JP3624589B2 - エンジン検査方法 - Google Patents
エンジン検査方法 Download PDFInfo
- Publication number
- JP3624589B2 JP3624589B2 JP31087096A JP31087096A JP3624589B2 JP 3624589 B2 JP3624589 B2 JP 3624589B2 JP 31087096 A JP31087096 A JP 31087096A JP 31087096 A JP31087096 A JP 31087096A JP 3624589 B2 JP3624589 B2 JP 3624589B2
- Authority
- JP
- Japan
- Prior art keywords
- exhaust
- engine
- side pressure
- intake
- state
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Testing Of Engines (AREA)
Description
【発明の属する技術分野】
本発明は組立時,保守点検時等においてエンジンの状態を検査する方法に関するものであり、特に、エンジンの吸気側空間と排気側空間との少なくとも一方を大気から遮断した状態でエンジンを外部駆動装置により回転駆動し、吸気側空間や排気側空間の圧力に基づいてエンジンの状態を検査する方法に関するものである。
【0002】
【従来の技術】
シリンダ,ピストン,クランクシャフト,吸気バルブ,排気バルブ等を含むエンジンにおいては、シリンダ内におけるピストンの往復運動がクランクシャフトの回転運動に変換されて外部へ取り出される。そして、ピストンに往復運動を与えるために、吸気バルブおよび排気バルブによりシリンダの吸,排気が制御される。したがって、エンジンを効率よく作動させるためには、吸気バルブおよび排気バルブの開閉をクランクシャフトの回転と精度良く同期させることが必要である。しかし、実際のエンジンにおいては、クランクシャフトとカムシャフトとの回転同期不良や、吸,排気バルブのバルブクリアランス不良に起因して、吸,排気バルブの開閉とクランクシャフトの回転との同期性が不十分になることがある。そこで、エンジンの組立ラインの最終工程近傍や、エンジンの保守点検場において、吸,排気バルブの開閉とクランクシャフトの回転との同期性の良否、すなわち、クランクシャフトの回転角(クランク角と称する)を基準とした吸,排気バルブの開閉時期の検査が行われている。
【0003】
そのためのエンジン検査方法の一つが米国特許第5,355,713号明細書に記載されている。この明細書に記載の検査方法は、組立が完了した被検査エンジンの吸気マニホールドに、その吸気マニホールドを閉塞する状態と開放する状態とに自動的に作動可能なカバー部材を設ける一方、排気マニホールドを絞りを経て大気に開放した状態で、被検査エンジンを外部駆動装置により通常の回転方向である正方向に回転させ、吸気圧力および排気圧力を検出することにより被検査エンジンの状態を検査する方法である。上記カバー部材の閉塞状態は、吸気マニホールドを、スロットルバルブの全閉状態に相当する状態に閉塞する状態であり、全開状態は、吸気マニホールドを、スロットルバルブの全開状態に相当する状態に開放する状態であり、吸気圧力としての吸気マニホールド内圧力が、このカバー部材に接続された圧力センサにより検出される。また、排気圧力としての排気マニホールド内圧力の検出は、上記絞りの上流側において排気マニホールドに設けられた圧力センサによって行われる。そして、被検査エンジンについて検出された吸気圧力と排気圧力との圧力波形が、正常に組み立てられた正常エンジンについて予め検出され、記憶されている圧力波形と比較され、両者の差に基づいて被検査エンジンの組立状態が正常であるか異常であるかの判定が行われる。
【0004】
上記検査方法とは別のエンジン検査方法が、特開昭61−182548号公報に記載されている。この検査方法は、被検査エンジンの点火プラグを取り外すことによりシリンダ内空間を大気に開放する一方、吸気ポートと排気ポートとをそれぞれカバー部材で閉塞して大気から遮断された吸気側空間と排気側空間とを形成し、それら空間に外部圧力源から圧力空気が供給される状態で、被検査エンジンを外部駆動装置により正方向に回転させ、吸気側空間および排気側空間の圧力を検出し、その検出結果に基づいてエンジンの状態を検査する方法である。具体的には、エンジンの回転に伴って吸,排気バルブが開弁すると、吸気側空間や排気側空間がほぼ大気圧であるシリンダ内空間に連通することにより、それら吸気側空間および排気側空間の圧力が急激に減少するため、その圧力急減時期を吸,排気バルブの開弁時期として検出し、正常エンジンのそれらとの比較により被検査エンジンの状態を検査するのである。
【0005】
【発明が解決しようとする課題】
これらエンジン検査方法によれば、吸,排気バルブの実際のバルブクリアランスや実際の位置,移動速度等の測定を行うことなく、吸,排気弁の実際の開弁時期を検出することができ、その検出結果に基づいて被検査エンジンの状態を検査することができる。しかし、これら検査方法にも未だ改良すべき点が存在している。
本発明は、以上の事情を背景として、できる限り簡単な構成の検査装置により、できる限り正確に被検査エンジンの状態を検査することができるエンジン検査方法を提供することを課題としてなされたものである。
【0006】
【課題を解決するための手段,作用および発明の効果】
そして、本発明に係るエンジン検査方法は、シリンダ,ピストン,クランクシャフト,吸気バルブおよび排気バルブを含むエンジンを外部駆動装置により回転駆動して前記ピストンを前記シリンダ内で往復運動させ、かつ、外部圧力源から正圧も負圧も供給することなくエンジンの状態を検査する方法であって、( a)前記吸気バルブより外側の吸気側空間を大気から遮断し、その大気から遮断した吸気側空間の、吸気バルブが閉じている状態における圧力と、 (b)前記排気バルブより外側の排気側空間を大気から遮断し、その大気から遮断した排気側空間の、排気バブルが閉じている状態における圧力との少なくとも一方に基づいて、エンジンの状態を検査することを特徴とするものである。
【0007】
本発明に係るエンジン検査方法は、点火プラグを備えたガソリンエンジンにおいては、点火プラグが装着されたままの状態で実施される。すなわち、吸,排気バルブが閉じた状態ではシリンダ内空間が吸気側空間および排気側空間からも大気からも遮断される状態で行われるのである。そして、吸気側空間が大気から遮断された状態で検査が行われる場合には、吸気バルブが完全に閉じれば、吸気側空間が密封状態となり、それの内部圧力がピストンの往復運動とは無関係に不変となる。排気側空間が大気から遮断された状態で検査が行われる場合には、同様に排気側空間の内部圧力が不変となる。この圧力不変の状態にある排気側空間や吸気側空間の内部の圧力を検出することは容易であるため、この状態の検出結果に基づいてエンジン不良を検査することとすれば、エンジン検査を容易に行うことができる。
【0008】
例えば、吸,排気バルブとそれらの弁座との間に異物が噛み込まれる等により、吸,排気バルブが完全に閉じない「閉じ不完全」と称すべき不良の検出を容易に行うことができる。もし、閉じ不完全の不良が発生していれば、本来不変となるべき吸気側空間や排気側空間の圧力が、クランクシャフトの回転に伴うシリンダ内空間の圧力変化につれて変化する。したがって、本来不変であるべき時期に吸気側空間や排気側空間の圧力が変化することを検出すれば、被検査エンジンが、吸,排気バルブが完全には閉じない閉じ不完全の不良状態にあることを検出することができるのである。
【0009】
また、圧力不変の状態を検出することが容易であるため、圧力不変の状態の開始時期や終了時期の検出も容易であり、これらの時期は吸,排気バルブの開閉時期に対応しているため、吸,排気バルブの開閉時期を容易に検出することができる。
【0010】
その上、吸気側空間や排気側空間の圧力は、ピストンの往復運動によりシリンダ内空間の空気が吸気側空間や排気側空間に圧送されることにより高められるため、前記特開昭61−182548号公報に記載のエンジン検査方法におけるように外部圧力源を必要とせず、装置の構成が簡単で済む。
【0011】
請求項2の発明に係るエンジン検査方法においては、前記少なくとも一方が前記排気側空間とされ、前記排気バルブが閉じているはずの時期における排気側空間の内部の圧力に基づいてエンジンの状態が検査される。
請求項3の発明に係るエンジン検査方法は、前記排気バルブが閉じているはずの時期に前記排気側空間の圧力が変動することに基づいて、排気バルブの閉じが不完全であると判定する排気バルブ閉じ不完全判定工程を含むものとされる。
請求項4の発明に係るエンジン検査方法においては、請求項3の発明における排気バルブ閉じ不完全判定工程が、前記排気バルブが閉じているはずの時期における前記排気側空間の圧力が排気バルブ閉じ不完全判定圧より高いことに基づいて、排気バルブの閉じが不完全であると判定するものとされる。
請求項5の発明に係るエンジン検査方法は、前記排気バルブが開いている状態における前記排気側空間の内部の圧力が、吸気バルブ閉じ不完全判定圧より低いことに基づいて、前記吸気バルブの閉じが不完全であると判定する吸気バルブ閉じ不完全判定工程を含むものとされる。
排気側空間が大気から遮断され、吸気側空間が大気に連通させられた状態において、排気側空間の圧力が検出される場合には、排気バルブが開かれる一方、吸気バルブが閉じられている時期にピストンが上昇すれば、シリンダ内空間と排気側空間との空気が共に圧縮され、圧力が高くなる。しかし、もし、この時期に吸気バルブが完全に閉じていなければ、シリンダ内の空気の一部が排気バルブから大気中へ流出するため、シリンダ内空間と排気側空間との圧力上昇は少なくなる。したがって、本態様の検査方法によって吸気バルブに閉じ不完全の不良が発生していることを検出することができる。
請求項6の発明に係るエンジン検査方法は、前記吸気側空間と前記排気側空間とのうち大気から遮断された遮断空間の圧力が変化する状態から変化しない状態に移行する不変化状態移行時期と、変化しない状態から変化する状態に移行する変化状態移行時期との少なくとも一方に基づいてエンジンの状態を検査する状態移行時期依存検査工程を含むものとされる。
請求項7の発明に係るエンジン検査方法においては、請求項6の発明における状態移行時期依存検査工程が、前記不変化状態移行時期と前記変化状態移行時期との間隔に基づいてエンジンの状態を検査する移行間隔依存検査工程を含むものとされる。
ある状態不良は不変化状態移行時期と変化状態移行時期とに同じ向きの影響を及ぼし、別の状態不良は不変化状態移行時期と変化状態移行時期とに互いに逆向きの影響を及ぼすというように、状態不良の種類によって影響の向きが異なるため、不変化状態移行時期と変化状態移行時期との間隔に基づけば、状態不良の種類を判別できることがある。また、不変化状態移行時期と変化状態移行時期との間隔には、これら両時期の変化の影響が集約されるため、1つの量である上記間隔に基づいて2つの時期の変化に関連した状態不良を検出することが可能となる場合もある。
請求項8の発明に係るエンジン検査方法は、検査対象エンジンを前記外部駆動装置により正規の回転方向とは逆向きに回転させて当該エンジンの状態を検査する逆回転検査工程を含むものとされる。
エンジンを外部駆動装置により回転駆動する場合には、回転方向を容易に逆にすることができ、それによって、正方向の回転によっては得られない情報が得られ、正方向の回転によっては検査不能な状態不良の検査が可能になったり、ある種類の状態不良の検査の信頼性が高くなったりする効果が得られる。なお、この逆回転検査工程は請求項1ないし7に記載の発明とは無関係に実施することができ、上記のような特有の効果が得られる。
請求項9の発明に係るエンジン検査方法においては、請求項8の発明における逆回転検査工程が吸気側空間を大気から遮断した状態で実施される。
この態様による逆回転検査は、排気側空間を大気から遮断した状態でエンジンを正回転させて行われる正回転検査工程と対称的な検査となり、吸,排気バルブの開弁順序が逆になる等によって、特に有効な情報が得られる。
請求項10の発明に係るエンジン検査方法においては、請求項8または9の発明における逆回転検査工程に加えて、検査対象エンジンを前記外部駆動装置により正規の回転方向に回転させて当該エンジンの状態を検査する正回転検査工程が実施される。
請求項11の発明に係るエンジン検査方法においては、請求項10の発明における正回転検査工程が排気側空間を大気から遮断した状態で実施される。
この態様のエンジン検査方法においては、多くの情報を得ることができるため、特に確実にエンジンの状態不良を検出することができる。
請求項12の発明に係るエンジン検査方法は、前記吸気側空間と前記排気側空間との少なくとも一方を、開閉可能な弁により大気から遮断する工程を含むことを特徴とする。
吸気側空間や排気側空間の大気からの遮断を開閉可能な弁により行えば、吸気側空間を大気から遮断した状態と排気側空間を大気から遮断した状態との切換を容易に行うことができ、検査の能率を高めることができる。
請求項13の発明に係るエンジン検査方法においては、前記排気バルブと排気マニホールドとを接続する排気ポートと、前記吸気バルブと吸気マニホールドとを接続する吸気ポートとの少なくとも一方が閉塞され、その閉塞位置よりバルブ側の空間が前記排気側空間と前記吸気側空間との少なくとも一方とされる。
【0012】
【発明の実施の形態】
以下、本発明の実施形態であるエンジン検査方法を、その実施に好適なエンジン検査装置と共に説明する。
図1は、エンジンの一例としてのV型6気筒DOHCガソリンエンジン(以下、単にV6エンジンと称する)の主たる作動部を示す透視図である。この種のエンジンにおいては、ピストン10,12等のシリンダ内における往復運動が、それぞれ対応するコネクティングロッド14を介してクランクシャフト18の回転運動に変換され、そのクランクシャフト18の回転力が動力として外部に取り出される。このエンジンの運転を継続させるために、クランクシャフト18の回転角に連携して各排気および吸気バルブを含む動弁系が作動させられる。なお、ピストン10およびピストン12は、V6エンジンの第1バンクたる左側バンクおよび第2バンクたる右側バンクのそれぞれ3つずつのピストンを代表して図示されている。
【0013】
本実施形態のV6エンジンにおいては、クランクシャフト18に取り付けられたクランクプーリ20、タイミングベルト22、左側および右側バンクのカムプーリ24,26、カムプーリ24,26がそれぞれ取り付けられた排気側カムシャフト28,30、吸気側カムシャフト32,34、排気側カムシャフト28,30にそれぞれ取り付けられたドライブギヤ36,38、吸気側カムシャフト32,34にそれぞれ取り付けられたドリブンギヤ40,42等を主たる構成要素としてカムシャフト回転機構44が構成されている。また、各カムシャフトの複数のカム46と、その回転によって開閉させられる排気バルブ48および吸気バルブ50を主たる要素として動弁系52が構成されている。
【0014】
クランクシャフト18が回転させられると、クランクプーリ20、タイミングベルト22、左側および右側バンクのカムプーリ24,26および排気側カムシャフト28,30等を介して排気バルブ48および吸気バルブ50が作動させられる。したがって、タイミングベルト22が弛むと、各バルブの開閉タイミングが変動することとなり、これを抑えるため、図示しないオートテンショナを備えたベルトアイドラ54が設けられている。また、オートテンショナを備えないベルトアイドラ56,58も取り付けられている。これらベルトアイドラ54〜58は、タイミングベルト22と、クランクプーリ20およびカムプーリ24,26との歯の噛合い数を多くする上で有効である。各吸気側カムシャフト32,34には、それぞれ所謂シザーズギヤ60,62が相対回転可能に取り付けられている。シザーズギヤ60,62はそれぞれドリブンギヤ40,42と組み合わされ、図示しないばね部材によりドリブンギヤ40,42に対して相対回転するように付勢されており、ドリブンギヤ40,42とドライブギヤ36,38との噛合いのバックラッシュを抑え、エンジンの騒音を低減させる。
【0015】
クランクシャフト18の回転角と、各排気バルブ48および吸気バルブ50の開閉時期とは、正確に対応させられる必要がある。本実施形態における被検査エンジンとしてのV6エンジンは4サイクルのガソリンエンジンであるので、クランクプーリ20の歯数と各カムプーリ24,26の歯数とが、1対2とされている。クランクプーリ20の歯数が24枚、各カムプーリの歯数が48枚とされているのである。また、ドライブギヤ36,38とドリブンギヤ40,42との歯数は1対1であり、それぞれ40枚とされている。
【0016】
エンジン組立時において、クランクシャフト18の回転角と各排気バルブ48および吸気バルブ50の開閉のタイミングとを整合させるために、クランクプーリ20およびカムプーリ24,26と、タイミングベルト22とに、位相合わせ用のマークを設けて、これらの位相合わせマークを、図1の拡大部に示すように一致させて組立てが行われるようにされている。ドライブギヤ36,38と、ドリブンギヤ40,42とについても同様である。この位相合わせが正しく行われていないと、クランクシャフト18の回転角と、各バルブの開閉タイミングとの関係が崩れる。例えば、クランクプーリ20とタイミングベルト22との位相合わせマークが1歯分ずれて、図2の拡大図に示すように、クランクプーリ20が1歯進んだ位相ずれの状態(以下、クランクプーリ1歯進みと称する)では、ピストン10,12等のシリンダ内における位置と、各バルブの開閉タイミングとの関係が崩れ、クランクシャフト18の回転角で360/24=15度だけ各バルブの開閉タイミングが、ピストン10,12等の位置に対して遅れることとなる。
【0017】
カムプーリ24と、タイミングベルト22とが1歯分ずれて、図2の拡大図に示すように、カムプーリ24が1歯進んだ位相ずれの状態(以下、カムプーリ1歯進みと称する)では、排気側カムシャフト28の回転角で360/48=7.5度だけ各バルブの開閉タイミングが、ピストン10,12等の位置に対して進むこととなる。また、ドライブギヤ38と、ドリブンギヤ42とが1歯分ずれて、図2の拡大図に示すように、ドリブンギヤ42が1歯進んだ位相ずれの状態(以下、ドリブンギヤ1歯進みと称する)では、吸気側カムシャフト34の回転角で360/40=9度だけ各バルブの開閉タイミングが、ピストン10,12等の位置に対して進むこととなる。上述の位相合わせ不良は、カムプーリ20等の1歯進みについてのみ例示したが、これらが遅れることもある。また、2歯以上の進み/遅れが生じることも極めてまれにある。本願の発明は、このような2歯以上の進み/遅れに対しても適用可能であるが、以下においては説明を簡潔にするために1歯進み/遅れのみが生じるものとる。
なお、クランクシャフト18とクランクプーリ20とが接続されている部分の構造は、相対位相がずれた状態で組み立てられることがないようにされるのが普通である。したがって、クランクプーリ1歯進み/遅れ状態においても、クランクシャフト18とクランクプーリ20との相対位相がずれる訳ではない。各排気側カムシャフトとカムプーリとの相対位相、各吸気側カムシャフトとドリブンギヤとの相対位相も同様である。
【0018】
エンジンが所期の性能を発揮するためには、クランクシャフト18の回転角と、各排気バルブ48および吸気バルブ50の開閉タイミングとが、設計通りの関係となっていなければならない。このために、上記位相合わせマークによるカムシャフト回転機構44の組立整合に加えて、動弁系52を構成する排気側カムシャフト28,30の回転角と、対応する各排気バルブ48の開閉タイミングとが、また、吸気側カムシャフト32,34の回転角と、対応する各吸気バルブ50の開閉タイミングとが、設計通りの関係でなければならない。これらの関係は、バルブクリアランスによって左右される。エンジン組立不良によるバルブクリアランスの異常は、厚さが正しくないシム72が装着されていたり、弁座部材74がシリンダヘッド76に正しくはめ込まれていない等によって生じる。バルブクリアランスとは、図3に示すように、カム46と、リフタ70との間に装着されるシム72との最大クリアランスである。例えば、バルブクリアランスが正常品に対して大きい場合には、各バルブが開かれるタイミングが正常品に対して遅くなり、閉じるタイミングが早くなる。バルブクリアランスが正常品に比して小さい場合には、その逆となる。また、排気バルブ48と弁座部材74との間に異物が噛み込まれたり、弁座部材74のはめ込み姿勢が正しくない,排気バルブ48が曲がっている等の理由により、排気バルブ48が弁座部材74に正しく着座できなくなると、シリンダ内の気密を保つことができなくなる。吸気バルブ50についても同様である。これらの不具合が生じる原因は、組立不良のみではないが、以下の説明においては、これらを組立不良と見なし、異物が噛み込まれたこと(異物噛みと略称する)を代表的に説明する。弁座部材74のはめ込み姿勢が正しくない,排気バルブ48が曲がっている等の原因で発生する異常も同様な方法で検出することができる。
【0019】
つぎに、本願の発明のエンジン検査方法の実施に使用されるエンジン検査装置の構成を説明する。
図4はエンジン検査装置の概念図である。検査の対象となる被検査エンジン90(簡単化のため、左側バンクのみ図示されている)は、左右各バンクのシリンダヘッド76に取り付けられた吸気マニホールド94を備えている。吸気マニホールド94は、シリンダヘッド76内部の各シリンダ毎の吸気ポート92とそれぞれ連通する状態で取り付けられており、それら2つの吸気マニホールド94は1つのサージタンク96に接続されている。本エンジン検査装置は、サージタンク96内の圧力を計測する圧力センサ98と、シリンダヘッド76の内部に形成された各シリンダ毎の排気ポート100を外部から遮断するために取り付けられるカバー部材102と、遮断をより確実にするために用いられるシール部材としてのOリング104と、排気ポート100の内部の圧力を計測する圧力センサ106と、それら圧力センサ98,106の出力信号をそれぞれ増幅するアンプを含むA/D変換器110,112と、クランク角センサ114と、検査制御装置119とを備えている。
【0020】
検査制御装置119は、図示しないプロセッシングユニットと表示器118とを備えている。プロセッシングユニットが、上記A/D変換器110,112およびクランク角センサ114からの信号に基づいてエンジンの組立状態を判定する判定器117を構成しており、その判定器117の判定結果が表示器118に表示されるようになっているのである。なお、吸気側の圧力を計測する圧力センサ98は、すべてのシリンダに共通のサージタンク96に1つ取り付けられているのに対して、排気側の圧力を計測する圧力センサ106は、各シリンダに独立に取り付けられる。したがって、A/D変換器110は1つでよいが、A/D変換器112は、被検査エンジン90のシリンダ数と同数だけ必要である。このように本実施形態においては、吸気ポート92,吸気マニホールド94およびサージタンク96の内部の空間が、吸気側空間とされ、排気ポート100の内部が排気側空間とされて、排気側空間が、排気ポート100のシリンダヘッド76の外部へ開口する部分を閉塞位置として閉塞されている。吸気側空間は閉塞されていないが、吸気側空間が閉塞される形態としてもよい。また、吸気ポート92のみや、吸気ポート92と吸気マニホールド94との内部の空間を吸気側空間とすることも可能である。前者の場合には、各シリンダ毎に圧力センサ98が必要となり、後者の場合には、吸気マニホールド94の数だけ圧力センサ98が必要となる。
【0021】
被検査エンジン90は、図5に示すように、ベース120上に固定され、駆動用カップリング122、駆動軸124を介してクランクシャフト18に連結されるモータ125によって正確に一定速度で回転させられる。駆動軸124は、ベアリング126,128によって支持されており、それら2つのベアリング126,128とモータ125とは、ベース120に固定されている。このモータ125が検査制御装置119によって回転させられることによる上記圧力センサ98,106の出力の変動を検出することによってエンジンの組立状態が検査される。
【0022】
上述のように被検査エンジン90がモータ125によって回転させられると、クランク角の変化に伴って各バルブが開閉させられる。モータ125の回転速度が一定となり、各シリンダ内の圧力の変化が定常的になると、各圧力センサ98,106の出力(それぞれ単に、吸気側圧力PIN,排気側圧力PEXと称する)は、被検査エンジン90が良品であるものとすれば、図6に示すように変化する。図6は、ある1つのピストン、例えばピストン10のシリンダ内における位置(単に、ピストン位置PPと称する)、そのピストンの排気側圧力PEX、各ピストンに共通の吸気側圧力PINの変化を示したものである。このピストン10を、単に、ピストン#1と称する。被検査エンジン90はV6エンジンであり、左側バンクの3つのピストンはピストン#1,#3,#5、右側バンクの3つのピストンはピストン#2(ピストン12に相当する),#4,#6の順に、それぞれ各バンク内において並んでいる。このV6エンジンがシリンダ内の爆発エネルギによって自力回転させられる際には、例えばピストン#1〜#6の順に爆発させられる。
【0023】
まず、排気側圧力PEXの変化を説明する。クランクシャフト18がモータ125の作動によって回転させられて、クランク角θcrank が角度θEXopenになると、ピストン#1に対応する排気バルブ48が開きはじめる。このとき、ピストン#1は下死点BDCに向かって移動中であり、排気ポート100内の空気がシリンダに吸入されはじめるので、一定の圧力であった排気側圧力PEXが減少しはじめる。この一定の圧力を排気側圧力不変化値PEXconst 、排気側圧力PEXが減少しはじめるクランク角θcrank =θEXopenを排気側圧力減少開始角θEXdec と称する。ピストン#1が下死点BDCを通過し、排気バルブ48が開かれた時点と同じ位置にまで戻された後は、シリンダおよび排気ポート100内の空気が圧縮されるので、排気側圧力PEXは上昇しはじめ、クランク角θcrank がθINopenとなって吸気バルブ50が開きはじめる時点で排気側圧力極大値PEXmax となる。このときのクランク角θcrank =θINopenを排気側圧力極大値到達角θEXmax と称する。吸気バルブ50が開かれると排気側圧力PEXが急激に減少するが、この減少はクランク角θcrank =θEXclose において排気バルブ48が閉じられることにより停止し、排気側圧力PEXは変化しなくなる。その意味で、クランク角θcrank =θEXclose を排気側圧力不変化状態移行角θEXconst と称し、排気バルブ48が閉じられている期間中の排気側圧力PEXを排気側圧力不変化値PEXconst と称する。クランク角θcrank がさらに進んで、θINclose となると吸気バルブ50が閉じられる。なお、以下の説明の便宜上、図6に示した正常組立状態での排気側圧力極大値PEXmax の大きさを100として、他の圧力を相対値で表す。例えば、正常組立状態での排気側圧力不変化値PEXconst は、約10となる。なお、モータ125の回転数は任意であり、必要に応じて回転数を変化させてエンジン検査を行ってもよい。
【0024】
排気側圧力PEXが各シリンダ毎に独立に取得されるのに対して、吸気側圧力PINは1つの圧力センサ98によって全シリンダの共通データとして取得される。図6に示した例において、ピストン#1〜#6の各吸気バルブ50の状態変化に起因して吸気側圧力PINが変化している箇所を、ピストン番号#1〜#6で示す。これら6つの箇所は、クランク角θcrank が0〜720度である1サイクル内において1回ずつ等間隔で出現する。以下、ピストン#1に対応する吸気バルブ50の状態変化に起因する吸気側圧力PINの変化を代表的に説明する。
【0025】
クランク角θcrank がθINopenになると、吸気バルブ50が開きはじめるのでシリンダおよび排気ポート100内の圧縮状態にある空気が吸気マニホールド94へ流れ、吸気マニホールド94内の圧力が上昇しはじめる。この時期には、吸気マニホールド94内の空気がピストン#6に対応するシリンダに吸入されつつあるが、この吸入流量よりシリンダおよび排気ポート100からの空気の流出流量の方が大きいため、吸気マニホールド94内の圧力が上昇しはじめるのであり、この上昇開始時点のクランク角θcrank を吸気側圧力増大開始角θINinc と称する。そして、ピストン#1の位置PPが上死点TDCに達する時点近傍で、シリンダおよび排気ポート100内の圧力低下と排気バルブ48のバルブクリアランス減少とにより空気の流出流量が減少して、ピストン#6のシリンダへの吸入流量とバランスし、それ以後吸入流量より小さくなるため、吸気側圧力PINの極大値が現れる。この時点のクランク角θcrank を吸気側圧力極大値到達角θINmax と称する。ピストン#1の位置PPが上死点TDCに達した後は、ピストン#1のシリンダ容積が増加しはじめることも吸気側圧力PINの減少を促進する。図6に示した吸気側圧力PINの変化は、概略以上に説明した変化が等間隔(クランク角θcrank で120度毎)で繰り返されたものである。
【0026】
図7は、被検査エンジン90が正常に組み立てられている場合において、上述の各シリンダ毎に独立に取得された排気側圧力PEXとクランク基準信号との変化を、クランク角θcrank を横軸として示したグラフである。なお、クランク基準信号は、クランク角センサ114から出力される信号であり、本実施形態の被検査エンジン90においては、1サイクルに2回、つまり、クランク角θcrank が720度変化する毎に2回出力されるパルス信号である。なお、本実施形態の被検査エンジン90のクランク角センサ114は、クランクプーリ20と一体的に構成された図示を省略するタイミングロータの外周1か所に形成された被検出部とその被検出部の通過を検出する電磁ピックアップ等のピックアップとを含むものである。ただし、クランク角センサ114がこのような形態とされることは、本願の発明のエンジン検査方法を実施するにあたって必須の事項ではない。最近の殆どのエンジンには、取付個所は種々に異なるもののクランク角センサ114に相当するセンサが設けられているが、このようなセンサが設けられていない場合には、例えば、反射型光電スイッチや近接スイッチ等を用いて、回転中のクランクプーリ,クランクシャフトの特定位相を検出し得る構成としてもよい。各排気側圧力PEXは、クランク角θcrank で120度ずつずれているが、ほとんど同じ変化を示す。これが、前記クランクプーリ進み/遅れ,カムプーリ進み/遅れ,ドリブンギヤ進み/遅れ,バルブクリアランス大/小およびコンプレッションリングの欠落が、いずれも発生していない状態である。
【0027】
前記判定器117は、クランク角センサ114からのクランク基準信号の発生時間間隔を計測し、時間間隔が実質的に一定になることにより被検査エンジン90の回転速度が一定になったことを検出する機能を有している。また、一定微小時間毎にA/D変換器110,112を介して圧力センサ98,106の圧力検出値を読み込み、その圧力検出値の変化状態を解析して、上記排気側圧力不変化値PEXconst ,その排気側圧力不変化値PEXconst の減圧開始,排気側圧力極大値PEXmax ,排気側圧力PEXの排気側圧力不変化値PEXconst への移行,吸気側圧力PINの増圧開始,吸気側圧力PINの極大値等、特定圧力変化状態を検出するとともに、それら特定圧力変化状態の発生時期を検出する機能と、各特定圧力変化状態の発生時点に対応するクランク角θcrank を特定する機能、すなわち、クランク基準信号の発生時間間隔の2倍がクランクシャフト18の720度の回転角度に対応するとして、排気側圧力減少開始角θEXdec ,排気側圧力極大値到達角θEXmax ,排気側圧力不変化状態移行角θEXconst ,吸気側圧力増大開始角θINinc ,吸気側圧力極大値到達角θINmax 等を特定する機能とを有している。これらの機能は、波形解析技術としてよく知られているものであり、かつ、その詳細は本発明を理解する上で不可欠ではないため、詳細な説明は省略する。
【0028】
つぎに、前記各組立不良が発生した場合の排気側圧力PEXまたは吸気側圧力PINの変化を説明する。なお、以下の説明において上記各組立不良が発生した場合の圧力およびクランク角の値を示す記号には”′”を付して、正常組立状態における圧力およびクランク角と区別することとする。
まず、吸気バルブのバルブクリアランス不良について説明する。図8は、1つのシリンダの2つの吸気バルブ50のバルブクリアランスが共に正常である場合と、一方のバルブクリアランスが小さい場合との排気側圧力PEXの変化を重ねて示すグラフである。実線で示した方が吸気バルブクリアランスが正常な状態であり、破線が吸気バルブクリアランスが小さい状態である。前者を正常組立状態、後者を吸気バルブクリアランス小状態と称する。吸気バルブクリアランス小状態においては、吸気バルブ50が早く開き始めるため、排気側圧力極大値到達角θEXmax ′が、正常組立状態のそれ(θEXmax )に比して小さくなる。正常組立状態と吸気バルブクリアランス小状態とにおける排気側圧力極大値到達角の差(θEXmax ′−θEXmax )を排気側圧力極大値到達角差Γと称することとする。排気側圧力極大値到達角差Γは、バルブクリアランスが正常組立状態に比して小さいほど小さく(負の値であるから絶対値が大きく)なる。
【0029】
また、吸気バルブクリアランス小状態では、上記のように吸気バルブ50が早く開き始めるため、ピストンによって圧縮されるシリンダ内の圧力が正常組立状態のそれよりも小さくなり、そのシリンダの排気側圧力極大値PEXmax ′は正常組立状態の排気側圧力極大値PEXmax より小さくなる。また、排気側圧力極大値PEXmax ′が小さく、かつ、吸気バルブ50の一方が開かれてから排気バルブ48が閉じられるまでの期間が長いため、排気側圧力不変化値PEXconst ′も正常組立状態のそれ(PEXconst )に比して小さくなる。その結果、図8の例では排気側圧力不変化値PEXconst ′が負圧になっている。上記組立不良発生状態(ここではバルブクリアランス小状態)と正常組立状態とにおける排気側圧力極大値の差(PEXmax ′−PEXmax )を排気側圧力極大値差αと称し、排気側圧力不変化値の差(PEXconst ′−PEXconst )を排気側圧力不変化値差βと称することとする。これら排気側圧力極大値差αおよび排気側圧力不変化値差βも、排気側圧力極大値到達角差Γと同様、バルブクリアランスが小さいほど小さくなる。なお、これら排気側圧力極大値差α,排気側圧力不変化値差β,排気側圧力極大値到達角差Γ等は正,負両方の値を取り得るものであるため、煩雑さを避けるために事情が許す限り絶対値で説明することとする。他の圧力値やクランク角の差についても同様とする。
【0030】
図9は、1つのシリンダの2つの吸気バルブ50のバルブクリアランスが共に正常である正常組立状態と、一方のバルブクリアランスが大きい吸気バルブクリアランス大状態との排気側圧力PEXの変化を重ねて示すグラフである。この吸気バルブクリアランス大状態では、吸気バルブ50が排気側圧力極大値到達角差Γの絶対値だけ遅く開きはじめるので、シリンダ内の圧力が吸気バルブクリアランス正常組立状態よりも高くなり、排気側圧力極大値PEXmax ′は排気側圧力極大値PEXmax に比して排気側圧力極大値差αの絶対値だけ大きくなる。また、排気側圧力極大値PEXmax ′が大きく、かつ、吸気バルブ50の一方が開かれてから排気バルブ48が閉じられるまでの期間が短いため、排気側圧力不変化値PEXconst ′もPEXconst に比して排気側圧力不変化値差βの絶対値だけ大きくなる。
【0031】
図10は、クランク角θcrank の変化に対する正常組立状態,吸気バルブクリアランス小状態および吸気バルブクリアランス大状態における、吸気側圧力PINの変化を示すグラフである。ピストン#1の2つの吸気バルブ50の一方が開かれる時期の変化に対応して、吸気側圧力PINが極大となるクランク角である吸気側圧力極大値到達角θINmax ′が、正常組立状態のそれに対して変化している。この変化を吸気側圧力極大値到達角差Λ(=θINmax ′−θINmax )で表す。また、吸気側圧力PINが増加を開始するクランク角である吸気側圧力増大開始角θINinc ′も、吸気側圧力極大値到達角差Λと同様の変化を示す。この変化を吸気側圧力増大開始角差Ψ(=θINinc ′−θINinc )で表す。これら吸気側圧力極大値到達角差Λおよび吸気側圧力増大開始角差Ψも、上記排気側圧力極大値到達角差Γ等と同様に、バルブクリアランスが小さく(大きく)なるほど小さく(大きく)なる。
【0032】
つぎに、排気バルブのバルブクリアランス不良について説明する。図11は、正常組立状態である場合と、2つの排気バルブ48の一方が排気バルブクリアランス小状態である場合との排気側圧力PEXの変化を示すグラフである。排気クリアランス小状態においては、一方の排気バルブ48が早く開きはじめるので、排気側圧力減少開始角θEXdec ′が正常組立状態のそれに比して小さくなる。このずれを、図11において排気側圧力減少開始角差Φ(=θEXdec ′−θEXdec )で示す。また、早く開きはじめた方の排気バルブ48は、完全に閉じられる時期が正常組立状態のそれよりも遅くなる。これを排気側圧力不変化状態移行角差Σで示す。これら排気側圧力減少開始角差Φおよび排気側圧力不変化状態移行角差Σの大きさはほぼ同じ値となる。排気バルブ48が閉じられる時期が遅いため、排気側圧力不変化値PEXconst ′が排気側圧力不変化値差βの絶対値だけ小さくなり、排気ポート100内に封じ込められる空気の量が少ないため、排気側圧力極大値PEXmax ′が正常組立状態のそれより排気側圧力極大値差αの絶対値だけ小さくなる。
【0033】
図12は、正常組立状態である場合と、2つの排気バルブの一方が排気クリアランス大状態である場合との排気側圧力PEXの変化を示すグラフである。この場合には、排気クリアランス大状態にある一方の排気バルブ48が、他方に比して開きはじめるのが遅く、かつ、完全に閉じられるのが早いのであるが、他方の排気バルブの開閉が正常組立状態と同じ時期になされるため、排気側圧力減少開始角θEXdec ′,排気側圧力極大値到達角θEXmax ′および排気側圧力不変化状態移行角θEXconst ′は正常組立状態のそれらとほとんど同じである。しかし、排気クリアランス大状態にある一方の排気バルブ48が早く閉じられるため、排気側圧力不変化値PEXconst ′が高くなり、排気ポート100内に封じ込められる空気の量が多くなるため、排気側圧力極大値PEXmax ′も高くなる。なお、排気バルブのバルブクリアランスの異常は、吸気側圧力増大開始角θINinc や吸気側圧力極大値到達角θINmax には殆ど影響しない。
【0034】
つぎに、コンプレッションリングの欠落について説明する。ピストンリング134は、図4に示すように、トップリング136,セカンドリング138およびオイルリング140とからなる。これらのうち、トップリング136とセカンドリング138とは、ピストンとシリンダとの気密を保ち、エンジンの性能を確保する上で重要な部品であるコンプレッションリング144を構成する。トップリング136とセカンドリング138との少なくとも一方が欠落していれば、気密保持機能が低下するため、正しく取り付けられている場合に比して上記排気側圧力PEXの絶対値が小さくなり、一方、排気側圧力極大値到達角θEXmax ′,排気側圧力不変化状態移行角θEXconst ′等は、正常組立状態のそれらとほとんど変わらない。図13は、正常組立状態である場合と、トップリング136とセカンドリング138とのいずれか一方が欠落している場合との排気側圧力PEXの変化を示したグラフである。後者の場合には、排気側圧力極大値PEXmax ′が、排気側圧力極大値差αの絶対値だけ小さくなっている。なお、トップリング136とセカンドリング138とが共に欠落している状態においては、上記排気側圧力PEXがさらに小さくなるので、このような組立不良を検出することも可能である。しかし、少なくとも一方が欠落していれば、エンジンを分解して修正の上組み立てなおすこととなるので、このような検査は事実上必要ない。
【0035】
つぎに、カムプーリ進み/遅れ、クランクプーリ進み/遅れの影響について説明する。図14および図15は、右側バンクのカムプーリ26が、それぞれカムプーリ1歯進みおよびカムプーリ1歯遅れである状態における各ピストンに対応する排気側圧力PEXの変化を示すグラフである。これらの図においては、対応するピストン番号で示す値が偶数であるシリンダの排気側圧力減少開始角θEXdec ′,排気側圧力極大値到達角θEXmax ′,排気側圧力不変化状態移行角θEXconst ′等が、正常組立状態のそれらに対してずれている。このように、左右のバンクの一方のみのカムプーリの進み/遅れの異常が発生した状態では、ピストン番号が奇数または偶数であるシリンダの排気側圧力極大値到達角θEXmax ′等がすべて変化する。
【0036】
また、クランクプーリ進み/遅れが生じた場合には、左右両バンクにおいて上記カムプーリ進みまたは遅れが同時に発生した場合の変化と同じになる。ただし、クランクプーリ進みは左右カムプーリの同時進みと効果が逆であり、左右カムプーリの同時遅れと同じである。具体的には、クランクプーリ1歯遅れが生じた場合は、すべてのシリンダの排気側圧力PEXが、図14に示したピストン番号が偶数であるシリンダの排気側圧力PEXと同様の変化を示す。また、クランクプーリ1歯進みが生じた場合は、全シリンダの排気側圧力PEXが、図15に示したピストン番号が偶数であるシリンダの排気側圧力PEXと同様の変化を示す。また、クランクプーリ進みまたは遅れが生じた場合の、排気側圧力減少開始角θEXdec ′,排気側圧力極大値到達角θEXmax ′,排気側圧力不変化状態移行角θEXconst ′等の値も、それぞれ、カムプーリ遅れまたは進みが左右両バンクにおいて同時に発生した場合の変化と同じになる。
【0037】
なお、右側バンクのカムプーリ1歯進み/遅れ,クランクプーリ1歯進み/遅れが生じた場合に、吸気側圧力PINは図16に示すように変化する。この図において、右側カムプーリ1歯進み/遅れの場合には、正常組立状態に対して、ピストン番号が偶数であるシリンダの吸気側圧力PINがずれている。一方、クランクプーリ1歯進み/遅れの場合には、すべてのシリンダの吸気側圧力PINがずれることとなる。
【0038】
図17は、クランクプーリ1歯遅れ、または、カムプーリ1歯進みが生じた場合の、排気側圧力PEXの変化の一例を示すグラフである。ただし、後者においては、カムプーリ1歯進みが生じているバンクに含まれるシリンダの排気側圧力PEXである。この場合には、排気側圧力減少開始角θEXdec ′,排気側圧力極大値到達角θEXmax ′および排気側圧力不変化状態移行角θEXconst ′が正常組立状態のそれらθEXdec ,θEXmax およびθEXconst に対して、それぞれ排気側圧力減少開始角差Φ,排気側圧力極大値到達角差Γおよび排気側圧力不変化状態移行角差Σ等の絶対値だけ小さい値となる。これら排気側圧力減少開始角差Φ,排気側圧力極大値到達角差Γ,排気側圧力不変化状態移行角差Σ等の値は、ほぼ同じとなる。また、吸気バルブ50が開きはじめる時期が正常組立状態に比して早まることになるため、図6から明らかなように、ピストンの位置が正常組立状態に比して下死点BDCに近い位置で開きはじめることとなり、排気側圧力極大値PEXmax ′は排気側圧力極大値差αの絶対値だけ小さくなる。一方、排気側圧力不変化値PEXconst ′は排気側圧力極大値PEXmax ′のようには小さくならず、正常組立状態とほぼ同じ大きさとなる。
【0039】
排気側圧力減少開始角差Φ,排気側圧力極大値到達角差Γおよび排気側圧力不変化状態移行角差Σの大きさは、カムプーリ1歯進みが生じた場合には、カムプーリ24,26の1歯に相当する角度となる。つまり、カムプーリ24,26の回転角で360度/48枚=7.5度となるのであり、この角度はクランクプーリ20の15度の回転角度に対応する。一方、クランクプーリ20で1歯遅れが生じた場合には、排気側圧力極大値到達角差Γ等の大きさは、クランクプーリ20の回転角度で360度/24枚=15度となる。このように、例えば右側カムプーリ26で1歯進みが生じたことと、クランクプーリ20で1歯遅れが生じたこととは、右側バンクのシリンダに関しては実質的に同じことであり、右側バンクに含まれるシリンダの排気側圧力極大値PEXmax ′,排気側圧力極大値到達角差Γ等も実質的に同じとなる。
【0040】
クランクプーリ1歯進み、または、カムプーリ1歯遅れが生じた場合は、(後者においてはそれが生じているバンクに含まれる)ピストンによる圧縮の開始時期が正常組立状態に比して相対的に早まるため、図18に示すように、排気側圧力減少開始角θEXdec ′,排気側圧力極大値到達角θEXmax ′および排気側圧力不変化状態移行角θEXconst ′が正常組立状態のそれらθEXdec ,θEXmax およびθEXconst に対して、それぞれ排気側圧力減少開始角差Φ,排気側圧力極大値到達角差Γおよび排気側圧力不変化状態移行角差Σの絶対値だけ大きい値となる。これら排気側圧力減少開始角差Φ,排気側圧力極大値到達角差Γ,排気側圧力不変化状態移行角差Σの値は、ほぼ同じ大きさとなる。
吸気バルブ50が開きはじめる時期は、正常組立状態に比して遅れる。そのため、図6より明らかなように、ピストンの位置が正常組立状態に比して上死点TDCに近い位置で開きはじめることとなり、排気側圧力極大値PEXmax ′は排気側圧力極大値差αの絶対値だけ大きくなる。一方、排気側圧力不変化値PEXconst ′は排気側圧力極大値PEXmax ′のようには大きくならず、正常組立状態とほぼ同じ大きさとなる。
【0041】
排気側圧力極大値到達角差Γ等の大きさは、上述のクランクプーリ1歯遅れまたはカムプーリ1歯進みが生じた場合と同様に、カムプーリ24,26の回転角で360度/48枚=7.5度、あるいは、クランクプーリ20の回転角度で360度/24枚=15度となる。例えば、右側カムプーリ26で1歯遅れが生じたのと、クランクプーリ20で1歯進みが生じたのとは、右側バンクのシリンダにとっては実質的に同じことであり、右側バンクのシリンダの排気側圧力極大値PEXmax ′,排気側圧力極大値到達角差Γ等も実質的に同じとなる。
【0042】
つぎに、ドリブンギヤ進み/遅れの影響について説明する。図19および図20は、それぞれ右側ドリブンギヤ1歯進みおよび遅れが生じた場合の各シリンダの排気側圧力PEXの変化をクランク基準信号と共に示すグラフである。これらのグラフから明らかなように、右側バンクに含まれるピストンの排気側圧力PEXの変化が、正常組立状態のそれと異なっている。詳細については後述する。
右側ドリブンギヤ1歯進み/遅れが生じると、吸気側圧力PINも図21のように変化する。この図から明らかなように、右側ドリブンギヤ1歯進みの場合には、偶数番号で示したものの吸気側圧力極大値到達角θINmax および吸気側圧力増大開始角θINinc が、正常組立状態のそれに対して小さい値となる。右側ドリブンギヤ1歯遅れの場合には、逆に、吸気側圧力極大値到達角θINmax が正常組立状態よりも大きくなる。左側ドリブンギヤ1歯進み/遅れが生じる場合には、ピストン番号が奇数であるシリンダに対応するものの吸気側圧力PINが変化する。
【0043】
図22は、正常組立状態と、右側ドリブンギヤ1歯進みが生じた場合との、右側バンクに含まれるシリンダの排気側圧力PEXの変化を示すグラフである。ドリブンギヤ42は、右側バンクの吸気バルブ50の開閉時期を決定するものであり、それが1歯進むため、排気側圧力極大値到達角θEXmax ′が、ドリブンギヤ42の1歯分に相当する角度だけ小さい値となる。本実施形態においては、ドリブンギヤ40,42の歯数は40枚であるから、ドリブンギヤ42の回転角で、360度/40枚=9度程度となる。この角度はクランクプーリ20の18度の回転角度に対応する。この角度変化に伴って、排気側圧力極大値PEXmax ′および排気側圧力不変化値PEXconst ′が、それぞれ排気側圧力極大値差αおよび排気側圧力不変化値差βの絶対値だけ小さくなる。また、排気側圧力不変化状態移行角θEXconst ′が、排気側圧力不変化状態移行角差Σの絶対値だけ、正常組立状態における排気側圧力不変化状態移行角θEXconst に比して小さくなる。通常は、排気側圧力不変化状態移行角θEXconst は排気バルブ48が閉じるタイミングで決まるのであるが、ドリブンギヤ1歯進みの場合には排気側圧力極大値到達角θEXmax ′が低いため、排気バルブ48が閉じる前に排気側圧力PEXが平衡状態に達するからである。
【0044】
図23は、正常組立状態と、右側ドリブンギヤ1歯遅れが生じた場合との、右側バンクに含まれるシリンダの排気側圧力PEXの変化を示すグラフである。この場合には、図22に示した場合とは逆に、排気側圧力極大値到達角θEXmax ′が、排気側圧力極大値到達角差Γの絶対値だけ、正常組立状態における値よりも大きくなる。なお、排気側圧力不変化状態移行角θEXconst ′および排気側圧力不変化状態移行角差Σの大きさは変化しない。排気側圧力極大値到達角θEXmax ′の角度変化に伴って、排気側圧力極大値PEXmax ′および排気側圧力不変化値PEXconst ′が、それぞれ排気側圧力極大値差αおよび排気側圧力不変化値差βの絶対値だけ大きくなる。
【0045】
つぎに、異物噛みの影響について説明する。
図24は、正常組立状態と、排気側に異物噛みが生じている場合の、排気側圧力PEXの変化を示すグラフである。排気側圧力PEXが、正常組立状態の場合に一定である期間(排気側圧力不変化状態移行角θEXconst から排気側圧力減少開始角θEXdec までの期間)内において、大きく変化していることが一見して明らかである。これは、排気バルブ48と弁座部材74との間に異物が噛み込まれると、シリンダ内部と排気ポート100内との間の気密が保てなくなり、排気側圧力PEXが本来一定となるべき期間内において、シリンダ内部の圧力の影響を受けるためである。つまり、排気側圧力PEXが一定に保たれるべき期間内において、ピストンが上死点に向かって移動している状態に相当する期間内では、シリンダ内で圧縮される空気が排気ポート100内に漏れ、排気側圧力PEXが増大する。また、その後に、ピストンが下死点に向かって移動している状態となれば、シリンダの容積の増加にともなって、排気ポート100内の高い圧力の空気がシリンダ内に逆流するため、排気側圧力PEX内の圧力は低下することとなる。
【0046】
その過程で、排気側圧力PEXには極大値が現れ、図24に示した例ではその極大値が約110となっている。つまり、この極大値は、排気側圧力極大値PEXmax (正常組立状態における排気側圧力PEXの極大値として定義される値である)よりも、約10%大きくなっている。また、上記過程における排気側圧力PEXの極小値は、ほぼ0である。このように、排気側に異物噛みが生じている場合は、本来一定である期間中において、排気側圧力PEXが、0から110の間で変化する。正常組立状態における排気側圧力不変化値PEXconst ′の値は、約9であるから、本来一定値となる排気側圧力不変化値差βの値が、約−9から約101の間で変化することとなる。
【0047】
図25は、正常組立状態と、吸気側に異物噛みが生じている場合の、排気側圧力PEXの変化を示すグラフである。正常組立状態においては、排気側圧力PEXが最大値となるクランク角である排気側圧力極大値到達角θEXmax は、吸気バルブ50が開くクランク角に等しい。一方、吸気側に異物噛みが生じている場合には、そのクランク角より小さいクランク角で排気側圧力PEXが最大値となる。図25に示した例では、排気側圧力極大値到達角差Γの値は、約−26となっている。吸気側に異物噛みが生じている場合には、排気側圧力PEXが最大値となる時点の近傍において、排気ポート100,シリンダおよび吸気ポート92の内部は、互いに連通している。また、ピストンはシリンダ内において、上死点の近傍に位置している(図6参照)。排気側圧力PEXが最大値となるクランク角は、排気ポート100,シリンダおよび吸気ポート92の内部の空気の動的なバランスによって決まるのである。
【0048】
吸気側に異物噛みが生じており、排気側には異物噛みが生じていない場合の排気側圧力PEXは、正常組立状態において一定である期間内で一定である。しかし、その一定の圧力値である排気側圧力不変化値差βの値は、正常組立状態における値とは異なっている。これは、吸気側において、シリンダの内部が常に大気に連通させられることに起因している。このことによって、ピストンがシリンダ内において上昇する際のシリンダ内の空気の圧力が、正常組立状態に比して小さくなる。したがって、排気側圧力PEXの値は、ほとんどすべてのクランク角にわたって小さくなり、その最大値も小さくなっている。図25に示した例では、排気側圧力極大値PEXmax ′および排気側圧力不変化値PEXconst ′の値が、それぞれ、約21および0となっている。つまり、排気側圧力極大値差αの値が約−79、排気側圧力不変化値差βの値が約−9となっているのである。
【0049】
吸気側に異物噛みが生じている場合には、排気側圧力PEXが一定の圧力(排気側圧力不変化値差β)に到達するクランク角も、正常組立状態に比して小さくなる(早期に一定の値となる)。正常組立状態においては、このクランク角は、排気バルブ48が閉じるクランク角に等しい。しかし、排気バルブ48が開いている状態でも、シリンダ内の圧力が正常組立状態に比して概して小さいため、吸気ポート92,排気ポート100およびシリンダの内部の圧力が早期に均衡する。つまり、排気側圧力不変化状態移行角差Σの値も負値となり、図25に示した例では約−18である。一定の圧力(排気側圧力不変化値差β)の値は、ほぼ0(ゲージ圧)であり、ほぼ大気圧となっている。
【0050】
図26は、以上説明した各種の組立不良が、それぞれ独立して発生した場合における、上記排気側圧力極大値到達角差Γ,排気側圧力不変化状態移行角差Σ,排気側圧力極大値差α,排気側圧力不変化値差β等の値の一例を示すものである。図26において、各圧力差の値は、上述のように正常組立状態における排気側圧力極大値PEXmax を100とした相対値で表されている。また、クランクプーリ1歯進み/遅れが生じた場合には、左右の両バンクに関する各値が同じ大きさを示すのに対して、カムプーリ1歯進み/遅れおよびドリブンギヤ1歯進み/遅れの場合には、それが生じた側のバンクのみの圧力および角度が変化を示すこととなる。なお、非常に稀なことであるが、カムプーリ1歯進み/遅れまたはドリブンギヤ1歯進み/遅れが左右の両バンクに共に生じる場合もあり得る。また、吸気側バルブクリアランスや排気側バルブクリアランスが過小あるいは過大である場合の各値は、クリアランスの大きさに従って連続的に変化するものであり、図26内の値はクリアランスが過小あるいは過大であることを検出し得る値の一例に過ぎない。
【0051】
図26に示した排気側圧力極大値α,排気側圧力極大値到達角差Γ,排気側圧力不変化状態移行角差Σ,排気側圧力減少開始角差Φ等の各値に基づいてエンジンの状態を検査できるが、本発明に係るエンジン検査方法は、主として、排気側圧力不変化値差βに関連した諸量に基づいてエンジンの状態を検査するものである。以下、その方法を説明する。
【0052】
図27は、判定器117内の図示しないROMに格納されており、プロセッシングユニットにより実行されるエンジン状態検査プログラムのメイン処理の一例を示すフローチャートである。このメイン処理においては、被検査エンジン90に組立不良が生じているか否かが検査され、組立不良が存在しない場合には、表示器118(図28参照)に検査合格を示す表示が行われ、組立不良箇所が存在する場合には、不良箇所の推定が行われた後に、その推定結果に基づいて表示器118に検査不合格を示す表示が行われる。なお、本実施形態のエンジン状態検査プログラムは、組立不良箇所は、存在するとしても高々一箇所だけであるとの仮定の基に構成されている。一般論としては、1台のエンジンに関して複数の組立不良が同時に発生し得るが、実際には非常に稀なことである。したがって、ほとんどの場合に本不良箇所推定ルーチンの実行により組立不良個所を特定し得る。また、仮に複数の組立不良が同時に生じ、その結果、本不良箇所推定処理の判定結果に誤りが生じたとしても、組立不良のエンジンが正常に組み立てられたエンジンと判定されてしまうわけではなく、その誤りは許容し得る。
【0053】
まず、ステップ100(単に、S100と記す。他のステップについても同様とする)において、すべてのシリンダに関する排気側圧力極大値差α,排気側圧力不変化値差β,排気側圧力極大値到達角差Γ,排気側圧力不変化状態移行角差Σ,排気側圧力減少開始角差Φ,吸気側圧力極大値到達角差Λ,吸気側圧力増大開始角差Ψのそれぞれの値が、それらの各々に対して予め設定された設定範囲内の値であるか否かが判定される。この設定範囲は、正常組立状態にある複数(例えば、1000台)のエンジンに対して取得された上記各値のばらつきを示す指標である標準偏差σを用いて、0±3σの範囲とされる。この3σの値は、排気側圧力極大値差α,排気側圧力不変化値差β,排気側圧力極大値到達角差Γ等ごとに異なる値となり、それぞれ、αTH,βTH,ΓTH,ΣTH,ΦTH,ΛTH,ΨTHと表すこととする。被検査エンジン90が正常組立状態であるためには、例えば、排気側圧力極大値差αの値は、0±αTHの範囲内の値でなければならない。つまり、条件式:0−αTH≦α≦0+αTHが真でなければならない。上記各値のそれぞれに対するこのような条件式が、すべて真であれば、S102において、表示器118に検査合格を示す表示を行う処理が実行された後にメイン処理が終了する。S100における結果がNOであれば、被検査エンジン90が検査不合格であることとなり、S104において、表示器118に検査不合格を示す表示を行う処理が実行された後に、S106において、サブルーチンである不良箇所推定処理がコールされ、その推定結果に基づいて、S108において、表示器118の推定された不良箇所に対応する表示ランプが点灯されて、メイン処理が終了する。
【0054】
なお、前述のように、本実施形態のエンジン検査方法においては、主として排気側圧力不変化値差βに関連する諸量、具体的には、後述するように、排気側圧力不変化値差β,排気側圧力減少開始角差Φおよび排気側圧力不変化状態移行角差Σの各値に基づいて、種々の組立不良箇所の検査が行なわれるのであるが、他の値に基づく検査を排除するものではない。S100の判定はその一例であり、被検査エンジン90が良品であるか否かの判定は、排気側圧力不変化値差β,排気側圧力減少開始角差Φおよび排気側圧力不変化状態移行角差Σを含む、さらに多くの値に基づいて行なわれているのである。
【0055】
表示器118としては、例えば、図28に示すものが使用できる。図28において、200は、検査結果が合格である場合に点灯されるOKランプを示す。また、202は、検査不合格の場合に点灯されるNGランプを示す。検査結果が不合格である場合には、その内容を示す以下のランプ群のうちの対応するランプが点灯される。即ち、クランクプーリ進みランプ204,クランクプーリ遅れランプ206,左側バンクカムプーリ進みランプ208,左側バンクカムプーリ遅れランプ210,右側バンクカムプーリ進みランプ212,右側バンクカムプーリ遅れランプ214,左側バンクトリブンギヤ進みランプ216,左側バンクドリブンギヤ遅れランプ218,右側バンクトリブンギヤ進みランプ220,右側バンクドリブンギヤ遅れランプ222、さらに、各ピストン番号毎に、吸気バルブクリアランス小ランプ224,吸気バルブクリアランス大ランプ226,排気バルブクリアランス小ランプ228,排気バルブクリアランス大ランプ230,吸気側異物噛みランプ232,排気側異物噛みランプ234およびコンプレッションリング欠落ランプ236のそれぞれが、独立に点灯可能なのである。また、後述するように、検査結果が不明確である場合には、その不明確な箇所のランプが点滅させられる。組立不良箇所を示すこれらのランプ群を組立不良箇所表示ランプ群と称する。
【0056】
図29は、図27のS118に示した不良箇所推定処理の内容を示すフローチャートである。まず、S200において、上述の各組立不良の有無を示すフラグに0x00がセット(ゼロクリア)される。これらのフラグを不良箇所フラグと総称する。本実施形態における不良箇所フラグは、図30に示すように定められた10個の1バイトデータからなるものであり、これらの値がすべて0x00であれば、組立不良がないことを示す。flagdrvnおよびflagcam は、下位4ビットが左右のバンクのドリブンギヤ進み/遅れおよびカムプーリ進み/遅れが生じているか否かを示す不良箇所フラグである。不良箇所フラグflagcrnkは、下位2ビットでクランクプーリ進み/遅れの有無を示す。また、flagins ,flaginl ,flagexs ,flagexl ,flagina ,flagexa およびflagringは、吸気バルブクリアランス小,吸気バルブクリアランス大,排気バルブクリアランス小,排気バルブクリアランス大,吸気側異物噛み,排気側異物噛みおよびコンプレッションリング欠落の各組立不良の有無を、各気筒にそれぞれ対応する下位6ビットの状態によって示す不良箇所フラグである。なお、各不良箇所フラグの最上位ビットは、エラー可能性表示ビットである。それぞれの組立不良が生じている可能性があるが、確実に生じているとはいえない場合に“1”とされるビットである。
【0057】
前記S200に続く処理において、不良箇所フラグflagcrnkの値をセットするクランクプーリ検査(S202)、flagcam の値をセットするサブルーチンであるカムプーリ検査(S206),flagdrvnの値をセットするドリブンギヤ検査(S210)、flagina およびflagexa の各値をセットする異物噛み検査(S214),flagins ,flaginl ,flagexs およびflagexl の各値をセットするバルブクリアランス検査(S218),flagringの値をセットするコンプレッションリング欠落検査(S222)がそれぞれコールされる。なお、不良箇所推定処理は、S204,S208,S212,S216,S220およびS224の判定処理によって、上記各検査処理で組立不良箇所が1つでも見つかれば(いずれかの不良箇所フラグが0x00以外とされれば)、直ちに終了するようになっている。このことが、上述の組立不良が1箇所のみであるとの仮定に対応しているのである。S204,S208,S212,S216,S220およびS224の判定処理の結果がすべてYESであれば、S226において補助処理が実行された後に不良箇所推定処理が終了する。この補助処理の内容については後述する。
【0058】
まず、クランクプーリ検査について説明する。
図31は、サブルーチンであるクランクプーリ検査の内容を示すフローチャートである。まず、S300において、変数iで示されるシリンダに関する変数J1i の値が、すべてのシリンダにおいて真(TRUEと記す)であるか偽(FALSEと記す)であるかが判定される。変数J1i の値は、TRUE(例えば、1として表現される)またはFALSE(例えば、0として表現される)のいずれかの値として、つぎの論理式によって算出される。
J1i =(−βTH≦βi ≦βTH)∧(15−ΣTH≦Σi ≦15+ΣTH)∧(15−ΦTH≦Φi ≦15+ΦTH) ・・・(1)
すべての変数iの値に対して変数J1i の値がTRUEであれば、S302において、不良箇所フラグflagcrnkに、クランクプーリ1歯進みを示す0x01がセットされてクランクプーリ検査が終了する。変数J1i の値がFALSEであれば、S304において、各シリンダに関する変数J2i の値が、すべての変数iの値に対してTRUEであるか否かが判定される。変数J2i の値は、次式(論理式)によって算出される(変数J1i と同様に、TRUEまたはFALSEのいずれかの値を取る)。
J2i =(−βTH≦βi ≦βTH)∧(−15−ΣTH≦Σi ≦−15+ΣTH)∧(−15−ΦTH≦Φi ≦−15+ΦTH) ・・・(2)
すべての変数iに対して変数J2i の値がTRUEであれば、S306において、不良箇所フラグflagcrnkに、クランクプーリ1歯遅れを示す0x02がセットされた後に、また、FALSEであれば直接に、クランクプーリ検査処理が終了する。
S304の判定結果がNOである場合は、クランクプーリが正常組立状態であると判定されることとなり、不良箇所フラグflagcrnkは、図29のS200でクリアされた状態(0x00)のまま、クランクプーリ検査が終了する。したがって、この場合のみ、図29のS204の判定結果がYESになり、S206以降の処理が実行される。
【0059】
図32は、図29に示したS206におけるカムプーリ検査の内容を示すフローチャートである。まず、S400において、左側バンクのすべてのシリンダに関する上述の変数J2i の値がTRUEであるか否かが判定される。左側バンクの変数J2i を、J2odd と表す。添字“odd ”は、変数iが奇数であることを示す。この判定結果がYESであれば、S402において、不良箇所フラグflagcam に左側バンクのカムプーリ1歯進みを示す0x01(図30参照)がセットされた後に、カムプーリ検査が終了する。S400の判定結果がNOであれば、S404において、すべての変数J1odd の値がTRUEであるか否かが判定される。結果がYESであれば、S406で、不良箇所フラグflagcam に左側バンクのカムプーリ1歯遅れを示す0x02がセットされた後に、カムプーリ検査が終了する。S404の判定結果がNOならば、S408で右側バンクのすべてのシリンダに関する変数J2i の値(J2evenと記す)がTRUEであるか否かが判定される。結果がYESであれば、S410で、不良箇所フラグflagcam に0x04がセットされてカムプーリ検査が終了する。0x04は、右側バンクのカムプーリ1歯進みを示す値である。S408の判定結果がNOならば、S412で、すべての変数J1evenの値がTRUEであるか否かが判定され、結果がYESであれば、S414において、不良箇所フラグflagcam に0x08がセットされてカムプーリ検査が終了する。0x08は、右側バンクのカムプーリ1歯遅れを示す値である。S412の判定結果がNOであれば、不良箇所フラグflagcam の値が0x00のままの状態で、カムプーリ検査が終了する。この場合のみ、図29のS208の判定結果がYESとなり、続くS210においてドリブンギヤ検査がコールされる。
【0060】
図33は、図29に示した不良箇所推定処理のS210におけるドリブンギヤ検査の内容を示すフローチャートである。まず、S500において、左側バンクのすべてのシリンダに関する変数J3i の値(J3odd と記す)の値がTRUEであるか否かが判定され、結果がYESであれば、S502において、不良箇所フラグflagdrvnに左側バンクのドリブンギヤ1歯進みを示す0x01がセットされた後にドリブンギヤ検査が終了する。なお、変数J3i の値は、次式によって決定される。
J3i =(−10−βTH≦βi ≦−10+βTH)∧(−8.4−ΣTH≦Σi ≦−8.4+ΣTH)∧(−ΦTH≦Φi ≦ΦTH) ・・・(3)
S500の判定結果がNOであれば、S504において、左側バンクのシリンダに関する変数J4i の値(J4odd と記す)が、すべてTRUEであるか否かが判定される。なお、変数J4i の値は、次式によって算出される。
J4i =(36−βTH≦βi ≦36+βTH)∧(−ΣTH≦Σi ≦ΣTH)∧(−ΦTH≦Φi ≦ΦTH) ・・・(4)
【0061】
S504の判定結果がYESであれば、S506で不良箇所フラグflagdrvnに、左側バンクのドリブンギヤ1歯遅れを示す0x02がセットされた後にドリブンギヤ検査が終了し、NOであれば、S508において、右側バンクのシリンダに関する変数J3i の値(J3evenと記す)がすべてTRUEであるか否かが判定される。結果がYESであれば、S510で、右側バンクのドリブンギヤが1歯進みの状態であることを示す0x04が不良箇所フラグflagdrvnにセットされた後にドリブンギヤ検査が終了し、NOであれば、S512で、右側バンクのシリンダに関する変数J4i の値(J4evenと記す)がすべてTRUEであるか否かが判定される。結果がYESであれば、S514で、右側バンクのドリブンギヤが1歯遅れの状態であることを示す0x08が不良箇所フラグflagdrvnにセットされた後にドリブンギヤ検査が終了し、NOであれば直接ドリブンギヤ検査が終了する。
【0062】
図34は、図29のS214においてコールされる異物噛み検査の内容を示すフローチャートである。まず、S600で変数bufに0x01がセットされ、続くS602において、変数iにゼロ(ピストン#1に対応するシリンダに相当する)がセットされた後に、S604において、変数J5i の値がTRUEであるか否かが判定される。結果がYESであれば、変数iで表されるシリンダの排気側に異物噛みが生じていると判定されたこととなり、S606で不良箇所フラグflagexa と変数bufとの論理和が改めて不良箇所フラグflagexa にセットされる。変数bufは、各不良箇所フラグの、該当するピストン番号で示される気筒に対応するビットを、変数bufとの論理和をとることによって1にすることができるように調整されるので、組立不良が生じている気筒を特定できることとなる。変数J5i の値は、次式により算出される。
J5i =(MAXβTH<MAX(βi ))∧(−ΣTH≦Σi ≦ΣTH)∧(−ΦTH≦Φi ≦ΦTH) ・・・(5)
なお、MAX(βi )は、排気側圧力不変化値差βi の最大値を返す関数である。つまり、排気側圧力不変化値差βi の最大値が、しきい値MAXβTHよりも大きいことが、排気側に異物噛みが生じていると判定されるための条件の1つとされているのである。しきい値MAXβTHの値は、本実施形態においては予め60とされているが、排気側圧力不変化値差βi に基づいて排気側に異物噛みが生じているか否かを判定できる値であれば、他の値でもよい。正常組立状態における排気側圧力不変化値差βの値の平均値に3σを加えた値よりも大きい値とすることはその一例である。
【0063】
S604の判定結果がNOであれば、S608において、次式によって算出される変数J6i の値がTRUEであるか否かが判定され、結果がYESであれば、変数iで表されるシリンダの吸気側に異物噛みが生じていると判定されたこととなり、S610において不良箇所フラグflagina と変数bufとの論理和が改めて不良箇所フラグflagina にセットされる。変数J6i の値は、次式により算出される。
J6i =(βi <−βTH)∧(Σi <−ΣTH)∧(−ΦTH≦Φi ≦ΦTH) ・・・(6)
S606またはS610の処理が実行された場合、または、S608の判定結果がNOであった場合は、S612で変数iの値がインクリメントされた後に、S614で変数iの値が6であるか否かが判定される。結果がYESである場合は、異物噛み検査が終了し、NOである場合は、S616において変数bufが1ビット左シフトされ、S612でインクリメントされた変数iの値と、変数bufの1であるビット番号(ゼロ〜5のいずれか)とが一致させられた後に、S604からの処理が繰り返される。S616の処理によって、上述のようにこの変数bufの内容との論理和をとることにより、各不良箇所フラグの該当するビットに1がセットされ、組立不良が生じている気筒を特定することができるのである。
【0064】
図35は、図29のS218においてコールされるバルブクリアランス検査の内容を示すフローチャートである。まず、S700において、変数bufに0x01がセットされ、S702で変数iがゼロに初期化される。続いて、以下の4つの式によって算出される変数J7i ないし変数J10i の値に基づいて、排気バルブ48および吸気バルブ50のバルブクリアランスが検査される。
J7i =(βi <−βTH)∧(Γi <−ΓTH)∧(−ΣTH≦Σi ≦ΣTH)∧(−ΦTH≦Φi ≦ΦTH) ・・・(7)
J8i =(βTH<βi )∧(−ΣTH≦Σi ≦ΣTH)∧(−ΦTH≦Φi ≦ΦTH)∧(ΓTH<Γ) ・・・(8)
J9i =(βi <−βTH)∧(ΣTH<Σi )∧(Φi <−ΦTH) ・・・(9)
J10i =(βTH<βi )∧(−ΣTH≦Σi ≦ΣTH)∧(−ΦTH≦Φi ≦ΦTH)∧(−ΓTH≦Γi ≦ΓTH) ・・・(10)
なお、(8)式および(10)式においては、排気側圧力極大値到達角差Γi の値が参酌されているが、これは、図26に示した値から明らかなように、排気側圧力不変化値差βi ,排気側圧力不変化状態移行角差Σi および排気側圧力減少開始角差Φi の値の符号のみに基づく判定では、吸気バルブクリアランス大の状態と排気バルブクリアランス大の状態との区別がつかないためである。また、(7)式においても、排気側圧力極大値到達角差Γi の値が参酌されているが、これは、図26に示したように、コンプレッションリング欠落状態(この状態の検査方法については後述。図36参照)と吸気バルブクリアランス小状態との区別がつかないためである。
【0065】
S704ないしS718においては、これら4つの変数J7i ないしJ10i のいずれか1つがTRUEであれば、TRUEであったものに対応する不良箇所フラグに、その不良箇所フラグの値と変数bufの値との論理和が改めてセットされ、いずれもTRUEでなければ、S720の処理が実行されることとなる。なお、変数J7i ないし変数J10i のそれぞれに対して、不良箇所フラグflagins ,flaginl ,flagexs およびflagexl が対応する。具体的には、S704で変数J7i がTRUEであると判定された場合は、S706において不良箇所フラグflagins に、S708で変数J8i がTRUEであると判定された場合は、S710において不良箇所フラグflaginl に、また、S712で変数J9i がTRUEであると判定された場合は、S714において不良箇所フラグflagexs に、さらに、S716で変数J10i がTRUEであると判定された場合は、S718において不良箇所フラグflagexl に、ぞれぞれ変数bufとの論理和がセットされる。続いて、S720において変数iの値がインクリメントされた後に、S722においてその変数iの値が6であるか否かが判定される。結果がYESであれば、バルブクリアランス検査が終了し、NOであれば、S724で変数bufが1ビット左シフトされて、S720でインクリメントされた変数iの値と、変数bufの1であるビット番号(ゼロ〜5のいずれか)とが一致させられた後に、S704からの処理が繰り返される。
【0066】
図36は、図29のS222においてコールされるコンプレッションリング欠落検査の内容を示すフローチャートである。まず、S800で変数bufに0x01がセットされ、続くS802において、変数iにゼロがセットされた後に、S804において、変数J11i の値がTRUEであるか否かが判定される。変数J11i の値は、次式により算出される。
J11i =(βi ≦βTH)∧(−ΓTH≦Γi ≦ΓTH)∧(−ΣTH≦Σi ≦ΣTH)∧(−ΦTH≦Φi ≦ΦTH) ・・・(11)
なお、(11)式において、排気側圧力極大値到達角差Γi の値が参酌されているが、これは、上述のように、吸気バルブクリアランス小状態との区別を行なう必要があるためである。しかし、この場合には、排気側圧力極大値到達角差Γi に基づく部分は必須ではない。吸気バルブクリアランス小状態であるか否かの検査は、排気側圧力極大値到達角差Γi の値が参酌されつつ、すでに実行されているためである。S804の判定結果がYESであれば、変数iで表されるシリンダにコンプレッションリング欠落が生じていると判定されたこととなり、S806で不良箇所フラグflagringと変数bufとの論理和が改めて不良箇所フラグflagringにセットされる。続いて、S808において変数iの値がインクリメントされた後に、S810で、その変数iの値が6であるか否かが判定される。結果がYESであれば、バルブクリアランス検査が終了し、NOであれば、S812で変数bufの値が1ビット左シフトされた後にS804からの処理が繰り返される。
【0067】
図29の前記S226に示した補助処理は、図29に示した各処理において、組立不良箇所が1つも検出されなかった場合に、その旨を各不良箇所フラグに反映させる処理である。図29の処理が、図27に示したメイン処理において、何等かの組立不良が生じている可能性があると判定された場合にのみコールされる処理であるにも係わらず、図29に示したS200ないしS224の処理によって、1つの組立不良箇所も見出せなかった場合に、S226が実行されることになる。つまり、S226が実行される場合には、図27と図29との検査結果に矛盾がある(ただし、その矛盾の内容についてはわからない)のである。そのため、S226においては、すべての不良箇所フラグの最上位ビットを1とする処理が行なわれるようされている。つまり、表示器118の組立不良箇所を示すランプのそれぞれが、点滅させられることとなる。これによって、少なくとも、検査結果に矛盾を含んでいるにも係わらず正常組立状態であると誤判定されてしまうことが回避される。
【0068】
本願の発明のエンジン検査方法の別の実施形態を説明する。
図37は、本実施形態のエンジン検査方法を実施するために用いられるエンジン検査装置の構成を示す概念図である。本実施形態のエンジン検査装置においては、排気ポート100に保持部材250が固定される。保持部材250は概して円管状の部材であり、その両端面に気密を保つためのOリング104が取り付けられている。そして、その一方の端面は排気ポート100に密着させられ、他方の端面には、開閉可能な状態で取り付けられたカバー部材102によって、排気側空間(排気ポート100と保持部材250との内部の空間)が閉塞または解放させられるようになっている。図37には、カバー部材102が開いた状態(解放状態と称する)が示されているが、カバー部材102が閉じた状態(閉塞状態と称する)では、排気ポート100と保持部材250との内部の空間が、大気から遮断される。圧力センサ106は、保持部材250の内部の圧力を計測できる位置に取り付けられており、これらの構成により、閉塞状態と解放状態との両方の状態における排気側空間内の圧力を計測することができる。さらに、本実施形態のエンジン検査装置は、吸気側も同様に構成されている。具体的には、図37に示すように、吸気ポート92には保持部材254が固定され、その保持部材254にはカバー部材258が開閉可能な状態で取り付けられている。吸気ポート92と保持部材254との内部の空間が、吸気側空間を構成することとなる。圧力センサ98は、保持部材254の内部の圧力(つまり、吸気側空間内の圧力)を計測できる位置に取り付けられている。なお、カバー部材102およびカバー部材258は、後述するように、プロセッシングユニットと図示を省略する駆動装置とによって解放状態と閉塞状態とを切換制御されるようになっている。
【0069】
このように、カバー部材102および258は、それぞれ独立に開閉させることができるようになっており、本実施形態においては、以下に説明するように、▲1▼カバー部材102は開いており、カバー部材258は閉じている状態(第1カバリング状態と称する)と、▲2▼カバー部材102は閉じており、カバー部材258は開いている状態(第2カバリング状態と称する)との2つの状態で、エンジン検査が実施される。なお、カバー部材102および258が共に開いている状態、あるいは共に閉じたた状態でもエンジン検査を実施することが可能であるが、特殊な目的のための検査であるため、詳細は説明は省略する。
【0070】
第1カバリング状態は、排気側が閉塞され、吸気側が解放させられている点において、前述の実施形態のエンジン検査装置と同様の状態である。したがって、第1カバリング状態において得られる排気側圧力PEXに基づいて、前述の実施形態において既に説明したものに似た結果(図26に示した、排気側圧力極大値差α,排気側圧力不変化値差β,排気側圧力極大値到達角差Γ,排気側圧力不変化状態移行角差Σ,排気側圧力減少開始角差Φの値)が得られる。前述の実施形態においては吸気マニホールド94(図4参照)が取り付けられていたが、本実施形態においては、取り付けられていない。このことは、両実施形態における排気側圧力PEXの変化状態の差異として現れるが、その影響は小さい。本実施形態における排気側圧力極大値差α等を、それぞれ排気側圧力極大値差αEX,排気側圧力不変化値差βEX,排気側圧力極大値到達角差ΓEX,排気側圧力不変化状態移行角差ΣEX,排気側圧力減少開始角差ΦEXで表す。
【0071】
一方、第2カバリング状態においては、モータ125が逆方向に回転(クランクシャフト18の回転方向が通常のエンジン運転における回転方向とは逆方向に回転)させられ、吸気側圧力PINの変化状態が、第1カバリング状態における排気側圧力PEXの変化状態と類似の状態を示すようにされる。つまり、上述の排気側圧力極大値差αEX,排気側圧力不変化値差βEX,排気側圧力極大値到達角差ΓEX,排気側圧力不変化状態移行角差ΣEX,排気側圧力減少開始角差ΦEXに相当する吸気側圧力極大値差αIN,吸気側圧力不変化値差βIN,吸気側圧力極大値到達角差ΓIN,吸気側圧力不変化状態移行角差ΣIN,吸気側圧力減少開始角差ΦINが取得されるのである。このように、本実施形態のエンジン検査装置においては、排気側圧力PEXと吸気側圧力PINとの変化状態を、それぞれ、第1カバリング状態と第2カバリング状態とにおいて取得することができ、これらの情報に基づいて、エンジンの状態に関するより詳しい情報を得ることができるのである。
【0072】
図38は、第2カバリング状態(モータ125が逆方向に回転)におけるクランク角の変化に伴うピストンの位置の変化と、吸気側圧力PINの変化とを示すグラフである。このグラフにおいて、左端から右端に向かう方向(時間の経過と一致する方向)は、クランク角の値が720度からゼロに向かって減少する方向である。つまり、図38における排気バルブ48と吸気バルブ50とが開いている期間を示す部分は、図6に示したそれを左右に反転させたものである。したがって、排気バルブ48および吸気バルブ50の開閉タイミングが、図6と図38とでは、左右が反転した位置となっている。図6と図38とを比較すれば明らかなように、吸気側圧力PINの変化(図38参照)は、モータ125が正転している状態における排気側圧力PEXの変化(図6参照)とまったく同じではないが、似た変化を示すこととなる。このことを利用すれば、吸気バルブ50が閉じる時点におけるクランク角を明確に計測することができる。つまり、第2カバリング状態において吸気側圧力PINの値が一定である状態から減少しはじめる時点のクランク角として、吸気バルブ50が閉じる時点におけるクランク角を明確に検出できるのである。図38におけるクランク角θINdec (吸気側圧力減少開始角と称する)がそのクランク角である。このように、本実施形態のエンジン検査装置によれば、排気バルブ48および吸気バルブ50が開閉する時のクランク角の値を、共に明確に検出することができるのである。なお、付言すれば、図6に示した吸気側圧力極大値到達角θINmax と、図38に示した吸気側圧力極大値到達角θINmax とは、共に吸気側圧力PINが極大値となるクランク角であるが、これらの値を取得する際の状況(カバリング状態)はまったく異なっており、互いに異なる値となる。
【0073】
実際にエンジン検査が行なわれる状態では、第1カバリング状態において排気側圧力PEXに基づいて取得できるクランク角は、図6に示した排気側圧力減少開始角θEXdec ,排気側圧力極大値到達角θEXmax および排気側圧力不変化状態移行角θEXconst である。また、第2カバリング状態において吸気側圧力PINに基づいて取得できるのは、図38に示した吸気側圧力減少開始角θINdec ,吸気側圧力極大値到達角θINmax および吸気側圧力不変化状態移行角θINconst である。これらのクランク角のうち、被検査エンジン90の正方向回転において排気バルブ48が開く時期に相当するクランク角は、排気側圧力減少開始角θEXdec である。また、同様に被検査エンジン90の正方向回転において、排気バルブ48が閉じる時期に相当するクランク角は、排気側圧力不変化状態移行角θEXconst および吸気側圧力極大値到達角θINmax である。ただし、ドリブンギヤ1歯進みが生じている場合には、排気側圧力不変化状態移行角θEXconst (排気側圧力不変化状態移行角差ΣEX)は、排気バルブ48が閉じる時期に相当するクランク角に一致しないので(図22,図26参照)、吸気側圧力極大値到達角θINmax が採用されるべきである。また、被検査エンジン90の正方向回転において吸気バルブ50が閉じる時期に相当するのは、吸気側圧力減少開始角θINdec であり、吸気バルブ50が開く時期に相当するクランク角は、排気側圧力極大値到達角θEXmax および吸気側圧力不変化状態移行角θINconst であるが、ドリブンギヤ1歯進みが生じている場合には、上述の排気バルブ48が閉じる時期の場合と同様に、吸気側圧力不変化状態移行角θINconst (吸気側圧力不変化状態移行角差ΣIN)は、吸気バルブ50が開くる時期に相当するクランク角に一致しないので、排気側圧力極大値到達角θEXmax が採用されるべきである。このように、本実施形態のエンジン検査装置においては、第1カバリング状態と第2カバリング状態とを共に実現させることができるので、以上に説明したように、吸気バルブ50および排気バルブ48が開閉するクランク角を取得できるのである。
【0074】
図39は、判定器117内の図示しないROMに記憶され、プロセッシングユニットによって実行される本実施形態のメイン処理の一例を示すフローチャートである。まず、S1000において、第1カバリング状態が実現され、モータ125が正転させられる。つぎに、S1002において、各シリンダの排気側圧力PEXに基づいて、すべてのシリンダに対する排気側圧力極大値差αEX,排気側圧力不変化値差βEX,排気側圧力極大値到達角差ΓEX,排気側圧力不変化状態移行角差ΣEXおよび排気側圧力減少開始角差ΦEXの各値が取得される。つぎに、S1004において、第2カバリング状態が実現されるとともに、モータ125が逆回転させられる。そして、S1006において、すべてのシリンダの吸気側圧力PINに基づいて、前述の吸気側圧力極大値差αIN,吸気側圧力不変化値差βIN,吸気側圧力極大値到達角差ΓIN,吸気側圧力不変化状態移行角差ΣINおよび吸気側圧力減少開始角差ΦINの各値が取得される。
【0075】
つぎに、S1008において、各シリンダが異物噛み状態であるか否かを検査するサブルーチンである異物噛み検査がコールされる。異物噛み検査の内容については後述する。続いて、S1010において、異物噛み検査以外の検査を行なうその他の検査が実行される。この処理の内容についても後述する。つぎに、S1012において、S1008およびS1010における処理結果に基づいて、図28に示した各種のランプを、各不良箇所フラグの状態に基づいて点灯させる処理が実行された後に、メイン処理が終了する。なお、各不良箇所フラグの状態は、上記異物噛み検査によって不良箇所フラグflagina および不良箇所フラグflagexa の状態が、また、S1010の処理によってそれ以外の不良箇所フラグの状態が決定される。
【0076】
図40は、図39のS1008においてコールされる異物噛み検査の内容を示すフローチャートである。まず、S1100において、変数bufに0x01がセットされ、続くS1102において、変数iが0に初期化される。続いて、S1104において、関数mod(βEXi )の戻り値が1であるか否かが判定される。ここで、関数mod(x)は、引数xが、予め設定された設定変動量以上変動する場合に1を返し、そうでない場合に0を返す関数である。つまり、S1104の判定結果は、排気側圧力不変化値差βEXi の値が設定変動量以上変動する場合にYESとなる。なお、設定変動量の値は60とされているが、排気側圧力不変化値差βEXi の値に基づいて排気側に異物噛みが生じているか否かを判定できる値であれば、他の値でもよい。S1104の判定結果がYESである場合は、S1106において不良箇所フラグflagexa の値と、変数bufの値との論理和が、改めて不良箇所フラグflagexa にセットされた後に、また、結果がNOである場合は、直ちにS1108以降の処理が行なわれる。
【0077】
上記S1108においては、関数mod(βINi )の戻り値が1であるか否かが判定される。つまり、吸気側圧力不変化値差βINi の値が設定変動量(ここでも、60であるものとする)以上変動したか否かが判定される。結果がYESである場合は、S1110で不良箇所フラグflagina の値と、変数bufの値との論理和が、改めて不良箇所フラグflagina にセットされた後に、また、結果がNOである場合は、直接S1112の処理が実行される。S1112では、変数iの値がインクリメントされる。続いて、S1114において変数iの値が6であるか否かが判定され、YESであればそのまま異物噛み検査が終了し、NOであれば、S1116において、変数bufの値が1ビット左シフトされた後にS1104からの処理が繰り返される。以上のように、本実施形態における異物噛み検査は、本来一定値となるべき排気側圧力不変化値差βEXおよび吸気側圧力不変化値差βINの値が、設定変動量以上変動するか否かという確かな結果が得られる判定に基づいており、異物噛みが生じているか否かに関する信頼正の高い検査結果を得ることができる。
【0078】
つぎに、図39のS1010において実行されるその他の検査について説明する。この処理においては、上記排気側圧力極大値差αEX,排気側圧力不変化値差βEX,排気側圧力極大値到達角差ΓEX,排気側圧力不変化状態移行角差ΣEX,排気側圧力減少開始角差ΦEX,吸気側圧力極大値差αIN,吸気側圧力不変化値差βIN,吸気側圧力極大値到達角差ΓIN,吸気側圧力不変化状態移行角差ΣINおよび吸気側圧力減少開始角差ΦINの各値に基づいて、クランクプーリ検査,カムプーリ検査,ドリブンギヤ検査,バルブクリアランス検査およびコンプレッションリング欠落検査が行なわれる。これらの検査は、前述の実施形態におけるクランクプーリ検査(図31参照),カムプーリ検査(図32参照),ドリブンギヤ検査(図33参照),異物噛み検査(図34参照),バルブクリアランス検査(図35参照)およびコンプレッションリング欠落検査(図36参照)に似た処理で行われるが、さらに多くの情報を用いることができるので、より確実性の高い検査が可能になる。
【0079】
例えば、吸気バルブクリアランスが小さいか否かのみを検査する場合は、第2カバリング状態において吸気側圧力減少開始角差ΦINと吸気側圧力減少開始角差ΣINとの値を用いることによっても検査できる(説明を簡単にするために、他の組立不良は生じないと仮定する)。第2カバリング状態においては、図26に示した吸気バルブクリアランスを排気バルブクリアランスに読み変えることができる。つまり、第2カバリング状態においては、吸気バルブクリアランスが小さいか否かが、吸気側圧力減少開始角差ΦINと吸気側圧力減少開始角差ΣINとの値に影響を与えることとなる。具体的には、吸気バルブクリアランスが小さい場合には、吸気側圧力減少開始角差ΦINが−6.4となり、吸気側圧力減少開始角差ΣINが6.4となる。ただし、吸気バルブクリアランス小であることが吸気側圧力減少開始角差ΦINと吸気側圧力減少開始角差ΣINとの値に与える影響の大きさが、図26に示した排気バルブクリアランス小の状態の例における排気側圧力減少開始角差ΦEXと排気側圧力減少開始角差ΣEXとの値に与える影響の大きさと同じであると仮定して例示した。このように、吸気バルブクリアランスが小さいか否かは、吸気側圧力減少開始角差ΦINの値が減少し、かつ、吸気側圧力減少開始角差ΣINの値が増加しているか否かに基づいて検査できるのである。
【0080】
被検査エンジン90の吸気バルブ50と排気バルブ48との開閉時期に相当するクランク角が、正常組立状態におけるそれらと一致していれば、その被検査エンジン90は、正常組立状態であると判定できる。そこで、例えば、被検査エンジン90の吸気バルブ50と排気バルブ48との開閉時期に相当するクランク角を、正常組立状態におけるそれらと共に、表示器に表示させてもよい。この表示器としては、例えば、パーソナルコンピュータのディスプレイを利用することができる。つまり、検査制御装置119(図37参照)とパーソナルコンピュータとを情報交換が可能な状態で接続し、検査制御装置119からパーソナルコンピュータに、吸気バルブ50と排気バルブ48との開閉時期に相当するクランク角の値を転送し、パーナルコンピュータにその値を表示させるのである。このとき、図6や図38に示したような図を、各シリンダごとにディスプレイ上に表示し、正常組立状態における値と、被検査エンジン90に対して取得された値とのずれが、このような図の上に示されるようにしてもよい。何等かの組立不良が生じた場合には、この表示に基づいて、作業者が官能検査を行なうことができる。つまり、本実施形態のエンジン検査装置を、作業者による組立不良箇所の推定を補助する装置として利用できるのである。一般に、作業者によるこのような推定は、非常に高速、かつ、正確に実行される。また、エンジン検査装置の検査制御装置119の判定器117の処理は、被検査エンジン90が正常組立状態であるか否かだけを行なうようにできるので、構成を簡略化できる。
【0081】
なお付言すれば、本実施形態のエンジン検査装置においては、圧力センサ98が各シリンダに対応して設けられているため、第1カバリング状態において、カバー部材258にエアの流れに絞り効果を与える絞り穴を開口させ、あるいはカバー部材258の開度を調節可能とすることによって、吸気側圧力PINの値を個々のシリンダ毎に取得できる。それによって、エンジンの状態に関する状態がさらに豊富になり、エンジン検査の信頼性が向上し、あるいは検査可能項目が増加する。同様なことは、第2カバリング状態におけるカバー部材102についても言い得る。
また、第1カバリング状態と第2カバリング状態との少なくとも一方において、エンジンをモータにより通常の回転方向である正方向に回転させることに加えて、あるいはそれに代えて、逆方向に回転させ、得られた結果に基づいてエンジンの状態を判定することも可能である。
【0082】
また、以上に説明した各実施形態においては、V6DOHCガソリンエンジンが検査対象とされていたが、本発明は、他の形式のエンジンの検査にも適用可能である。例えば、SOHCエンジンにおいては、上述のドリブンギヤに関する検査を省略すればよい。また、吸気側カムシャフト32,34を別のカムプーリによって駆動する形式のDOHCエンジンにおいては、ドリブンギヤに関する検査の代わりに、その別のカムプーリに関する検査を実施することができる。また、排気側圧力PEXの変化についての特徴的な値である排気側圧力極大値PEXmax ,排気側圧力極大値到達角θEXmax 等の値から導かれる値(例えば、排気側圧力極大値到達角相対値ΔΓ等)に基づいてエンジン検査を行っているが、図24に示した他の値や、さらに図8等のグラフに示した曲線の別の特徴量に基づいて検査を行ってもよい。例えば、上記曲線の勾配の最大値やそれが生じる時期,上記曲線の変化率があらかじめ設定された設定変化率以上である区間の長さおよび位置等をさらに参酌して、検査を行うことができる。また、ガソリンエンジンに限らず、ディーゼルエンジンにも適用可能である。
【0083】
また、上記各組立不良の複数が同時に生じる場合に、それら同時に生じる組立不良をより確実に特定するために、さらに多くの情報を用いて検査を行ってもよい。例えば、あらかじめすべての組合せで上記組立不良が生じている状態を意図的に生じさせ、それら各組立不良状態における排気側圧力極大値PEXmax をはじめとする上記各値の組を取得し、それらの値の組と、検査対象であるエンジンから得られた値の組とを比較し、互いに最も近い値の組に相当する状態を、その検査対象のエンジンの状態と判定してもよい。また、上記各実施形態においては、クランクプーリ,カムプーリおよびドリブンギヤの組立不良が、1歯のみの進み/遅れとされているが、2歯以上の進み/遅れを検出できる構成としてもよい。この場合には、上述の各判定に用いられた排気側圧力極大値PEXmax をはじめとする各値を、さらに多くの段階で分類する等の処理を行うことができる。以上のような場合には、排気側圧力極大値PEXmax 等の値の微妙な差異が明確であることが必要であるが、本発明の各実施形態のエンジン検査装置においては、上記各値に対して数多くのデータを迅速に取得することができるので、統計処理を施す等により、より信頼性の高い検査を行なうこともできるのである。
以上、本発明のいくつかの実施形態を例示したが、これらは文字通りの例示であり、本発明は特許請求の範囲を逸脱することなく種々の変形,改良を施した態様で実施することができる。
【図面の簡単な説明】
【図1】V6ガソリンエンジンの内部構成を一部省略して示す斜視図である。
【図2】図1のV6ガソリンエンジンにおいて、クランクプーリおよびカムプーリの組立不良が生じている状態を示す斜視図である。
【図3】一般的なエンジンの動弁系の一部を拡大して示す断面図である。
【図4】本発明の一実施形態であるエンジン検査方法の実施に使用されるエンジン検査装置の要部を示す系統図である。
【図5】上記エンジン検査装置の全体を概略的に示す正面図である。
【図6】上記エンジン検査装置により取得された、正常組立状態におけるピストン位置PPと、排気側圧力PEXおよび吸気側圧力PINの変化とを、クランク角θcrank との関係で示すグラフである。
【図7】上記エンジン検査装置により取得された、正常組立状態におけるクランク基準信号および各シリンダの排気側圧力PEXの変化を、クランク角θcrank との関係で示すグラフである。
【図8】上記エンジン検査装置により取得された、正常組立状態および吸気バルブクリアランス小状態における排気側圧力PEXの変化を、クランク角θcrank との関係で示すグラフである。
【図9】上記エンジン検査装置により取得された、正常組立状態および吸気バルブクリアランス大状態における排気側圧力PEXの変化を、クランク角θcrank との関係で示すグラフである。
【図10】上記エンジン検査装置により取得された、正常組立状態,吸気バルブクリアランス小状態および吸気バルブクリアランス大状態における吸気側圧力PINの変化を、クランク角θcrank との関係で示すグラフである。
【図11】上記エンジン検査装置により取得された、正常組立状態および排気バルブクリアランス小状態における排気側圧力PEXと、クランク角θcrank との関係を示すグラフである。
【図12】上記エンジン検査装置により取得された、正常組立状態および排気バルブクリアランス大状態における排気側圧力PEXと、クランク角θcrank との関係を示すグラフである。
【図13】上記エンジン検査装置により取得された、正常組立状態およびコンプレッションリング欠落状態における排気側圧力PEXと、クランク角θcrank との関係を示すグラフである。
【図14】上記エンジン検査装置により取得された、カムプーリ1歯進み状態におけるクランク基準信号および各シリンダの排気側圧力PEXと、クランク角θcrank との関係を示すグラフである。
【図15】上記エンジン検査装置により取得された、カムプーリ1歯遅れ状態におけるクランク基準信号および各シリンダの排気側圧力PEXと、クランク角θcrank との関係を示すグラフである。
【図16】上記エンジン検査装置により取得された、正常組立状態,カムプーリ1歯進み状態およびカムプーリ1歯遅れ状態におけるクランク基準信号および吸気側圧力PINと、クランク角θcrank との関係を示すグラフである。
【図17】上記エンジン検査装置により取得された、正常組立状態およびカムプーリ1歯進み状態における排気側圧力PEXと、クランク角θcrank との関係を示すグラフである。
【図18】正常組立状態およびカムプーリ1歯遅れ状態における排気側圧力PEXと、クランク角θcrank との関係を示すグラフである。
【図19】ドリブンギヤ1歯進み状態におけるクランク基準信号および排気側圧力PEXと、クランク角θcrank との関係を示すグラフである。
【図20】ドリブンギヤ1歯遅れ状態におけるクランク基準信号および排気側圧力PEXと、クランク角θcrank との関係を示すグラフである。
【図21】正常組立状態,ドリブンギヤ1歯進み状態およびドリブンギヤ1歯遅れ状態におけるクランク基準信号および吸気側圧力PINと、クランク角θcrank との関係を示すグラフである。
【図22】正常組立状態およびドリブンギヤ1歯進み状態における排気側圧力PEXと、クランク角θcrank との関係を示すグラフである。
【図23】正常組立状態およびドリブンギヤ1歯遅れ状態における排気側圧力PEXと、クランク角θcrank との関係を示すグラフである。
【図24】正常組立状態および排気側に異物噛みが生じた場合における排気側圧力PEXと、クランク角θcrank との関係を示すグラフである。
【図25】正常組立状態および吸気側に異物噛みが生じた場合における排気側圧力PEXと、クランク角θcrank との関係を示すグラフである。
【図26】各組立不良が独立に生じた場合の、排気側圧力極大値差α,排気側圧力不変化値差β,排気側圧力極大値到達角差Γ,排気側圧力不変化状態移行角差Σ,排気側圧力減少開始角差Φ,吸気側圧力極大値到達角差Λ,吸気側圧力増大開始角差Ψの値の一例を示す図表である。
【図27】前記エンジン検査装置の判定器に含まれるROMに格納されているエンジン状態検査のメイン処理を表すフローチャートである。
【図28】前記エンジン検査装置の表示器の構成を示す正面面である。
【図29】図27のS106においてコールされるサブルーチンである不良箇所推定処理を表すフローチャートである。
【図30】前記判定器に含まれるRAMの内部に記憶される不良箇所フラグのビット構成を示す図である。
【図31】図29のS202においてコールされるサブルーチンであるクランクプーり検査の内容を表すフローチャートである。
【図32】図29のS206においてコールされるサブルーチンであるカムプーリ検査の内容を表すフローチャートである。
【図33】図29のS210においてコールされるサブルーチンであるドリブンギヤ検査の内容を表すフローチャートである。
【図34】図29のS214においてコールされるサブルーチンである異物噛み検査の内容を表すフローチャートである。
【図35】図29のS218においてコールされるサブルーチンであるバルブクリアランス検査の内容を表すフローチャートである。
【図36】図29のS222においてコールされるサブルーチンであるコンプレッションリング欠落検査の内容を表すフローチャートである。
【図37】本発明の一実施形態であるエンジン検査方法の実施に使用される、図4に示したものとは別のエンジン検査装置の要部を示す系統図である。
【図38】図37に示したエンジン検査装置の状態が第2カバリング状態であり、かつ、モータ125が逆回転させられた状態における、正常組立状態のエンジンに関するピストン位置PPおよび吸気側圧力PINの変化を、クランク角θcrank との関係で示すグラフである。
【図39】
図37に示したエンジン検査装置の判定器に含まれるROMに格納されている組立状態検査のメイン処理を表すフローチャートである。
【図40】
図39のS1008においてコールされるサブルーチンである異物噛み検査の内容を表すフローチャートである。
【符号の説明】
10,12:ピストン 20:クランクプーリ 24,26:カムプーリ
40,42 ドリブンギヤ 48:排気バルブ 50:吸気バルブ 60,62:シザーズギヤ 76:シリンダヘッド 90:被検査エンジン
92:吸気ポート 94:吸気マニホールド 96:サージタンク 98,106:圧力センサ 100:排気ポート 102,258:カバー部材 110,112:A/D変換器 114:クランク角センサ 117:判定器 118 表示器 119:検査制御装置 120:ベース
122:駆動用カップリング 124:駆動軸 125:モータ 134:ピストンリング 136:トップリング 138:セカンドリング 140:オイルリング 144:コンプレッションリング 200:OKランプ 202:NGランプ 250,254:保持部材
Claims (13)
- シリンダ,ピストン,クランクシャフト,吸気バルブおよび排気バルブを含むエンジンを外部駆動装置により回転駆動して前記ピストンを前記シリンダ内で往復運動させ、かつ、外部圧力源から正圧も負圧も供給することなくエンジンの状態を検査する方法であって、
( a)前記吸気バルブより外側の吸気側空間を大気から遮断し、その大気から遮断した吸気側空間の、吸気バルブが閉じている状態における圧力と、
(b)前記排気バルブより外側の排気側空間を大気から遮断し、その大気から遮断した排気側空間の、排気バブルが閉じている状態における圧力と
の少なくとも一方に基づいて、エンジンの状態を検査するエンジン検査方法。 - 前記少なくとも一方が前記排気側空間であり、前記排気バルブが閉じているはずの時期における排気側空間の内部の圧力に基づいてエンジンの状態を検査する請求項1に記載のエンジン検査方法。
- 前記排気バルブが閉じているはずの時期に前記排気側空間の圧力が変動することに基づいて、排気バルブの閉じが不完全であると判定する排気バルブ閉じ不完全判定工程を含む請求項2に記載のエンジン検査方法。
- 前記排気バルブ閉じ不完全判定工程が、前記排気バルブが閉じているはずの時期における前記排気側空間の圧力が排気バルブ閉じ不完全判定圧より高いことに基づいて、排気バルブの閉じが不完全であると判定する請求項3に記載のエンジン検査方法。
- 前記排気バルブが開いている状態における前記排気側空間の内部の圧力が、吸気バルブ閉じ不完全判定圧より低いことに基づいて、前記吸気バルブの閉じが不完全であると判定する吸気バルブ閉じ不完全判定工程を含む請求項1ないし4のいずれか1つに記載のエンジン検査方法。
- 前記吸気側空間と前記排気側空間とのうち大気から遮断された遮断空間の圧力が変化する状態から変化しない状態に移行する不変化状態移行時期と、変化しない状態から変化する状態に移行する変化状態移行時期との少なくとも一方に基づいてエンジンの状態を検査する状態移行時期依存検査工程を含む請求項1ないし5のいずれか1つに記載のエンジン検査方法。
- 前記状態移行時期依存検査工程が、前記不変化状態移行時期と前記変化状態移行時期との間隔に基づいてエンジンの状態を検査する移行間隔依存検査工程を含む請求項6に記載のエンジン検査方法。
- 検査対象エンジンを前記外部駆動装置により正規の回転方向とは逆向きに回転させて当該エンジンの状態を検査する逆回転検査工程を含む請求項1ないし7のいずれか1つに記載のエンジン検査方法。
- 前記吸気側空間を大気から遮断した状態で前記逆回転検査工程が実施される請求項8に記載のエンジン検査方法。
- 検査対象エンジンを前記外部駆動装置により正規の回転方向に回転させて当該エンジンの状態を検査する正回転検査工程を含む請求項8または9に記載のエンジン検査方法。
- 前記排気側空間を大気から遮断した状態で前記正回転検査工程が実施される請求項10に記載のエンジン検査方法。
- 前記吸気側空間と前記排気側空間との少なくとも一方を、開閉可能な弁により大気から遮断する工程を含む請求項1ないし11のいずれか1つに記載のエンジン検査方法。
- 前記排気バルブと排気マニホールドとを接続する排気ポートと、前記吸気バルブと吸気マニホールドとを接続する吸気ポートとの少なくとも一方を閉塞し、その閉塞位置よりバルブ側の空間を前記排気側空間と前記吸気側空間との少なくとも一方とする請求項1ないし12項のいずれかに記載のエンジン検査方法。
Priority Applications (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31087096A JP3624589B2 (ja) | 1996-11-21 | 1996-11-21 | エンジン検査方法 |
DE69739605T DE69739605D1 (de) | 1996-07-19 | 1997-07-15 | Verfahren zum prüfen einer zusammengesetzten brennkraftmaschine |
PCT/JP1997/002463 WO1998003846A1 (en) | 1996-07-19 | 1997-07-15 | Method of testing assembled internal combustion engine |
CA002258577A CA2258577C (en) | 1996-07-19 | 1997-07-15 | Method of testing assembled internal combustion engine |
EP97930808A EP0912880B1 (en) | 1996-07-19 | 1997-07-15 | Method of testing assembled internal combustion engine |
EP04030956A EP1519183B1 (en) | 1996-07-19 | 1997-07-15 | Method of testing assembled internal combustion engine |
US09/214,936 US6481269B2 (en) | 1996-07-19 | 1997-07-15 | Method of testing assembled internal combustion engine |
AU34612/97A AU719243C (en) | 1996-07-19 | 1997-07-15 | Method of testing assembled internal combustion engine |
CNB2004100055335A CN1296689C (zh) | 1996-07-19 | 1997-07-15 | 测试装配好的内燃机的方法 |
CNB971978131A CN1181325C (zh) | 1996-07-19 | 1997-07-15 | 测试装配好的内燃机的方法 |
TW086110177A TW342446B (en) | 1996-07-19 | 1997-07-17 | Method of testing assembled internal combustion engine a method of testing the assembled state of an internal combustion engine and quickly and accurately judging whether there is at least one fault with the assembling thereof. |
US10/244,387 US6711944B2 (en) | 1996-07-19 | 2002-09-17 | Method of testing assembled internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31087096A JP3624589B2 (ja) | 1996-11-21 | 1996-11-21 | エンジン検査方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10153528A JPH10153528A (ja) | 1998-06-09 |
JP3624589B2 true JP3624589B2 (ja) | 2005-03-02 |
Family
ID=18010387
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31087096A Expired - Fee Related JP3624589B2 (ja) | 1996-07-19 | 1996-11-21 | エンジン検査方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3624589B2 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19932866C1 (de) * | 1999-07-14 | 2001-04-05 | Abb Patent Gmbh | Verfahren zum Prüfen eines Verbrennungsmotors auf Montage- und/oder Fertigungsfehler |
JP6276085B2 (ja) | 2014-03-27 | 2018-02-07 | 平田機工株式会社 | 試験装置及び試験ユニット |
-
1996
- 1996-11-21 JP JP31087096A patent/JP3624589B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH10153528A (ja) | 1998-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6481269B2 (en) | Method of testing assembled internal combustion engine | |
US10551272B2 (en) | Leakage detection device | |
US11143126B2 (en) | Monitoring deviations occurring in the valve drive of an internal combustion engine, and electronic engine control units for executing such methods | |
US20170268448A1 (en) | Leakage detection device | |
US5463898A (en) | Method of detecting timing apparatus malfunction in an engine | |
JP2011190778A (ja) | 内燃機関の制御装置 | |
JP2008208751A (ja) | エンジン構成部品の劣化度診断システム | |
US11293368B2 (en) | Method for checking the function of a pressure sensor in the air intake tract or exhaust gas outlet tract of an internal combustion engine in operation and engine control unit | |
JP3624589B2 (ja) | エンジン検査方法 | |
US10267215B2 (en) | Control apparatus | |
JP3478025B2 (ja) | 内燃機関組立不良検査方法 | |
JP3582239B2 (ja) | 内燃機関組立不良検査方法 | |
JP4475416B2 (ja) | エンジン組立状態検査方法及びその装置 | |
JP4420229B2 (ja) | エンジンのバルブリフト量測定方法及び測定装置 | |
JP3339226B2 (ja) | 車両用エンジンの検査装置及び検査方法 | |
AU719243C (en) | Method of testing assembled internal combustion engine | |
JP2003254146A (ja) | テスト対象エンジンの圧縮上死点検出装置 | |
JP3262577B2 (ja) | エンジンの検査装置 | |
US11905902B2 (en) | Method for managing start up of a four-stroke engine | |
JP4051520B2 (ja) | エンジン検査方法 | |
KR19990004431A (ko) | 자동차 엔진의 조립상태 자동 검사장치 | |
JPH10153518A (ja) | エンジンリークテスト装置 | |
JP2000088710A (ja) | エンジン検査方法 | |
JPH11281532A (ja) | 動弁系の検査方法およびその装置 | |
JPH04148042A (ja) | 内燃機関におけるる可変バルブタイミング制御装置の故障診断装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040706 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040906 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20040913 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041109 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041122 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081210 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081210 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091210 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101210 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101210 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111210 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111210 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121210 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131210 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |