JP3624207B2 - 点集束型x線分光装置 - Google Patents

点集束型x線分光装置 Download PDF

Info

Publication number
JP3624207B2
JP3624207B2 JP21207897A JP21207897A JP3624207B2 JP 3624207 B2 JP3624207 B2 JP 3624207B2 JP 21207897 A JP21207897 A JP 21207897A JP 21207897 A JP21207897 A JP 21207897A JP 3624207 B2 JP3624207 B2 JP 3624207B2
Authority
JP
Japan
Prior art keywords
ray
spectroscopic
slit
rays
spectroscopic element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21207897A
Other languages
English (en)
Other versions
JPH1152096A (ja
Inventor
宏司 二澤
弘諮 住居
Original Assignee
理学電機工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 理学電機工業株式会社 filed Critical 理学電機工業株式会社
Priority to JP21207897A priority Critical patent/JP3624207B2/ja
Publication of JPH1152096A publication Critical patent/JPH1152096A/ja
Application granted granted Critical
Publication of JP3624207B2 publication Critical patent/JP3624207B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Spectrometry And Color Measurement (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、X線分析装置において、試料に1次X線を照射する光源装置または試料からの2次X線を分光して検出器に入射させる装置として使用される点集束型X線分光装置に関するものである。
【0002】
【従来の技術】
従来、X線分析装置で試料の分析を行う場合、X線管などのX線管装置で発生するX線を支持台上の試料に照射し、この試料から発生する蛍光X線のような2次X線を検出装置で検出する。ここで、X線管装置と試料の間に湾曲結晶からなる分光素子を配置し、これによりX線管装置からのX線を回折して単色化し、試料中の分析対象である特定元素の分析に必要なエネルギー(波長)の分光X線を取り出して、この分光X線を試料に照射することにより、特定元素の分析精度を高めることが行われている。また、X線管装置と試料の間にコリメータやキャピラリを配置し、これらでX線を集束して強度の大きいX線を試料に照射することにより、微量元素を分析可能とすることも行われている。
【0003】
【発明が解決しようとする課題】
ところが、以上のコリメータやキャピラリは、分光機能を有しないため、X線管装置から試料に照射されるX線の単色化が行えず、特定元素の分析精度を高めることができない。また、湾曲結晶からなる分光素子を用いる場合、前記X線の単色化は行えるが、素子全体が大型となる。しかも、試料の分析時には、さらに高精度な分析を行うため、前記X線を分光素子で単色化するときの回折角度を変え、分析対象となる特定元素に最適なエネルギーの分光X線を選んで試料に照射することが好ましい。しかし、従来のものでは、分光X線を可変調整することはできない。
【0004】
また、試料からの2次X線を分光素子で単色化して検出精度の向上を図る場合、通常、2次X線を分光素子で単色化したのち検出器に入射させるが、単色化によって2次X線の強度が低下する。
【0005】
本発明の主な目的は、分光素子全体を小型としながら、大強度の分光X線によって特定元素の分析精度を高め、また、単色化によって微量元素の分析も良好に行え、しかも、分光X線のエネルギーを可変調整し、特定元素の分析に最適なエネルギーの分光X線を選ぶことが可能な点集束型X線分光装置を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するため、請求項1に記載した第1発明の点集束型X線分光装置は、分光素子の軸方向に沿った分光素子からX線発生源および集光点までの各距離を互いに等しく保ちながら、点状のX線発生源および支持台を分光素子に対して相対的に前記軸方向に移動させる第1移動装置と、前記X線発生源からのX線を絞って前記分光素子の内周の分光面に入射させる環状の第1スリットを複数有し、各スリットの少なくとも直径が互いに相違している第1絞り装置と、前記分光素子で分光された分光X線を絞って前記支持台の集光点に入射させる環状の第2スリットを複数有し、各スリットの少なくとも直径が互いに相違している第2絞り装置と、前記第1および第2絞り装置を駆動し、分光素子からX線発生源および支持台までの距離に対応した第1および第2スリットを選択して配置するスリット交換装置とを備えている。ここで、点状とは、小径の球、円、だ円等の形状をいう。
【0007】
本発明の点集束型X線分光装置は、次の2つの使用方法がある。第1の使用方法は、X線発生源であるX線管装置から出射するX線を前記X線分光装置で分光して、この分光X線を入射対象物として支持台に保持した試料に照射する。第2の使用方法は、X線管装置から試料にX線を照射することにより、この試料がX線発生源となって発生する蛍光X線のような2次X線を本発明のX線分光装置で分光し、この分光X線を入射対象物である検出器に入射させて検出する。
【0008】
先ず、第1の使用方法では、X線管装置からのX線が、第1絞り装置に設けた環状の第1スリットで絞られ、逆円錐状の入射光路を描きながら円筒形とした分光素子の内周の分光面に入射する。そして、分光面でX線が回折されて単色化し、試料中の分析対象である特定元素の分析に必要な波長の分光X線が取り出される。この分光X線は、前記分光面により入射角度と同一の角度で出射され、第2絞り装置に設けた環状の第2スリットで絞られて、入射時とは逆の円錐状の出射光路を描きながら、支持台に保持された試料の測定面に点集光するように照射される。
【0009】
以上のように、第1,第2絞り装置に設けた環状の各スリットでX線を絞りながら入射と出射を行い、また、円筒形分光素子の広い分光面でX線を回折して試料の集光点に集束させることにより、多量の分光X線を試料に照射して微量元素の分析が良好に行える。また、分光素子で単色化した分光X線を試料に照射するので、特定元素の分析精度が高められる。さらに、前記分光素子は円筒形としているので、素子全体が小型となる。
【0010】
また、分析対象の特定元素に応じて1次X線のエネルギー(波長)を可変調整するときには、第1移動装置を駆動して、分光素子の軸方向に沿った分光素子からX線発生源および集光点までの各距離を互いに等しく保ちながら、X線発生源および支持台を分光素子に対し相対的に軸方向に移動させる。そして、スリット交換装置で第1および第2絞り装置を駆動し、分光素子からX線発生源および集光点までの距離に対応した第1および第2スリットを選択する。すると、X線発生源から第1スリットを経て分光素子の分光面に入射するX線の入射角度が変わり、また分光面から第2スリットを経て集光点に出射するX線の出射角度も変わる。つまり、分光面によりX線を単色化するときの回折角度が変えられるので、特定元素の分析に最適なエネルギーの1次X線が得られる。このため、特定元素の分析精度がさらに高められる。
【0011】
一方、第2の使用方法では、X線管装置からのX線が試料に照射され、この試料がX線発生源となって蛍光X線のような2次X線を発生し、この2次X線が、前述した場合と同じく、第1絞り装置の第1スリットで絞られ、逆円錐状の入射光路を描きながら分光素子の内周の分光面に入射する。そして、この分光面で回折された分光X線が、入射角度と同一の角度で出射され、第2絞り装置の第2スリットで絞られて、入射時とは逆の円錐状の出射光路を描きながら、支持台に保持された入射対象物である検出器に点集光するように入射される。このように、円筒形分光素子の広い分光面で2次X線を回折して検出器に入射させるので、入射する分光2次X線の強度が高まる結果、検出器による精度の高い検出が可能となる。
【0012】
また、請求項2の第2発明では、結晶の面間隔が異なる複数の分光素子と、分光対象のX線の波長に対応する分光素子を選択して配置する分光素子選択装置と、X線発生源からのX線を絞って選択された分光素子の内周の分光面に入射させる環状の第1スリットを有する第1スリット機構と、前記選択された分光素子で分光された分光X線を絞って支持台の集光点に入射させる環状の第2スリットを有する第2スリット機構と、前記選択された分光素子の軸方向に沿った分光素子からX線発生源および集光点までの各距離を等しく保ちながら、X線発生源および支持台を選択された分光素子に対して相対的に前記軸方向に移動させる第1移動装置と、前記選択された分光素子からX線発生源および支持台までの距離に対応して第1および第2スリット機構を前記軸方向に移動させる第2移動装置とを備えている。
【0013】
以上の構成によれば、第1、第2スリット機構に設けた環状の各スリットを介して、選択された分光素子に対するX線の入射と分光X線の出射が行われ、この分光X線が試料またはX線検出器のような入射対象物の集光点に集束される。このため、多量の分光X線を入射対象物に入射させることができるので、微量元素の分析が良好に行え、特定元素の分析精度も高められる。また、分光素子は円筒形とされているので、素子全体が小型となる。また、選択装置で分光対象のX線の波長に対応する分光素子を選択し、この選択した分光素子を第1,第2スリット機構の間に配置することにより、特定元素の分析に最適なエネルギーのX線が確実に得られる。
【0014】
また、分析対象の特定元素に応じてX線のエネルギーを可変調整するときには、第1移動装置を駆動して、分光素子からX線発生源および集光点までの各距離を互いに等しく保ちながら、X線発生源および支持台を分光素子に対して相対的に軸方向に移動させる。そして、第2移動装置により第1,第2スリット機構を駆動し、その各スリットを分光素子からX線発生源および集光点までの距離に対応して移動させる。これにより、分光素子の分光面でX線を単色化するときの回折角度が変えられるので、特定元素の分析に最適なエネルギーの分光X線が得られ、さらに高精度の分析が可能になる。
【0015】
さらに、請求項3の第3発明では、結晶の面間隔が異なる複数の分光素子と、分光対象のX線の波長に対応する分光素子を選択して配置する分光素子選択装置と、X線発生源からのX線を絞って選択された分光素子の内周の分光面に入射させる環状の第1スリットを有する第1スリット機構と、前記選択された分光素子で分光された分光X線を絞って支持台の集光点に入射させる環状の第2スリットを有する第2スリット機構と、前記選択された分光素子の軸方向に沿った分光素子からX線発生源および集光点までの各距離を等しく保ちながら、X線発生源および支持台を選択された分光素子に対して相対的に前記軸方向に移動させる第1移動装置とを備え、前記第1および第2スリット機構のそれぞれは、スリットの外周を形成し、内径が可変である外周部材と、スリットの内周を形成する円盤状の中心部材とを有し、さらに、選択された分光素子からX線発生源および支持台までの距離に対応して前記各外周部材の内径を変化させるとともに、前記各中心部材を前記軸方向に移動させるスリット駆動機構を備えている。
【0016】
以上の構成によれば、第2発明の場合と同様に、第1,第2スリット機構に設けた環状の各スリットを介して、選択された円筒形の分光素子に対するX線の入射と分光X線の出射が行われ、この分光X線が入射対象物の集光点に集束される。このため、多量のX線を入射対象物に入射させて微量元素の分析が良好に行え、特定元素の分析精度も高められ、また素子全体が小型となる。また、選択装置で分光対象のX線の波長に対応する分光素子を選択し、この選択した分光素子を第1,第2スリット機構の間に配置することにより、特定元素の分析に最適なエネルギーのX線が確実に得られる。
【0017】
また、分析対象の特定元素に応じてX線のエネルギーを可変調整するときには、第1移動装置を駆動して、分光素子からX線発生源および集光点までの各距離を互いに等しく保ちながら、X線発生源および支持台を分光素子に対して相対的に軸方向に移動させる。そして、スリット駆動機構により、分光素子からX線発生源および支持台までの各距離に対応して第1,第2スリット機構を構成する各外周部材の内径を変化させ、また各中心部材を軸方向に移動させる。これにより、分光素子の分光面でX線を単色化するときの回折角度が変えられるので、特定元素の分析に最適なエネルギーのX線が得られ、さらに高精度の分析が可能になる。
【0019】
また、請求項の第4発明では、分光素子の軸方向に沿った分光素子からX線発生源および集光点までの各距離を等しく保ちながら、X線発生源および支持台を分光素子に対して相対的に前記軸方向に移動させる第1移動装置と、結晶の面間隔が異なる複数の分光素子、前記X線発生源からのX線を絞って前記分光素子の内周の分光面に入射させる環状の第1スリット、および前記分光X線を絞って前記支持台の集光点に入射させる環状の第2スリットを有する複数の分光ユニットと、分光対象のX線の波長に対応して前記分光ユニットを選択して配置する分光ユニット選択装置とを備えている。
【0020】
以上の構成によれば、第1移動装置を駆動して、分光素子からX線発生源および集光点までの各距離を互いに等しく保ちながら、X線発生源および支持台を分光素子に対し相対的に軸方向に移動させる。また、分光ユニット選択装置で特定元素の分析に最適な分光ユニットを選択する。そして、X線発生源からのX線を、選択した分光ユニットに設けられた環状の第1スリットで絞って円筒形とした分光素子の分光面に入射させ、この分光面で回折されて単色化した分光X線を環状の第2スリットで絞って外方に出射し、入射対象物の集光点に集束させて分析が行われる。この場合にも、多量の分光X線を入射対象物に入射させて微量元素の分析が良好に行え、特定元素の分析精度も高められ、また素子全体が小型となる。しかも、分光ユニットを選択することにより、特定元素の分析に最適なエネルギーの分光X線が得られて、特定元素の分析をさらに高精度で行える。
【0021】
【発明の実施の形態】
以下、本発明にかかる点集束型X線分光装置の実施形態を図面に基づいて説明する。図1〜図8は、本発明を前述した第1使用方法、つまりX線照射側に用いる場合を示している。
図1は本発明を適用するX線分析装置の全体構造を概略的に示している。この装置は、X線発生部Gを内蔵したX線管装置1と、その上部に配置された円筒形の分光素子2をもつ点集束型X線分光装置Aを備えている。そして、X線発生部Gから放射する放射X線aを、分光素子2の内周の分光面2aで単色化して1次X線b(分光X線)を生成し、この1次X線bを支持台3に設けた開口3bから、その上部に保持した試料(入射対象物)4の下面の測定面に照射し、これから発生する蛍光X線のような2次X線cを検出器5で検出する。
【0022】
前記X線管装置1は、ケーシング6の内部に、X線発生部Gとしてフィラメント7およびターゲット8を配設している。ここで、フィラメント7で発生する電子ビームeはターゲット8に衝突し、このときターゲット8上の一点、つまりX線発生源sから放射される放射X線aが、ケーシング6の上部側に設けたベリリウム等の窓材9から前記分光素子2に向かって出射する。
【0023】
そして、第1発明の点集束型X線分光装置A1では、図2に示すように、X線管装置1と支持台3の間に、放射X線aを分光する分光素子2の分光面2aの中心(軸方向の中心部)からX線発生源sまでの距離L1と、分光面2aの中心から試料測定面の集光点fまでの距離L2を互いに等しく(L1=L2)保ちながら、分光素子2に対しX線管装置1と支持台3を相対的に軸方向(上下方向)に移動させる第1移動装置10を設ける。
【0024】
前記移動装置10として、図の実施形態では、装置の図示しない基台に固定されたモータ台11に固定した第1モータ12と、このモータ12にウォームギヤ51などを介して連結され、上下部に逆方向のねじ部13a,13bをもつねじ体13を用い、その各ねじ部13a,13bを支持台3とX線管装置1に設けたボールねじ3a,1aに螺合させている。このとき、各ねじ部13a,13bとボールねじ3a,1aの送りピッチはそれぞれ同一とし、各ボールねじ3a,1aに対し各ねじ部13a,13bを回転させたとき、前記L1,L2を一定に保持した状態でX線管装置1と支持台3の相対移動を行えるようにする。なお、前記ボールねじおよび後述するボールねじとしては、ナットを用いてもよい。
【0025】
さらに、X線管装置1と支持台3の間で分光素子2への入射および出射光路には、前記X線発生源sから出射する放射X線aを絞って、分光素子2の分光面2aに入射させる直径が異なる複数の環状の第1スリット14aを有する第1絞り装置14と、分光素子2の分光面2aで分光された1次X線bを絞って、試料4の集光点fに出射させる直径が異なる複数の環状の第2スリット15aを有する第2絞り装置15を設ける。また、これら第1,第2絞り装置14,15を駆動し、分光面2aからX線発生源sおよび集光点fまでの距離L1,L2に対応して直径の異なる各スリット14a,15aを選択し、これらを放射X線aの入射光路と1次X線bの出射光路に配置するスリット交換装置16を設ける。
【0026】
前記第1および第2絞り装置14,15は、例えば図3に示すように、薄肉の金属円板17を用い、その周方向の複数個所を残存させてエッチング手段などで円弧状にくり抜くことにより、連結部17aを介して連続する環状の第1,第2スリット14a,15aを形成する。これら各スリット14a,15aは、その直径が異なる複数個を円板17の中心17bに対して同心状に設ける。スリット14a,15aは、直径に加えて、径方向幅や連結部の数、幅などを変えてもよい。
【0027】
前記スリット交換装置16としては、図2の2つの第2モータ16a,16aを使用し、これらモータ16a,16aを前記モータ台11の分光素子2の上下部位に対向状に取付け、各モータ16aのモータ軸16bを、各絞り装置14,15を構成する円板17の中心に固定する。
【0028】
前記分光素子2は、フッ化リチウムやマイカなどの平板状素材を円筒状に折り曲げて形成する。このようにすれば、円筒形分光素子2を容易に製作できる。この分光素子2は、前記モータ台11に支持された円筒形のホルダ2bの円周面に固定して保持させる。
【0029】
次に、以上の第1発明にかかる点集束型X線分光装置A1による作用について説明する。
X線管装置1のX線発生源sから放射する放射X線aは、第1絞り装置14に設けた環状の第1スリット14aで絞られ、逆円錐状の入射光路を描きながら分光素子2の分光面2aに入射する。そして、この分光面2aで放射X線aが次のブラッグの式に従って回折されて単色化し、試料中の分析対象である特定元素の分析に必要なエネルギー(波長)の1次X線b(分光X線)が生成される。
2d・sinθ=nλ
ここで、dは分光素子の結晶の面間隔、θは入射角(回折角)、λはX線の波長、nは回折の次数(1,2,3…)である。
【0030】
1次X線bは、前記分光面2aにより入射角度と同一角度(回折角度)で出射され、第2絞り装置15に設けた環状の第2スリット15aで絞られて、入射時とは逆の円錐状の出射光路を描きながら、支持台3に保持した試料4の下面の集光点fで集束する。このように、分光素子2の分光面2aに対する入射角と出射角が同一であることから、分光面2aからX線発生源sおよび集光点fまでの距離L1,L2は互いに等しくなる(L1=L2)。
【0031】
こうして、環状の第2スリット15aから多量の1次X線bを試料4の集光点fに集束するように照射することにより、微量元素の良好な分析が行える。また、放射X線aは、分光素子2の分光面2aにより回折されて単色化するので、特定元素の分析精度が高められる。しかも、前記分光素子2は、円筒形としてホルダ2b内に保持させているので、広い分光面2aを持ちながら、素子全体が小型となる。
【0032】
また、分析対象の特定元素に応じて1次X線bのエネルギー(波長)を可変調整するときには、第1移動装置10の第1モータ12を駆動してねじ体13を回転することにより、分光面2aからX線発生源sおよび集光点fまでの各距離L1,L2を互いに等しく保持しながら、X線管装置1と支持台3を分光素子2に対し相対的に軸方向に移動させる。そして、スリット交換装置16の各第2モータ16aで第1,第2絞り装置14,15の円板17を回転させることにより、前記第1モータ12で移動された各距離L1,L2に対応して、分光面2aに対する入射X線aと出射X線bを円滑に通過させるように、第1,第2スリット14a,15aが選択される。
【0033】
このようにすると、X線発生源sから第1スリット14aを経て分光素子2の分光面2aに入射する放射X線aの入射角度が変わる。また、分光面2aから第2スリット15aを経て集光点fに出射する1次X線bの出射角度も変わり、つまり分光面2aにより放射X線aを単色化するときの回折角度が変えられるので、特定元素の分析に最適なエネルギーの1次X線bが得られる。このため、試料4にその分析に最適なエネルギーの1次X線bを照射して、特定元素の分析をさらに高精度で行える。また、前記第1移動装置10の第1モータ12とスリット交換装置16の第2モータ16aは、それぞれ制御回路に接続して、この回路からの出力により自動制御することも可能である。
【0034】
図4は第2発明の点集束型X線分光装置A2を示している。この装置A2は、第1発明の場合と同様に、X線管装置1、分光素子2、支持台3、第1移動装置10を備えている。そして、X線管装置1からの放射X線aを絞って分光素子2の分光面2aに入射させる環状の第1スリット17aを有する薄肉平板部材からなる第1スリット機構17と、分光面2aからの1次X線bを絞って支持台3に保持される試料4の集光点fに入射させる環状の第2スリット18aを有する薄肉平板部材からなる第2スリット機構18を設ける。また、前記第1移動装置10で移動される分光素子2からX線管装置1のX線発生源sおよび試料4の集光点fまでの各距離L1,L2に対応して、前記第1,第2スリット機構17,18を分光素子2に対し軸方向に移動させる第2移動装置19を設ける。
【0035】
前記第2移動装置19として、同図の実施形態では、モータ台11に第1移動装置10の第1モータ12とともに装着された第3モータ20と、この第3モータ20にウォームギヤ52などを介して連結され、上下部に逆方向のねじ部21a,21bをもつねじ体21とを用い、その各ねじ部21a,21bに前記第1,第2スリット機構17,18の一端側に設けたボールねじ18b,17bに螺合させる。このとき、各ねじ部21a,21bとボールねじ18b,17bの送りピッチはそれぞれ同一とし、第3モータ20による各ねじ部21a,21bの各ボールねじ18b,17bに対する回転時に、各スリット機構17,18を分光素子2に対し軸方向に同一距離だけ移動させて、分光素子2に対する入射X線aと出射X線bを円滑に通過させるようにする。
【0036】
また、前記第2移動装置19として設けるねじ体21は、その上下部をX線管装置1と支持台3に設けた前記ねじ体21よりも大径な支持孔1c,3cに遊挿支持させる。このようにすれば、第1,第2移動装置10,19の各ねじ体13,21を互いに独立して回転できるので、これら各ねじ体13,21により、分光素子2に対するX線管装置1および支持台3の相対移動と、第1,第2スリット機構17,18の分光素子2に対する相対移動とを独立して行える。
【0037】
以上の第2発明によれば、第1発明の場合と同様に、第1,第2スリット機構17,18に設けた環状の各スリット17a,18aを介して分光素子2に対する放射X線aの入射と1次X線bの出射が行われ、この1次X線bが試料4の集光点fに集束される。このため、多量のX線を試料4に照射して微量元素の分析が良好に行え、特定元素の分析精度も高められ、また素子全体の小型化が可能となる。
【0038】
また、特定元素の分析に最適なエネルギーの1次X線を選ぶ場合は、第1移動装置10の第1モータ12を駆動してねじ体13を回転することにより、分光面2aからX線発生源sおよび集光点fまでの各距離L1,L2が互いに等しく(L1=L2)保持されながら、X線管装置1と支持台3が分光素子2に対し相対的に軸方向に移動する。そして、第2移動装置19の第3モータ20を回転することにより、前記第1モータ12で移動される各距離L1,L2に対応して、第1,第2スリット機構17,18が軸方向に移動する。
【0039】
このようにすると、第1スリット17aを経て分光素子2の分光面2aに入射する放射X線aの入射角度が変わる。また、分光面2aから第2スリット18aを経て集光点fに出射する1次X線bの出射角度も変わり、つまり分光面2aにより放射X線aを単色化するときの回折角度が変えられるので、特定元素の分析に最適なエネルギーの1次X線bが得られる。
【0040】
5では、ホルダ2b内に支持され、結晶の面間隔が異なる複数の分光素子2と、分光対象となる放射X線aの波長(エネルギー)に対応する分光素子2を選択して、第1,第2スリット機構17,18の間に配置する分光素子選択装置22とを設けている。
【0041】
この選択装置22としては、モータ台11に第1,第2移動装置10,19の第1,第3モータ12,20とともに固定する第4モータ23を用い、そのモータ軸23aに複数の分光素子2を収容したホルダ2bの中心部を支持させる。
【0042】
そして、第4モータ23を回転し、ホルダ2bに収容支持した複数の分光素子2のうち、試料4に含まれる特定元素を分析するのに最適な分光素子2を選択して、第1,第2スリット機構17,18の間のX線光路に配置することにより、特定元素の分析に必要なエネルギーの1次X線bが確実に得られる。
【0043】
図6は、第3発明の点集束型X線分光装置A3を示している。この装置A3は、前記第1移動装置10により上下移動されるX線管装置1と支持台3の間で、分光素子2の入射および出射光路に配置する第1,第2スリット機構17,18の構成に特徴がある。これらスリット機構17,18は、そのスリット17a,18aの外周を形成し、内径が可変とされた例えば写真機の絞りのような外周部材24,24と、前記各スリット17a,18aの内周を形成する円盤状の中心部材25,25とで構成する。また、各スリット機構17,18には、分光素子2の分光面2aから試料4の集光点fまでの距離に対応して外周部材24の内径を変化させる周知の絞り駆動機構26aと、中心部材25を軸移動させる軸駆動機構26bとを備えたスリット駆動機構26を設ける。
【0044】
前記軸動機構26bとしては、例えばモータ台11に支持した第5モータ27と、このモータ27にウォームギヤ53などを介して連結され、上端が中心部材25に連結されたねじ体28を用いる。
【0045】
そして、前述した場合と同様に、第1移動装置10を駆動して、X線管装置1と支持台3を分光素子2に対し相対的に軸方向に移動させる。さらに、第1移動装置10で移動される各距離に対応して、同図の実線および仮想線で示すように、前記第5モータ27でねじ体28を回転して、第1,第2スリット機構17,18の各中心部材25を上下方向に移動させる。また、外周部材24の内径を絞り駆動機構26aにより大小変化させ、両部材24,25の間に環状のスリット17a,18aを形成する。このようにすれば、分光素子2の分光面2aで放射X線aを単色化するときの回折角度が変えられるので、特定元素の分析に最適なエネルギーの1次X線bが得られる。
【0046】
以上の第3発明においても、第2発明の場合と同様に、ホルダ2b内に結晶の面間隔が異なる複数の分光素子2を収容支持し、ホルダ2bを分光素子選択装置22で回転させて、第1,第2スリット機構17,18の間に配置することにより、試料4に含まれる特定元素を分析するのに最適な分光素子2を選択するようにする
【0047】
図7および図8は、第4発明の点集束型X線分光装置A4の要部を示している。この装置A4は、前記第1移動装置10により軸移動されるX線管装置1と支持台3の間に、複数の分光素子と各スリットをユニット化して配置することに特徴がある。つまり、結晶の面間隔が異なる複数の分光素子30と、この分光素子30の入射光路側に配置する直径が異なる環状の第1スリット31をもつ第1スリット板32と、出射光路側に配置する直径が異なる環状の第2スリット33をもつ第2スリット板34をそれぞれユニット化して、この複数の分光ユニット35をホルダ36内にセットする。
【0048】
また、試料4に含まれる特定元素を分析するのに最適な分光素子30を選択して、放射X線aの入射光路と1次X線bの出射光路に配置する分光ユニット選択装置37を設ける。この選択装置37として、図の実施形態では、第6モータ38を用い、そのモータ軸38aに前記ホルダ36を支持させる。第6モータ38はモータ台11に支持する。
【0049】
そして、前述した場合と同様に、第1移動装置10を駆動して、X線管装置1と支持台3を分光素子2に対して相対的に上下方向に移動させる。また、第6モータ38を回転させて特定元素の分析に最適な分光ユニット35を選択する。このようにすれば、特定元素の分析に最適なエネルギーの1次X線が得られて、特定元素の分析をさらに高精度で行える。
【0050】
なお、前記各実施形態では、モータ台11を固定し、X線管装置1(X線発生部G)と支持台3を移動させたが、X線管装置1または支持台3を固定し、モータ台11と、支持台3またはX線管装置1とを移動させてもよい。
【0051】
以上の各実施形態では、本発明を第1の使用方法に用いる場合について説明したが、本発明は、前述した第2の使用方法、つまりX線検出側にも用いることができる。この第2使用方法では、図9に示すように、X線管装置1からの細いビーム状の放射X線aが照射される試料4と、支持台3に入射対象物として設けられ、X線照射により試料4の点状のX線発生源sから発生する蛍光X線のような2次X線cを検出する検出器5との間に、点集束型X線分光装置を配置し、同装置で2次X線cを分光し、この分光X線hを検出器5に入射させて検出する。
【0052】
具体的には、支持台3に保持する試料4と別の支持台3に保持する検出器5の間に、図2に示すような点集束型X線分光装置A1を配置する。この装置A1は前述した通りであるので、簡単に説明すると、分光素子2の分光面2aの中心から試料4のX線発生源sまでの距離L1と、分光面2aの中心から検出器5の集光点fまでの距離L2を互いに等しく保ちながら、分光素子2に対し、試料4と検出器5をそれぞれ保持する各支持台3を相対的に移動させる第1移動装置10を設ける。この移動装置10は、第1モータ12、逆方向のねじ部13a,13bをもつねじ体13、ウォームギヤ51などで構成する。
【0053】
さらに、X線発生源sと集光点fの間で分光素子2への入射および出射光路には、X線発生源sから出射する2次X線cを絞って、分光素子2の分光面2aに入射させる複数の環状の第1スリット14aを有する第1絞り装置14と、分光素子2の分光面2aで分光された分光X線hを絞って、検出器5の集光点fに出射する複数の環状の第2スリット15aを有する第2絞り装置15を設ける。また、これら第1,第2絞り装置14,15を駆動し、分光面2aからX線発生源sおよび集光点fまでの距離に対応して直径の異なる各スリット14a,15aを選択し、これらを2次X線cの入射光路とその出射光路に配置するスリット交換装置16を設ける。
【0054】
以上の構成によれば、試料4のX線発生源sから発生する2次X線cが、第1絞り装置14の第1スリット14aで絞られ、逆円錐状の入射光路を描きながら分光素子2の分光面2aに入射する。そして、この分光面2aで回折された分光X線hが、入射角度と同一の角度で出射され、第2絞り装置15の第2スリット15aで絞られて、入射時とは逆の円錐状の出射光路を描きながら、支持台3に保持された検出器5の集光点fに点集光するように入射される。よって、検出器5により精度の高い検出が可能となる。
【0055】
なお、この第2の使用方法においても、試料4と検出器5の間には、図2に示すもの以外に、図4〜図7に示す点集束型X線分光装置を配設することができる。
【0056】
【発明の効果】
以上のように、本発明の点集束型X線分光装置によれば、分光素子全体を小型としながら、大強度の分光X線によって特定元素の分析精度を高め、また単色化によって微量元素の分析も良好に行え、しかも分光X線を可変調整して、特定元素の分析に適したエネルギーの分光X線を選ぶことができる。
【図面の簡単な説明】
【図1】本発明に係る点集束型X線分光装置を備えたX線分析装置を概略的に示す側面図である。
【図2】第1発明の実施形態に係る点集束型X線分光装置を示す断面図である。
【図3】同装置に用いる各絞り装置の平面図である。
【図4】第2発明の実施形態に係る点集束型X線分光装置を示す断面図である。
【図5】第2発明の実施形態に係る実施形態を示す断面図である。
【図6】第3発明の実施形態に係る点集束型X線分光装置を示す断面図である。
【図7】第4発明の実施形態に係る点集束型X線分光装置を示す断面図である。
【図8】同装置の平面図である。
【図9】本発明に係るX線分光装置の別の使用形態を示す断面図である。
【符号の説明】
2…分光素子、2a…分光面、3…支持台、4…入射対象物(試料)、5…入射対象物(検出器)、10…第1移動装置、14…第1絞り装置、14a…第1スリット、15…第2絞り装置、15a…第2スリット、16…スリット交換装置、17…第1スリット機構、17a…第1スリット、18…第2スリット機構、18a…第2スリット、19…第2移動装置、22…分光素子選択装置、24…外周部材、25…中心部材、26…スリット駆動機構、30…分光素子、31…第1スリット、33…第2スリット、35…分光ユニット、37…ユニット選択装置、a…X線、b,h…分光X線、f…集光点、s…X線発生源。

Claims (4)

  1. 点状のX線発生源から発生したX線を円筒形の分光素子により分光して分光X線を生成し、支持台に保持される入射対象物に前記分光X線を入射させるX線分光装置であって、
    前記分光素子の軸方向に沿った分光素子からX線発生源および集光点までの各距離を互いに等しく保ちながら、X線発生源および支持台を分光素子に対して相対的に前記軸方向に移動させる第1移動装置と、
    前記X線を絞って前記分光素子の内周の分光面に入射させる環状の第1スリットを複数有し、各スリットの少なくとも直径が互いに相違している第1絞り装置と、
    前記分光X線を絞って前記支持台の集光点に入射させる環状の第2スリットを複数有し、各スリットの少なくとも直径が互いに相違している第2絞り装置と、
    前記第1および第2絞り装置を駆動し、分光素子からX線発生源および支持台までの距離に対応した第1および第2スリットを選択して配置するスリット交換装置とを備えた点集束型X線分光装置。
  2. X線発生源から発生したX線を円筒形の分光素子により分光して分光X線を生成し、支持台に保持される入射対象物に前記分光X線を入射させるX線分光装置であって、
    結晶の面間隔が異なる複数の分光素子と、
    分光対象のX線の波長に対応する分光素子を選択して配置する分光素子選択装置と、
    前記X線を絞って前記選択された分光素子の内周の分光面に入射させる環状の第1スリットを有する第1スリット機構と、
    前記分光X線を絞って前記支持台の集光点に入射させる環状の第2スリットを有する第2スリット機構と、
    前記選択された分光素子の軸方向に沿った分光素子からX線発生源および集光点までの各距離を等しく保ちながら、X線発生源および支持台を選択された分光素子に対して相対的に前記軸方向に移動させる第1移動装置と、
    前記選択された分光素子からX線発生源および支持台までの距離に対応して第1および第2スリット機構を前記軸方向に移動させる第2移動装置とを備えた点集束型X線分光装置。
  3. X線発生源から発生したX線を円筒形の分光素子により分光して分光X線を生成し、支持台に保持される入射対象物に前記分光X線を入射させるX線分光装置であって、
    結晶の面間隔が異なる複数の分光素子と、
    分光対象のX線の波長に対応する分光素子を選択して配置する分光素子選択装置と、
    前記X線を絞って前記選択された分光素子の内周の分光面に入射させる環状の第1スリットを有する第1スリット機構と、
    前記選択された分光X線を絞って前記支持台の集光点に入射させる環状の第2スリットを有する第2スリット機構と、
    前記分光素子の軸方向に沿った分光素子からX線発生源および集光点までの各距離を等しく保ちながら、X線発生源および支持台を選択された分光素子に対して相対的に前記軸方向に移動させる第1移動装置とを備え、
    前記第1および第2スリット機構のそれぞれは、スリットの外周を形成し、内径が可変である外周部材と、スリットの内周を形成する円盤状の中心部材とを有し、
    さらに、分光素子からX線発生源および支持台までの距離に対応して前記各外周部材の内径を変化させるとともに、前記各中心部材を前記軸方向に移動させるスリット駆動機構を備えた点集束型X線分光装置。
  4. X線発生源から発生したX線を円筒形の分光素子により分光して分光X線を生成し、支持台に保持される入射対象物に前記分光X線を入射させるX線分光装置であって、
    前記分光素子の軸方向に沿った分光素子からX線発生源および集光点までの各距離を等しく保ちながら、X線発生源および支持台を分光素子に対して相対的に前記軸方向に移動させる第1移動装置と、
    結晶の面間隔が異なる複数の分光素子、前記X線を絞って前記分光素子の内周の分光面に入射させる環状の第1スリット、および前記分光X線を絞って前記支持台の集光点に入射させる環状の第2スリットを有する複数の分光ユニットと、
    分光対象のX線の波長に対応して前記分光ユニットを選択して配置する分光ユニット選択装置とを備えた点集束型X線分光装置。
JP21207897A 1997-08-06 1997-08-06 点集束型x線分光装置 Expired - Fee Related JP3624207B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21207897A JP3624207B2 (ja) 1997-08-06 1997-08-06 点集束型x線分光装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21207897A JP3624207B2 (ja) 1997-08-06 1997-08-06 点集束型x線分光装置

Publications (2)

Publication Number Publication Date
JPH1152096A JPH1152096A (ja) 1999-02-26
JP3624207B2 true JP3624207B2 (ja) 2005-03-02

Family

ID=16616510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21207897A Expired - Fee Related JP3624207B2 (ja) 1997-08-06 1997-08-06 点集束型x線分光装置

Country Status (1)

Country Link
JP (1) JP3624207B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004184314A (ja) 2002-12-05 2004-07-02 Mitsubishi Electric Corp 蛍光x線分析装置
JP5948558B2 (ja) * 2012-04-06 2016-07-06 国立研究開発法人日本原子力研究開発機構 分光装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS531023Y2 (ja) * 1973-01-18 1978-01-12
JPS615456U (ja) * 1984-06-16 1986-01-13 吉則 近浦 単結晶板円筒状複数配置断層撮影機能付与装置
JPH0631887B2 (ja) * 1988-04-28 1994-04-27 株式会社東芝 X線ミラー及びその製造方法
JP2921038B2 (ja) * 1990-06-01 1999-07-19 キヤノン株式会社 X線を用いた観察装置
JP2561312Y2 (ja) * 1992-02-17 1998-01-28 理学電機工業株式会社 X線分光器
JP3221619B2 (ja) * 1992-04-20 2001-10-22 株式会社マック・サイエンス X線回折装置
JPH10170699A (ja) * 1996-12-06 1998-06-26 Nippon Telegr & Teleph Corp <Ntt> X線発生装置
JP3843601B2 (ja) * 1997-04-30 2006-11-08 株式会社島津製作所 蛍光x線分析装置

Also Published As

Publication number Publication date
JPH1152096A (ja) 1999-02-26

Similar Documents

Publication Publication Date Title
JP4723487B2 (ja) X線吸収端近傍構造解析を実行するためのxanes解析システム及びその方法
US7991116B2 (en) Monochromatic x-ray micro beam for trace element mapping
KR20020060705A (ko) X선 측정 및 검사용 복합체
EP3790025B1 (en) X-ray analyzer
JP2013096750A (ja) X線分光検出装置
US6028911A (en) X-ray analyzing apparatus with enhanced radiation intensity
US20140294157A1 (en) Support structure and highly aligned monochromating x-ray optics for x-ray analysis engines and analyzers
JP3712531B2 (ja) Xafs測定方法及びxafs測定装置
JP2004184314A (ja) 蛍光x線分析装置
CN113218974A (zh) 一种x射线吸收谱测量系统
JP3624207B2 (ja) 点集束型x線分光装置
JP5261862B2 (ja) 回折格子の迷光測定方法および装置
JP6937025B2 (ja) X線回折装置
US6240159B1 (en) Fluorescent X-ray analyzer with path switching device
JP3465136B2 (ja) 円筒結晶型分光装置とこれを用いたx線分析装置
JPH08285798A (ja) X線分析装置
JP2759830B2 (ja) X線解析方法及びその装置
JPH1151883A (ja) 蛍光x線分析装置および方法
JP3860641B2 (ja) 蛍光x線分析装置
JPH1123797A (ja) 円筒結晶型分光装置とその製造方法
JPH08105846A (ja) X線分析装置
JP2000009666A (ja) X線分析装置
JP3222720B2 (ja) 波長分散型x線検出装置
JP2007127511A (ja) Epma装置
JPH11502312A (ja) 回転可能な一次コリメータを含むx線分析装置

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040927

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees