JP3623706B2 - Dilution release device for carbon dioxide to the ocean - Google Patents

Dilution release device for carbon dioxide to the ocean Download PDF

Info

Publication number
JP3623706B2
JP3623706B2 JP2000000626A JP2000000626A JP3623706B2 JP 3623706 B2 JP3623706 B2 JP 3623706B2 JP 2000000626 A JP2000000626 A JP 2000000626A JP 2000000626 A JP2000000626 A JP 2000000626A JP 3623706 B2 JP3623706 B2 JP 3623706B2
Authority
JP
Japan
Prior art keywords
supply pipe
pipe
distribution
carbon dioxide
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000000626A
Other languages
Japanese (ja)
Other versions
JP2001187330A (en
Inventor
宗二 溝上
雅彦 尾崎
勝則 畠中
嘉夫 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute of Innovative Technology for Earth
Original Assignee
Research Institute of Innovative Technology for Earth
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute of Innovative Technology for Earth filed Critical Research Institute of Innovative Technology for Earth
Priority to JP2000000626A priority Critical patent/JP3623706B2/en
Publication of JP2001187330A publication Critical patent/JP2001187330A/en
Application granted granted Critical
Publication of JP3623706B2 publication Critical patent/JP3623706B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、回収した二酸化炭素を海中に放流して海水に溶かし込む二酸化炭素の海洋への希釈放流装置に関する。
【0002】
【従来の技術】
近年、地球温暖化が大きな問題となっており、これに伴い地球規模での気候変動を引き起こす可能性があると指摘される温室効果をもった二酸化炭素(CO2)の大気中における濃度の上昇を抑えることが重要になってきている。CO2の大気中における濃度の上昇を抑える対策の一つとして、事業所等で排出される燃焼排ガス中のCO2を液化して液体二酸化炭素(液体CO2)として回収し、液体CO2を海中に送り込むことにより、長期にわたってCO2を大気から隔離する構想が提案されている。液体CO2を海中に送り込む場合、海洋に新たな環境影響を引き起こさないようにする必要がある。
【0003】
海洋の環境影響を少なくした状態でCO2を海中に送り込む装置の一つとして、溶解拡散型と称される装置がある。この装置は、CO2を海水中に溶かし込んで薄く希釈し広く拡散させて海水中のCO2の濃度の上昇を抑制するようにした装置であり、本来、海水中に溶解しているCO2の濃度がある程度上昇するに止まるという考えに基づくものである。この溶解拡散型における従来の装置として、船舶によりCO2の放流点を移動させて海中の中層にてCO2を放流する装置が知られている。
【0004】
従来の二酸化炭素の希釈放流装置は、海上の作業船から深さ1000m乃至2500mの海中に放流管が吊り下げられ、放流管の下端部に多数の孔を設けて構成されている。そして、作業船を航走させながら放流管に液体CO2を圧送し、下端部の多数の孔から海中に液体CO2を放流する。海中に放流された液体CO2は多数の液滴となって分散し、略均一に海水と混合される。即ち、液滴は放流管の後側で周辺の海水に溶け込みながら緩やかに上昇し、上昇しながら海水に溶け込んで直径が小さくなり、所定の高さまで上昇する過程で液体CO2は全て海中に溶け込む。これにより、放流された液体CO2は十分に希釈された状態で海中に溶け込む。
【0005】
このように、液体CO2の液滴は海中に放出された後緩やかに所定の高さまで上昇させる必要があり、作業船の速度や放流管に送る液体CO2の圧力等に基づいて所定の径(例えば直径10mm)の液滴となって放出されるようになっている。液滴の径が小さいと液滴の数が多くなり液滴全体でみると表面積が増加し、所定の高さまで上昇しないうちに海中に溶け込んでしまう。孔の数が少ない場合、放流管内の圧力が高くなって孔から放出される液滴が霧状になり、所望の大きさの液滴を得るためには圧力を低くする必要があり効率が悪い。このため、放流管の下端部には多数の孔が設けられて所定の大きさの液滴が得られるようになっている。
【0006】
【発明が解決しようとする課題】
従来の二酸化炭素の希釈放流装置は、放流管に多数の孔を設けて所望の径の液滴を得るようにしている。しかし、放流管に多数の孔(例えば数万個)をあける必要があり、放流管の製作が困難であった。また、作業船の航走や海流に伴って放流管の後側に巻き込み乱れ流が生じ、即ち、カルマン渦が生じ、所望の径の液滴を得ても液滴がカルマン渦に巻き込まれて破壊・微小化され、十分な浮上距離が得られなくなり液滴を分散して海中に溶け込ませることができず、液体CO2の希釈が十分に行なえない虞があった。
【0007】
本発明は上記状況に鑑みてなされたもので、多数の孔をあけることなく所望の径の液滴が得られ、しかも、液滴が巻き込み乱れ流により破壊される虞のない二酸化炭素の海洋への希釈放流装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明では、二酸化炭素の希釈放流装置において、海上を航走する船舶から海中につり下げられる供給管と、前記供給管に接続され前記船舶の航走方向に沿った軸線を有し該軸線の軸方向に延びる流路を有して一端に放流口が備えられたノズルとを設け、前記供給管から液体二酸化炭素を前記ノズルの流路に供給し前記放流口から液体二酸化炭素を海中に放出することを特徴とする。そして、前記供給管には少なくとも一つの分配管が設けられ、前記分配管に複数のノズルが設けられていることを特徴とする。
【0009】
上記目的を達成するための請求項1に係る本発明の構成は、二酸化炭素の希釈放流装置において、海上を航走する船舶から海中につり下げられる供給管と、前記供給管に接続され前記船舶の航走方向に沿った軸線を有し該軸線の軸方向に延びる流路を有して一端に放流口が備えられたノズルとを設け、前記供給管に複数の分岐管を設け、前記供給管の前記分岐管が設けられる位置より前流側に圧力均一化手段を設け、前記供給管のそれぞれの部位の内部の液体二酸化炭素がそれぞれ略均一状態の圧力となるようにし、前記供給管から液体二酸化炭素を前記ノズルの流路に供給し前記放流口から液体二酸化炭素を海中に放出することを特徴とする。
【0010】
そして、請求項2では、請求項1において、前記圧力均一化手段は、前記ノズルの数に対応した複数の穴が形成された円盤状の仕切り板と、該仕切り板の穴と各ノズルを個別に連通する連通手段とから構成されていることを特徴とする。
また、請求項3では、請求項2において、前記圧力均一化手段は、前記供給管の前記分岐管が設けられるそれぞれの前流側の部位を仕切る円盤状の仕切り板と、該仕切り板に設けられ前記分岐管が設けられる前記供給管のそれぞれの部位を前記供給管の部位に前流側から順次連通する連通穴とから構成され、複数の前記ノズルが配管を介して個別に前記ノズルの数に対応した複数の穴と連通されていることを特徴とする。
また、請求項4では、請求項2において、前記圧力均一化手段は、前記供給管の前記分岐管が設けられるそれぞれの前流側の部位を仕切る円盤状の仕切り板と、該仕切り板に設けられ前記分岐管が設けられる前記供給管のそれぞれの部位を個別に連通する連通手段とから構成され、複数のノズルが配管を介して個別に前記ノズルの数に対応した複数の穴と連通されていることを特徴とする。
また、請求項5では、請求項1乃至請求項4のいずれか一項において、前記分岐管は前記ノズルの軸線方向に沿う断面が流線形をなしていることを特徴とする。
【0011】
【発明の実施の形態】
図1には本発明の第1実施形態例に係る二酸化炭素の海洋への希釈放流装置の概略を説明する全体構成、図2には放出部の詳細、図3には図2中のIII-III 線矢視を示してある。
【0012】
図1に示すように、海上を航走する船舶(作業船)1には液体二酸化炭素(液体CO2)を貯留するタンク1aが備えられ、作業船1には海中に吊り下げられる供給管2が設けられている。供給管2は深さ1000m乃至2500mの海中に吊り下げられ、作業船1の航走により曳航可能な状態になっている。供給管2の下端部には放出部3が設けられ、タンク1aから供給管2を通して送られる液体CO2が放出部3から海中に放出される。放出部3から海中に放流された液体CO2は多数の液滴となって分散し、略均一に海水と混合される。即ち、液滴は放流管の後側で周辺の海水に溶け込みながら緩やかに上昇し、上昇しながら海水に溶け込んで直径が小さくなり、所定の高さまで上昇する過程で液体CO2は全て海中に溶け込む。これにより、放流された液体CO2は十分に希釈された状態で海中に溶け込む。
【0013】
図2、図3に基づいて放出部3を詳細に説明する。
【0014】
図2に示すように、供給管2の下端には作業船1(図1参照)の航走方向に直交する水平方向に供給管2よりも径が小さい円管状の分配管としての分岐管4が取り付けられ、分岐管4の両端部にはノズル5が接続されている。尚、分岐管4は円管状に限らず偏平状のものを適用することも可能である。図3に示すように、ノズル5は作業船1(図1参照)の航走方向に沿った軸線Pを有し、軸線Pの軸方向に延びる筒状の流路6が備えられている。流路6は作業船1(図1参照)の航走方向の後側(一端)が開口して放流口7が形成されている。ノズル5は、流れを乱さない形状、即ち、先端部及び後端部が丸みをおびた形状となっている。
【0015】
上記構成の希釈放流装置では、液体CO2を供給管2から供給して分岐管4を通してノズル5に送り、その後、流路6を通して後端の放流口7から後方(ノズル5の進行方向と反対方向、即ち、後流方向)へ向けて液体CO2を放出する。そうすると、図3に示すように、液体CO2は海水中において初め水平柱状になり、それが次第に乱れ、その乱れと界面張力によってやがて細かくちぎれて液滴になって浮上していき、浮上の過程で広い範囲の海水により十分に希釈されて溶解される。
【0016】
上記構成の希釈放流装置によると、分岐管4により供給管2から離れた位置でノズル5から液体CO2が水平柱状で放出され、その後、液滴になって浮上するので、液滴が供給管2の後流側のカルマン渦の影響を受けることなく広い範囲の海水により十分に希釈されて溶解される。従って、局所滴に二酸化炭素濃度の高いところが存在せず、海洋生物に悪影響をおよぼす虞がない。また、ノズル5は筒状の流路6を備え後側が開口する放流口7を備えた構成となっているので、1個で従来の細孔の数百個分の放出量を確保することができ、放流のための管に非常に多く(数万個)の細孔を明ける必要がなくなり、装置の製作が容易となる。
【0017】
図4乃至図22に基づいて放出部の他の実施形態例を説明する。図4乃至図22には本発明の他の実施形態例に係る放出部を示してある。尚、各実施形態例において、図1乃至図3に示した部材と同一部材には同一符号を付して重複する説明は省略してある。
【0018】
図4に基づいて第2実施形態例に係る放出部11を説明する。図4には本発明の第2実施形態例に係る放出部11の正面状態を示してある。
【0019】
図示の放出部11は、供給管2の下端に円管状の分岐管4が取り付けられ、分岐管4には更に下方に延びる第2分岐管12が4本設けられている。第2分岐管12の下端にはノズル5がそれぞれ接続され、ノズル5は個別の配管によって供給管2内とつながっている。第2分岐管12は後流側の乱れを最小限にするために、偏平形状とすれば更によい。尚、図4中のIII-III 線矢視は図3の状態と同一となる。
【0020】
分岐管4により供給管2から離れた位置でノズル5から液体CO2が放出されて液滴になり、液滴が供給管2の後流側のカルマン渦の影響を受けることなく広い範囲の海水により十分に希釈されて溶解される。また、第2分岐管12により4個のノズル5を設けたので、大量の液体CO2を放出することができ、効率良く液体CO2を放出することが可能になる。
【0021】
図5、図6に基づいて本発明の第3実施形態例に係る放出部15を説明する。図5には第3実施形態例に係る放出部15の正面状態、図6には図5中のVI-VI線矢視を示してある。
【0022】
図5に示すように、供給管2の下端には作業船1(図1参照)の航走方向に直交する水平方向に延びる分岐管16が3段設けられ、各分岐管16にはノズル17が3個づつそれぞれ接続されている。各ノズル17は個別の配管によって供給管2内とつながっている。図6に示すように、分岐管16は偏平形状をなし、ノズル17は作業船1(図1参照)の航走方向に沿った軸線Pを有し、軸線Pの軸方向に延びる筒状の流路18が備えられている。流路18は作業船1(図1参照)の航走方向の前側が開口して放流口19が形成されている。また、ノズル17の形状は流れを乱さない流線形をなしている。
【0023】
供給管2に対する3段の分岐管16の取り付きピッチは、例えば、ノズル17の径の2倍乃至3倍の長さに設定されている。また、各分岐管16においてノズル17の取り付きピッチは、例えば、ノズル17の径の4倍乃至6倍の長さに設定されている。
【0024】
図示の放出部15は、作業船1(図1参照)の航走速度と放出速度の相対速度差により、各ノズル17の流路18を通して前端の放流口19から前方(ノズル17の進行方向)へ向けて液体CO2が放出される。そうすると、図6に示すように、液体CO2はノズル17の外周面に沿って後流方向に流れ、海水中において図3の場合と同様に初め水平柱状になり、それが次第に乱れ、その乱れと界面張力によってやがて細かくちぎれて液滴になって浮上していき、浮上の過程で広い範囲の海水により十分に希釈されて溶解される。
【0025】
このため、供給管2から離れた位置でノズル17から液体CO2が放出されると共に液体CO2はノズル17の外周面に沿って後流方向に流れるため、液滴が供給管2や分岐管16の後流側のカルマン渦の影響を受けることなく広い範囲の海水により十分に希釈されて溶解される。また、ノズル17を多数設けることができるので、更に大量の液体CO2を放出することができ、更に効率良く液体CO2を放出することが可能になる。
【0026】
図7、図8に基づいて本発明の第4実施形態例及び第5実施形態例に係る放出部21,22を説明する。図7には第4実施形態例に係る放出部21の正面状態、図8には第5実施形態例に係る放出部22の正面状態を示してある。
【0027】
図7に示した放出部21は、図5に示した放出部15に対して、ノズル17の位置を各分岐管16毎にずらして設けた構成になっている。また、図8に示した放出部22は、図5に示した放出部15に対して分岐管16を斜め下方に傾斜して設けた構成になっている。尚、図7中のVI-VI 線矢視及び図8中のVI-VI 線矢視は図6の状態と同一となる。放出部21,22共に、第3実施形態例と同様の効果を奏する。
【0028】
図9に基づいて本発明の第6実施形態例に係る放出部25を説明する。図9には本発明の第6実施形態例に係る放出部25の正面状態を示してある。
【0029】
図9に示すように、供給管2の下端には二股の分岐管26が設けられ、二股の分岐管26にわたり偏平形状の第2分岐管27が3段設けられている。各第2分岐管27にはノズル17が4個づつそれぞれ接続されている。各ノズル17は個別の配管によって供給管2内とつながっている。尚、図9中のVI-VI 線矢視は図6の状態と同一となる。図9に示した放出部25も第3実施形態例と同様の効果を奏する。
【0030】
図5乃至図9に示した放出部において、ノズル17に代えて図2乃至図4に示した後方に放流口7を有するノズル5を適用し、進行方向の後流側に液体CO2を放流するように構成することも可能である。
【0031】
図10乃至図18に基づいてノズルと供給管2内との配管状況を説明する。
【0032】
図10乃至図12は、図5に示した放出部15、図7に示した放出部21及び図8に示した放出部22に適用可能な例であり、図10乃至図12には放出部15にノズル5を設けた場合を示してある。図10には供給管2下部部位の要部断面、図11には図10中のXI-XI 線矢視、図12には図10中のXII-XII 線矢視を示してある。
【0033】
図に示すように、供給管2の下部には分配板31が挿入されて設けられ、分配板31には略等径の分配穴32がノズル5と同数設けられている。各分配穴32には連通手段としての分配管33がそれぞれ挿入され、各分配管33は分岐管16内を通って各ノズル5に接続されている。尚、図示は省略してあるが、分配穴32はノズル5と同数設けられ、全てのノズル5に分配管33が接続されている。分配板31、分配穴32及び分配管33により圧力均一化手段が構成されている。
【0034】
上記構成によると、供給管2の断面積に比べて分配穴32の開口面積(合計面積)が小さいため、分配板31により液体CO2の流れがせき止められて分配板31の前側の圧力が均一化する。このため、各分配穴32に均等に液体CO2が流入し、各ノズル5から均等に液体CO2が放出されるようになる。
【0035】
図13、図14は、図5に示した放出部15、図7に示した放出部21及び図8に示した放出部22に適用可能な例である。図13には供給管2下部部位の要部断面、図14(a) には図13中のa-a 線矢視、図14(b) には図13中のb-b線矢視を示してある。
【0036】
図に示すように、供給管2の下部には3枚の円盤状の仕切り板としての分配板35,36,37が挿入されて設けられ、中段及び下段の分配板36,37は分岐管16の分岐部の間に位置して設けられている。分配板35,36,37には略等径の分配穴38が各段のノズル(図示省略)と同数(図示例では6個)設けられている。上2段の分配板35,36には分配穴38の他に分配穴38と略同径の連通穴としての貫通穴39が設けられている。
【0037】
貫通穴39により、分配管16が設けられる供給管2の部位である分配板35の上部と、分配板35,36の間と、分配板36,37の間とが直列に連通されている。つまり、貫通穴39は、供給管2の部位に前流側から順次連通する連通穴となっている。各分配穴38には分配管40(簡単のため単線で示してある)がそれぞれ挿入され、各分配管40は分岐管16を通って各ノズルに接続されている(図示は省略してあるが全てのノズルに対応して分配管40が設けられている)。分配板35,36,37、分配穴38、貫通穴39及び分配管40により圧力均一化手段が構成されている。
【0038】
上記構成によると、液体CO2は分配板35,36の貫通穴39を通って下側の各部屋に流入し、複雑な配管を設けることなく各段の分配板35,36,37で圧力が均一化する。このため、各分配管40に均等に液体CO2が流入し、各ノズルから均等に液体CO2が放出されるようになる。
【0039】
図15、図16は、図5に示した放出部15、図7に示した放出部21及び図8に示した放出部22に適用可能な例である。図15には供給管2下部部位の要部断面、図16(a) には図15中のa-a 線矢視、図16(b) には図15中のb-b線矢視、図16(c) には図15中のc-c 線矢視、図16(d) には図15中のd-d線矢視を示してある。
【0040】
図に示すように、供給管2の下部には4枚の円盤状の仕切り板としての分配板41,42,43,44が挿入されて設けられ、下側2段の分配板43,44は分岐管16の分岐部の間に位置して設けられている。最上段の分配板41には(分岐管16の段数:図示例では3)の数で略同径の連通穴としての貫通穴45,46,47が設けられている。2段目の分配板42にはノズル(図示省略)と同数(図示例では6個)の分配穴48が設けられると共に、貫通穴46,47が設けられている。3段目の分配板43にはその次の段のノズル(図示省略)と同数(図示例では6個)の分配穴48が設けられると共に、貫通穴47が設けられている。最下段の分配板44にはその次のノズル(図示省略)と同数(図示例では6個)の分配穴48が設けられている。貫通穴45,46,47及び分配穴48はそれぞれ略同径となっている。尚、貫通穴45,46,47と分配穴48とは必ずしも略同径でなくてもよい。
【0041】
最上段の分配板41と2段目の分配板42の貫通穴46は連通管51で接続され、最上段の分配板41と2段目の分配板42と3段目の分配板43の貫通穴47は連通管52で接続されている。貫通穴45,46,47及び連通管51,52により、分配板41,42の間と、分配板42,43の間と、分配板43,44の間とが並列に連通されている。つまり、供給管のそれぞれの部位が個別に連通された状態になっている。各分配穴48には分配管53(簡単のため単線で示してある)がそれぞれ挿入され、各分配管53は分岐管16を通って各ノズルに接続されている(図示は省略してあるが全てのノズルに対応して分配管53が設けられている)。分配板41,42,43,44、貫通穴45,46,47、分配穴48、連通管51,52及び分配管53により圧力均一化手段が構成されている。
【0042】
上記構成によると、液体CO2は貫通穴45を通って分配板41の下の部屋へ流入すると共に、貫通穴46及び連通管51を通って分配板42の下の部屋へ流入し、更に、貫通穴47及び連通管52を通って分配板43の下の部屋へ流入し、各段の分配板42,43,44で圧力が均一化する。そして、各分配板42,43,44の分配穴48から分配管53を介して各ノズルに液体CO2が送られる。このため、各分配管53に均等に液体CO2が流入し、各ノズルから均等に液体CO2が放出されるようになっている。
【0043】
本実施形態例では、各ノズルに至るまでの分岐回数が同一であるため、分配板41,42,43,44で仕切られた各部屋毎に圧力損失が増すことがなく、均等配分が更に良好に行われる。
【0044】
図17、図18は、図5に示した放出部15、図7に示した放出部21及び図8に示した放出部22に適用可能な例であり、図17、図18には放出部22にノズル5を設けた場合を示してある。図17には供給管2下部部位の要部断面、図18には図17中のa-a 線矢視を示してある。
【0045】
図に示すように、分岐管16が接続された供給管2の側壁部のそれぞれには、略同径の分配穴61がノズル5の数に応じて複数個(図示例では3個)設けられている。分配穴61には連通手段としての分配管62がそれぞれ挿入され、各分配管62は分岐管16内を通って各ノズル5に接続されている。尚、図示は省略してあるが、分岐管16が接続された供給管2の全ての側壁部に分配穴61が設けられ、全てのノズル5に分配管62が接続されている。分配穴61及び分配管62により圧力均一化手段が構成されている。尚、図17中のXII-XII 線矢視は図12の状態と同一となる。
【0046】
上記構成によると、供給管2の下端が閉じられ供給管2の断面積に比べ分配管62の断面積(合計面積)が小さく、各分配管62は同径のため、液体CO2の流れがせき止められて圧力が均一化されて均等に分配管62に分配される。
【0047】
図19乃至図22に基づいて本発明の第7実施形態例を説明する。図19には本発明の第7実施形態例に係る放出部の正面状態、図20には図19中のP-P 線矢視、図21には図19中のQ-Q-線矢視、図22には図21中のR-R 線矢視を示してある。
【0048】
図示の放出部71は、供給管2の下端に円形筒型の分配装置72が連結され、分配装置72は多数の仕切壁73によって複数(図示例では12)の扇型の分配室74が形成されている。各分配室74は中心部で供給管2にそれぞれ連通している。従って、分配装置72の姿勢に拘らず供給管2から送られる液体CO2は各分配室74に均等に流入するようになっている。
【0049】
各分配室74には分配管75が連結され、同一流線上の分配管75を2本一組として分配管75の下端は一つのノズル76につながっている。即ち、分配装置72は各分配管75を介して6個のノズル76が連結している。ノズル76はそれぞれ側面形状が矩形をなすと共に(図21参照)平面形状が流線形をなし(図22参照)、後流側の流れを乱さない形状となっている。そして、各ノズル76には分配管75につながる流路77が形成され、流路77の後流側に放出口78が形成されている。
【0050】
上記構成の放出部71では、分配装置72の分配室74に液体CO2が均等に流入し、分配管75を介してノズル76に送られ、液体CO2は流路77を通って放出口78から放出されて液滴になる。このため、複数(図示例では6個)のノズル76から均等に効率良く液体CO2を放出することができる。また、ノズル76は供給管2から離れて設置され、後流側の流れを乱さない形状となっているので、液滴が供給管2の後流側のカルマン渦の影響を受けることなく広い範囲の海水により十分に希釈されて溶解される。
上述した希釈放流装置は、供給管には少なくとも一つの分配管が設けられ、分配管に複数のノズルが設けられているので、効率良く液体二酸化炭素を放流することが可能になる。
【0051】
【発明の効果】
本発明の二酸化炭素の海洋への希釈放流装置は、二酸化炭素の希釈放流装置において、海上を航走する船舶から海中に吊り下げられる供給管と、前記供給管に接続され前記船舶の航走方向に沿った軸線を有し該軸線の軸方向に延びる流路を有して一端に放流口が備えられたノズルとを設け、前記供給管から液体二酸化炭素を前記ノズルの流路に供給し前記放流口から液体二酸化炭素を海中に放出するようにしたので、ノズルから液体二酸化炭素が水平柱状で放出され、その後、液滴になって浮上し、液滴が供給管の後流側のカルマン渦の影響を受けることなく広い範囲の海水により十分に希釈されて溶解される。この結果、局所的に二酸化炭素濃度の高いところが存在せず、海洋生物に悪影響をおよぼす虞がない。また、ノズルは1個で従来の細孔の数百個分の放出量を確保することができ、放流のための管に非常に多く(数万個)の細孔を明ける必要がなくなり、装置の製作が容易となる。従って、多数の孔をあけることなく所望の径の液滴が得られ、しかも、液滴が巻き込み乱れ流により機械される虞のない二酸化炭素の希釈放流装置とすることが可能となる。
【0052】
た、前記供給管には少なくとも一つの分配管が設けられ、前記分配管に複数のノズルが設けられているので、効率良く液体二酸化炭素を放流することが可能になる。また、前記供給管には複数の分配管が設けられ、前記供給管の前記分配管が設けられる位置より前流側に圧力均一化手段を設け、前記供給管のそれぞれの部位の内部の液体二酸化炭素がそれぞれ略均一状態の圧力となるようにしたので、効率良くしかも均一に液体二酸化炭素を放流することが可能になる。
【0053】
また、前記圧力均一化手段は、前記ノズルの数に対応した複数の穴が形成された円盤状の仕切り板と、該仕切り板の穴と各ノズルを個別に連通する連通手段とから構成されているので、複雑な配管を用いることなく均一に液体二酸化炭素を放流することが可能になる。
【0054】
また、前記圧力均一化手段は、前記供給管の前記分配管が設けられるそれぞれの前流側の部位を仕切る円盤状の仕切り板と、該仕切り板に設けられ前記分配管が設けられる前記供給管のそれぞれの部位を直列に連通する連通穴とから構成され、複数の前記ノズルが配管を介して個別に前記ノズルの数に対応した複数の穴と連通されているので、簡単な構成で均一に液体二酸化炭素を放流することが可能になる。
【0055】
また、前記圧力均一化手段は、前記供給管の前記分配管が設けられるそれぞれの前流側の部位を仕切る円盤状の仕切り板と、該仕切り板に設けられ前記分配管が設けられる前記供給管のそれぞれの部位を並列に連通する連通手段とから構成され、複数のノズルが配管を介して個別に前記ノズルの数に対応した複数の穴と連通されているので、ノズルに至るまでの分岐回数が同一になり、圧力損失の影響を受けることなく均一に液体二酸化炭素を放流することが可能になる。
【0056】
更に、前記分配管は前記ノズルの軸線方向に沿う断面が流線形をなしているので、ノズル自体で流れを乱す虞がなくなる。
【図面の簡単な説明】
【図1】本発明の第1実施形態例に係る二酸化炭素の希釈放流装置の概略を説明する全体構成図。
【図2】放出部3の詳細図。
【図3】図2中のIII-III 線矢視図。
【図4】本発明の第2実施形態例に係る放出部11の正面図。
【図5】本発明の第3実施形態例に係る放出部15の正面図。
【図6】図5中のVI-VI 線矢視図。
【図7】本発明の第4実施形態例に係る放出部21の正面図。
【図8】本発明の第5実施形態例に係る放出部22の正面図。
【図9】本発明の第6実施形態例に係る放出部25の正面図。
【図10】供給管2下部部位の要部断面図。
【図11】図10中のXI-XI 線矢視図。
【図12】図10中のXII-XII 線矢視図。
【図13】供給管2下部部位の要部断面図。
【図14】図13中のa-a 線矢視図及び図13中のb-b 線矢視図。
【図15】供給管2下部部位の要部断面図。
【図16】図15中のa-a 線矢視図及び図15中のb-b 線矢視図及び図15中のc-c 線矢視図及び図15中のd-d 線矢視図。
【図17】供給管2下部部位の要部断面図。
【図18】図17中のa-a 線矢視図。
【図19】本発明の第7実施形態例に係る放出部22の正面図。
【図20】図19中のP-P 線矢視図。
【図21】図19中のQ-Q 線矢視図。
【図22】図21中のR-R 線矢視図。
【符号の説明】
1 船舶(作業船)
2 供給管
3,11,15,21,22,25,71 放出部
4,16,26 分岐管
5,17,76 ノズル
6,18,77 流路
7,19,78 放流口
12,27 第2分岐管
31,35,36,37,41,42,43,44 分配板
32,38,48,61 分配穴
33,40,53,62,75 分配管
39,46,47 貫通穴
51,52 連通管
72 分配装置
73 仕切壁
74 分配室
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for diluting and releasing carbon dioxide, which discharges recovered carbon dioxide into the sea and dissolves it in seawater.
[0002]
[Prior art]
In recent years, global warming has become a major problem, and along with this, carbon dioxide (CO2It is becoming important to suppress the rise in the concentration of) in the atmosphere. CO2As one of the measures to suppress the increase in the concentration of air in the atmosphere, CO in the combustion exhaust gas emitted from business establishments etc.2Liquid carbon dioxide (liquid CO2) Recovered as liquid CO2CO into the sea for a long time2Proposals have been proposed for the isolation of air from the atmosphere. Liquid CO2When sending water into the sea, it is necessary to prevent new environmental impacts on the ocean.
[0003]
CO with reduced marine environmental impact2As one of the devices that send water into the sea, there is a device called a dissolution diffusion type. This equipment is CO2Dissolved in seawater, diluted thinly and diffused widely,2Is a device that suppresses the increase in the concentration of CO, which is originally dissolved in seawater2This is based on the idea that the concentration of cereals only rises to some extent. As a conventional device in this dissolution diffusion type, CO2CO in mid-sea underwater2A device for discharging water is known.
[0004]
A conventional carbon dioxide dilution and discharge apparatus is configured such that a discharge pipe is suspended from a work boat on the sea to a depth of 1000 m to 2500 m, and a plurality of holes are provided at the lower end of the discharge pipe. Then, while running the work ship, liquid CO2Liquid CO into the sea from the many holes at the bottom.2To be released. Liquid CO released into the sea2Are dispersed as a large number of droplets and are mixed with seawater substantially uniformly. That is, the liquid droplets rise slowly while being dissolved in the surrounding seawater at the rear side of the discharge pipe, and are dissolved in the seawater while rising, the diameter is reduced, and the liquid CO is raised to a predetermined height.2All melt into the sea. As a result, the discharged liquid CO2Dissolves into the sea in a sufficiently diluted state.
[0005]
Like this, liquid CO2After being discharged into the sea, the liquid droplets need to be gradually raised to a certain height, and the liquid CO sent to the speed of the work ship and the discharge pipe2Based on the pressure, etc., a droplet having a predetermined diameter (for example, a diameter of 10 mm) is discharged. If the diameter of the droplet is small, the number of droplets increases, and the surface area of the entire droplet increases, so that it will melt into the sea before rising to a predetermined height. When the number of holes is small, the pressure in the discharge pipe becomes high and the droplets discharged from the holes become mist-like, and it is necessary to lower the pressure to obtain droplets of a desired size, which is inefficient . For this reason, a large number of holes are provided in the lower end portion of the discharge pipe so that droplets of a predetermined size can be obtained.
[0006]
[Problems to be solved by the invention]
In a conventional carbon dioxide dilution and discharge apparatus, a large number of holes are provided in a discharge pipe so as to obtain droplets having a desired diameter. However, it is necessary to make a large number of holes (for example, tens of thousands) in the discharge pipe, and it is difficult to manufacture the discharge pipe. In addition, a turbulent entanglement occurs on the rear side of the discharge pipe with the navigation of the work ship and the ocean current, that is, a Karman vortex is generated, and even if a droplet of a desired diameter is obtained, the droplet is entangled in the Karman vortex It is destroyed and miniaturized, and a sufficient flying distance cannot be obtained, so that the liquid droplets cannot be dispersed and dissolved in the sea.2There was a risk that the dilution of the above could not be performed sufficiently.
[0007]
The present invention has been made in view of the above situation, and it is possible to obtain a droplet having a desired diameter without opening a large number of holes, and to a carbon dioxide ocean where there is no risk of the droplet being involved and being destroyed by a turbulent flow. An object of the present invention is to provide a dilution and discharge apparatus.
[0008]
[Means for Solving the Problems]
In the present invention,In a carbon dioxide dilution / release apparatus, a supply pipe suspended from a ship traveling on the sea into the sea and an axis connected to the supply pipe and extending along the traveling direction of the ship extend in the axial direction of the axis A nozzle having a flow path and provided with a discharge port at one end thereof, supplying liquid carbon dioxide from the supply pipe to the flow path of the nozzle and discharging liquid carbon dioxide from the discharge port into the sea AndThe supply pipe is provided with at least one distribution pipe, and the distribution pipe is provided with a plurality of nozzles.
[0009]
According to a first aspect of the present invention for achieving the above object, in the dilution and discharge apparatus for carbon dioxide, a supply pipe suspended from a ship traveling on the sea to the sea, and the ship connected to the supply pipe And a nozzle having a flow path extending in the axial direction of the axis and having a discharge port at one end, a plurality of branch pipes being provided in the supply pipe, and the supply TubeSaid branch pipeIs provided on the upstream side of the position where the liquid carbon dioxide is provided, so that the liquid carbon dioxide in each part of the supply pipe has a substantially uniform pressure, and the liquid carbon dioxide is supplied from the supply pipe. It supplies to the flow path of a nozzle, and discharge | releases a liquid carbon dioxide in the sea from the said discharge port, It is characterized by the above-mentioned.
[0010]
And in Claim 2, in Claim 1, the said pressure equalizing means is a disk-shaped partition plate in which a plurality of holes corresponding to the number of the nozzles are formed, the holes of the partition plate, and the nozzles individually. It is comprised from the communication means connected to.
According to a third aspect of the present invention, the pressure equalizing means according to the second aspect is provided with a disk-shaped partition plate for partitioning each upstream side portion where the branch pipe of the supply pipe is provided, and the partition plate. Each of the supply pipes provided with the branch pipes is configured with communication holes that sequentially communicate with the supply pipe parts from the upstream side, and a plurality of the nozzles are individually provided via the pipes. It is characterized by communicating with a plurality of holes corresponding to.
According to a fourth aspect of the present invention, the pressure equalizing means according to the second aspect is provided with a disk-shaped partition plate for partitioning each upstream side portion of the supply pipe where the branch pipe is provided, and the partition plate. A plurality of nozzles individually communicating with a plurality of holes corresponding to the number of the nozzles via a pipe. It is characterized by being.
According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the section of the branch pipe along the axial direction of the nozzle is streamlined.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an overall configuration for explaining an outline of a dilution and discharge apparatus for carbon dioxide to the ocean according to a first embodiment of the present invention, FIG. 2 shows details of a discharge section, and FIG. 3 shows III- in FIG. Shown in line III.
[0012]
As shown in FIG. 1, a ship (working ship) 1 sailing on the sea has liquid carbon dioxide (liquid CO2) Is provided, and the work ship 1 is provided with a supply pipe 2 that is suspended in the sea. The supply pipe 2 is suspended in the sea at a depth of 1000 m to 2500 m, and can be towed by the sailing of the work boat 1. Discharge section 3 is provided at the lower end of supply pipe 2, and liquid CO sent from tank 1a through supply pipe 22Is discharged from the discharge portion 3 into the sea. Liquid CO discharged from the discharge section 3 into the sea2Are dispersed as a large number of droplets and are mixed with seawater substantially uniformly. That is, the liquid droplets rise slowly while being dissolved in the surrounding seawater at the rear side of the discharge pipe, and are dissolved in the seawater while rising, the diameter is reduced, and the liquid CO is raised to a predetermined height.2All melt into the sea. As a result, the discharged liquid CO2Dissolves into the sea in a sufficiently diluted state.
[0013]
The discharge part 3 is demonstrated in detail based on FIG. 2, FIG.
[0014]
As shown in FIG. 2, the lower end of the supply pipe 2 has a branch pipe 4 as a circular distribution pipe having a diameter smaller than that of the supply pipe 2 in the horizontal direction perpendicular to the traveling direction of the work ship 1 (see FIG. 1). The nozzle 5 is connected to both ends of the branch pipe 4. The branch pipe 4 is not limited to a circular tube, and a flat pipe can be used. As shown in FIG. 3, the nozzle 5 has an axis P along the traveling direction of the work boat 1 (see FIG. 1), and is provided with a cylindrical flow path 6 extending in the axial direction of the axis P. The flow path 6 is opened at the rear side (one end) in the traveling direction of the work boat 1 (see FIG. 1) to form a discharge port 7. The nozzle 5 has a shape that does not disturb the flow, that is, a shape in which the front end and the rear end are rounded.
[0015]
In the dilution and discharge apparatus having the above configuration, liquid CO2Is supplied from the supply pipe 2 and sent to the nozzle 5 through the branch pipe 4, and then, from the rear end outlet 7 through the flow path 6 toward the rear (the direction opposite to the traveling direction of the nozzle 5, that is, the wake direction). Liquid CO2Release. Then, as shown in FIG. 3, liquid CO2Becomes a horizontal columnar shape in seawater, which gradually becomes turbulent, and eventually breaks up into fine droplets due to the turbulence and interfacial tension. Is done.
[0016]
According to the dilution / discharge device having the above configuration, liquid CO is discharged from the nozzle 5 at a position separated from the supply pipe 2 by the branch pipe 4.2Is discharged in the form of a horizontal column and then floats in the form of droplets, so that the droplets are sufficiently diluted and dissolved by a wide range of seawater without being affected by the Karman vortex on the downstream side of the supply pipe 2. . Therefore, the local droplet does not have a high carbon dioxide concentration, and there is no possibility of adversely affecting marine life. Further, since the nozzle 5 has a cylindrical flow path 6 and a discharge opening 7 that opens on the rear side, it is possible to secure the discharge amount of several hundred conventional pores with one nozzle 5. This eliminates the need to open a very large number (tens of thousands) of pores in the discharge pipe, making the device easier to manufacture.
[0017]
Another embodiment of the discharge part will be described with reference to FIGS. 4 to 22 show a discharge part according to another embodiment of the present invention. In each embodiment, the same members as those shown in FIGS. 1 to 3 are denoted by the same reference numerals, and redundant description is omitted.
[0018]
The discharge unit 11 according to the second embodiment will be described with reference to FIG. FIG. 4 shows a front state of the discharge section 11 according to the second embodiment of the present invention.
[0019]
In the illustrated discharge section 11, a circular branch pipe 4 is attached to the lower end of the supply pipe 2, and the branch pipe 4 is provided with four second branch pipes 12 extending further downward. Nozzles 5 are respectively connected to the lower ends of the second branch pipes 12, and the nozzles 5 are connected to the inside of the supply pipe 2 by individual pipes. The second branch pipe 12 may be further flattened in order to minimize turbulence on the wake side. In addition, the III-III arrow line in FIG. 4 becomes the same as the state of FIG.
[0020]
Liquid CO from the nozzle 5 at a position away from the supply pipe 2 by the branch pipe 42Are released into droplets, and the droplets are sufficiently diluted and dissolved by a wide range of seawater without being affected by the Karman vortex on the downstream side of the supply pipe 2. In addition, since the four nozzles 5 are provided by the second branch pipe 12, a large amount of liquid CO2Can efficiently discharge liquid CO2Can be released.
[0021]
A discharge unit 15 according to a third embodiment of the present invention will be described with reference to FIGS. FIG. 5 shows a front state of the discharge portion 15 according to the third embodiment, and FIG. 6 shows a view taken along line VI-VI in FIG.
[0022]
As shown in FIG. 5, the lower end of the supply pipe 2 is provided with three stages of branch pipes 16 extending in the horizontal direction perpendicular to the traveling direction of the work boat 1 (see FIG. 1). Are connected by three each. Each nozzle 17 is connected to the inside of the supply pipe 2 by individual piping. As shown in FIG. 6, the branch pipe 16 has a flat shape, and the nozzle 17 has an axis P along the traveling direction of the work boat 1 (see FIG. 1) and extends in the axial direction of the axis P. A flow path 18 is provided. The flow path 18 is opened on the front side in the traveling direction of the work boat 1 (see FIG. 1) to form a discharge port 19. The shape of the nozzle 17 is a streamline that does not disturb the flow.
[0023]
The mounting pitch of the three-stage branch pipe 16 with respect to the supply pipe 2 is set to a length that is two to three times the diameter of the nozzle 17, for example. Further, the mounting pitch of the nozzles 17 in each branch pipe 16 is set to a length 4 to 6 times the diameter of the nozzles 17, for example.
[0024]
The discharge unit 15 shown in the drawing is forward from the discharge port 19 at the front end through the flow path 18 of each nozzle 17 (the traveling direction of the nozzle 17) due to the relative speed difference between the traveling speed of the work boat 1 (see FIG. 1) and the discharge speed. Toward liquid CO2Is released. Then, as shown in FIG.2Flows in the wake direction along the outer peripheral surface of the nozzle 17 and becomes a horizontal columnar shape in the seawater in the same manner as in FIG. 3, and is gradually turbulent. As it ascends, it is sufficiently diluted and dissolved by a wide range of seawater during the ascent process.
[0025]
For this reason, liquid CO is discharged from the nozzle 17 at a position away from the supply pipe 2.2Is released and liquid CO2Flows in the wake direction along the outer peripheral surface of the nozzle 17, so that the droplet is sufficiently diluted and dissolved by a wide range of seawater without being affected by the Karman vortex on the wake side of the supply pipe 2 or the branch pipe 16. Is done. In addition, since a large number of nozzles 17 can be provided, a larger amount of liquid CO2Liquid CO.2Can be released.
[0026]
The discharge parts 21 and 22 according to the fourth embodiment and the fifth embodiment of the present invention will be described with reference to FIGS. FIG. 7 shows a front state of the discharge part 21 according to the fourth embodiment, and FIG. 8 shows a front state of the discharge part 22 according to the fifth embodiment.
[0027]
The discharge part 21 shown in FIG. 7 has a configuration in which the position of the nozzle 17 is shifted for each branch pipe 16 with respect to the discharge part 15 shown in FIG. Further, the discharge portion 22 shown in FIG. 8 has a configuration in which the branch pipe 16 is inclined obliquely downward with respect to the discharge portion 15 shown in FIG. The VI-VI arrow in FIG. 7 and the VI-VI arrow in FIG. 8 are the same as the state in FIG. Both the discharge parts 21 and 22 have the same effect as the third embodiment.
[0028]
A discharge unit 25 according to a sixth embodiment of the present invention will be described based on FIG. FIG. 9 shows a front state of the discharge section 25 according to the sixth embodiment of the present invention.
[0029]
As shown in FIG. 9, a bifurcated branch pipe 26 is provided at the lower end of the supply pipe 2, and three flat second branch pipes 27 are provided across the bifurcated branch pipe 26. Four nozzles 17 are connected to each second branch pipe 27, respectively. Each nozzle 17 is connected to the inside of the supply pipe 2 by individual piping. In addition, the VI-VI line arrow view in FIG. 9 becomes the same as the state of FIG. The discharge part 25 shown in FIG. 9 also has the same effect as the third embodiment.
[0030]
In the discharge part shown in FIGS. 5 to 9, the nozzle 5 having the discharge port 7 on the rear side shown in FIGS. 2 to 4 is applied instead of the nozzle 17, and the liquid CO is disposed on the downstream side in the traveling direction.2It is also possible to configure so as to discharge the water.
[0031]
The piping situation between the nozzle and the supply pipe 2 will be described with reference to FIGS.
[0032]
10 to 12 are examples applicable to the discharge unit 15 shown in FIG. 5, the discharge unit 21 shown in FIG. 7, and the discharge unit 22 shown in FIG. 8. FIG. 10 to FIG. 15 shows a case where the nozzle 5 is provided. 10 shows a cross section of the main part of the lower portion of the supply pipe 2, FIG. 11 shows a view taken along the line XI-XI in FIG. 10, and FIG. 12 shows a view taken along the line XII-XII in FIG.
[0033]
As shown in the drawing, a distribution plate 31 is inserted and provided in the lower part of the supply pipe 2, and the distribution plate 31 is provided with the same number of distribution holes 32 as the nozzles 5. Each distribution hole 32 has aAs a means of communicationEach distribution pipe 33 is inserted, and each distribution pipe 33 passes through the branch pipe 16 and is connected to each nozzle 5. Although not shown, the same number of distribution holes 32 as the nozzles 5 are provided, and distribution pipes 33 are connected to all the nozzles 5. The distribution plate 31, the distribution hole 32 and the distribution pipe 33 constitute pressure equalizing means.
[0034]
According to the above configuration, since the opening area (total area) of the distribution hole 32 is smaller than the cross-sectional area of the supply pipe 2, liquid CO2The flow on the front side of the distribution plate 31 is made uniform. For this reason, liquid CO is equally distributed in each distribution hole 32.2Flows in and evenly liquid CO from each nozzle 52Will be released.
[0035]
FIGS. 13 and 14 are examples applicable to the discharge section 15 shown in FIG. 5, the discharge section 21 shown in FIG. 7, and the discharge section 22 shown in FIG. 13 shows a cross-section of the main part of the lower portion of the supply pipe 2, FIG. 14 (a) shows an aa arrow view in FIG. 13, and FIG. 14 (b) shows a bb arrow view in FIG.
[0036]
As shown in the drawing, at the lower part of the supply pipe 2, three distribution plates 35, 36, 37 as disc-shaped partition plates are inserted, and the middle and lower distribution plates 36, 37 are provided in the branch pipe 16. Between the two branches. The distribution plates 35, 36, and 37 are provided with the same number (6 in the illustrated example) of distribution holes 38 having substantially the same diameter as the nozzles (not shown) at each stage. In addition to the distribution holes 38, the upper two distribution plates 35 and 36 are provided with through holes 39 as communication holes having substantially the same diameter as the distribution holes 38.
[0037]
Through the through hole 39, the upper part of the distribution plate 35, which is the portion of the supply pipe 2 where the distribution pipe 16 is provided, the distribution plates 35 and 36, and the distribution plates 36 and 37 are connected in series.That is, the through hole 39 is a communication hole that sequentially communicates with the portion of the supply pipe 2 from the upstream side.Each distribution hole 38 is inserted with a distribution pipe 40 (shown by a single line for simplicity), and each distribution pipe 40 is connected to each nozzle through the branch pipe 16 (not shown). Distribution pipes 40 are provided corresponding to all nozzles). The distribution plates 35, 36, 37, the distribution holes 38, the through holes 39 and the distribution pipes 40 constitute pressure equalizing means.
[0038]
According to the above configuration, liquid CO2Flows into the lower chambers through the through holes 39 of the distribution plates 35, 36, and the pressure is made uniform by the distribution plates 35, 36, 37 at each stage without providing complicated piping. For this reason, liquid CO is evenly distributed to each distribution pipe 40.2Flows in and evenly liquid CO from each nozzle2Will be released.
[0039]
FIGS. 15 and 16 are examples applicable to the discharge section 15 shown in FIG. 5, the discharge section 21 shown in FIG. 7, and the discharge section 22 shown in FIG. 15 is a cross-sectional view of the main portion of the lower portion of the supply pipe 2, FIG. 16 (a) is a view taken along the line aa in FIG. 15, FIG. 16 (b) is a view taken along the line bb in FIG. ) Shows the cc line arrow in FIG. 15, and FIG. 16 (d) shows the dd line arrow in FIG.
[0040]
As shown in the figure, four distribution plates 41, 42, 43, 44 as disc-shaped partition plates are inserted and provided in the lower part of the supply pipe 2, and the lower two-stage distribution plates 43, 44 are provided. It is provided between the branch portions of the branch pipe 16. The uppermost distribution plate 41 is provided with through holes 45, 46, 47 as communication holes having substantially the same diameter as (the number of stages of the branch pipe 16: 3 in the illustrated example). The second-stage distribution plate 42 is provided with the same number (six in the illustrated example) of distribution holes 48 as nozzles (not shown) and through holes 46 and 47. The third-stage distribution plate 43 is provided with the same number (six in the illustrated example) of distribution holes 48 as the next-stage nozzles (not shown) and through holes 47. The lowermost distribution plate 44 is provided with the same number (six in the illustrated example) of distribution holes 48 as the next nozzle (not shown). The through holes 45, 46, 47 and the distribution hole 48 have substantially the same diameter. The through holes 45, 46, 47 and the distribution hole 48 do not necessarily have substantially the same diameter.
[0041]
The through holes 46 of the uppermost distribution plate 41 and the second-stage distribution plate 42 are connected by a communication pipe 51, and the uppermost distribution plate 41, the second-stage distribution plate 42, and the third-stage distribution plate 43 pass through. The holes 47 are connected by a communication pipe 52. Through the through holes 45, 46, 47 and the communication pipes 51, 52, the distribution plates 41, 42, the distribution plates 42, 43, and the distribution plates 43, 44 are connected in parallel.That is, each part of a supply pipe is in the state where it communicated individually.Each distribution hole 48 is inserted with a distribution pipe 53 (shown as a single line for simplicity), and each distribution pipe 53 is connected to each nozzle through the branch pipe 16 (not shown). Distribution pipes 53 are provided corresponding to all nozzles). The distribution plates 41, 42, 43, 44, the through holes 45, 46, 47, the distribution holes 48, the communication pipes 51, 52 and the distribution pipe 53 constitute pressure equalizing means.
[0042]
According to the above configuration, liquid CO2Flows into the room below the distribution plate 41 through the through hole 45, flows into the room below the distribution plate 42 through the through hole 46 and the communication pipe 51, and further passes through the through hole 47 and the communication pipe 52. It flows into the room below the distribution plate 43, and the pressure is equalized by the distribution plates 42, 43, 44 of each stage. Then, liquid CO is supplied from the distribution holes 48 of the distribution plates 42, 43, 44 to the nozzles via the distribution pipes 53.2Will be sent. For this reason, liquid CO is evenly distributed to each distribution pipe 53.2Flows in and evenly liquid CO from each nozzle2Is to be released.
[0043]
In this embodiment, since the number of branches until reaching each nozzle is the same, the pressure loss does not increase in each room partitioned by the distribution plates 41, 42, 43, 44, and the even distribution is further improved. To be done.
[0044]
17 and 18 are examples applicable to the discharge part 15 shown in FIG. 5, the discharge part 21 shown in FIG. 7, and the discharge part 22 shown in FIG. 8. FIG. 17 and FIG. 22 shows a case where the nozzle 5 is provided. 17 shows a cross-section of the main part of the lower portion of the supply pipe 2, and FIG. 18 shows a view taken along the line aa in FIG.
[0045]
As shown in the drawing, each of the side wall portions of the supply pipe 2 to which the branch pipe 16 is connected is provided with a plurality of (three in the illustrated example) distribution holes 61 having substantially the same diameter according to the number of nozzles 5. ing. In the distribution hole 61As a means of communicationEach distribution pipe 62 is inserted, and each distribution pipe 62 passes through the branch pipe 16 and is connected to each nozzle 5. Although illustration is omitted, distribution holes 61 are provided in all the side walls of the supply pipe 2 to which the branch pipe 16 is connected, and distribution pipes 62 are connected to all the nozzles 5. The distribution hole 61 and the distribution pipe 62 constitute a pressure equalizing means. In addition, the XII-XII line arrow view in FIG. 17 becomes the same as the state of FIG.
[0046]
According to the above configuration, the lower end of the supply pipe 2 is closed and the cross-sectional area (total area) of the distribution pipes 62 is smaller than the cross-sectional area of the supply pipe 2, and each distribution pipe 62 has the same diameter.2The flow is stopped and the pressure is made uniform, and is evenly distributed to the distribution pipe 62.
[0047]
A seventh embodiment of the present invention will be described with reference to FIGS. 19 is a front view of the discharge unit according to the seventh embodiment of the present invention, FIG. 20 is a PP arrow view in FIG. 19, FIG. 21 is a QQ-arrow view in FIG. 19, and FIG. Shows the RR line arrow view in FIG.
[0048]
In the illustrated discharge portion 71, a circular cylindrical distribution device 72 is connected to the lower end of the supply pipe 2, and the distribution device 72 includes a plurality of (12 in the illustrated example) fan-shaped distribution chambers 74 formed by a number of partition walls 73. Has been. Each distribution chamber 74 communicates with the supply pipe 2 at the center. Therefore, liquid CO sent from the supply pipe 2 regardless of the attitude of the distributor 72.2Are uniformly flown into the respective distribution chambers 74.
[0049]
A distribution pipe 75 is connected to each distribution chamber 74, and two lower distribution pipes 75 on the same flow line are grouped, and the lower end of the distribution pipe 75 is connected to one nozzle 76. That is, the distribution device 72 is connected to six nozzles 76 via the distribution pipes 75. Each of the nozzles 76 has a rectangular side surface (see FIG. 21) and a planar shape that is streamlined (see FIG. 22), and has a shape that does not disturb the flow on the wake side. Each nozzle 76 has a flow path 77 connected to the distribution pipe 75, and a discharge port 78 is formed on the downstream side of the flow path 77.
[0050]
In the discharge unit 71 having the above-described configuration, the liquid CO is placed in the distribution chamber 74 of the distribution device 72.2Flows in evenly and is sent to the nozzle 76 through the distribution pipe 75 to form liquid CO.2Are discharged from the discharge port 78 through the flow path 77 and become droplets. For this reason, liquid CO is uniformly and efficiently discharged from a plurality (six in the illustrated example) of nozzles 76.2Can be released. Further, since the nozzle 76 is installed away from the supply pipe 2 and has a shape that does not disturb the flow on the downstream side, the droplets are not affected by the Karman vortex on the downstream side of the supply pipe 2, so that a wide range can be obtained. It is fully diluted with seawater and dissolved.
In the dilution discharge apparatus described above, at least one distribution pipe is provided in the supply pipe, and a plurality of nozzles are provided in the distribution pipe, so that liquid carbon dioxide can be discharged efficiently.
[0051]
【The invention's effect】
The dilute / release device for carbon dioxide of the present invention is a dilute / discharge device for carbon dioxide, wherein the supply pipe is suspended in the sea from a ship traveling on the sea, and the traveling direction of the ship is connected to the supply pipe. A nozzle having a flow path extending in the axial direction of the axis and having a discharge port at one end, and supplying liquid carbon dioxide from the supply pipe to the flow path of the nozzle. Since liquid carbon dioxide was released from the outlet into the sea, the liquid carbon dioxide was released from the nozzle in the form of a horizontal column, and then floated as droplets, which dropped into the Karman vortex on the downstream side of the supply pipe. It is sufficiently diluted and dissolved by a wide range of seawater without being affected by water. As a result, there is no local high carbon dioxide concentration, and there is no risk of adversely affecting marine life. In addition, a single nozzle can secure the discharge amount of several hundreds of conventional pores, eliminating the need for opening a very large number (tens of thousands) of pores in the discharge pipe. Is easy to manufacture. Accordingly, a droplet having a desired diameter can be obtained without making a large number of holes, and a carbon dioxide dilution and discharge device can be obtained in which there is no fear that the droplet is entrained and machined by the turbulent flow.
[0052]
MaIn addition, since at least one distribution pipe is provided in the supply pipe and a plurality of nozzles are provided in the distribution pipe, it is possible to efficiently discharge liquid carbon dioxide. Further, the supply pipe is provided with a plurality of distribution pipes, pressure equalizing means is provided on the upstream side of the supply pipe at a position where the distribution pipe is provided, and the liquid dioxide inside each part of the supply pipe is provided. Since the pressures of the carbons are approximately uniform, the liquid carbon dioxide can be discharged efficiently and uniformly.
[0053]
The pressure equalizing means includes a disk-shaped partition plate in which a plurality of holes corresponding to the number of nozzles are formed, and communication means for individually communicating the holes of the partition plate and each nozzle. Therefore, liquid carbon dioxide can be discharged uniformly without using complicated piping.
[0054]
In addition, the pressure equalizing means includes a disk-shaped partition plate that divides each upstream portion of the supply pipe provided with the distribution pipe, and the supply pipe provided with the distribution pipe provided on the partition plate Since each of the plurality of nozzles is communicated with a plurality of holes corresponding to the number of the nozzles individually through a pipe, the plurality of nozzles are communicated in series with each other. It becomes possible to release liquid carbon dioxide.
[0055]
In addition, the pressure equalizing means includes a disk-shaped partition plate that divides each upstream portion of the supply pipe provided with the distribution pipe, and the supply pipe provided with the distribution pipe provided on the partition plate Since the plurality of nozzles are individually connected to the plurality of holes corresponding to the number of the nozzles through the pipe, the number of branches until reaching the nozzles is configured. And the liquid carbon dioxide can be discharged uniformly without being affected by pressure loss.
[0056]
Furthermore, since the distribution pipe has a streamlined cross section along the axial direction of the nozzle, there is no possibility that the nozzle itself disturbs the flow.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram illustrating an outline of a carbon dioxide dilution / release apparatus according to a first embodiment of the present invention.
FIG. 2 is a detailed view of the discharge unit 3;
3 is a view taken along line III-III in FIG.
FIG. 4 is a front view of a discharge unit 11 according to a second embodiment of the present invention.
FIG. 5 is a front view of a discharge unit 15 according to a third embodiment of the present invention.
6 is a view taken along the line VI-VI in FIG. 5;
FIG. 7 is a front view of a discharge section 21 according to a fourth embodiment example of the present invention.
FIG. 8 is a front view of a discharge section 22 according to a fifth embodiment of the present invention.
FIG. 9 is a front view of a discharge section 25 according to a sixth embodiment of the present invention.
10 is a cross-sectional view of a main part of a lower part of the supply pipe 2. FIG.
11 is a view taken along line XI-XI in FIG.
12 is a view taken along line XII-XII in FIG.
13 is a cross-sectional view of a main part of a lower part of the supply pipe 2. FIG.
14 is a view taken along the line aa in FIG. 13 and a view taken along the line bb in FIG. 13;
15 is a cross-sectional view of a main part of a lower part of the supply pipe 2. FIG.
16 is a view taken along line aa in FIG. 15, a view taken along line bb in FIG. 15, a view taken along line cc in FIG. 15, and a view taken along line dd in FIG.
17 is a cross-sectional view of a main part of a lower portion of the supply pipe 2. FIG.
18 is a view taken along the line aa in FIG.
FIG. 19 is a front view of a discharge section 22 according to a seventh embodiment of the present invention.
20 is a view taken along the line PP in FIG.
FIG. 21 is a view taken along the line Q-Q in FIG. 19;
22 is a view taken along the line RR in FIG. 21. FIG.
[Explanation of symbols]
1 Vessel (Working Vessel)
2 Supply pipe
3,11,15,21,22,25,71 discharge part
4, 16, 26 Branch pipe
5,17,76 nozzle
6,18,77 flow path
7, 19, 78 Outlet
12, 27 Second branch pipe
31, 35, 36, 37, 41, 42, 43, 44 Distribution plate
32, 38, 48, 61 Distribution hole
33, 40, 53, 62, 75 minutes piping
39, 46, 47 Through hole
51,52 communication pipe
72 Dispensing device
73 partition wall
74 Distribution room

Claims (5)

二酸化炭素の希釈放流装置において、海上を航走する船舶から海中につり下げられる供給管と、前記供給管に接続され前記船舶の航走方向に沿った軸線を有し該軸線の軸方向に延びる流路を有して一端に放流口が備えられたノズルとを設け、前記供給管に複数の分岐管を設け、前記供給管の前記分岐管が設けられる位置より前流側に圧力均一化手段を設け、前記供給管のそれぞれの部位の内部の液体二酸化炭素がそれぞれ略均一状態の圧力となるようにし、前記供給管から液体二酸化炭素を前記ノズルの流路に供給し前記放流口から液体二酸化炭素を海中に放出することを特徴とする二酸化炭素の海洋への希釈放流装置。In a carbon dioxide dilution / release apparatus, a supply pipe suspended from a ship traveling on the sea into the sea and an axis connected to the supply pipe and extending along the traveling direction of the ship extend in the axial direction of the axis a flow path is provided and a nozzle discharge port provided at one end, a plurality of branch pipes to the supply pipe, the pressure equalizing means prior stream side of the position where the branch pipe of the supply pipe is provided The liquid carbon dioxide inside each part of the supply pipe has a substantially uniform pressure, and the liquid carbon dioxide is supplied from the supply pipe to the flow path of the nozzle, and the liquid carbon dioxide is supplied from the outlet. A device for diluting and releasing carbon dioxide into the ocean, characterized by releasing carbon into the sea. 請求項1において、前記圧力均一化手段は、前記ノズルの数に対応した複数の穴が形成された円盤状の仕切り板と、該仕切り板の穴と各ノズルを個別に連通する連通手段とから構成されていることを特徴とする二酸化炭素の海洋への希釈放流装置。2. The pressure equalizing means according to claim 1, wherein the pressure equalizing means includes a disk-shaped partition plate in which a plurality of holes corresponding to the number of the nozzles are formed, and communication means for individually communicating the holes of the partition plate and each nozzle. A dilute discharge device for carbon dioxide to the ocean, characterized in that it is configured. 請求項2において、前記圧力均一化手段は、前記供給管の前記分岐管が設けられるそれぞれの前流側の部位を仕切る円盤状の仕切り板と、該仕切り板に設けられ前記分岐管が設けられる前記供給管のそれぞれの部位を前記供給管の部位に前流側から順次連通する連通穴とから構成され、複数の前記ノズルが配管を介して個別に前記ノズルの数に対応した複数の穴と連通されていることを特徴とする二酸化炭素の海洋への希釈放流装置。3. The pressure equalizing means according to claim 2, wherein the pressure equalizing means is provided with a disk-shaped partition plate that divides each upstream portion of the supply pipe where the branch pipe is provided, and the branch pipe is provided on the partition plate. A plurality of holes corresponding to the number of the nozzles individually via pipes, each of the supply pipes being configured with communication holes that sequentially communicate with the supply pipe portions from the upstream side. A dilute discharge device of carbon dioxide to the ocean, characterized by being in communication. 請求項2において、前記圧力均一化手段は、前記供給管の前記分岐管が設けられるそれぞれの前流側の部位を仕切る円盤状の仕切り板と、該仕切り板に設けられ前記分岐管が設けられる前記供給管のそれぞれの部位を個別に連通する連通手段とから構成され、複数のノズルが配管を介して個別に前記ノズルの数に対応した複数の穴と連通されていることを特徴とする二酸化炭素の海洋への希釈放流装置。3. The pressure equalizing means according to claim 2, wherein the pressure equalizing means is provided with a disk-shaped partition plate that divides each upstream portion of the supply pipe where the branch pipe is provided, and the branch pipe is provided on the partition plate. And a plurality of nozzles individually connected to a plurality of holes corresponding to the number of the nozzles through a pipe. Carbon dilute release device. 請求項1乃至請求項4のいずれか一項において、前記分岐管は前記ノズルの軸線方向に沿う断面が流線形をなしていることを特徴とする二酸化炭素の海洋への希釈放流装置。5. The apparatus according to claim 1, wherein the branch pipe has a streamlined cross-section along the axial direction of the nozzle.
JP2000000626A 2000-01-06 2000-01-06 Dilution release device for carbon dioxide to the ocean Expired - Fee Related JP3623706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000000626A JP3623706B2 (en) 2000-01-06 2000-01-06 Dilution release device for carbon dioxide to the ocean

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000000626A JP3623706B2 (en) 2000-01-06 2000-01-06 Dilution release device for carbon dioxide to the ocean

Publications (2)

Publication Number Publication Date
JP2001187330A JP2001187330A (en) 2001-07-10
JP3623706B2 true JP3623706B2 (en) 2005-02-23

Family

ID=18529942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000000626A Expired - Fee Related JP3623706B2 (en) 2000-01-06 2000-01-06 Dilution release device for carbon dioxide to the ocean

Country Status (1)

Country Link
JP (1) JP3623706B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4541002B2 (en) * 2004-02-25 2010-09-08 財団法人地球環境産業技術研究機構 Carbon dioxide spraying equipment
JP5007286B2 (en) * 2008-08-07 2012-08-22 大成建設株式会社 Carbon dioxide storage facility and method for underground storage of carbon dioxide
JP2014122563A (en) * 2012-12-20 2014-07-03 Toshiba Corp Floating body type power plant

Also Published As

Publication number Publication date
JP2001187330A (en) 2001-07-10

Similar Documents

Publication Publication Date Title
KR101249166B1 (en) Device for reducing frictional resistance of ship body
KR100318114B1 (en) Friction Reduction Ship and Surface Friction Reduction Method
US5514267A (en) Apparatus for dissolving a gas into and mixing the same with a liquid
JP3849986B2 (en) Gas-liquid dissolving device
WO1994026583A1 (en) Method of reducing friction on cruising body, cruising body with reduced friction, method of and apparatus for generating microbubbles for use in reduction of friction
EP2554469B1 (en) Ship encountering less frictional resistance
JP5825852B2 (en) Fine bubble generating nozzle and fine bubble generating device
KR20130087578A (en) Ship with reduced frictional drag and frictional drag reduction device for ship
JP2007075749A (en) Gas-liquid dissolving apparatus
JP2011088605A (en) Resistance reduction device of ship
JP3623706B2 (en) Dilution release device for carbon dioxide to the ocean
JP2010018027A (en) Inkjet recording device
NO840245L (en) ICE LUBRICATION SYSTEM FOR SHIPS, AND BATTERY PUMP FOR USE FOR THIS.
JP2008018781A (en) Hull friction resistance reducing device
JPH08225094A (en) Microbubble generating device
JP3556812B2 (en) Apparatus for releasing carbon dioxide into the ocean
JP6085474B2 (en) Gas-liquid separator and ship
JPH09151913A (en) Method of reducing friction of ship etc and friction reduced ship
JPH11180380A (en) Friction reduction ship and friction reducing method for hull
JP3556874B2 (en) Apparatus for releasing carbon dioxide from submarine bases
JP2019123282A (en) Bubble generation device
JP2003230826A (en) Liquid carbon dioxide release nozzle
JP2002145171A (en) Frictional resistance reduced type vessel
JPH09240571A (en) Frictional resistance reducing device of ship
JPH08230762A (en) Equipment for generating micro bubble

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041125

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071203

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071203

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071203

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees