes and the left and right swing speed of the left and right wind vanes; ,
When the drive time ends, the room temperature T5 Set the room temperature to (° C). 1 (C) step by step and control,
Or sequentially
At the segmentation stage
The temperature set by the user is T1 (C) higher or similar, Three Judging as an area,
Measuring the indoor temperature and determining whether or not the compressor of the air conditioner can be operated based on a difference between the measured temperature and a set temperature desired by the user;
When operating the compressor, the initial indoor set temperature is unconditional. T1 (° C), and controlling the indoor air volume, the descending speed of the vertical wind direction vane, the rising speed of the vertical wind direction vane, and the left and right swing speed of the left and right wind direction vane corresponding to it,
When the drive time ends, the room temperature T5 Set the room temperature to (℃) 1 (C) step by step and control,
Or sequentially
When the air conditioner performs heating operation at the control stage,
When the compressor is in operation, the downward swing speed of the vertical wind vane is driven slower than the upward swing speed. When the compressor is stopped, the downward swing speed of the vertical wind vane is higher than the upward swing speed. Fast drive To letIt is a feature.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0018]
In the air conditioner according to the present invention, as shown in FIG. 1, an indoor temperature sensor unit 501 that senses the indoor temperature, and a compressor operating state sensor that senses the operating state of the compressor and controls the indoor wind direction. Unit 502, temperature control time check unit 503 for checking indoor temperature control time, indoor fan drive unit 505 for driving indoor fan 509, vertical wind direction vane drive unit 506 for driving vertical wind direction vane 510, and left and right wind direction vane The left and right wind direction vane driving unit 507 for driving 511, the compressor driving unit 508 for driving the compressor 512, the indoor fan driving unit 505, the up and down wind direction vane driving unit 506, and the left and right wind direction vane drive according to preset control logic. A microcomputer (hereinafter abbreviated as a microcomputer) 504 for controlling the unit 507 and the compressor driving unit 508, and It is more configuration.
[0019]
Hereinafter, the power-saving control operation and method of the air conditioner according to the present invention configured as described above will be described with reference to the drawings.
[0020]
FIGS. 2 to 5 are flowcharts showing a process of controlling by using up and down and left and right wind direction vanes as the power saving control method of the air conditioner according to the present invention. FIG. 11B is a table showing the power saving control time in the air conditioner power saving control method according to the present invention. After the user selects the power saving operation of the air conditioner, the desired room temperature is set. At this time, the set temperature (Tu) can be selected in units of 1 ° C. within a range of 18 to 30 ° C.
[0021]
That is, as shown in FIGS. 2 and 3, when the power saving operation is selected by the user, the power saving timer is operated, and at the same time, the microcomputer 504 in FIG. 1 divides the set temperature of the user into three regions. The operation time and the room temperature of the air conditioner are checked corresponding to each region, and the room temperature, the air volume, the up and down air direction, and the left and right air direction are automatically controlled.
[0022]
Here, the three areas are areas divided by a set temperature (Tu), the first area corresponds to a person who likes a warm temperature, and the second area corresponds to a person who likes a general temperature. The third region shows a region corresponding to a person who prefers a slightly cooler temperature.
[0023]
Next, when the user sets a desired room temperature, the microcomputer 504 determines the set temperature, and when the set temperature is greater than or equal to T5 (° C.), the compression is performed in the first region. When the set temperature is smaller than T5 (° C.) and greater than or equal to T1 (° C.), the compressor 512 is operated in the second region, and the set temperature is greater than T1 (° C.). Is smaller, the compressor 512 is operated in the third region.
[0024]
As shown in (1), for example, when the user selects a temperature that is the same as or higher than T5 (° C.), the microcomputer 504 automatically controls with the logic corresponding to the first area. The room temperature is measured using the room temperature sensor unit 501 attached to the front side of the indoor heat exchanger of the air conditioner, and the measured room temperature is 0.5 ° C. or more higher than the set temperature (Tu). When the compressor 512 is operated until the set temperature is reached, the indoor air volume is increased during the operation time (time 5) according to the set temperature (T5), and the descending speed (Vd.on) of the vertical wind direction vane 510 is increased. Is 1 Vd. on (bps), the rising speed (Vu.on) of the up-and-down wind vane 510 is 0.5 Vu. on (bps), and the rocking speed (Vr.on) of the left and right wind vanes 511 is 3 Vr. Each is controlled to on (11).
[0025]
As described above, when the air conditioner is operated and the indoor temperature is lowered by 0.5 ° C. from the set temperature (Tu), the driving of the compressor 512 is stopped.
[0026]
Here, the unit bps (Bit Per Second) representing the speed of the air volume is a control unit of the stepping motor, and as the unit value increases, the vertical and horizontal wind direction vanes 510 and 511 connected to the stepping motor. This means that the rocking speed (Vr.on) of the motor becomes faster.
[0027]
That is, the rising speed of the vertical wind vane 510 is twice as slow as the descending speed, and the swing speed (Vr.on) of the left and right wind vanes 511 is determined by the swing speed to the left and the swing speed to the right. In the same manner, it swings three times faster than when the compressor 512 stops.
[0028]
Next, when the driving of the compressor 512 is stopped, the indoor air volume becomes weak, the descending speed (Vd, off) of the vertical wind direction vane 510 becomes 1 Vd, off, and the ascending speed (Vu of the vertical vane 510). , Off) becomes 2 Vd, off, and rises twice as fast as the descent speed. Further, the rocking speed (Vr, off) of the left and right wind direction vanes 511 is 1 Vr. It is off, and the reciprocating rocking is performed three times slower than the rocking speed 3 Vr, on of the left and right wind direction vanes 511 when the compressor 512 is operated (12).
[0029]
On the other hand, as shown in (2), when the set temperature (Tu) is the same as or larger than Tl (° C.) and smaller than T 5 (° C.), the power saving operation corresponding to the second region is automatically controlled. Is done.
[0030]
That is, since the initial indoor set temperature (Tc) of the air conditioner for operating the air conditioner in the power saving mode of the second region is controlled by the set temperature (Tu), the operation of the compressor 512 is performed. Thus, the indoor air volume is controlled to be strong wind, the descending speed (Vd, on) of the vertical wind direction vane 510 is 1 Vd, on (bps), and the ascending speed (Vu, on) of the vertical wind direction vane 510 is 0.5 Vd, on (bps), and therefore, the rising speed of the vertical wind vane 510 is twice as slow as the descending speed.
[0031]
Further, the rocking speed (Vr, on) of the left and right wind direction vanes 511 is 3 Vr. On, the rocking speed to the left and the rocking speed to the right are the same, and rocks three times faster than when the compressor 512 is stopped (21).
[0032]
Next, when the room temperature reaches the set temperature (Tu), the driving of the compressor 512 is stopped, so that the indoor air volume becomes weak and the descending speed (Vd, off) of the vertical wind vane 510 is 1 Vd, The upward speed (Vu, off) of the up-and-down wind direction vane 510 becomes 2 Vd, off, and rises twice as fast as the descending speed. Further, the rocking speed (Vr, off) of the left and right wind direction vanes 511 is 1 Vr. It becomes off.
[0033]
Thereafter, an operation time corresponding to the initial indoor set temperature (Tc) of the air conditioner is checked using a power saving timer, and the compressor 512 is turned on while increasing by 1 ° C. from the initial indoor set temperature (Tc). Control.
[0034]
For example, assuming that the air conditioner is controlled at T3 (° C.), after driving the compressor 512 until time 3 (minutes) corresponding to the control temperature T3 (° C.), It is determined whether the room temperature is T5 (° C.), and when it is equal to or lower than T5 (° C.), the control temperature (T4) obtained by raising the initial indoor set temperature (Tc) by 1 ° C. from the set temperature (Tu) The compressor 512 is driven until time 4 (minutes) corresponding to the time is reached. When the compressor 512 is driven, it is determined whether the room temperature is T5 (° C.) using a power saving timer. When it is not T5 (° C.), the compressor 512 is driven for a time corresponding to a temperature (T5) obtained by raising the indoor set temperature by 1 ° C. above the control temperature (T4) as described above.
[0035]
As a result of the determination, when the initial indoor set temperature (Tc) is T5 (° C.), the compressor 512 is stopped, so that the indoor air flow becomes weak and the descending speed (Vd, off) becomes 1 Vd, off, and the rising speed (Vu, off) of the vertical wind direction vane 510 becomes 2 Vd, off, which rises twice as fast as the descending speed. Further, the rocking speed (Vr, off) of the left and right wind direction vanes 511 is 1 Vr. Controlled off.
[0036]
At this time, since the limit of the temperature that can increase the indoor temperature is T5 (° C.) at the maximum, the indoor temperature does not rise above T5 (° C.), and the air conditioner repeats until an end command is input. Automatically. Here, the operation time (time) becomes longer as the room temperature increases.
[0037]
Further, as shown in (3) of FIG. 3, when the set temperature (Tu) is smaller than Tl (° C.), the power saving operation corresponding to the third region is automatically controlled.
[0038]
That is, regardless of the set temperature (Tu), the initial indoor set temperature (Tc) is unconditionally controlled to Tl (° C.), and the compressor 512 is turned off for a time (time 1) corresponding to the control temperature (T1). Drive. During the operation of the compressor 512, the indoor air volume becomes strong depending on the operating conditions of the compressor 512, the descending speed (Vd, off) of the vertical wind direction vane 510 is 1 Vd, off, and the vertical wind direction vane 510 The ascending speed (Vu, off) becomes 0.5 Vd, off, and rises twice slower than the descending speed. Further, the rocking speed (Vr, off) of the left and right wind direction vanes 511 is 3 Vr. The compressor 512 is turned off and is rotated three times faster than the speed when the compressor 512 is stopped.
[0039]
After the compressor 512 is driven in this way, it is determined whether or not the indoor set temperature is T5 (° C.), and when it is equal to or lower than T5 (° C.), the initial indoor set temperature (Tc) is set to the set temperature ( The compressor 512 is driven until time2 (minute) of the time corresponding to the control temperature (T2) increased by 1 ° C. from Tu), and when the drive of the compressor 512 is stopped, a power saving timer is used. It is determined whether the indoor set temperature is T5 (° C.), and when it is not T5 (° C.), the initial indoor set temperature (Tc) is set to 1 ° C. until the initial indoor set temperature (Tc) reaches T5 (° C.). While increasing each time, the compressor 512 is driven for a power saving time corresponding to the increased control temperature.
[0040]
Since the increase control of the indoor temperature is up to the maximum T5 (° C.), when the initial indoor set temperature (Tc) reaches T5 (° C.), the compressor 512 is stopped, and the indoor air flow becomes weak. The descending speed (Vd, off) of the vertical wind vane 510 is 1 Vd, off, and the ascending speed (Vu, off) of the vertical wind vane 510 is 2 Vd, off, which rises twice as fast as the descending speed. . Further, the rocking speed (Vr, off) of the left and right wind direction vanes 511 is 1 Vr. Control off.
[0041]
Since the room temperature does not rise above T5 (° C.), the air conditioner repeats automatic operation until an end command is input.
[0042]
That is, when the indoor temperature rises to a reference value or more, the indoor air volume becomes strong depending on the operating conditions of the compressor 512, and the descending speed (Vd, off) of the vertical wind vane 510 becomes 1 Vd, off. The rising speed (Vu, off) of the vertical wind direction vane 510 becomes 0.5 Vd, off, and rises twice as much as the descending speed. Further, the rocking speed (Vr, off) of the left and right wind direction vanes 511 is 3 Vr. When the compressor 512 is turned off and is swung three times faster than the speed when the compressor 512 is stopped, and the room temperature reaches T5 (° C.) again, the process of stopping the compressor 512 is repeated. To do.
[0043]
Hereinafter, the wind direction control method of the up-down and right-and-left wind direction vanes of the air conditioner according to the present invention will be described with reference to FIGS. 6 (A) to 6 (C) and FIG.
[0044]
6A is an explanatory view showing the up / down and left / right wind direction vane control speeds, FIG. 6B is an explanatory diagram showing the up / down wind direction vane control speeds, and FIG. It is explanatory drawing which showed the eddy current mechanism by control of the said up-and-down wind direction vane of the said air conditioner.
[0045]
That is, when the up-and-down airflow direction vane 510 is downward, the direction of the airflow is the direction of the preceding airflow. However, when the up-and-down airflow direction vane 510 is changed and turned upward, the airflow direction catches up behind. It becomes the direction. At this time, since the catching air current pushes the end of the preceding air current, the preceding air current receives a moment and generates a vortex.
[0046]
Then, the vortex generated in this way shortens the reach distance of the air flow, and the indoor unit fan sucks the air flow through the suction portion on the lower side of the air conditioner, so the direction of the air flow is changed by the vortex flow. As a result, airflow is circulated more favorably around the air conditioner.
[0047]
Accordingly, when the compressor 512 is in operation, the descending speed of the up-and-down wind direction vane 510 is controlled twice as fast as the ascending speed, and the swing speed of the left-and-right wind direction vane 511 is three times as fast as when the compressor 512 is stopped. Further, when the compressor 512 is stopped, the descending speed of the vertical wind direction vane 510 is controlled to be twice slower than the ascending speed, and the swing speed of the left and right wind direction vane 511 is controlled when the compressor 512 is in operation. By controlling the speed three times slower than that, the reach of the airflow can be reduced.
[0048]
The airflow distribution state in the room corresponding to the result of controlling the wind direction in this way will be described with reference to FIGS.
[0049]
That is, when the right and left wind direction vanes 511 quickly swing left and right, the velocity distribution appears larger than usual (FIG. 8A), and PDF as the total value of the time at which an arbitrary point is exposed to the airflow. It can be seen that (Probability Density Function) increases on both sides of the swing range.
[0050]
When this phenomenon is expanded to the indoor space, it can be seen that the airflow distribution is diffused to both sides, and the reach of the airflow is shortened in the central portion of the air conditioner. That is, when the swing speed of the left and right wind direction vanes 511 is increased, the airflow arrival distance is shortened, and a short-distance airflow that generates an airflow only around the air conditioner can be formed.
[0051]
However, at this time, it is necessary to consider the spatial characteristics and the characteristics of the driving stepping motor for the optimum swing speed of the left and right wind direction vanes 511.
[0052]
9 (A) to 9 (C) show the generation of indoor airflow and the eddy current phenomenon when the power saving control method for an air conditioner according to the present invention is applied and when the conventional air conditioner operation method is applied. If there is no fluctuation of the vertical and left and right wind direction vanes, as shown in FIG. 9A, no eddy current other than the normal jet vortex is generated.
[0053]
In addition, when the vertical and horizontal wind direction vanes simply perform the automatic swing as in the conventional case, as shown in FIG. 9B, the vertical and horizontal wind direction vanes are dispersed when the swing direction is changed. Although a flow (Separation Flow) is observed, it is not enlarged due to the strong inertial force.
[0054]
On the other hand, when the power saving control method according to the present invention is applied, as shown in FIG. 9C, the vortex generated when the swing direction of the left and right and up and down wind direction vanes is changed is enlarged and sucked. Since the airflow is sucked into the mouth, the entire airflow is prevented from being diffused.
[0055]
Hereinafter, the effects of such airflow control will be described with reference to FIGS. 10 and 11A and 11B.
[0056]
FIG. 10 is a graph showing experimental results of sensing time of comfort and thermal sensation of the human body when the power saving control method of the air conditioner according to the present invention is applied. FIGS. 11 (A) and 11 (B) are graphs. 5 is a graph showing characteristics of room temperature and power saving time when the power saving control method for an air conditioner according to the present invention is applied.
[0057]
As shown in the figure, when a human enters the room where the air conditioner is in operation and a predetermined time elapses, the human body feels cold and pulls and feels uncomfortable.
[0058]
However, when the room temperature is high, the time required to feel the cold feeling becomes longer, and if the airflow feeling is improved by the short-distance air flow control, the human body's thermal feeling and comfort are favorably affected. At this time, the temperature at which the user feels warmth and comfort varies from person to person.
[0059]
Therefore, in order to find the limit time for the human body to feel comfortable and cool when operating the air conditioner, the cool feeling when the room temperature is T4 (° C) is “hot” according to the international standard technique. There are 7 levels, ranging from “cold” to 7 levels, ranging from “very comfortable” to “very uncomfortable”, and 8 subjects were asked questions every 10 minutes and averaged. Asked.
[0060]
The thermal sensation is determined based on “-1” of the point where “somewhat chilly” is responded, and the comfortable sensation is determined as the time when the comfortable sensation reaches the top. Analysis and comparison were performed to obtain a power saving operation time time4 (min) at the room temperature T4 (° C.), and the power saving time corresponding to the room temperature was represented in the characteristic graph.
[0061]
12 (A) and 12 (B) and FIGS. 13 (A) and 13 (B) show the indoor vertical and horizontal temperatures when the air conditioner is operated by the power saving control method of the present invention and the conventional operation method. The difference is shown by comparing the vertical direction temperature when the air conditioner is installed in one corner of the room and then the power saving control operation according to the present invention is performed rather than the case of the general cooling operation (conventional). The difference and the temperature difference between the left and right increased respectively.
[0062]
That is, in the case of the temperature difference in the left-right direction in the dotted line part (living room part) (FIGS. 12A and 12B), the power saving control operation of the present invention was performed at 4.7 ° C. when operated with the conventional general cooling. In this case, the cooling effect is improved by about 41% at the temperature of 2.8 ° C., and in the case of the temperature difference in the vertical direction in the dotted line portion (living room portion) (FIGS. 13A and 13B) is also 3.1 ° C. The cooling effect was improved by about 52% from 1.5 to 1.5 ° C.
[0063]
The effect of such a power saving operation is also an energy saving effect because the temperature difference between the inside of the dotted line part and the outside of the dotted line part is about 1 ° C. as a result of the limited cooling by the short-distance air flow.
[0064]
Further, as a power saving effect when applying the power saving control method for an air conditioner according to the present invention, as shown in FIG. 14, in the case of conventional general cooling, the place where the air conditioner is installed is set to a set temperature. In order to maintain the power consumption, 5.064 kwh of power is consumed. However, when the power saving operation of the present invention is performed, 3.419 kwh of power is consumed. Therefore, about 32.5% of energy is consumed as compared with the conventional general cooling. There is an effect that can be saved.
[0065]
On the other hand, when heating using the air conditioner, while the compressor 512 is in operation, the upward speed of the up-and-down air vane 510 is driven faster than the downward speed, and the compressor 512 is stopped. Since the upward speed of the vertical wind direction vane 510 is driven slower than the downward speed, there is an effect that power consumption can be reduced as in the case of the cooling.
[0066]
【The invention's effect】
As described above, in the power-saving control method for an air conditioner according to the present invention, the compressor, the vertical wind direction vane, and the left and right wind direction vanes are variably controlled to control the airflow emitted from the air conditioner in a short distance. Thus, the periphery of the air conditioner is limitedly cooled to quickly reach a user-desired set temperature, so that a power saving effect can be achieved.
[0067]
In addition, since the short-distance airflow is a fluctuating airflow, the airflow feeling is improved and the feeling of comfort is improved, and the lateral temperature difference and the vertical temperature difference are improved, so that local discomfort is eliminated, and further, Since the room temperature is automatically controlled in consideration of comfort and thermal sensation, there is an effect that power consumption can be reduced while optimally maintaining the comfort of the occupants.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of an air conditioner according to the present invention.
FIG. 2 is a flowchart (No. 1) showing a process of controlling up and down and left and right wind direction vanes in the power saving control method for an air conditioner according to the present invention.
FIG. 3 is a flowchart (part 2) illustrating a process of controlling the vertical and horizontal wind direction vanes in the air conditioner power saving control method according to the present invention.
FIG. 4 is a flowchart (part 3) showing a process of controlling the vertical and horizontal wind direction vanes in the air conditioner power saving control method according to the present invention.
FIG. 5 is a flowchart (No. 4) showing a process of controlling the vertical and horizontal wind direction vanes in the air conditioner power saving control method according to the present invention.
FIGS. 6A to 6C are diagrams showing a method for controlling the vertical and horizontal wind direction vanes of the air conditioner according to the present invention, and FIG. 6A is a table showing the control speed of the vertical and horizontal wind direction vanes. (B) is explanatory drawing which showed the control method of an up-down wind direction vane, (C) is explanatory drawing which showed the left-right wind direction vane control method.
FIG. 7 is a schematic explanatory view showing a vortex mechanism generated when controlling the up-and-down wind direction vanes according to the present invention.
FIGS. 8A and 8B are explanatory diagrams showing the distribution of airflow generated by the left and right wind direction vanes according to the present invention, and FIG. 8A shows the discharge velocity distribution of the airflow generated by the left and right wind direction vanes. Schematic explanatory drawing, (B) is a schematic explanatory drawing showing the indoor airflow distribution generated by the left and right wind direction vanes.
FIGS. 9A to 9C show indoor airflow generation and eddy current phenomenon when the air-conditioner power saving control method according to the present invention is applied and when the conventional operation method is applied. It is a distribution map.
FIG. 10 is a graph showing experimental results of human body comfort and thermal sensation sensing time when the air conditioner power saving control method according to the present invention is applied.
11A and 11B are a graph and a table showing characteristics when the air conditioner according to the present invention is operated, and FIG. 11A is a graph showing a characteristic curve of room temperature and power saving time; (B) is a table showing power saving control time.
FIGS. 12A and 12B are characteristic diagrams showing a comparison of the temperature difference in the left-right direction in the room when the air conditioner is operated by the power saving control method of the present invention and the conventional operation method.
FIGS. 13A and 13B are characteristic diagrams comparing the indoor vertical temperature differences when the air conditioner is operated by the power saving control method of the present invention and the conventional operation method.
FIG. 14 is a graph showing a comparison of power consumption between the case where the power-saving control method for an air conditioner according to the present invention is applied and the conventional method.
FIG. 15 is a configuration diagram showing a general refrigeration cycle.
FIG. 16 is a schematic configuration diagram showing the inside of a conventional air conditioner.
FIG. 17 is an explanatory diagram showing the indoor distribution state of the cooling airflow discharged from a conventional air conditioner.
FIGS. 18A and 18B are views showing swing angles of vertical / left and right vanes of a conventional air conditioner, FIG. 18A is a swing angle of vertical wind direction vanes, and FIG. 18B is a left and right wind direction vane. It is the figure which showed the rocking | fluctuation angle.
[Explanation of symbols]
501 ... Indoor temperature sensor
502 ... Compressor operating state sensing unit
503 ... Temperature control time check section
504 ... Microcomputer
505 ... Indoor fan drive
506: Vertical wind direction vane drive unit
507: Left and right wind direction vane drive section
508 ... Compressor drive unit
509 ... Indoor fan
510 ... up and down wind vane
511 ... right and left wind vanes
512 ... Compressor

Claims (9)

使用者が所望の室内温度を設定して空気調和機に入力する節電運転入力段階と、
前記入力された室内温度を複数の所定領域に区分する区分段階と、
前記区分された各領域に従って室内温度、室内風量、上下風向ベーン及び左右風向ベーンを自動的に制御する制御段階と、
前記制御された室内温度に対応する前記空気調和機の運転時間をチェックし、自動的に室内温度を上昇させる上昇段階と、
を順次行い、
前記区分段階では、
使用者が設定した温度が T5 (℃)と同様かまたは高いとき、第 1 領域として判断する段階と、
室内温度を測定して、その測定温度と前記使用者所望の設定温度との差に基づいて前記空気調和機の圧縮機の稼動可否を判断する段階と、
前記判断結果に基づいて、前記室内風量、上下風向ベーンの下降速度、上下風向ベーンの上昇速度及び左右風向ベーンの左右揺動速度を制御する段階と、
を順次行うことを特徴とする空気調和機の節電制御方法。
A power saving operation input stage in which the user sets a desired indoor temperature and inputs it to the air conditioner;
A division step of dividing the input room temperature into a plurality of predetermined regions;
A control step of automatically controlling the indoor temperature, the indoor air volume, the up / down wind direction vane and the left / right wind direction vane according to each of the divided areas;
Checking the operating time of the air conditioner corresponding to the controlled room temperature, and automatically increasing the room temperature;
In order ,
In the classification step,
When the temperature set by the user is the same as or higher than T5 (° C.), it is determined as the first area;
Measuring the indoor temperature and determining whether the compressor of the air conditioner is operable based on a difference between the measured temperature and the set temperature desired by the user;
Based on the determination result, controlling the indoor air volume, the descending speed of the vertical wind direction vane, the rising speed of the vertical wind direction vane, and the horizontal swing speed of the left and right wind direction vanes;
Sequential power-saving control method of an air conditioner and performs.
前記稼動可否を判断する段階では、In the step of determining whether the operation is possible,
前記室内温度が前記使用者所望の設定温度よりも  The room temperature is lower than the set temperature desired by the user 0.50.5 (℃)以上高いとき前記圧縮機を稼動し、前記室内温度が前記使用者所望の設定温度よりもWhen the temperature is higher than (° C), the compressor is operated, and the room temperature is lower than the set temperature desired by the user. 0.50.5 (℃)以下低いとき前記圧縮機を停止させることを特徴とする請求項1記載の空気調和機の節電制御方法。The method of claim 1, wherein the compressor is stopped when the temperature is lower than (° C).
前記設定温度を低く設定するほど、前記空気調和機の稼動時間は長くなることを特徴とする請求項2記載の空気調和機の節電制御方法。The power saving control method for an air conditioner according to claim 2, wherein the operating time of the air conditioner becomes longer as the set temperature is set lower. 前記室内温度は最高The room temperature is the highest T5T5 (℃)までに上昇が制限され、前記室内温度が(C), the rise is limited, and the room temperature is T5T5 (℃)に至ると、前記空気調和機は終了命令が入力されるまで自動的に運転を反復する段階がさらに含まれることを特徴とする請求項2記載の空気調和機の節電制御方法。The method of claim 2, further comprising a step of automatically repeating the operation of the air conditioner until an end command is input when the temperature reaches (° C.). 使用者が所望の室内温度を設定して空気調和機に入力する節電運転入力段階と、A power saving operation input stage in which the user sets a desired indoor temperature and inputs it to the air conditioner;
前記入力された室内温度を複数の所定領域に区分する区分段階と、  A division step of dividing the input room temperature into a plurality of predetermined regions;
前記区分された各領域に従って室内温度、室内風量、上下風向ベーン及び左右風向ベーンを自動的に制御する制御段階と、  A control step of automatically controlling the indoor temperature, the indoor air volume, the up / down wind direction vane and the left / right wind direction vane according to each of the divided areas;
前記制御された室内温度に対応する前記空気調和機の運転時間をチェックし、自動的に室内温度を上昇させる上昇段階と、  Checking the operation time of the air conditioner corresponding to the controlled room temperature, and a rising stage for automatically raising the room temperature;
を順次行い、  In order,
前記制御段階では、  In the control step,
前記空気調和機の圧縮機の稼働時には、前記室内風量を強風に制御し、前記上下風向ベーンの下降速度は上昇速度よりも  When the compressor of the air conditioner is in operation, the indoor air volume is controlled to be a strong wind, and the descending speed of the vertical wind direction vane is higher than the ascending speed. 22 倍速く駆動させ、前記左右風向ベーンの揺動速度は同様になるように制御し、一方、前記圧縮機の停止時には、前記室内風量を弱風に制御し、前記上下風向ベーンの下降速度は上昇速度よりもDriven twice as fast and controlled so that the swing speed of the right and left wind direction vanes is the same. On the other hand, when the compressor is stopped, the indoor air volume is controlled to be weak and the descending speed of the up and down wind direction vanes increases. Than speed 22 倍遅く駆動させ、前記左右風向ベーンの揺動速度は稼働時よりもDriven twice as slow, the swing speed of the right and left wind direction vanes is higher than that during operation 3Three 倍遅く揺動するように制御することを特徴とする空気調和機の節電制御方法。A power-saving control method for an air conditioner, characterized in that the control is performed so as to swing twice as slowly.
使用者が所望の室内温度を設定して空気調和機に入力する節電運転入力段階と、A power saving operation input stage in which the user sets a desired indoor temperature and inputs it to the air conditioner;
前記入力された室内温度を複数の所定領域に区分する区分段階と、  A division step of dividing the input room temperature into a plurality of predetermined regions;
前記区分された各領域に従って室内温度、室内風量、上下風向ベーン及び左右風向ベーンを自動的に制御する制御段階と、  A control step of automatically controlling the indoor temperature, the indoor air volume, the up / down wind direction vane and the left / right wind direction vane according to each of the divided areas;
前記制御された室内温度に対応する前記空気調和機の運転時間をチェックし、自動的に室内温度を上昇させる上昇段階と、  Checking the operation time of the air conditioner corresponding to the controlled room temperature, and a rising stage for automatically raising the room temperature;
を順次行い、  In order,
前記区分段階では、  In the classification step,
使用者所望の設定温度が  The user's desired set temperature is T5T5 (℃)より低く、(C) lower than T1T1 (℃)よりも高いか同様であるとき、第(C) higher or similar, 22 領域として判断する段階と、Judging as an area,
室内温度を測定して、その測定温度と前記使用者所望の設定温度との差に基づいて前記空気調和機の圧縮機の稼動可否を判断する段階と、  Measuring the indoor temperature and determining whether the compressor of the air conditioner is operable based on a difference between the measured temperature and the set temperature desired by the user;
前記判断結果に従って前記圧縮機を初期室内設定温度に対応する駆動時間の間運転し、前記室内風量、上下風向ベーンの下降速度、上下風向ベーンの上昇速度及び左右風向ベーンの左右揺動速度を制御する段階と、  According to the judgment result, the compressor is operated for a driving time corresponding to the initial indoor set temperature, and the indoor air volume, the vertical wind vane descending speed, the vertical wind vane rising speed, and the horizontal wind vane lateral swing speed are controlled. And the stage of
前記駆動時間が終了すると、前記室内温度が  When the driving time is over, the room temperature is T5T5 (℃)になるまで室内設定温度をSet the room temperature to (° C). 11 (℃)ずつ上昇させて制御する段階と、(C) step by step and control,
を順次行うことを特徴とする空気調和機の節電制御方法。  A power saving control method for an air conditioner characterized in that
使用者が所望の室内温度を設定して空気調和機に入力する節電運転入力段階と、A power saving operation input stage in which the user sets a desired indoor temperature and inputs it to the air conditioner;
前記入力された室内温度を複数の所定領域に区分する区分段階と、  A division step of dividing the input room temperature into a plurality of predetermined regions;
前記区分された各領域に従って室内温度、室内風量、上下風向ベーン及び左右風向ベーンを自動的に制御する制御段階と、  A control step of automatically controlling the indoor temperature, the indoor air volume, the up / down air direction vane and the left / right air direction vane according to each of the divided areas;
前記制御された室内温度に対応する前記空気調和機の運転時間をチェックし、自動的に室内温度を上昇させる上昇段階と、  Checking the operating time of the air conditioner corresponding to the controlled room temperature, and automatically increasing the room temperature;
を順次行い、  In order,
前記区分段階では、  In the classification step,
使用者の設定した温度が  The temperature set by the user is T1T1 (℃)よりも高いか同様であるとき、第(C) higher or similar, 3Three 領域として判断する段階と、Judging as an area,
室内温度を測定して、その測定温度と前記使用者所望の設定温度との差に基づいて前記空気調和機の圧縮機の稼動可否を判断する段階と、  Measuring the indoor temperature and determining whether the compressor of the air conditioner is operable based on a difference between the measured temperature and the set temperature desired by the user;
前記圧縮機を稼動する場合は、初期室内設定温度を無条件  When operating the compressor, the initial indoor set temperature is unconditional. T1T1 (℃)に判断して、それに対応するた前記室内風量、上下風向ベーンの下降速度、上下風向ベーンの上昇速度及び左右風向ベーンの左右揺動速度を制御する段階と、(C), and controlling the indoor air volume, the vertical wind vane descending speed, the vertical wind vane rising speed, and the horizontal wind vane swing speed corresponding to the indoor air volume,
前記駆動時間が終了すると、前記室内温度が  When the driving time is over, the room temperature is T5T5 (℃)に至るまで室内設定温度をSet the room temperature to (℃) 11 (℃)ずつ上昇させて制御する段階と、(C) step by step and control,
を順次行うことを特徴とする空気調和機の節電制御方法。  A power saving control method for an air conditioner characterized in that
前記圧縮機は、室内温度を低く制御するほど、該室内温度に該当する運転時間が長くなることを特徴とする請求項7記載の空気調和機の節電制御方法。The power saving control method for an air conditioner according to claim 7, wherein the compressor has a longer operation time corresponding to the room temperature as the room temperature is controlled lower. 使用者が所望の室内温度を設定して空気調和機に入力する節電運転入力段階と、A power saving operation input stage in which the user sets a desired indoor temperature and inputs it to the air conditioner;
前記入力された室内温度を複数の所定領域に区分する区分段階と、  A division step of dividing the input room temperature into a plurality of predetermined regions;
前記区分された各領域に従って室内温度、室内風量、上下風向ベーン及び左右風向ベーンを自動的に制御する制御段階と、  A control step of automatically controlling the indoor temperature, the indoor air volume, the up / down wind direction vane and the left / right wind direction vane according to each of the divided areas;
前記制御された室内温度に対応する前記空気調和機の運転時間をチェックし、自動的に室内温度を上昇させる上昇段階と、  Checking the operation time of the air conditioner corresponding to the controlled room temperature, and a rising stage for automatically raising the room temperature;
を順次行い、  In order,
前記制御段階で、前記空気調和機が暖房運転を行う場合は、  In the control stage, when the air conditioner performs a heating operation,
前記圧縮機の稼動時には、前記上下風向ベーンの下向揺動速度を上向揺動速度よりも遅く駆動させ、前記圧縮機の停止時には、前記上下風向ベーンの下向揺動速度を上向揺動速度よりも速く駆動させることを特徴とする空気調和機の節電制御方法。  When the compressor is operating, the downward swing speed of the vertical wind vane is driven slower than the upward swing speed, and when the compressor is stopped, the downward swing speed of the vertical wind vane is upwardly swinged. A power-saving control method for an air conditioner, characterized in that it is driven faster than the moving speed.
JP2001372556A 2000-12-06 2001-12-06 Power saving control method for air conditioner Expired - Fee Related JP3626450B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2000-0073712A KR100390494B1 (en) 2000-12-06 2000-12-06 Control method for power saving of air-conditioner
KR2000-073712 2000-12-06

Publications (2)

Publication Number Publication Date
JP2002206783A JP2002206783A (en) 2002-07-26
JP3626450B2 true JP3626450B2 (en) 2005-03-09

Family

ID=19702731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001372556A Expired - Fee Related JP3626450B2 (en) 2000-12-06 2001-12-06 Power saving control method for air conditioner

Country Status (5)

Country Link
JP (1) JP3626450B2 (en)
KR (1) KR100390494B1 (en)
CN (1) CN1205439C (en)
ES (1) ES2191544B2 (en)
FR (1) FR2817609B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113915726B (en) * 2021-11-25 2023-04-07 宁波奥克斯电气股份有限公司 Control method and device of air conditioner, air conditioner and storage medium
CN115077017A (en) * 2022-05-30 2022-09-20 青岛海尔空调器有限总公司 Air supply control method and device for air conditioner, electronic equipment and air conditioner

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60211250A (en) * 1984-04-03 1985-10-23 Matsushita Electric Ind Co Ltd Air conditioner
JPS63113243A (en) * 1986-10-30 1988-05-18 Matsushita Electric Ind Co Ltd Operation control device for air conditioner
JPH06100360B2 (en) * 1988-06-17 1994-12-12 松下電器産業株式会社 Wind direction controller for air conditioner
JP2868829B2 (en) * 1990-03-23 1999-03-10 株式会社東芝 Air conditioner
JPH06129697A (en) * 1992-10-20 1994-05-13 Fujitsu General Ltd Controlling method for air conditioner
US5466916A (en) * 1993-09-24 1995-11-14 Hidec Co., Ltd. Method and apparatus for joint resin pipes using high-frequency electric induction heating
JPH07318146A (en) * 1994-05-23 1995-12-08 Matsushita Electric Ind Co Ltd Zone air conditioning controller
US5884496A (en) * 1995-11-25 1999-03-23 Lg Electronics, Inc. Cool air feeding system for refrigerator
KR100189125B1 (en) * 1996-02-22 1999-06-01 윤종용 A louver control device and method of air conditioner
ID16935A (en) * 1996-05-22 1997-11-20 Samsung Electronics Co Ltd WIND FLOW CONTROL TOOLS EXIT FROM AIR CONSTRUCTION MACHINERY AND WORK METHODS
ID16934A (en) * 1996-05-22 1997-11-20 Samsung Electronics Co Ltd DIRECTION CONTROL DIRECTION AND AIR FLOW SPEED EXTENDED BY AIR CONDUCTING MACHINE AND WORK METHOD
JP3351241B2 (en) * 1996-06-07 2002-11-25 ダイキン工業株式会社 Operation control device and operation control method for air conditioner
ID19087A (en) * 1996-09-12 1998-06-11 Samsung Electronics Co Ltd WIND FLOW CONTROL TOOLS FROM AIR CONDITIONING MACHINES AND THE WORK METHOD
JPH10103739A (en) * 1996-09-27 1998-04-21 Toshiba Corp Air conditioner
KR100323541B1 (en) * 1998-06-11 2002-06-22 구자홍 Air Conditioner Control Method
KR100307228B1 (en) * 1998-11-27 2002-02-19 윤종용 Power saving control method of air conditioner_

Also Published As

Publication number Publication date
KR20020044706A (en) 2002-06-19
FR2817609A1 (en) 2002-06-07
FR2817609B1 (en) 2004-11-26
CN1205439C (en) 2005-06-08
JP2002206783A (en) 2002-07-26
KR100390494B1 (en) 2003-07-07
CN1357718A (en) 2002-07-10
ES2191544A1 (en) 2003-09-01
ES2191544B2 (en) 2004-06-01

Similar Documents

Publication Publication Date Title
JP4478099B2 (en) Air conditioner
JP6065959B1 (en) air conditioner
JPS60188743A (en) Control of heat pump type air conditioner
JPH01181032A (en) Air conditioner
CN109751736A (en) For the control method of air pipe type air-conditioner, device and air pipe type air-conditioner
JP2001280663A (en) Air conditioner and method for controlling it
JPH0650595A (en) Air conditioner
JP6956594B2 (en) Air conditioner
JP3626450B2 (en) Power saving control method for air conditioner
KR100315783B1 (en) Cool air flow control method &the apparatus of air-conditioner
CN111256210A (en) Air conditioner and control method thereof
CN111023516A (en) Operation method, device, air conditioner and computer readable storage medium
JPH0755234A (en) Air conditioner
JP2000104978A (en) Air conditioner
JP6625222B2 (en) Air conditioner indoor unit
JP3306126B2 (en) Air conditioner
JPH05296548A (en) Air conditioner
JPH09318135A (en) Air conditioner
JP3233657B2 (en) Air conditioner
JPH10110995A (en) Air conditioner
JPH10197026A (en) Air conditioner
JPH08178344A (en) Air conditioner
JPS60253754A (en) Controlling operation of heat pump type air conditioner
JPH102590A (en) Air conditioner
JP2007192479A (en) Air conditioner

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040517

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees