JP3626012B2 - Mold compression injection molding method - Google Patents

Mold compression injection molding method Download PDF

Info

Publication number
JP3626012B2
JP3626012B2 JP14061498A JP14061498A JP3626012B2 JP 3626012 B2 JP3626012 B2 JP 3626012B2 JP 14061498 A JP14061498 A JP 14061498A JP 14061498 A JP14061498 A JP 14061498A JP 3626012 B2 JP3626012 B2 JP 3626012B2
Authority
JP
Japan
Prior art keywords
mold
resin
injection
moving
injection molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14061498A
Other languages
Japanese (ja)
Other versions
JPH11314256A (en
Inventor
吉哉 谷口
好昭 原
信之 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Music Solutions Inc
Toyo Machinery and Metal Co Ltd
Original Assignee
Toyo Machinery and Metal Co Ltd
Sony Disc Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP14061498A priority Critical patent/JP3626012B2/en
Application filed by Toyo Machinery and Metal Co Ltd, Sony Disc Technology Inc filed Critical Toyo Machinery and Metal Co Ltd
Priority to EP98305280A priority patent/EP0890426B1/en
Priority to EP01200720A priority patent/EP1101592B1/en
Priority to DE69808187T priority patent/DE69808187T2/en
Priority to DE69826329T priority patent/DE69826329T2/en
Priority to AT01200720T priority patent/ATE276081T1/en
Priority to EP01200721A priority patent/EP1101593B1/en
Priority to DE69826330T priority patent/DE69826330T2/en
Priority to AT01200721T priority patent/ATE276082T1/en
Priority to AT98305280T priority patent/ATE224800T1/en
Priority to AU74179/98A priority patent/AU747175B2/en
Priority to CA002242967A priority patent/CA2242967C/en
Priority to CA002451631A priority patent/CA2451631C/en
Priority to TW87110906A priority patent/TW462917B/en
Priority to US09/110,130 priority patent/US6183235B1/en
Publication of JPH11314256A publication Critical patent/JPH11314256A/en
Priority to US09/657,464 priority patent/US6562264B1/en
Application granted granted Critical
Publication of JP3626012B2 publication Critical patent/JP3626012B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/263Moulds with mould wall parts provided with fine grooves or impressions, e.g. for record discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/56Means for plasticising or homogenising the moulding material or forcing it into the mould using mould parts movable during or after injection, e.g. injection-compression moulding
    • B29C45/561Injection-compression moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/56Means for plasticising or homogenising the moulding material or forcing it into the mould using mould parts movable during or after injection, e.g. injection-compression moulding
    • B29C45/561Injection-compression moulding
    • B29C2045/5625Closing of the feed opening before or during compression

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、転写性をより優れたものにする事の出来る新規な金型圧縮射出成形方法に関する。
【0002】
【従来の技術】
射出成形品の精密化に伴って射出成形機や射出成形方法も休む事なく進化を遂げている。最近ではデータ処理、映像や音楽を始め各種の分野でデジタル技術が普遍化し、その当然の帰結として例えばCDやMD或いはDVDというようなデジタル基板が実用化されてきた。特にDVD基板においては金型に刻設された超微細な凹凸を正確に成形品に転写することが要求されるようになり、従来のような油圧制御の射出成形機では到底役に立たず、新たにサーボモータを多用する射出成形機が開発されようとしている。
【0003】
このようなデジタル光ディスク基板成形において、微細凹凸の転写性を妨げる要因として、▲1▼マイクロボイド、▲2▼マイクロフローマークが挙げられる。
微細凹凸に沿って樹脂が流れると、微細凹凸の壁の前後において樹脂流に空気の巻き込み現象が生じ、微細空気溜まりを形成する。この微細空気溜まりが転写性低下の原因となるもので、その対策としては充填樹脂のスキン層の固化を極力抑えて充填を完了する事である。
【0004】
この点に関して、従来の金型圧縮射出成形方法は、以下のような手順が取られていた。(図6▲1▼〜▲6▼参照)
▲1▼ パーティング面間(換言すればキャビティ面間)に若干の隙間(t)が設けられた状態となるように型閉が行われ、この状態で金型(1)は停止し、次の溶融混練樹脂(3)の射出充填を待つ。(1b)は固定金型であり、(1a)は移動金型である。
【0005】
▲2▼ 計量混練溶融樹脂(3)を、金型キャビティ(2)内に射出する。金型キャビティ(2)は成形品(26)の厚み(S)より若干広く設定されている(t>S)ので、その分だけ溶融混練樹脂(3)が余分に充填されるようになる。
【0006】
▲3▼ 充填が完了した所でゲートカットピン(30)を前進させて固定金型(1b)のゲート(2a)をその先端にて閉塞する。この間、移動金型(1a)は停止していて、成形品(26)の幅より若干広い隙間(t)を保っているので、その分だけ余分に樹脂(3)が充填された状態で完全に外界からシャットアウトされゲートカットが完了する。
【0007】
▲4▼ ゲートカット後、移動金型(1a)を固定金型(1b)側に移動させて所定の圧力で型締を行う。これにより、極めて強い圧力で充填樹脂(3)が圧縮され、金型キャビティ(2)の凹部(5a)側に形成された微細凹凸面(5)の微細凹凸が硬化しつつある充填樹脂(3)の表面に転写される事になる。
【0008】
以上のような従来方法にあっては、計量混練溶融樹脂(3)の充填開始からゲートカット完了まで、移動金型(1a)は停止しており、ゲートカット完了後に始めて移動を開始する事になる。
一方、充填された樹脂(3)は、充填の瞬間から冷却されてその表面に極く薄く柔らかい薄皮状の固化スキン層が発生し、時間と共に厚くなって行く。
従って、ゲートカット完了後に始めて移動金型(1a)の移動を開始して型締を行う場合、既に発生した極く薄く柔らかい薄皮状の固化スキン層が成長しつつ金型キャビティ(2)の凹部(5a)側に形成された微細凹凸面(5)に接触し、前述のように極く薄く柔らかいが固化スキン層を介して微細凹凸が転写される事になる。
【0009】
ここで転写性について問題となるのは、この薄皮状固化スキン層の存在である。前述のように転写性低下の原因は固化スキン層による微細空気溜まりの形成であり、固化スキン層が存在する限り、そしてその固化スキン層が成長して厚くなればなる程、微細凹凸面(5)と固化スキン層との間の微細空気溜まりの排除が困難となり、金型圧縮成形方法を採用し、いかに強力な型締力で型締を行ったとしてもなお転写性の向上には限界があった。
【0010】
【発明が解決しようとする課題】
本発明の解決課題は、この固化スキン層の発生を出来る限りなくし、或いはその成長わ極力抑制する事で微細凹凸面と固化スキン層との間に発生する微細空気溜まりを可能な限り排除する事により、微細凹凸の転写性の更なる向上を図る事にある。
【0011】
【課題を解決するための手段】
『請求項1』は前記課題を達成する金型圧縮射出成形方法に関し「移動金型(1a)の型閉方向への移動途中において、計量樹脂(3)を金型キャビティ(2)に射出充填し、所定量の樹脂(3)が充填された時にゲートカットを行い、そのまま所定位置まで移動金型(1a)を型閉方向へ停止させる事なく連続的に移動させて型締を行い、型締位置で保圧、冷却した後、成形品(26)を取り出す」事を特徴とする。
【0012】
これによれば、計量樹脂(3)の射出充填開始から型締開始まで移動金型(1a)を型閉方向へ連続的に移動させているので、充填樹脂(3)は移動金型(1a)の動きと協働して移動金型(1a)に対する充填樹脂(3)の流れが相対速度が高くなり、その結果、充填樹脂(3)は金型キャビティ(2)の内面に接してより素早く流動して表面に常に新しい内部の樹脂が露出して来るために樹脂表面(3)のスキン層の形成或いは成長が阻害される。その結果、微細凹凸の成形品(26)への転写性が飛躍的に向上する。
【0013】
『請求項2』は請求項1の射出成形方法における充填樹脂量に関するもので「請求項1に記載の充填樹脂(3)の所定量が、成形品(26)の体積以上である」事を特徴とする。
これによれば、成形品(26)の体積以上のボリュウムの充填樹脂を圧縮成形により成形品(26)の体積にまで圧縮するのであるから、成形品(26)は高密度基板となり、密度のバラツキがなくなり品質の向上に寄与する。
【0014】
『請求項3』は請求項1又は2のいずれかに記載の前記金型圧縮射出成形方法における微細凹凸の形成場所に関し「転写用の微細凹凸が移動金型(1a)の金型キャビティ(2)の内面側(5)に形成されている」事を特徴とするもので、前述のように転写性の向上が可能となる。
移動金型(1a)の移動中に計量樹脂(3)を充填すると、前述のように、充填樹脂(3)は移動金型(1a)の動きと協働して移動金型(1a)に対する相対速度が大きくなってその表面に常に新しい内部の樹脂を露出させつつ移動金型(1a)側の金型キャビティ(2)を構成する凹部(5a)の内面(5)に接して素早く流動する。その結果、樹脂表面(3)のスキン層の形成或いは成長が阻害され、これが転写性を損なう微細空気溜まりの発生を阻害する。
従って、移動金型(1a)側の金型キャビティ(2)の内面(5)に微細凹凸を形成しておけば、この方法により転写性が飛躍的に向上させる事が出来る。
【0015】
【発明の実施の態様】
以下、本発明を図示実施例に従って詳述する。本発明の射出成形機(A)は図1に示すように射出機構部(a)と金型機構部(b)とに大別される。
射出機構部(a)は、スクリュ(4)を前進・後退させるための駆動機構部(10)、スクリュ(4)を回転させる回転用サーボモータ(11)、スクリュ(4)を前進・後退させる射出用サーボモータ(12)、原料樹脂混練及び射出用のスクリュ(4)、スクリュ(4)が進退・回転可能収納されている射出シリンダ(13)、射出シリンダ(13)に巻設されたヒータ(14)、スクリュ(4)と駆動機構部(10)との間に配設され、スクリュ(4)に掛かる圧力を検出している射出用ロードセル(15)、原料供給ホッパ(16)並びに各サーボモータ(11)(12)に装着されているパルス発生装置(11a)(12a)とで構成されている。
【0016】
次に金型機構部(b)に付いて説明する。金型(1)は移動・固定金型(1a)(1b)で構成されており、固定ダイプレート(17)に固定金型(1b)が装着され、移動ダイプレート(18)に移動金型(1a)が装着されている。固定金型(1b)のパーティング面には金型キャビティ(2)の一部を構成する凸部(5b)が形成されており、前記凸部(5b)に対応して金型キャビティ(2)の一部を構成する凹部(5a)が移動金型(1a)のパーティング面に形成されており、型閉時に凹部(5a)に凸部(5b)が嵌まり込むようになっている。
【0017】
更に、移動金型(1a)に凹設された凹部(5a)の固定金型(1b)との対向面(5)には例えばCDやDVD用の微細な凹凸が形成してある。この微細凹凸刻設面(5)は超鏡面加工のような極めて高い平滑度(例えば、max0.01μm、)平面度=0.1μmが要求され、平行度は例えば0.005mm以下、など極めて高い精度が要求される。
更に、移動金型(1a)の中心にはゲートカットピン(30)がスライド自在に配設されている。
【0018】
移動ダイプレート(18)はタイバー(19)にスライド往復自在に取り付けられており、タイバー(19)の端部にテイルストック(20)が装着されている。移動ダイプレート(18)の背面には中には圧力センサ(54)が配設されており、更にその背部に圧力センサ(54)が取着されているハウジング(50)が設置されている。
【0019】
次に金型開閉トグル機構(T)に付いて説明する。テイルストック(20)には金型制御サーボモータ(31)が取り付けられており、その回転駆動軸に取り付けられた駆動プーリ(32)と、テイルストック(20)にベアリングを介して回転自在に配設された従動プーリ(34)とを伝達ベルト(33)にて接続している。前記金型制御サーボモータ(31)にはパルス発生装置(31a)が装着されている。
従動プーリ(34)には雄ネジ棒(44)が進退自在に螺装されており、前記雄ネジ棒(44)の突出端が金型開閉クロスヘッド(35)に取り付けられている。金型開閉トグルは長短各アーム(36)をリンク機構に接続したもので、その一端はテイルストック(20)に回動自在に接続され、他端はハウジング(50)に回動自在に接続され、更にもう一つの端部は金型開閉クロスヘッド(35)に取り付けられている。このリンク機構は公知の技術であるからこれ以上の詳細は省く。
【0020】
次にハウジング(50)に設けられたゲートカット/エジェクト機構部(c)に付いて説明する。ハウジング(50)にはゲートカット/エジェクト用のサーボモータ(40)が取着されており、その回転駆動軸に装着された駆動プーリ(41)と、ハウジング(50)にベアリングを介して回動自在に保持された従動プーリ(43)とが伝達ベルト(42)にて接続されている。従動プーリ(43)は作動ナット(45)に取り付けられており、この作動ナット(45)にはゲートカットピン(30)の後半部分に螺設された作動用ネジ部(30a)が進退自在に螺装されている。サーボモータ(40)にはパルス発生装置(40a)が配設されている。
【0021】
(8)は制御装置で、本射出成形機(A)全体の制御を司るものであり、その中の1つの機能として、射出用ロードセル(15)、圧力センサ(54)、サーボモータ(11)(12)(31)及び(40)に装着されたパルス発生装置(11a)(12a)(31a)(40a)及びヒータ(14)からの信号を得てサーボモータ(11)(12)(31)及び(40)の制御を行うようになっている。駆動系の制御は全てサーボモータ(11)(12)(31)及び(40)によって行われるのであるから、プログラムすることにより複合動作など任意の条件が作り出せる。
【0022】
(7)は制御装置(8)に接続した表示部で、射出成形工程の全部或いはその一部をデジタル或いはアナログ表示するようになっている。図5は射出工程と保圧工程における制御状態をグラフで表した例であり、例えばこのようなグラフが表示される。これにより工程管理が一目瞭然となり非常に管理しやすくなる。
【0023】
図5について説明すると、該グラフは縦軸に圧力を取り、横軸に時間を取ったものである。実線で示した曲線は本発明の制御例を示し、上側の実線は移動金型(1a)の設定圧力であり、下側の実線は圧力センサ(54)で検出した移動金型(1a)の実際の反力を示す。
【0024】
図5において本発明では、圧力センサ(54)によって充填樹脂(3)の樹脂圧を直接検出しているので、保圧工程の前部段階では、移動金型(1a)による圧縮圧力制御、或いは後部段階では、移動金型(1a)による位置制御をリアルタイムで追従させる事が出来るし、射出充填工程中の(px→P1)の範囲であれば、圧力センサ(54)による直接検出に追従して射出速度を制御できる。点(px)は圧力センサ(54)の出力開始点から立ち上げた垂線(H1)と射出設定速度曲線(0→P1)との交点である。
【0025】
次に、本発明の作用について説明する。原料樹脂(3c)が原料供給ホッパ(16)に投入され、回転用サーボモータ(11)を作動させてスクリュ(4)を回転させると原料樹脂(3c)は次第に射出シリンダ(13)方向に送られて行く、射出シリンダ(13)はその外周に巻着されているヒータ(14)によって加熱されているので、射出シリンダ(13)に入った原料樹脂(3c)は次第に溶融し且つスクリュ(4)の回転作用によって混練されて行く。
【0026】
スクリュ(4)の回転と共に溶融混練樹脂(3b)は射出シリンダ(13)の先端方向に送られ、先端部分で貯溜される。この反作用としてスクリュ(4)は次第に後退し、ついには予め設定されている後退停止位置に至る。この時点で樹脂計量が完了した事になる。
【0027】
一方、金型(1)側では、図4▲1▼に示すようにまず、型閉が行われる。即ち、金型制御サーボモータ(31)を作動させ、駆動プーリ(32)及び伝達ベルト(33)介してその回転力を従動プーリ(34)に伝達し、従動プーリ(34)を回転させると従動プーリ(34)に螺装されている雄ネジ棒(44)が図2から図3に示すように右方向に進み、クロスヘッド(35)を推し進めて金型開閉トグルを伸長させる。この時この伸長に合わせて移動ダイプレート(18)及びこれに装着されている移動金型(1a)が固定金型(1b)側に移動し、固定金型(1b)の凸部(5b)に移動金型(1a)の凹部(5a)が嵌まり込む。ただしこの時点ではトグルは完全に伸長しておらずパーティング面間(換言すれば、キャビティ面間)には図4▲3▼のゲートカット時点の隙間(t)よりかなり幅広の状態《キャビティ面間隙間を(T)で示す》となっている。
【0028】
この状態で射出充填が行われるのであるが、図4▲2▼に示すように移動金型(1a)が(T)から(t)に向かって型閉方向に移動している途中で計量樹脂(3)を射出充填する。この時、射出の瞬間から樹脂(3)の表面にスキン層が発生しようとするが、移動金型(1a)が型閉方向に移動しているので、樹脂(3)が移動金型(1a)のキャビティ(2)の内面(5)をより高速で流れてスキン層の形成、或いは成長が抑制され、従った微細空気溜まりの発生が抑制されて樹脂(3)が微細凹凸の形成されている内面(5)に忠実に密着する。
【0029】
続いて、ゲートカットが行われるのであるが(図4▲3▼参照)、そのタイミング(P1)は圧力センサ(54)が所定の値を示したときゲートカットピン(30)が作動して移動中の移動金型(1a)から突出してゲートカットを行い、金型キャビティ(2)をゲート(2a)から切り離す。この時の移動金型(1a)と固定金型(1b)のキャビティ面間の隙間は(t)である。
【0030】
このように毎回同じ樹脂圧の時にゲートカットが行われるので、金型キャビティ(2)内には安定して同量(ただし、前記幅(t)は成形品(26)の幅(S)より大きいので、成形品(26)の体積より充填量は多くなる。)の樹脂(3)が毎回充填される事になる。
【0031】
(t)は成形品(26)の最終厚み(S)より大きいので、金型キャビティ(2)には成形品(26)の体積以上の樹脂(3)が供給される事になる。
【0032】
ゲートカットは、移動金型(1a)の型閉移動が行われている状態でサーボモータ(40)を作動させて従動プーリ(43)を回転させるとゲートカットピン(30)が移動中の移動金型(1a)から前進し、固定金型(1b)のゲート(2a)をその先端にて閉塞する事により行われ、余分に樹脂(3)が充填された状態で完全に外界からシャットアウトされる。
【0033】
以上の工程(0→P1)は、射出用ロードセル(15)によって、或いは(0→PX)を射出用ロードセル(15)で制御し、(PX→P1)を圧力センサ(54)によって制御する。また、この射出充填工程は射出サーボモータ(12)にて設定値に追従するように行われ、且つ移動金型(1a)が移動しているので、充填樹脂(3)は移動金型(1a)の動きと協働して移動金型(1a)に対する相対速度が大きくなってその表面に常に新しい内部の樹脂を露出させつつ移動金型(1a)側の金型キャビティ(2)を構成する凹部(5a)の内面に接して素早く流動する。その結果、充填樹脂(3)に薄い樹脂膜が発生する前に充填が完了し、これが転写性を損なう微細空気溜まりの発生を阻害する事になる。それ故、移動金型(1a)側の金型キャビティ(2)の凹部(5a)に形成された微細凹凸は飛躍的に優れた転写性をもって成形品(26)に転写される事になる。
【0034】
なお、射出速度は金型キャビティ(2)内の充填樹脂(3)の樹脂圧により制御される方が直接的で好ましいので、点(px)において充填樹脂(3)が移動金型(1a)に接触して圧力センサ(54)から樹脂圧に関するデータが出力され始めると、射出用ロードセル(15)による射出速度制御を圧力センサ(54)による射出速度制御に切り替えてもよい。この点を図5で解説すると、(0→P1)の領域は、射出充填工程であるから速度制御が行われ、その内の(0→px)は射出用ロードセル(15)による射出速度制御が行われ、(px→P1)は圧力センサ(54)による射出速度制御が行われる。勿論、(0→P1)全体を通じて射出用ロードセル(15)による射出速度制御を行ってもよい事は言うまでもない。
【0035】
なお、計量樹脂(3)の射出充填は、射出用サーボーモータ(12)によって行われるので、設定値に極めて近い高速射出が可能となり、移動金型(1a)の移動中の樹脂充填と相俟って薄い樹脂膜が充填樹脂(3)の表面に生じる前に射出を完了する事が出来、転写性を従来とは比較出来ない程度の画期的な精度までに高める事が出来た。
【0036】
次に保圧工程[(P1)→(P3)]に移るが、その前部段階である圧力制御領域では圧力センサ(54)によって金型キャビティ(2)内の樹脂圧を直接検出して制御していくのであるから、設定値にほぼ近い圧縮圧力を充填樹脂(3)に与える事が出来、内部応力をより小さくする事が出来る。
【0037】
保圧工程の後部段階である位置制御[(P2)→(P3)]に移ると、充填樹脂(3)はほぼ硬化しており、その厚みが一定になるように移動金型(1a)の位置を正確に制御しなければならない。前述のように金型キャビティ(2)には毎回一定量の樹脂(3)が充填されるので、圧力センサ(54)の検出値が一定であれば、その厚さも一定となる。従って、位置制御段階で圧力センサ(54)の検出値が設定値になるように制御すれば、自ずから移動金型(1a)の位置も常に一定位置となり、成形品(26)の厚さも一定となる。
【0038】
充填樹脂(3)の硬化が終了すると図4▲5▼に示すように、金型制御サーボモータ(31)を逆作動させて移動金型(1a)を固定金型(1b)側から離間させる。この時成形品(26)は移動金型(1a)の金型キャビティ(2)内に嵌まり込んだまま移動金型(1a)と共に移動する。
【0039】
最後に図4▲6▼に移り、型開きが終わった処でサーボモータ(40)を作動させてゲートカットピン(30)を金型キャビティ(2)から突き出し、成形品(26)を離型させてから回収する。
【0040】
【発明の効果】
本発明方法にあっては、計量樹脂の射出充填開始から型締開始まで移動金型を型閉方向へ連続的に移動させているので、充填樹脂は移動金型の動きと協働して特に、移動金型(1a)側の金型キャビティの内面に接して流動し、樹脂表面のスキン層の形成が阻害される。従って、移動金型側の金型キャビティの内面に微細凹凸が形成されている場合には、この方法により転写性が飛躍的に向上する。
また、成形品の体積以上のボリュウムの充填樹脂を金型キャビティに充填して圧縮成形し、これにより成形品の体積にまで圧縮するのであるから、成形品は高密度基板となり、密度のバラツキがなくなり品質の向上に寄与する。
【図面の簡単な説明】
【図1】本発明にかかる射出成形機の主要部分の概略構造を示す断面図
【図2】図1の金型機構部の図面で、樹脂充填時の拡大断面図
【図3】図1の金型機構部の図面で、金型圧縮時の拡大断面図
【図4】▲1▼〜▲6▼…本発明の射出全工程における金型の作動状態を示す断面図
【図5】本発明における設定圧変化及び圧力センサの出力の変化を示すグラフ
【図6】▲1▼〜▲6▼…従来例の射出全工程における金型の作動状態を示す断面図
【符号の説明】
(A)…射出成形機 (a)…射出機構部 (b)…金型機構部
(1)…金型
(2)…金型キャビティ
(3)…樹脂
(4)…スクリュ
(5)…微細凹凸面
(8)…制御装置
(11)(12)(31)(40)…サーボモータ
(30)…ゲートカットピン
(54)…圧力センサ
[0001]
[Industrial application fields]
The present invention relates to a novel mold compression injection molding method capable of improving transferability.
[0002]
[Prior art]
Along with the refinement of injection molded products, the injection molding machines and injection molding methods are constantly evolving. Recently, digital technology has become universal in various fields such as data processing, video and music, and as a natural consequence, digital substrates such as CD, MD or DVD have been put into practical use. In particular, in the DVD substrate, it is required to accurately transfer the ultra-fine irregularities engraved on the mold to the molded product, and the conventional hydraulically controlled injection molding machine is not useful at all. An injection molding machine that uses a lot of servo motors is being developed.
[0003]
In such a digital optical disk substrate molding, (1) microvoids and (2) microflow marks are cited as factors that hinder the transfer of fine irregularities.
When the resin flows along the fine unevenness, an air entrainment phenomenon occurs in the resin flow before and after the fine uneven wall, thereby forming a fine air reservoir. This minute air reservoir causes a decrease in transferability. As a countermeasure, the solidification of the skin layer of the filling resin is suppressed as much as possible to complete the filling.
[0004]
In this regard, the following procedure is taken in the conventional mold compression injection molding method. (See Fig. 6 (1) to (6))
(1) The mold is closed so that a slight gap (t) is provided between the parting surfaces (in other words, between the cavity surfaces). In this state, the mold (1) stops and the next Wait for injection filling of the melt-kneaded resin (3). (1b) is a fixed mold, and (1a) is a moving mold.
[0005]
{Circle around (2)} The metered kneaded molten resin (3) is injected into the mold cavity (2). Since the mold cavity (2) is set slightly wider than the thickness (S) of the molded product (26) (t> S), the melt-kneaded resin (3) is filled by that much.
[0006]
(3) When the filling is completed, the gate cut pin (30) is advanced to close the gate (2a) of the fixed mold (1b) at its tip. During this time, the moving mold (1a) is stopped, and a gap (t) slightly wider than the width of the molded product (26) is maintained, so that the resin (3) is completely filled by that amount. Is shut out from the outside world and the gate cut is completed.
[0007]
(4) After the gate is cut, the movable mold (1a) is moved to the fixed mold (1b) side and the mold is clamped with a predetermined pressure. Thereby, the filling resin (3) is compressed with extremely strong pressure, and the filling resin (3) in which the fine unevenness of the fine unevenness surface (5) formed on the recess (5a) side of the mold cavity (2) is being cured. ) Will be transferred to the surface.
[0008]
In the conventional method as described above, the moving mold (1a) is stopped from the start of filling of the metering kneaded molten resin (3) until the gate cut is completed, and the movement starts only after the gate cut is completed. Become.
On the other hand, the filled resin (3) is cooled from the moment of filling to form a thin and soft thin-skinned solidified skin layer on the surface thereof, and becomes thicker with time.
Accordingly, when the moving mold (1a) is started for the first time after the gate cut is completed and the mold is clamped, the already formed very thin and soft thin skinned solidified skin layer grows and the concave portion of the mold cavity (2) is formed. The fine asperity surface (5) formed on the (5a) side comes into contact, and as described above, the fine asperity is transferred through the solidified skin layer although it is extremely thin and soft.
[0009]
Here, it is the presence of the thin skin-like solidified skin layer that causes a problem with transferability. As described above, the cause of the decrease in transferability is the formation of a fine air reservoir due to the solidified skin layer. As long as the solidified skin layer is present and as the solidified skin layer grows and becomes thicker, the fine uneven surface (5 ) And the solidified skin layer is difficult to eliminate, and even if a mold compression molding method is used and the mold is clamped with a strong clamping force, there is a limit to improving transferability. there were.
[0010]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to eliminate the generation of the solidified skin layer as much as possible, or to suppress the growth as much as possible to eliminate as much as possible the fine air reservoir generated between the fine uneven surface and the solidified skin layer. Therefore, it is intended to further improve the transferability of fine unevenness.
[0011]
[Means for Solving the Problems]
Claim 1” relates to a mold compression injection molding method that achieves the above-mentioned problem. “In the middle of movement of the movable mold (1a) in the mold closing direction, the metering resin (3) is injected into the mold cavity (2). Then, when a predetermined amount of resin (3) is filled, gate cutting is performed, and the movable mold (1a) is continuously moved to a predetermined position without stopping in the mold closing direction to perform mold clamping. After holding and cooling in the tightening position, the molded product (26) is taken out ".
[0012]
According to this, since the moving mold (1a) is continuously moved in the mold closing direction from the start of injection filling of the metering resin (3) to the start of mold clamping, the filling resin (3) is transferred to the moving mold (1a). ), The relative speed of the flow of the filling resin (3) with respect to the moving mold (1a) increases, and as a result, the filling resin (3) comes into contact with the inner surface of the mold cavity (2). Since the resin quickly flows and new internal resin is always exposed on the surface, the formation or growth of the skin layer on the resin surface (3) is hindered. As a result, the transferability of the fine unevenness to the molded product (26) is greatly improved.
[0013]
Claim 2” relates to the amount of filled resin in the injection molding method according to claim 1. “The predetermined amount of filled resin (3) according to claim 1 is equal to or greater than the volume of the molded product (26)”. Features.
According to this, since the volume-filling resin of the volume of the molded product (26) or more is compressed to the volume of the molded product (26) by compression molding, the molded product (26) becomes a high-density substrate, This contributes to quality improvement with no variation.
[0014]
Claim 3” relates to a location for forming fine irregularities in the mold compression injection molding method according to any one of claims 1 and 2, wherein “the fine irregularities for transfer are mold cavities (2) of the movable mold (1a)” ) Is formed on the inner surface side (5) ", and transferability can be improved as described above.
When the weighing resin (3) is filled during the movement of the moving mold (1a), as described above, the filling resin (3) cooperates with the movement of the moving mold (1a) with respect to the moving mold (1a). The relative velocity increases, and a new internal resin is always exposed on the surface, and quickly flows in contact with the inner surface (5) of the recess (5a) constituting the mold cavity (2) on the moving mold (1a) side. . As a result, the formation or growth of the skin layer on the resin surface (3) is hindered, which inhibits the generation of fine air pockets that impair the transferability.
Therefore, if fine irregularities are formed on the inner surface (5) of the mold cavity (2) on the moving mold (1a) side, the transfer property can be remarkably improved by this method.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail according to illustrated embodiments. The injection molding machine (A) of the present invention is roughly divided into an injection mechanism part (a) and a mold mechanism part (b) as shown in FIG.
The injection mechanism part (a) advances / retreats the drive mechanism part (10) for moving the screw (4) forward / backward, the servo motor (11) for rotating the screw (4), and the screw (4). Servo motor for injection (12), screw for raw material resin kneading and injection (4), injection cylinder (13) in which screw (4) can be moved back and forth, and rotation, heater wound around injection cylinder (13) (14), an injection load cell (15), a raw material supply hopper (16), and each of the injection load cell (15), which is disposed between the screw (4) and the drive mechanism (10) and detects the pressure applied to the screw (4). It is comprised with the pulse generator (11a) (12a) with which the servomotor (11) (12) is mounted | worn.
[0016]
Next, the mold mechanism (b) will be described. The mold (1) is composed of a movable / fixed mold (1a) (1b), the fixed mold (1b) is mounted on the fixed die plate (17), and the movable mold is mounted on the movable die plate (18). (1a) is attached. A convex part (5b) constituting a part of the mold cavity (2) is formed on the parting surface of the fixed mold (1b), and a mold cavity (2) corresponding to the convex part (5b) is formed. ) Is formed on the parting surface of the movable mold (1a), and the convex part (5b) is fitted into the concave part (5a) when the mold is closed. .
[0017]
Furthermore, fine concavities and convexities for, for example, CD and DVD are formed on the surface (5) of the concave portion (5a) provided in the movable die (1a) with the fixed die (1b). This fine uneven engraved surface (5) is required to have extremely high smoothness (for example, max 0.01 μm) flatness = 0.1 μm as in super mirror processing, and the parallelism is extremely high, for example, 0.005 mm or less. Accuracy is required.
Further, a gate cut pin (30) is slidably disposed at the center of the movable mold (1a).
[0018]
The movable die plate (18) is slidably attached to the tie bar (19), and a tailstock (20) is attached to the end of the tie bar (19). A pressure sensor (54) is disposed in the back of the movable die plate (18), and a housing (50) to which the pressure sensor (54) is attached is installed on the back.
[0019]
Next, the mold opening / closing toggle mechanism (T) will be described. A mold control servomotor (31) is attached to the tailstock (20), and a drive pulley (32) attached to the rotary drive shaft and the tailstock (20) are rotatably arranged via a bearing. The driven pulley (34) provided is connected by a transmission belt (33). A pulse generator (31a) is mounted on the mold control servo motor (31).
A male threaded rod (44) is threadably mounted on the driven pulley (34), and the projecting end of the male threaded rod (44) is attached to the mold opening / closing cross head (35). The mold opening / closing toggle has long and short arms (36) connected to a link mechanism, one end of which is pivotally connected to the tailstock (20) and the other end is pivotally connected to the housing (50). The other end is attached to the mold opening / closing cross head (35). Since this link mechanism is a known technique, further details are omitted.
[0020]
Next, the gate cut / eject mechanism (c) provided in the housing (50) will be described. A servo motor (40) for gate cut / eject is attached to the housing (50), and a drive pulley (41) attached to the rotary drive shaft and the housing (50) rotate via a bearing. A freely driven pulley (43) is connected to the transmission belt (42). The driven pulley (43) is attached to an operating nut (45), and an operating screw portion (30a) screwed to the rear half of the gate cut pin (30) can be moved forward and backward. It is screwed. The servo motor (40) is provided with a pulse generator (40a).
[0021]
(8) is a control device that controls the entire injection molding machine (A). One of the functions is an injection load cell (15), a pressure sensor (54), and a servo motor (11). (12) The servo motors (11), (12), (31) are obtained by obtaining signals from the pulse generators (11a), (12a), (31a), (40a) and the heater (14) attached to (31) and (40). ) And (40) are controlled. Since all control of the drive system is performed by the servo motors (11), (12), (31), and (40), arbitrary conditions such as a combined operation can be created by programming.
[0022]
(7) is a display unit connected to the control device (8), and displays all or part of the injection molding process digitally or analogly. FIG. 5 is an example in which the control state in the injection process and the pressure holding process is represented by a graph. For example, such a graph is displayed. As a result, process management becomes obvious at a glance and becomes very easy to manage.
[0023]
Referring to FIG. 5, the graph shows pressure on the vertical axis and time on the horizontal axis. The curve shown by the solid line shows an example of control of the present invention, the upper solid line is the set pressure of the moving mold (1a), and the lower solid line is the moving mold (1a) detected by the pressure sensor (54). Indicates actual reaction force.
[0024]
In FIG. 5, in the present invention, the resin pressure of the filling resin (3) is directly detected by the pressure sensor (54). Therefore, in the front stage of the pressure holding process, the compression pressure control by the moving mold (1a), or At the rear stage, the position control by the moving mold (1a) can be followed in real time, and if it is in the range of (px → P1) during the injection filling process, it follows the direct detection by the pressure sensor (54). The injection speed can be controlled. Point (px) is the intersection of the perpendicular (H1) raised from the output start point of the pressure sensor (54) and the injection set speed curve (0 → P1).
[0025]
Next, the operation of the present invention will be described. When the raw material resin (3c) is put into the raw material supply hopper (16) and the rotation servo motor (11) is operated to rotate the screw (4), the raw material resin (3c) is gradually fed in the direction of the injection cylinder (13). Since the injection cylinder (13) is heated by the heater (14) wound around the outer periphery of the injection cylinder (13), the raw material resin (3c) entering the injection cylinder (13) gradually melts and the screw (4 Kneading by the rotating action of).
[0026]
With the rotation of the screw (4), the melt-kneaded resin (3b) is sent toward the tip of the injection cylinder (13) and stored at the tip. As a reaction, the screw (4) gradually moves backward, and finally reaches a preset backward stop position. At this point, resin weighing is complete.
[0027]
On the other hand, on the mold (1) side, as shown in FIG. That is, when the mold control servo motor (31) is operated, the rotational force is transmitted to the driven pulley (34) via the drive pulley (32) and the transmission belt (33), and the driven pulley (34) is rotated to be driven. The male screw rod (44) screwed on the pulley (34) advances in the right direction as shown in FIGS. 2 to 3 and pushes the cross head (35) to extend the mold opening / closing toggle. At this time, the movable die plate (18) and the movable mold (1a) mounted on the movable die plate (18) move to the fixed mold (1b) side in accordance with the extension, and the convex part (5b) of the fixed mold (1b). The recessed part (5a) of the moving mold (1a) is fitted into. However, at this point, the toggle is not fully extended, and the gap between the parting surfaces (in other words, between the cavity surfaces) is considerably wider than the gap (t) at the time of gate cut in FIG. The gap between them is indicated by (T) >>.
[0028]
In this state, injection filling is performed. As shown in FIG. 4 (2), the metering resin is in the middle of moving the movable mold (1a) from (T) to (t) in the mold closing direction. (3) is injection filled. At this time, a skin layer is about to be generated on the surface of the resin (3) from the moment of injection, but since the moving mold (1a) is moving in the mold closing direction, the resin (3) is moved to the moving mold (1a). ) In the cavity (2) of the cavity (2) at a higher speed, the formation or growth of the skin layer is suppressed, the generation of the fine air reservoir is suppressed, and the resin (3) is formed with fine irregularities. It adheres faithfully to the inner surface (5).
[0029]
Subsequently, the gate cut is performed (see (3) in FIG. 4). At the timing (P1), when the pressure sensor (54) shows a predetermined value, the gate cut pin (30) is operated to move. A gate cut is performed by protruding from the moving mold (1a) in the middle, and the mold cavity (2) is separated from the gate (2a). At this time, the clearance between the cavity surfaces of the movable mold (1a) and the fixed mold (1b) is (t).
[0030]
Thus, since the gate cut is performed at the same resin pressure every time, the same amount (however, the width (t) is larger than the width (S) of the molded product (26) in the mold cavity (2). Since it is large, the filling amount is larger than the volume of the molded product (26).) The resin (3) is filled each time.
[0031]
Since (t) is larger than the final thickness (S) of the molded product (26), the resin (3) having a volume larger than that of the molded product (26) is supplied to the mold cavity (2).
[0032]
In the gate cut, when the servomotor (40) is operated and the driven pulley (43) is rotated in a state where the movable mold (1a) is closed, the gate cut pin (30) is moved while it is moving. This is done by moving forward from the mold (1a) and closing the gate (2a) of the fixed mold (1b) at its tip, and completely shut out from the outside with the resin (3) filled in excess. Is done.
[0033]
In the above process (0 → P1), the injection load cell (15) or (0 → PX) is controlled by the injection load cell (15), and (PX → P1) is controlled by the pressure sensor (54). Further, this injection filling process is performed by the injection servo motor (12) so as to follow the set value, and the moving mold (1a) is moving, so that the filling resin (3) is transferred to the moving mold (1a). The mold cavity (2) on the side of the movable mold (1a) is constructed while the relative speed with respect to the movable mold (1a) is increased in cooperation with the movement of the movable mold (1a), and a new internal resin is always exposed on the surface. It quickly flows in contact with the inner surface of the recess (5a). As a result, the filling is completed before a thin resin film is formed on the filling resin (3), and this impedes the generation of a fine air reservoir that impairs transferability. Therefore, the fine irregularities formed in the concave portion (5a) of the mold cavity (2) on the moving mold (1a) side are transferred to the molded product (26) with remarkably excellent transferability.
[0034]
The injection speed is directly and preferably controlled by the resin pressure of the filling resin (3) in the mold cavity (2). Therefore, at the point (px), the filling resin (3) is moved to the moving mold (1a). When the pressure sensor (54) starts to output data regarding the resin pressure, the injection speed control by the injection load cell (15) may be switched to the injection speed control by the pressure sensor (54). This point will be explained with reference to FIG. 5. Since the area (0 → P1) is an injection filling process, speed control is performed, and (0 → px) of the area is controlled by the injection load cell (15). In (px → P1), injection speed control is performed by the pressure sensor (54). Of course, it goes without saying that the injection speed control by the injection load cell (15) may be performed throughout (0 → P1).
[0035]
The injection filling of the metering resin (3) is performed by the injection servo motor (12), so that a high-speed injection very close to the set value is possible, and combined with the resin filling during the movement of the moving mold (1a). The injection can be completed before the thin resin film is formed on the surface of the filling resin (3), and the transferability can be improved to an epoch-making accuracy that cannot be compared with the conventional one.
[0036]
Next, the process proceeds to the pressure holding step [(P1) → (P3)]. In the pressure control region, which is the front stage, the resin pressure in the mold cavity (2) is directly detected and controlled by the pressure sensor (54). Therefore, it is possible to apply a compression pressure close to the set value to the filling resin (3), and to further reduce the internal stress.
[0037]
When moving to the position control [(P2) → (P3)], which is the rear stage of the pressure holding process, the filling resin (3) is almost cured and the thickness of the moving mold (1a) is made constant. The position must be accurately controlled. As described above, since the mold cavity (2) is filled with a constant amount of the resin (3) each time, if the detected value of the pressure sensor (54) is constant, the thickness thereof is also constant. Therefore, if control is performed so that the detection value of the pressure sensor (54) becomes the set value in the position control stage, the position of the movable mold (1a) is always always a constant position, and the thickness of the molded product (26) is also constant. Become.
[0038]
When the filling resin (3) is cured, as shown in FIG. 4 (5), the mold control servo motor (31) is reversely operated to separate the movable mold (1a) from the fixed mold (1b) side. . At this time, the molded product (26) moves together with the moving mold (1a) while being fitted in the mold cavity (2) of the moving mold (1a).
[0039]
Finally, moving to FIG. 4 (6), when the mold opening is completed, the servo motor (40) is operated to protrude the gate cut pin (30) from the mold cavity (2), and the molded product (26) is released. Collect after collecting.
[0040]
【The invention's effect】
In the method of the present invention, since the moving mold is continuously moved in the mold closing direction from the start of injection filling of the metering resin to the start of mold clamping, the filling resin particularly works in cooperation with the movement of the moving mold. The fluid flows in contact with the inner surface of the mold cavity on the moving mold (1a) side, and the formation of the skin layer on the resin surface is inhibited. Accordingly, when fine irregularities are formed on the inner surface of the mold cavity on the moving mold side, the transferability is greatly improved by this method.
In addition, since the resin filled with a volume of resin equal to or greater than the volume of the molded product is filled into the mold cavity and compression molded, and thus compressed to the volume of the molded product, the molded product becomes a high-density substrate, and there is a variation in density. Contributes to quality improvement.
[Brief description of the drawings]
1 is a cross-sectional view showing a schematic structure of a main part of an injection molding machine according to the present invention. FIG. 2 is an enlarged cross-sectional view of a mold mechanism portion in FIG. FIG. 4 is an enlarged sectional view of the mold mechanism when the mold is compressed. FIG. 4 is a sectional view showing the operating state of the mold in the entire injection process of the present invention. FIG. 6 is a graph showing changes in the set pressure and output of the pressure sensor in FIG. 6 (1) to (6): Cross-sectional views showing the operating state of the mold in the entire injection process of the conventional example.
(A) ... Injection molding machine (a) ... Injection mechanism (b) ... Mold mechanism (1) ... Mold (2) ... Mold cavity (3) ... Resin (4) ... Screw (5) ... Fine Concavity and convexity surface (8) ... Control device (11) (12) (31) (40) ... Servo motor (30) ... Gate cut pin (54) ... Pressure sensor

Claims (3)

移動金型の型閉方向への移動途中において計量樹脂を金型キャビティに射出充填し、所定量の樹脂が充填された時にゲートカットを行い、そのまま所定位置まで移動金型を型閉方向へ連続的に停止させる事なく移動させて型締を行い、型締位置で保圧、冷却した後、成形品を取り出す事を特徴とする金型圧縮射出成形方法。During the movement of the moving mold in the mold closing direction, metering resin is injected and filled into the mold cavity, and when a predetermined amount of resin is filled, gate cutting is performed and the moving mold is continuously moved to the predetermined position in the mold closing direction. The mold compression injection molding method is characterized in that the mold is clamped by moving without stopping, and after holding and cooling at the clamping position, the molded product is taken out. 請求項1に記載の充填樹脂の所定量が、成形品の体積以上である事を特徴とする金型圧縮射出成形方法。A mold compression injection molding method, wherein the predetermined amount of the filling resin according to claim 1 is not less than the volume of the molded product. 転写用の微細凹凸が移動金型の金型キャビティの内面側に形成されている事を特徴とする請求項1又は2のいずれかに記載の金型圧縮射出成形方法。3. The mold compression injection molding method according to claim 1, wherein the fine irregularities for transfer are formed on the inner surface side of the mold cavity of the moving mold.
JP14061498A 1997-04-21 1998-05-06 Mold compression injection molding method Expired - Fee Related JP3626012B2 (en)

Priority Applications (16)

Application Number Priority Date Filing Date Title
JP14061498A JP3626012B2 (en) 1998-05-06 1998-05-06 Mold compression injection molding method
AT98305280T ATE224800T1 (en) 1997-07-07 1998-07-02 ELECTRICALLY OPERATED INJECTION MOLDING MACHINE AND INJECTION MOLDING PROCESS USING THE APPROPRIATE MACHINE
DE69808187T DE69808187T2 (en) 1997-07-07 1998-07-02 Electrically operated injection molding machine and injection molding process using the appropriate machine
DE69826329T DE69826329T2 (en) 1997-07-07 1998-07-02 Injection molding with electrical actuation
AT01200720T ATE276081T1 (en) 1997-07-07 1998-07-02 INJECTION MOLDING PROCESS WITH ELECTRICAL ACTUATION
EP01200721A EP1101593B1 (en) 1997-07-07 1998-07-02 Electrically-operated injection molding machine and injection molding method
DE69826330T DE69826330T2 (en) 1997-07-07 1998-07-02 Electrically actuated injection molding machine and injection molding process
AT01200721T ATE276082T1 (en) 1997-07-07 1998-07-02 ELECTRICALLY OPERATED INJECTION MOLDING MACHINE AND INJECTION MOLDING PROCESS
EP98305280A EP0890426B1 (en) 1997-07-07 1998-07-02 Electrically-operated injection molding machine and injection molding method using the relevant machine
EP01200720A EP1101592B1 (en) 1997-07-07 1998-07-02 Electrically-operated injection molding method
AU74179/98A AU747175B2 (en) 1997-07-07 1998-07-06 Injection molding machine
CA002242967A CA2242967C (en) 1997-07-07 1998-07-06 Electrically-operated injection molding machine and injection molding method using the relevant machine
CA002451631A CA2451631C (en) 1997-07-07 1998-07-06 Electrically-operated injection molding machine and injection molding method using the relevant machine
TW87110906A TW462917B (en) 1997-04-21 1998-07-06 Electrically-operated injection molding machine and injection molding method
US09/110,130 US6183235B1 (en) 1997-07-07 1998-07-06 Electrically-operated injection molding machine
US09/657,464 US6562264B1 (en) 1997-07-07 2000-09-07 Method of controlling a compression injection molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14061498A JP3626012B2 (en) 1998-05-06 1998-05-06 Mold compression injection molding method

Publications (2)

Publication Number Publication Date
JPH11314256A JPH11314256A (en) 1999-11-16
JP3626012B2 true JP3626012B2 (en) 2005-03-02

Family

ID=15272813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14061498A Expired - Fee Related JP3626012B2 (en) 1997-04-21 1998-05-06 Mold compression injection molding method

Country Status (1)

Country Link
JP (1) JP3626012B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100749213B1 (en) * 2005-05-27 2007-08-13 나이가이 카세이 가부시키가이샤 Molding method of synthetic resin moldings

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005023513A1 (en) * 2003-09-03 2005-03-17 Sumitomo Heavy Industries, Ltd. Molding method, molding die, molded product, and molding machine
JP2021096373A (en) 2019-12-17 2021-06-24 国立研究開発法人産業技術総合研究所 Antireflection structure and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100749213B1 (en) * 2005-05-27 2007-08-13 나이가이 카세이 가부시키가이샤 Molding method of synthetic resin moldings

Also Published As

Publication number Publication date
JPH11314256A (en) 1999-11-16

Similar Documents

Publication Publication Date Title
US6562264B1 (en) Method of controlling a compression injection molding machine
JP3626012B2 (en) Mold compression injection molding method
JPH04336222A (en) Method for controlling injection of resin in nozzle
JP3580665B2 (en) Injection molding machine and its injection molding method
JP3575782B2 (en) Injection molding machine and its injection molding method
JP3580669B2 (en) Injection molding machine and its injection molding method
JP3817341B2 (en) Injection molding machine
JP3712331B2 (en) Core compression injection molding machine
JPH0679759A (en) Injection equipment unit of injection molding machine
JP2002103401A (en) Injection compression molding method
CA2451631C (en) Electrically-operated injection molding machine and injection molding method using the relevant machine
JPH07214611A (en) Control method for suck-back action in injection molding machine
AU767999B2 (en) Injection molding machine
JP2000280307A (en) Injection molding machine
JP3228026B2 (en) Apparatus and method for manufacturing optical disc substrate
JP4065160B2 (en) Injection molding machine and optical disk substrate manufacturing method
JP2000015675A (en) Method for injection molding thin plate-like molding
JPH01264821A (en) Method of cutting gate
JPH11291307A (en) Device for manufacturing thin-walled disclike molding and manufacture thereof
JP3366180B2 (en) Injection molding machine for injection compression molding
JPH1119996A (en) Injection molding machine and injection molding method therefor
JP3137947B2 (en) Mold clamping device
JPH11115023A (en) Injection pressure detector of injection molding machine
JP3336284B2 (en) Disk substrate and method of manufacturing the same
JPH0649313B2 (en) Injection compression molding equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees