JPS60253754A - Controlling operation of heat pump type air conditioner - Google Patents

Controlling operation of heat pump type air conditioner

Info

Publication number
JPS60253754A
JPS60253754A JP59108286A JP10828684A JPS60253754A JP S60253754 A JPS60253754 A JP S60253754A JP 59108286 A JP59108286 A JP 59108286A JP 10828684 A JP10828684 A JP 10828684A JP S60253754 A JPS60253754 A JP S60253754A
Authority
JP
Japan
Prior art keywords
temperature
air
compressor
heat exchanger
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59108286A
Other languages
Japanese (ja)
Other versions
JPH0527014B2 (en
Inventor
Hiroshi Yasuda
弘 安田
Kazutaka Suefuji
和孝 末藤
Masakatsu Hayashi
政克 林
Takao Chiaki
千秋 隆雄
Tetsuya Arata
哲哉 荒田
Kazuya Matsuo
松尾 一也
Kensaku Kokuni
研作 小国
Shigeaki Kuroda
黒田 重昭
Akira Atsumi
晃 渥美
Kyuhei Ishihane
久平 石羽根
Hiroshi Kogure
博志 小暮
Hirokiyo Terada
寺田 浩清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59108286A priority Critical patent/JPS60253754A/en
Publication of JPS60253754A publication Critical patent/JPS60253754A/en
Publication of JPH0527014B2 publication Critical patent/JPH0527014B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To avoid producing an uncomfortable feeling when starting a heating operation, by providing a high-temperature air blow-off operation mode in which the rotating frequency of a compressor is maintained to be high while that of a blower for a service-side heat exchanger is restricted, in addition to a normal operation mode. CONSTITUTION:A refrigerant circuit comprising the compressor 1, a four-way valve 2, the service-sideheat exchanger 4, a decompressor 5 and a heat source side heat exchanger 3 sequentially piped to each other is provided, and a variable-speed motor 6 for the compressor 1, a variable-speed blower 9 for the heat exchanger 4, a temperature sensor 14 for air taken into the air conditioner, a reference temperature setter 15 for the intake air, a temperature sensor 11 for blow-off air, and a reference temperature setter 12 for the blow-off air are provided. In the normal operation mode, the quantity of air blown is set to be large and constant, and only the rotating frequency of the compressor 1 is controlledly varied so that the temperature detected by the sensor 11 becomes equal to the reference temperature set by the setter 12. In the high- temperature air blow-off operation mode, the rotating frequency of the compressor 1 is set at the maximum, and the quantity of air blown by the blower 9 is controlled by a rotating frequency varying means 52 so that the blow-off air temperature detected by the sensor 14 becomes equal to a set point.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はヒートポンプ式の空気調和機に係シ、特に暖房
運転開始時の(暖房立上シ)運転特性が良好なヒートポ
ンプ式空気調和機の制御方法に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a heat pump type air conditioner, and particularly to control of a heat pump type air conditioner with good operating characteristics at the start of heating operation (heating start-up). It is about the method.

〔発明の背景〕[Background of the invention]

従来の運転制御方法を第1図を参照して説明する。 A conventional operation control method will be explained with reference to FIG.

図において、1は圧縮機、2は四方弁、3は熱源側熱交
換器、4は利用側熱交換器、5は減圧装置、6は圧縮機
駆動用電動機、7はこの電動機6の回転数を変化させる
インバータ、8は熱源側熱交換器用送風機(送風機用電
動機を含む。)、9は利用側熱交換器用送風機(送風機
用電動機を含む。)、11は利用側熱交換器へ流入する
空気温度を検知するセンサ、12は利用側熱交換器へ流
入する空気の基準温度の設定器、13は11と12の温
度比較手段、17は比較手段13の結果に基づいてイン
バータ7に指令を与える制御器を示す。
In the figure, 1 is a compressor, 2 is a four-way valve, 3 is a heat exchanger on the heat source side, 4 is a heat exchanger on the user side, 5 is a pressure reduction device, 6 is a motor for driving the compressor, and 7 is the rotation speed of this motor 6. 8 is a blower for the heat exchanger on the heat source side (including a motor for the blower); 9 is a blower for the heat exchanger on the user side (including a motor for the blower); 11 is air flowing into the heat exchanger on the user side. A sensor for detecting temperature; 12, a setting device for the reference temperature of the air flowing into the heat exchanger on the utilization side; 13, means for comparing the temperatures of 11 and 12; 17, based on the result of the comparing means 13, gives a command to the inverter 7; Shows the controller.

このような構成から成る従来技術は、インバータ7によ
シ圧縮機6の回転数のみを変化させ(空調用冷凍サイク
ルの効率を高くするために、利用側送風機の回転数は高
く、一定に保っている)、利用側熱交換器へ流入する空
気温度(以下、室温という)を検知するセンサ11と、
その設定器12による設定値とを比較して室温が設定値
となるように利用gAll熱交換器での放熱量又は吸熱
量を変化させ、室内に快適な空間を創9出すように制御
していた。しかし、一般に日本の大部分の地域では、冬
期の暖房負荷は、夏季の冷房負荷に較べて太きいため、
たとえば、暖房運転開始時に室温が設定値となるように
、上述のような制御を行っても室内にいる人々が快適な
感じを持ちはじめるまでに時間がかがシ、むしろ、暖房
運転開始時には不快感を与えるという問題点があった。
In the conventional technology with such a configuration, only the rotation speed of the compressor 6 is changed by the inverter 7 (in order to increase the efficiency of the air conditioning refrigeration cycle, the rotation speed of the user side blower is kept high and constant). ), a sensor 11 that detects the temperature of the air flowing into the user-side heat exchanger (hereinafter referred to as room temperature);
The control unit compares the set value from the setting device 12 and changes the amount of heat released or absorbed in the used gAll heat exchanger so that the room temperature becomes the set value, thereby creating a comfortable space in the room. Ta. However, in most areas of Japan, the heating load in winter is generally heavier than the cooling load in summer, so
For example, even if the above-mentioned control is performed so that the room temperature is at the set value when the heating operation starts, it will take time for the people in the room to start feeling comfortable; There was a problem with providing a sense of pleasure.

これは、上記制御方式が、たソ単に室内に熱を投入して
室温の上昇を図る方式であp1室内を流動する空気が体
感に与える影響や、壁体からの輻射作用の影響が考慮さ
れていないためである。
This is because the above-mentioned control method simply injects heat into the room to raise the room temperature, and takes into account the effects of the air flowing inside the room on the physical sensation and the effects of radiation from the walls. This is because they are not.

〔発明の目的〕[Purpose of the invention]

本発明は上記に鑑みて発明されたもので、暖房運転開始
時のように、暖房負荷が大きいときにも、室内を快適な
状態にすることを目的とする。
The present invention was invented in view of the above, and an object of the present invention is to make the room comfortable even when the heating load is large, such as at the start of heating operation.

〔発明の概要〕[Summary of the invention]

上記目的を達成するため本発明は、圧縮機、四方弁、利
用側熱交換器、減圧装置、熱源側熱交換器を順次配管接
続した冷媒回路と、可変速な圧縮機側電動機、可変速な
利用側熱交換器用送風機、空調機に吸入される空気温度
の検出手段及びこの吸入空気の基準温度を設定する手段
、吹出し空気温度の検出手段及びこの吹出し空気の基準
温度を設定する手段を備え、利用側の吸入空気温度が設
定値となるように圧縮機の回転数を制御する通常の運転
モードと、利用側吹出し空気温度が高温の設定値となる
ように圧縮機の回転数を大に保ってオU用側熱交換器の
送風機の回転数を制御する高温風吹出し運転モード全有
し、室内の快適状態に応じ上記両運転モードの切換えを
行なう特徴を有する。
In order to achieve the above object, the present invention includes a refrigerant circuit in which a compressor, a four-way valve, a user-side heat exchanger, a pressure reducing device, and a heat source-side heat exchanger are sequentially connected via piping, a variable-speed compressor-side electric motor, and a variable-speed compressor-side electric motor. A user-side heat exchanger blower, a means for detecting the temperature of the air taken into the air conditioner, a means for setting a reference temperature of the intake air, a means for detecting the temperature of the blown air, and a means for setting the reference temperature of the blown air, There is a normal operation mode in which the compressor rotation speed is controlled so that the intake air temperature on the user side is at the set value, and a normal operation mode in which the compressor rotation speed is kept high so that the user side outlet air temperature is at the high temperature set value. It has a high-temperature air blowing operation mode for controlling the rotational speed of the blower of the U-side heat exchanger, and has the feature of switching between the two operation modes according to the indoor comfort condition.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の実施例を図面に基すき説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第2図は本発明の一実施例を示す。図において、1は圧
縮機、2は冷媒回路を逆転する四方弁、3は熱源側熱交
換器、4は利用側熱交換器、5は膨張弁で上記各機器は
図示の如く順次配管接続され冷媒回路が形成されている
。6は圧縮機駆動用電動機、7は電動機6の回転数を変
化させるインバータ、8は熱源側熱交換器用送風機(電
動機を含む)、9は利用側熱交換器用送風機(電動機を
含む)、10は利用側送風機の回転数可変装置、11は
利用側熱交換器へ流入する空気温度を検知するセンサ、
12はこの空気の基準温度の設定器、13はセンサ11
と温度設定器12の温度比較手段、14は利用側熱交換
器通過後、室内へ吹出す空気温度を検知するセンサ、1
5はこの空気の基準温度の設定器、16はセンサ14と
温度設定器15の温度比較手段、51は温度比較手段1
3と16の比較結果に基づいて、判定、演算を行う演算
器、52は演算器51の指令により回転数可変装置10
およびインバータ7に回転数変化指令を与える回転数変
化手段、53は運転モード切換え手段を示す。
FIG. 2 shows an embodiment of the invention. In the figure, 1 is a compressor, 2 is a four-way valve that reverses the refrigerant circuit, 3 is a heat exchanger on the heat source side, 4 is a heat exchanger on the user side, and 5 is an expansion valve. The above devices are connected by piping in sequence as shown in the diagram. A refrigerant circuit is formed. 6 is an electric motor for driving the compressor, 7 is an inverter that changes the rotation speed of the electric motor 6, 8 is an air blower for the heat exchanger on the heat source side (including the electric motor), 9 is an air blower for the heat exchanger on the user side (including the electric motor), and 10 is an electric motor for driving the compressor. A rotation speed variable device for the user-side blower; 11 is a sensor that detects the temperature of air flowing into the user-side heat exchanger;
12 is a setter for the reference temperature of this air, 13 is a sensor 11
and temperature comparison means for the temperature setting device 12; 14 is a sensor for detecting the temperature of the air blown into the room after passing through the user-side heat exchanger; 1;
5 is a setting device for the reference temperature of this air; 16 is a temperature comparison means for the sensor 14 and the temperature setting device 15; and 51 is a temperature comparison device 1.
A computing unit 52 performs judgment and calculation based on the comparison results of numbers 3 and 16;
and rotation speed changing means for giving a rotation speed change command to the inverter 7, and 53 indicates an operation mode switching means.

次に上記装置の運転制御方法について説明する。Next, a method of controlling the operation of the above device will be explained.

尚、本発明は暖房時の快適性向上に関するものであるた
め、冷房運転時の作動については省略し、′暖房運転に
ついてのみ説明する。
Since the present invention relates to improving comfort during heating, the operation during cooling operation will be omitted, and only the heating operation will be explained.

図において、四方弁2は暖房運転時に冷媒を循環させる
方向に切換えられておシ、冷媒は熱源側熱交換器3で吸
熱し、利用側熱交換器4で放熱し、暖房作用を行う。こ
の際、暖房負荷が比較的小さく、空調空間を構成する壁
体の温度が、それほど低くない場合には、従来技術の項
で述べたように、利用側熱交換器の送風量を大に一定と
し、圧縮機1の回転数のみを変化させ、センサ11で検
知される温度が、設定器12の基準温度となるように制
御して室温を調整する方法がとられる。このような運転
方式を通常運転モードと呼ぶことにする。
In the figure, the four-way valve 2 is switched to circulate the refrigerant during heating operation, and the refrigerant absorbs heat in the heat source side heat exchanger 3 and radiates heat in the usage side heat exchanger 4, thereby performing a heating effect. At this time, if the heating load is relatively small and the temperature of the walls that make up the air-conditioned space is not so low, as described in the prior art section, the amount of air blown from the heat exchanger on the user side is kept constant. A method is adopted in which the room temperature is adjusted by changing only the rotational speed of the compressor 1 and controlling the temperature detected by the sensor 11 to become the reference temperature of the setting device 12. Such an operation method will be referred to as a normal operation mode.

これに対して、冬期の暖房運転開始時のように空調空間
を形成する壁体の温度が低い場合、室内に熱量を投入し
て、室内空気を暖めても、壁体の温度上昇には時間がか
がるため壁体面からの輻射の影響で、在室者が暖かさを
感するまでに時間がかかり、不快な状態が発生する。こ
のような場合には、利用側熱交換器4を通過して室内に
吹出す空気温度全十分に高くしておくことが快適性の面
から必要である。この状況を、第3図の快適線図におい
て説明する。第3図は壁体の輻射温度Tw。
On the other hand, when the temperature of the walls forming the air-conditioned space is low, such as when heating operation starts in winter, even if heat is input into the room and the indoor air is warmed, it takes time for the temperature of the walls to rise. Because the walls are slanted, it takes time for occupants to feel warmth due to the effects of radiation from the wall surfaces, creating an uncomfortable situation. In such a case, from the viewpoint of comfort, it is necessary to keep the temperature of the air that passes through the user-side heat exchanger 4 and blows into the room sufficiently high. This situation will be explained using the comfort diagram in FIG. Figure 3 shows the radiant temperature Tw of the wall.

室温Taiと在室者が快適と感する快適線ABを示して
いる。AB線の上側のCは在室者が暖かい又は暑いと感
する領域を示している。またAB線の下側のDは在室者
が涼しい、又は寒いと感する領域を示している。この図
から壁温Twが高い場合には、室温Taiは比較的低く
て良いが、壁温−;低い場合には室温Tai ’c高く
、すなわち、空調機の吹出し空気温度を高くする必要の
あることがわかる。
It shows the room temperature Tai and the comfort line AB where the occupants feel comfortable. C above line AB indicates an area where the occupants feel warm or hot. Further, D below line AB indicates an area where the occupants feel cool or cold. From this figure, when the wall temperature Tw is high, the room temperature Tai can be relatively low, but when the wall temperature is low, the room temperature Tai 'c is high, that is, it is necessary to increase the temperature of the air blown from the air conditioner. I understand that.

本実施例では、暖房運転時に従来の通常運転モードの他
に、高温風吹出しができる高温風吹出し運転モードを備
えておシ、切換手段53により、これらの運転モードを
選択的に切換えることができる。
In this embodiment, in addition to the conventional normal operation mode during heating operation, a high temperature air blowing operation mode in which high temperature air can be blown is provided, and these operation modes can be selectively switched by the switching means 53. .

以下、高温風吹出し運転モードの具体例を述べるととも
に、本実施例を更に詳細に説明する。
Hereinafter, a specific example of the high-temperature air blowing operation mode will be described, and this embodiment will be explained in further detail.

第4図は、第2図の構成から成る空調機を用いた第1の
実施例の動作をフローチャートで示す。
FIG. 4 is a flowchart showing the operation of the first embodiment using the air conditioner having the configuration shown in FIG.

運転が開始されると切換手段53にょシ運転モードが高
温風吹出し運転モード(以下Aモードと言う)に設定さ
れているか通常運転モード(以下Bモードと言う)に設
定されているかの判定が行われる。
When the operation is started, it is determined whether the operation mode of the switching means 53 is set to the high temperature air blowing operation mode (hereinafter referred to as A mode) or the normal operation mode (hereinafter referred to as B mode). be exposed.

Aモードに設定されていれば、演算器51で圧縮機回転
数を最大値に設定するとともに、検出器14によシ検出
された吹出し空気温度が設定値に達しているかの判定全
行い、設定値に達していなければ、送風機9の回転数を
低下させ、また設定値に達していれば、送に機9の回転
数を上昇させて吹出し空気製置が設定値になるように回
転数可変手段62により送風量の制御を行う。これに対
して、切換手段53によp運転モードがBモードに設定
されていれば、送風機回転数を最大値に固定して、室温
上ンサ11により検知される温度が設定器12による値
となるように演算器51および回転数可変手段52によ
シ圧縮機回転数の制御を行う。本実施例の具体的動作を
さらに第5図によって説明するために、まず、第5図の
説明を行う。
If the A mode is set, the computer 51 sets the compressor rotation speed to the maximum value, and also performs all determinations to determine whether the blow-out air temperature detected by the detector 14 has reached the set value, and then sets the compressor rotation speed to the maximum value. If the value has not been reached, the rotation speed of the blower 9 is lowered, and if the set value has been reached, the rotation speed of the blower 9 is increased, and the rotation speed is varied so that the blowing air reaches the set value. Means 62 controls the amount of air blown. On the other hand, if the p operation mode is set to B mode by the switching means 53, the fan rotation speed is fixed at the maximum value and the temperature detected by the room temperature sensor 11 is set to the value by the setting device 12. The compressor rotation speed is controlled by the computing unit 51 and the rotation speed variable means 52 so that the rotation speed of the compressor is satisfied. In order to further explain the specific operation of this embodiment with reference to FIG. 5, FIG. 5 will first be explained.

第5図において、X軸は圧縮機の回転数Nを、Y軸は時
間軸を、Z軸は■部に吹出し空気温度Ta(1,0部に
暖房能力Q11.■部に室温Taiと壁温Twtl−示
しておシ、利用側熱交換器用送風機による風量をパラメ
ータに、特定の建屋内に設置された空調機の暖房特性を
表わしており、図中Val 、va2 。
In Fig. 5, the X axis represents the rotation speed N of the compressor, the Y axis represents the time axis, the Z axis represents the outlet air temperature Ta (1,0 parts), the heating capacity Q11 (1,0 parts), the room temperature Tai and the wall Temperature Twtl - represents the heating characteristics of the air conditioner installed in a specific building using the air volume by the user-side heat exchanger blower as a parameter, and Val, va2 in the figure.

va5面は、それぞれ風量が一定(Va5>Va2>V
al)の場合の特性を示している。たとえば、風量がV
al面に相当する風量で圧縮機の回転数を上昇させると
空調機特性は6−+ bで表わされる線で示され、■部
で吹出し空気温度Tao−、■部で暖房能力Qhが表現
される。また、圧縮機回転数をN一定として風量が一定
の場合時間軸に沿った変化を見ると、a−+p、b−+
qの様にTaoが上昇していき、Qhは低下する。これ
は、暖房運転につれて特定の建屋内の空気温度が上昇し
て行くためであシ、第5図によって、運転状況の実際的
な変化を示すことができる。
On the va5 side, the air volume is constant (Va5>Va2>V
The characteristics of case al) are shown. For example, if the air volume is V
When the rotation speed of the compressor is increased with an air volume corresponding to the al surface, the air conditioner characteristics are shown by a line represented by 6-+ b, where the part ■ represents the outlet air temperature Tao-, and the part ■ represents the heating capacity Qh. Ru. Also, when the compressor rotation speed is constant N and the air volume is constant, looking at the changes along the time axis, a-+p, b-+
Tao increases like q, and Qh decreases. This is because the air temperature in a particular building increases as the heating operation is performed, and FIG. 5 shows the actual changes in the operating situation.

本実施例において、暖房開始と同時にAモード運転が行
われ、時刻t1でBモード運転に切換わる状況を第5図
に示す。まず、運転開始と同時に圧縮機の回転数を最大
にし、風量を低下させる(a→b)。次に、圧縮機の回
転数を維持したま\、Taot−設定値Tao1に維持
するために風量全餉御する(b−+c)。時刻t1でB
モード運転への移行が行なわれ、吹出し空気温度制御か
ら室温制御へと切換えられる(c−+ d −+ 6 
)。Bモード運転では風量を最大として圧縮機の回転数
制御全行う(e→f)。この際の室温Ta1 、壁温T
wの時間変化が0部に示されている。0部に示される様
にAモード運転中の能力Qllは風量を低下させている
ため装置の有する最大風量時の能力よシはいくらか小さ
くなるが、これは空調空間全体を暖めずに、吐出し空気
の流出方向を局所的にして、暖房を行う様に変えること
によp暖房負荷全低減する手段を用いれば解決できる。
In this embodiment, FIG. 5 shows a situation in which the A mode operation is performed at the same time as heating starts, and the situation is switched to the B mode operation at time t1. First, at the same time as the start of operation, the rotation speed of the compressor is maximized and the air volume is reduced (a→b). Next, while maintaining the rotational speed of the compressor, the air volume is fully controlled in order to maintain Taot-set value Tao1 (b-+c). B at time t1
A transition is made to mode operation, and the blow-out air temperature control is switched to room temperature control (c-+ d-+ 6
). In B mode operation, the air volume is maximized and the rotation speed of the compressor is fully controlled (e→f). At this time, room temperature Ta1, wall temperature T
The time change of w is shown in part 0. As shown in part 0, the capacity Qll during A mode operation is lowering the air volume, so the capacity at the maximum air volume of the device is somewhat smaller, but this means that the air is discharged without heating the entire air-conditioned space. This problem can be solved by reducing the total heating load by changing the air outflow direction to perform heating locally.

以上、説明した様に本実施例によれは、壁温Twが低く
暖房負荷が大きい間は高温風を吹出す運転を行い、壁温
か高く分って、暖房負荷が小さくなった場合には室温を
制御する運転が選択的に行えるので、在室者にとって快
適な空調環境を創シ出すことができる。
As explained above, according to this embodiment, high-temperature air is blown out while the wall temperature Tw is low and the heating load is large, and when the wall temperature is high and the heating load is small, the room temperature Since the control operation can be performed selectively, it is possible to create a comfortable air-conditioned environment for the occupants.

第6図は本発明の他の実施例を示す構成図である。本実
施例が第2図の実施例と相異するところは、演算器51
の中にタイマ51gを備えているところである。その他
の部分は第2図の実施例と同様であるから同符号を付し
その説明を省略する。
FIG. 6 is a block diagram showing another embodiment of the present invention. This embodiment differs from the embodiment shown in FIG.
It is equipped with a timer 51g inside. Since the other parts are the same as those in the embodiment shown in FIG. 2, the same reference numerals are given and the explanation thereof will be omitted.

第7図は第6図の実施例の動作をフローチャートで示す
。この実施例においてはAモード運転中の吹出し空気温
度の基準設定温度に二つの設定温度を設け、タイマ51
aによりこれらの設定温度を切換え運転効率の向上をは
かつている。Bモード運転については第4図に示した第
2図の実施例の動作と同様であるのでその説明を省略す
る。
FIG. 7 shows the operation of the embodiment of FIG. 6 in a flowchart. In this embodiment, two set temperatures are provided as the standard set temperature for the blowing air temperature during A mode operation, and the timer 51
These set temperatures are switched by a to improve operating efficiency. The B-mode operation is the same as the operation of the embodiment of FIG. 2 shown in FIG. 4, so a description thereof will be omitted.

切換手段53により運転モードがAモード運転に設定さ
れていることが検知されると、演算器51で圧縮機の回
転数を最大値に設定するとともに、検出器14による吹
出し空気検知温度が、まず、設定器15による第1の基
準設定温度と比較され、第1の設定温度となるように回
転数可変手段52にょシ、送風量の制御が行われる。A
モード運転開始後タイマ51aによシ設定された時間の
経過が検知されれば検出器14による吹出し空気検知温
度は、設定器15による第2の設定温度と比較され、送
風機の制御が行われる。
When the switching means 53 detects that the operation mode is set to the A mode operation, the calculator 51 sets the rotation speed of the compressor to the maximum value, and the temperature detected by the detector 14 is first set to The temperature is compared with the first reference set temperature by the setting device 15, and the rotational speed variable means 52 controls the amount of air blown so that the first set temperature is reached. A
When the timer 51a detects that the time set by the timer 51a has elapsed after the start of the mode operation, the detected temperature of the blown air by the detector 14 is compared with the second set temperature by the setting device 15, and the blower is controlled.

第8図は、本実施例の動作を示しており、暖房運転開始
から時刻t2までは、A(A1.A2)モード運転であ
り、それ以降はBモード運転でおる場合の例を示してい
る。暖房開始と同時に圧縮機は最大の回転数に設定され
、かつ吹出し空気温度T&0は送風機の回転数変化によ
シ第1の設定温度Ta01に制御される( &−4b−
4p c)。次に演算器51の中に組込まれたタイマ5
1&により、Aモード運転開始からの経過時間t1が検
知され、吹出し空気温度の設定温度は、第2の設定温度
TaO2に変更される(c−+d)。時刻t2以降は第
5図に示した第2図の実施例の動作と同様に、吹出し空
気温度から室温制御へと制御が移行し送風機回転数は大
として、圧縮機回転数が変化される(e−+f−+g−
+h)。
FIG. 8 shows the operation of this embodiment, and shows an example in which the A (A1, A2) mode operation is performed from the start of the heating operation until time t2, and the B mode operation thereafter. . Simultaneously with the start of heating, the compressor is set to the maximum rotation speed, and the blown air temperature T&0 is controlled to the first set temperature Ta01 by changing the rotation speed of the blower (&-4b-
4pc). Next, a timer 5 built into the arithmetic unit 51
1&, the elapsed time t1 from the start of the A mode operation is detected, and the set temperature of the blown air temperature is changed to the second set temperature TaO2 (c-+d). After time t2, similar to the operation of the embodiment of FIG. 2 shown in FIG. 5, the control shifts from the blown air temperature to the room temperature control, the blower rotation speed is increased, and the compressor rotation speed is changed ( e-+f-+g-
+ h).

−この際の室温Tal 、壁温Twの時間変化が0部に
示されている。
- Time changes in room temperature Tal and wall temperature Tw at this time are shown in part 0.

以上説明した様に、この実施例においても、暖房負荷が
大きい場合には高温風運転を行い、暖房負荷が比較的小
さくなった場合には室温を制御する運転が選択的に行え
るので、在室者に快適な状態を創り出すことができる。
As explained above, in this embodiment as well, high-temperature air operation is performed when the heating load is large, and operation to control the room temperature can be performed selectively when the heating load becomes relatively small. It can create a comfortable state for people.

この実施例の場合は、第8図で動作の一例を示した様に
、Aモード運転開始後短時間は吹出し温度を比較的低く
設定した運転をすることによって、風量を増加できるの
で、冷凍サイクルの効率全土けて、起動時に速く冷媒回
路を通常運転の温度にもっていくという効果をも生じる
In the case of this embodiment, as shown in an example of operation in Fig. 8, the air volume can be increased by operating with the blowout temperature set relatively low for a short time after the start of A mode operation, so the refrigeration cycle In addition to the overall efficiency, the refrigerant circuit also has the effect of quickly bringing the refrigerant circuit to the normal operating temperature at startup.

第9図は更に他の実施例の動作をフローチャートで示す
。この実施例の空調機の機器構成は第2図の実施例と同
様であるので図示およびその説明を省略する。
FIG. 9 shows the operation of yet another embodiment in a flowchart. The equipment configuration of the air conditioner of this embodiment is the same as that of the embodiment shown in FIG. 2, so illustration and explanation thereof will be omitted.

この実施例は、第2図の実施例と同様、Aモード運転中
において吹出し空気の基準温度の設定は一個であるが、
Aモード運転中に圧縮機の回転数と、送風機の回転数の
両者を変化させる点が異なっている。Bモード運転の動
作については、第4図に示した第2図の実施例の動作と
同様であるのでその説明を省略する。第9図において、
第2図の切換手段53によシ運転モードがAモード運転
に切換わると、吹出し空気温度が検出器14により検知
され、設定器15による設定温度と比較される0次に演
算器51で送風機の回転数を変化させるか、圧縮機の回
転数を変化させるかの選択が行われ、回転数町袈手段5
2によシ送風機又は圧縮機の制御が行われる。
In this embodiment, like the embodiment shown in FIG. 2, there is only one reference temperature setting for the blown air during A-mode operation;
The difference is that both the rotation speed of the compressor and the rotation speed of the blower are changed during A-mode operation. The operation of the B-mode operation is the same as the operation of the embodiment of FIG. 2 shown in FIG. 4, so a description thereof will be omitted. In Figure 9,
When the operating mode is switched to A mode operation by the switching means 53 in FIG. A selection is made as to whether to change the rotation speed of the compressor or the rotation speed of the compressor.
2, the blower or compressor is controlled.

第10図は、この実施例の動作を示しておシ、暖房運転
開始後人モード運転が選択され、時刻t1でBモード運
転に移行する場合の運転状況が示されている。ここでは
運転開始と同時に、圧縮機の回転数は最大に、送風機の
回転数は最低に設定され(a−+l))、以後、送風機
と圧縮機の回転数を変えて、吹出し空気温度′f、TI
L01に保つ運転が行われる。この実施例の場合も、第
2図の実施例と、同様な効果、すなわち暖房負荷が大き
い場合、在室者に快適な状態を創シ出すことができる。
FIG. 10 shows the operation of this embodiment, and shows the operating situation when the human mode operation is selected after the start of the heating operation and the mode shifts to the B mode operation at time t1. Here, at the same time as the start of operation, the rotation speed of the compressor is set to the maximum and the rotation speed of the blower is set to the minimum (a-+l)).Then, the rotation speeds of the blower and compressor are changed, and the blowing air temperature 'f , T.I.
An operation is performed to maintain the level at L01. This embodiment also has the same effect as the embodiment shown in FIG. 2, that is, when the heating load is large, it is possible to create a comfortable condition for the occupants.

以上説明した各実施例はAモード運転とBモード運転の
切換え手段が手動の場合の例であるが、この切換えを空
調負荷を検出して自動で行なってもよい。以下、切換え
全自動的に・行なう実施例の制御方法について説明する
Although each of the embodiments described above is an example in which the means for switching between the A mode operation and the B mode operation is manual, this switching may be performed automatically by detecting the air conditioning load. Hereinafter, a control method of an embodiment in which switching is performed fully automatically will be explained.

第11図は切換えを自動で行なう実施例の空調機の機器
構成を示し、第12図はこの実施例の動作をフローチャ
ートで示す。第11図において、17は壁温検知手段、
19は該検知手段17で、検知された温度と、後述の設
定壁温との比較手段である。壁温は、壁表面に取9つけ
られた温度センサによる検出値であシ、例えば4i1f
lの壁面の検出温度の平均値を考えれはよい。その他の
部分は第2図の実施例の機器構成と同様であるので同符
号を付しその説明を省略する。
FIG. 11 shows the equipment configuration of an air conditioner according to an embodiment in which switching is performed automatically, and FIG. 12 shows the operation of this embodiment in a flowchart. In FIG. 11, 17 is wall temperature detection means;
Reference numeral 19 denotes the detection means 17, which is a means for comparing the detected temperature with a set wall temperature, which will be described later. The wall temperature is a value detected by a temperature sensor attached to the wall surface, for example, 4i1f.
It is good to consider the average value of the detected temperature on the wall surface of 1. Since the other parts are the same as the equipment configuration of the embodiment shown in FIG. 2, the same reference numerals are given and the explanation thereof will be omitted.

以下本実施例の動作について説明する。The operation of this embodiment will be explained below.

演算器51で空調機が起動したことを検知すると、まず
起動時の立上シ運動フラグを設定し、次に室温検知手段
11により室温Talを検知し、壁温検知手段17によ
シ壁温Twを検知する。演算器51は第3図に示したよ
うな快適線図を記憶しておシ、快適な壁温Twoが次式
で与えられる。
When the arithmetic unit 51 detects that the air conditioner has started, it first sets a start-up motion flag at startup, then the room temperature detection means 11 detects the room temperature Tal, and the wall temperature detection means 17 detects the wall temperature. Detect Tw. The computing unit 51 stores a comfort diagram as shown in FIG. 3, and the comfortable wall temperature Two is given by the following equation.

TWO= f (Tal ) 比較手段19で心とTwoとを比較し、Tw(TwOの
時は演算器51はAモード運転を設定する。〜〉詣〇の
時は演算器51は起動時の立上シ運転フラグを解除する
と共にBモード運転を設定する。運転中は起動時の立上
シ運転フラグが設定されていれば壁温Twの検知、以下
同様の動作を行なう。起動時の立上シ運転フラグが解決
された後はBモード運転が設定される。
TWO= f (Tal) The comparing means 19 compares the heart with Two, and when Tw (TwO), the computing unit 51 sets the A mode operation. The top-up operation flag is canceled and B-mode operation is set.During operation, if the startup-up operation flag at startup is set, the wall temperature Tw is detected, and the same operation is performed thereafter.Start-up at startup After the B mode operation flag is resolved, B mode operation is set.

本実施例によれば、室内が快適な状態か否かを最も理想
的に判定して運転モードを切換えることができる。
According to this embodiment, it is possible to most ideally determine whether or not the room is in a comfortable state, and then switch the driving mode.

第13図はモード自動切換え方法の他の実施例である空
調機の構成を示し、第14図はその動作をフローチャー
トで示す。第13図の機器構成において、18は壁温の
基準温度設定器である。その他の部分は第11図の実施
例と同様であシ同符号を付しその説明を省略する。即ち
、この実施例は第11図の実施例に比し、運転モードの
切換えを壁温の設定温度に基すいて行なう点が相違する
FIG. 13 shows the configuration of an air conditioner which is another embodiment of the automatic mode switching method, and FIG. 14 shows its operation in a flowchart. In the equipment configuration shown in FIG. 13, 18 is a reference temperature setting device for wall temperature. The other parts are the same as those in the embodiment shown in FIG. 11 and are given the same reference numerals and the explanation thereof will be omitted. That is, this embodiment differs from the embodiment shown in FIG. 11 in that the operation mode is switched based on the set wall temperature.

以下本実施例の動作について説明する。The operation of this embodiment will be explained below.

演算器51では空調機が起動したことを検知すると、ま
ず起動時の立上シ運転フラグを設定し、次に壁温検知手
段17にょシ壁温Twi検知する。−万般定器18によ
p基準壁温Tw′が設定されている。比較手段19でT
wとTw’とを比較し、Tw(Tw’の時は演算器51
はAモード運転を設定する。Tw )T’w’の時は演
算器51は起動時の立上p運転フラグを解除すると共に
Bモード運転全設定する。運転中は起動時の立上シ運転
フラグが設定されていれば壁温Twの検知、以下同様の
動作を行なう。起動時の立上シ運転フラグが解除された
後はBモード運転が設定される。
When the computing unit 51 detects that the air conditioner has started, it first sets a start-up operation flag at the time of startup, and then the wall temperature detection means 17 detects the wall temperature Twi. - The p reference wall temperature Tw' is set by the universal ruler 18. T in comparison means 19
w and Tw' are compared, and when Tw (Tw', the arithmetic unit 51
sets A mode operation. Tw) When T'w', the arithmetic unit 51 cancels the start-up p operation flag at the time of startup and also sets all B mode operation. During operation, if the start-up operation flag at startup is set, the wall temperature Tw is detected, and the same operation is performed thereafter. After the start-up operation flag at startup is cleared, B-mode operation is set.

本実施例によれば、第11図の実施例に較べ簡単な方法
で運転モードを切換えることができる。
According to this embodiment, the operating mode can be switched in a simpler manner than in the embodiment shown in FIG.

第15図はモード自動切換え方法の更に他の実施例であ
る空調機の構成を示し、第16図はその動作をフローチ
ャートで示している。本実施例は第11図の実施例に対
し、モード切換え方法が室温の設定値に基すいて行なう
点が異なっている。以下本実施例の動作について説明す
る。
FIG. 15 shows the configuration of an air conditioner which is still another embodiment of the automatic mode switching method, and FIG. 16 shows its operation in the form of a flowchart. This embodiment differs from the embodiment shown in FIG. 11 in that the mode switching method is based on the set value of the room temperature. The operation of this embodiment will be explained below.

演算器51で祉空調機が起動したことを検知すると、ま
ず起動時の立上シ運転フラグを設定し、次に室温検知手
段11にょシ室温Taiを検知する。一方基準室温設定
器12にょシ室温Tai’が設定されている。比較手段
13でTaiとTai’とを比較し、T&i(T a 
i’の時は演算器51はAモード運転を設定する。
When the computing unit 51 detects that the welfare air conditioner has started, it first sets a start-up operation flag at the time of startup, and then the room temperature detection means 11 detects the room temperature Tai. On the other hand, the reference room temperature setting device 12 is set to a room temperature Tai'. Comparison means 13 compares Tai and Tai' and calculates T&i(T a
When i', the computing unit 51 sets the A mode operation.

Ta1)Tai’の時は演算器51は起動時の立上シ運
転フラグを解除すると共にBモード運転を設定する。
When Ta1)Tai', the computing unit 51 cancels the start-up operation flag at the time of startup and sets the B-mode operation.

運転中は起動時の立上シ運転フラグが設定されていれば
室温Taiの検知以下同様の動作を行う。
During operation, if the start-up operation flag at startup is set, the same operation will be performed after the detection of room temperature Tai.

起動時の立上シ運転フラグが解除された後はBモード運
転が設定される。
After the start-up operation flag at startup is cleared, B-mode operation is set.

本実施例によれば、従来の空調機制御にもすでに設けら
れている室温検知手段を兼用して運転モードを切換える
ことができる。
According to this embodiment, the operating mode can be switched by using the room temperature detection means that is already provided in conventional air conditioner control.

第17図はモード自動切換え方法の更に他の実施例であ
る空調機の構成を示し、第18図はその動作をフローチ
ャートで示している。第17図において53は切換手段
、53aはタイマーである。本実施例は第11図の実施
例に対し、モード切換え方法がタイマーで行なう点が異
なっている。以下本実施例の動作について説明する。
FIG. 17 shows the configuration of an air conditioner which is still another embodiment of the automatic mode switching method, and FIG. 18 shows its operation in a flowchart. In FIG. 17, 53 is a switching means, and 53a is a timer. This embodiment differs from the embodiment shown in FIG. 11 in that the mode switching method is performed using a timer. The operation of this embodiment will be explained below.

演算器51では空調機が起動したことを検知すると、起
動時の立上シ運転フラグを設定すると共に、あらかじめ
時間が設定されたタイマ53aを起動する。次にタイマ
ー53a fカウントして設定時間が経過したかどうか
が判定され、まだ経過していない時は演算器51はAモ
ード運転を設定する。以後運転中は起動時の立上シ運転
フラグが設定されていればタイマー53&のカウント以
下同様の動作を行なう。タイマーカウントにより設定時
間が経過したことが判定されると演算器51は起動時の
立上シ運転フラグを解除し、Bモード運転を設定する。
When the computing unit 51 detects that the air conditioner has started, it sets a start-up operation flag at the time of startup and also starts a timer 53a in which a time has been set in advance. Next, the timer 53a f counts and it is determined whether the set time has elapsed or not, and if the set time has not elapsed yet, the arithmetic unit 51 sets the A mode operation. Thereafter, during operation, if the start-up operation flag at startup is set, the same operation will be performed after the count of the timer 53&. When it is determined by the timer count that the set time has elapsed, the arithmetic unit 51 cancels the start-up operation flag at startup and sets the B-mode operation.

以後の運転中は起動時の立上シ運転フラグが解除されて
いるのでBモード運転が設定される。
During subsequent operation, the B-mode operation is set because the start-up operation flag at startup is cleared.

本実施例では切換え手段がタイマーであるから、簡単な
回路で安定した動作をさせることができる。
In this embodiment, since the switching means is a timer, stable operation can be achieved with a simple circuit.

また、空調機の機器構成の他の実施例として図示されて
いないが、利用側熱交換器に並設して電気ヒータを設け
、高温風吹出し運転モード中に、圧縮機と利用側送風機
との回転数制御によっても、未だ吹出し空気温度が設定
値に達しない場合は、上記電気ヒータに通電して設定吹
出し空気温度を得るように形成してもよい。
Although not shown as another example of the equipment configuration of the air conditioner, an electric heater is installed in parallel with the heat exchanger on the user side, and during the high temperature air blowing operation mode, the compressor and the fan on the user side are connected. If the blown air temperature still does not reach the set value even after controlling the rotation speed, the electric heater may be energized to obtain the set blown air temperature.

〔発明の効果〕〔Effect of the invention〕

以上説明したよ、うに、本発明によれば、暖房運転時に
、室温や壁温か低く、暖房負荷が大きい場合には、空調
機から室内に吹出す空気温度を高温の設定温度に制御し
、また暖房負荷が比較的小さい場合には、室温を設定温
度に制御することによシ、在室者に快適な状況をつくシ
出すことができる。
As explained above, according to the present invention, during heating operation, when the room temperature and wall temperature are low and the heating load is large, the temperature of the air blown into the room from the air conditioner is controlled to a high set temperature, and When the heating load is relatively small, by controlling the room temperature to a set temperature, it is possible to create a comfortable situation for the occupants.

また、従来、適用が困難であった寒冷地においても、冷
暖房用ヒートポンプ装置の使用が可能となる等の効果を
有する。
Moreover, it has the effect that it becomes possible to use a heat pump device for air conditioning and heating even in cold regions where it has been difficult to apply it in the past.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の冷媒回路と制御装置の構成図、第2図は
本発明の一実施例を示す冷媒回路と制御装置の構成図、
第3図は室温と壁温の快適性の相関図、第4図は第2図
の実施例の制御方法を示すフローチャ・−ト図、第5図
は第4図の制御方法による制御パターンを示す特性図、
第6図は他の実施例を示す冷媒回路と制御装置の構成図
、第7図線第6図の実施例の制御方法を示すフローチャ
ート図、第8図は第7図の制御方法による制御パターン
を示す特性図、第9図は更に他の実施例を示す制御方法
のフローチャート図、第10図は第9図の制御方法によ
る制御パターンを示す特性図、第11図は更に他の実施
例を示す冷媒回路と制御装置の構成図、第12図は第1
1図の実施例の制御方法を示すフローチャート図、第1
3図は更に他の実施例を示す冷媒回路と制御装置の構成
図、第14図は第13図の実施例の制御方向を示すフロ
ーチャート図、第15図は更に他の実施例を示す冷媒回
路と制御装置の構成図、第16図は第15図の実施例の
制御方法を示すフローチャート図、第17図は更に他の
実施例を示す冷媒回路と制御装置の構成図、第18図は
第17図の実施例の制御方法を示すフローチャート図で
ある。 1・・・圧縮機、2・・・四方弁、3・・・熱源側熱交
換器、4・・・利用側熱交換器、5・・・減圧装置、6
・・・圧縮機用電動機、7・・・インバータ、8・・・
熱源側熱交換器用送風機、9・・・利用側熱交換器用送
風機、10・・・回転数可変装置、11・・・温度セン
サ、12・・・基準温度設定器、13・・・比較手段、
14・・・温度センサ、15・・・基準温度設定器、1
6・・・比較手段、17・・・制御器、18・・・基準
温度設定器、19・・・比較手段、51・・・演算器、
51m・・・タイマー、52・・・回転数変化手段、5
3・・・切換手段、53a・・・タイマー。 代理人 弁理士 秋 本 正 実 第1図 第2図 つど 第3図 第4図 第5図 第6図 52 第7図 第8図 第9図 第10図 第11図 第12図 第13図 第14図 第15図 第16図 第17図 第1頁の続き 0発 明 者 渥 美 晃 @発明者 石羽根 久平 @発明者小暮 博志 @発明者寺1)浩清 土浦市神立町50旙地 株式会社日立製作所機械研究所
内栃木県下部賀郡大平町富田80幡地 株式会社日立製
作所栃木工場内
FIG. 1 is a configuration diagram of a conventional refrigerant circuit and control device, and FIG. 2 is a configuration diagram of a refrigerant circuit and control device showing an embodiment of the present invention.
Fig. 3 is a correlation diagram of comfort between room temperature and wall temperature, Fig. 4 is a flowchart showing the control method of the embodiment shown in Fig. 2, and Fig. 5 shows a control pattern using the control method shown in Fig. 4. Characteristic diagram shown,
Fig. 6 is a block diagram of a refrigerant circuit and a control device showing another embodiment, Fig. 7 is a flowchart showing a control method of the embodiment of Fig. 6, and Fig. 8 is a control pattern according to the control method of Fig. 7. FIG. 9 is a flowchart of a control method showing another embodiment, FIG. 10 is a characteristic diagram showing a control pattern according to the control method of FIG. 9, and FIG. The configuration diagram of the refrigerant circuit and control device shown in Fig. 1 is
Flowchart diagram showing the control method of the embodiment shown in FIG.
3 is a configuration diagram of a refrigerant circuit and a control device showing still another embodiment, FIG. 14 is a flowchart showing the control direction of the embodiment of FIG. 13, and FIG. 15 is a refrigerant circuit showing still another embodiment. 16 is a flowchart showing the control method of the embodiment shown in FIG. 15, FIG. 17 is a block diagram of the refrigerant circuit and control device showing another embodiment, and FIG. FIG. 18 is a flowchart showing the control method of the embodiment shown in FIG. 17; DESCRIPTION OF SYMBOLS 1... Compressor, 2... Four-way valve, 3... Heat source side heat exchanger, 4... User side heat exchanger, 5... Pressure reduction device, 6
... Compressor motor, 7... Inverter, 8...
Heat source side heat exchanger blower, 9... Usage side heat exchanger blower, 10... Rotation speed variable device, 11... Temperature sensor, 12... Reference temperature setter, 13... Comparison means,
14...Temperature sensor, 15...Reference temperature setter, 1
6... Comparison means, 17... Controller, 18... Reference temperature setter, 19... Comparison means, 51... Arithmetic unit,
51m...timer, 52...rotation speed changing means, 5
3...Switching means, 53a...Timer. Representative Patent Attorney Tadashi Akimoto Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 52 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Continued from page 1 0 Author: Akira Atsumi @ Inventor Kuhei Ishibane @ Inventor Hiroshi Kogure @ Inventor Temple 1) Hirosei 50 Asaji, Kandate-cho, Tsuchiura-shi Stocks Hitachi, Ltd. Machinery Research Laboratory 80 Hata, Tomita, Ohira-cho, Shimoga-gun, Tochigi Prefecture Inside Tochigi Factory, Hitachi, Ltd.

Claims (1)

【特許請求の範囲】 13 圧縮機、四方弁、利用側熱交換器、減圧装置、熱
源側熱交換器を順次配管接続した冷媒回路と、可変速な
圧縮機用電動機、可変速な利用側熱交換機用送風機、空
調機に吸入される空気温度の検出手段及びこの吸入空気
の基準温度を設定する手段、吹出し空気温度の検出手段
及びこの吹出し空気の基準温度を設定する手段を備え、
利用側の吸入空気温度が設定値となるように圧縮機の回
転数を制御する通常の運転モードと、利用側吹出し空気
温度が、高温の設定値となるように圧縮機の回転数を太
に保って利用側熱交換器の送風機の回転数を制御する高
温風吹出し運転モードを有し、室内の快適状態に応じ、
上記両運転モードの切換えを行なうことを特徴とするヒ
ートポンプ式空気調和機の運転制御方法。 2、運転モードの切換え全行なう方法が、室内の快適状
態を検出し、快適な状態になっていなければ高温風吹出
し運転モードに、快適な状態になっていれば通常運転モ
ードに自動的に選択切換えを行なう特許請求の範囲第1
項記載のヒートポンプ式空気調和機の運転制御方法。 3、運転モードの切換えを行なう方法が、室内の快適状
態を表わす壁温twoと室内温度talの関係を次式 %式%(1) の関係式で与え、検出された壁温twと室内温度tal
とがtw(twOを満たす時、高温風吹出し運転を行な
い、tw≧twoを満たす時、通常運転を行なうように
運転モードの切換えを行なう特許請求の範囲第2項記載
のヒートポンプ式空気調和機の運転制御方法。 4、運転モードの切換えを行なう方法が、壁温を検出し
、この検出温度と壁温の基準温度を比較して運転モード
の切換えを行なう特許請求の範囲第2項記載のヒートポ
ンプ式空気調和機の運転制御方法。 5、運転モードの切換えを行カう方法が、室温を検出し
、この検出温度と室温の基準温度を比較して運転モード
の切換えを行ムう特許請求の範囲第2項記載のヒートポ
ンプ式空気調和機の運転制御方法。 6、運転モードの切換えを行なう方法が、タイマにて切
換えを行なう特許請求の範囲第1項または第2項記載の
ヒートポンプ式空気調和機の運転制御方法。 7、 高温風吹出し運転が、吹出し空気の第1゜第2の
基準温度を設定する手段を備え、圧縮機用電動機の回転
数を大に保ち、高温風吹出し運転開始後、適宜時間は吹
出し空気が第1の基準温度になるように適宜時間経過後
は吹出し空気が第2の基準温度になるように利用側熱交
換器の送風機の回転数を制御する特許請求の範囲第1項
乃至第6項のいずれか一つに記載のヒートポンプ式空気
調和機の運転制御方法。 8、高温風吹出し運転が、運転開始直後は圧縮機用電動
機の回転数を犬に、利用側熱交換器の送風機の回転数を
小とし、以後、上記送風機の回転数と圧縮機用電動機の
回転数を交互にそれぞれ増大、減少させて吹出し空気温
度が基準温度になるように制御する特許請求の範囲第1
項乃至第6項のいずれか一つに記載のヒートポンプ式空
気調和機の運転制御方法。 9、 利用側熱交換に並設して電気ヒータを備え、高温
風吹出し運転中、吹出し空気温度が基準温度にならない
場合、上記電気ヒーターを作動させる特許請求の範囲第
1項乃至第8項のいずれか1つに記載のヒートポンプ式
空気調和機の運転制御方法。
[Claims] 13. A refrigerant circuit in which a compressor, a four-way valve, a heat exchanger on the user side, a decompression device, and a heat exchanger on the heat source side are sequentially connected via piping, a variable speed electric motor for the compressor, and a variable speed heat exchanger on the user side. A blower for an exchanger, a means for detecting the temperature of the air taken into the air conditioner, a means for setting a reference temperature of the intake air, a means for detecting the temperature of the blown air, and a means for setting the reference temperature of the blown air,
The normal operation mode controls the compressor rotation speed so that the intake air temperature on the user side reaches the set value, and the normal operation mode controls the compressor rotation speed so that the user side outlet air temperature reaches the high temperature set value. It has a high-temperature air blowing operation mode that controls the rotation speed of the fan of the heat exchanger on the user side, depending on the indoor comfort condition.
A method for controlling the operation of a heat pump air conditioner, characterized by switching between the two operation modes described above. 2. The method for switching the operating mode detects the comfortable state of the room, and if it is not comfortable, it will automatically select the high temperature air blowing operating mode, and if it is comfortable, it will automatically select the normal operating mode. Claim 1 that makes the switch
A method for controlling the operation of a heat pump type air conditioner as described in . 3. The method of switching the operation mode is to calculate the relationship between the wall temperature two, which represents the comfortable state of the room, and the room temperature tal using the following equation (1), and calculate the relationship between the detected wall temperature tw and the room temperature. tal
The heat pump type air conditioner according to claim 2, wherein when tw (twO) is satisfied, high temperature air blowing operation is performed, and when tw≧two is satisfied, the operation mode is switched to normal operation. Operation control method. 4. The heat pump according to claim 2, wherein the method for switching the operation mode detects wall temperature and compares the detected temperature with a reference temperature of the wall temperature to switch the operation mode. 5. A method for controlling the operation of a type air conditioner. 5. The method of switching the operation mode detects the room temperature and compares the detected temperature with a reference temperature of the room to switch the operation mode. The method for controlling the operation of a heat pump air conditioner according to claim 2. 6. The heat pump air conditioner according to claim 1 or 2, wherein the method for switching the operation mode is using a timer. 7. The high-temperature air blowing operation is provided with a means for setting the first and second reference temperatures of the blown air, and the rotation speed of the compressor motor is kept high, and after the high-temperature air blowing operation starts. , the scope of the claim is to control the rotational speed of the blower of the user-side heat exchanger so that the blown air reaches a first reference temperature for an appropriate period of time, and so that the blown air reaches a second reference temperature after an appropriate period of time. The method for controlling the operation of a heat pump air conditioner according to any one of paragraphs 1 to 6. 8. Immediately after the start of high temperature air blowing operation, the rotation speed of the compressor electric motor is adjusted to the maximum speed on the user side. A patent claim in which the rotational speed of a blower of a heat exchanger is made small, and thereafter the rotational speed of the blower and the rotational speed of a compressor electric motor are alternately increased and decreased, respectively, so that the temperature of the blown air is controlled to be the reference temperature. range 1
The method for controlling the operation of a heat pump air conditioner according to any one of items 6 to 6. 9. An electric heater is provided in parallel with the heat exchanger on the user side, and the electric heater is activated when the temperature of the blown air does not reach the reference temperature during high-temperature air blowing operation. The method for controlling the operation of a heat pump air conditioner according to any one of the above.
JP59108286A 1984-05-30 1984-05-30 Controlling operation of heat pump type air conditioner Granted JPS60253754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59108286A JPS60253754A (en) 1984-05-30 1984-05-30 Controlling operation of heat pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59108286A JPS60253754A (en) 1984-05-30 1984-05-30 Controlling operation of heat pump type air conditioner

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP4294312A Division JPH07117282B2 (en) 1992-11-02 1992-11-02 Operation control device for heat pump type air conditioner

Publications (2)

Publication Number Publication Date
JPS60253754A true JPS60253754A (en) 1985-12-14
JPH0527014B2 JPH0527014B2 (en) 1993-04-19

Family

ID=14480808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59108286A Granted JPS60253754A (en) 1984-05-30 1984-05-30 Controlling operation of heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JPS60253754A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0387556A (en) * 1989-08-30 1991-04-12 Mitsubishi Heavy Ind Ltd High temperature air blow control method for air conditioner
JPH03111844U (en) * 1990-02-26 1991-11-15
WO2019026731A1 (en) * 2017-07-31 2019-02-07 ダイキン工業株式会社 Air-conditioning device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5549646A (en) * 1978-10-03 1980-04-10 Matsushita Electric Ind Co Ltd Air-conditioner
JPS55143422U (en) * 1979-03-30 1980-10-14
JPS5712244A (en) * 1980-06-26 1982-01-22 Matsushita Electric Ind Co Ltd Air conditioner
JPS5777842A (en) * 1980-11-04 1982-05-15 Mitsubishi Heavy Ind Ltd Capacity control of heat pump type air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5549646A (en) * 1978-10-03 1980-04-10 Matsushita Electric Ind Co Ltd Air-conditioner
JPS55143422U (en) * 1979-03-30 1980-10-14
JPS5712244A (en) * 1980-06-26 1982-01-22 Matsushita Electric Ind Co Ltd Air conditioner
JPS5777842A (en) * 1980-11-04 1982-05-15 Mitsubishi Heavy Ind Ltd Capacity control of heat pump type air conditioner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0387556A (en) * 1989-08-30 1991-04-12 Mitsubishi Heavy Ind Ltd High temperature air blow control method for air conditioner
JPH03111844U (en) * 1990-02-26 1991-11-15
WO2019026731A1 (en) * 2017-07-31 2019-02-07 ダイキン工業株式会社 Air-conditioning device
JP2019027687A (en) * 2017-07-31 2019-02-21 ダイキン工業株式会社 Air conditioner
US11493226B2 (en) 2017-07-31 2022-11-08 Daikin Industries, Ltd. Airconditioning apparatus

Also Published As

Publication number Publication date
JPH0527014B2 (en) 1993-04-19

Similar Documents

Publication Publication Date Title
JPS60188743A (en) Control of heat pump type air conditioner
CN107606725A (en) Accumulation of heat defrosting control method, control device and air conditioner
JP2001280663A (en) Air conditioner and method for controlling it
JPH0650595A (en) Air conditioner
KR20000034767A (en) Method of controlling air conditioner
KR100214750B1 (en) Air conditioner
JPS60253754A (en) Controlling operation of heat pump type air conditioner
JP3518353B2 (en) Heat pump heating system
JPH0755234A (en) Air conditioner
JPS61208459A (en) Room heating operation of air-conditioning machine
JP2610271B2 (en) Air conditioner
JPH0526508A (en) Air conditioner
JPH08193742A (en) Air conditioner
JPH11287501A (en) Air conditioning system
JP3901624B2 (en) Heating operation method of air conditioning system
JPS63148042A (en) Air conditioner
JPH055553A (en) Control device for air conditioner
JPH10122626A (en) Air conditioner
JP3129050B2 (en) Room temperature adjustment control method
JPH0794909B2 (en) Air conditioner
JPH10110995A (en) Air conditioner
KR100345487B1 (en) Driving control method for airconditioner
JPH05240492A (en) Device for controlling operation of heat-pump type air conditioner
JPH08152176A (en) Air conditioner
JPH06137644A (en) Air-conditioning machine

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term