JP2019123282A - Bubble generation device - Google Patents

Bubble generation device Download PDF

Info

Publication number
JP2019123282A
JP2019123282A JP2018003688A JP2018003688A JP2019123282A JP 2019123282 A JP2019123282 A JP 2019123282A JP 2018003688 A JP2018003688 A JP 2018003688A JP 2018003688 A JP2018003688 A JP 2018003688A JP 2019123282 A JP2019123282 A JP 2019123282A
Authority
JP
Japan
Prior art keywords
diameter
diameter portion
fluid
generation device
bubble generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018003688A
Other languages
Japanese (ja)
Other versions
JP7064212B2 (en
Inventor
阿部 豊
Yutaka Abe
豊 阿部
昌俊 池
Masatoshi Ike
昌俊 池
伸一郎 上澤
Shinichiro Uesawa
伸一郎 上澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
APPTEX LLC
University of Tsukuba NUC
Original Assignee
APPTEX LLC
University of Tsukuba NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by APPTEX LLC, University of Tsukuba NUC filed Critical APPTEX LLC
Priority to JP2018003688A priority Critical patent/JP7064212B2/en
Publication of JP2019123282A publication Critical patent/JP2019123282A/en
Application granted granted Critical
Publication of JP7064212B2 publication Critical patent/JP7064212B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Abstract

To provide a bubble generation device capable of surely generating fine bubbles without increasing resistance force a vessel receives from water.SOLUTION: A cylindrical bubble generation device provided in a portion positioned below the water line of a vessel includes: an entrance opening having water flow inside; an air-supply unit for supplying gas inside this bubble generation device; a first diameter reduction unit reducing diameter as going from the entrance opening to the rear; a first diameter increasing unit increasing diameter as going from the first diameter reduction unit to the rear; a second diameter reduction unit reducing diameter as going from the first diameter increasing unit to the rear; a second diameter increasing unit increasing diameter as going from the second diameter reduction unit to the rear; and a draining opening for draining gas-liquid mixed phase fluid of water and gas from the second diameter increasing unit. The flow rate of the respective fluids in the first diameter reduction unit and the second diameter reduction unit are increased compared to the average flow rate of the total fluid of the bubble generation device and the flow rate of the fluid in the second diameter reduction unit is supersonic.SELECTED DRAWING: Figure 2

Description

本発明は、気泡生成装置に関する。   The present invention relates to a bubble generator.

従来、船舶に取付けられる気泡生成装置として、例えば下記特許文献1に示すような、船底に固定翼を取付ける構成が知られている。
この気泡生成装置では、船底と固定翼との間の空間に負圧域を発生させるとともに、大気を前記空間に供給して負圧域に吸い込ませることで、水と空気との混相流体内に微細気泡を生成する。
そして、このように生成された微細気泡を、船体と水との界面に介在させることにより、船舶が水から受ける摩擦抵抗を低減し、船舶の燃費の向上を実現することを目的としている。
2. Description of the Related Art Conventionally, as a bubble generating device attached to a ship, for example, a configuration is known in which a fixed wing is attached to the bottom as shown in Patent Document 1 below.
In this air bubble generation device, a negative pressure region is generated in the space between the bottom of the vessel and the fixed wing, and the atmosphere is supplied to the space and sucked into the negative pressure region to enter the mixed phase fluid of water and air. Generates fine air bubbles.
And by interposing the fine air bubbles generated in this way at the interface between the hull and water, it is an object of the present invention to reduce the frictional resistance that the ship receives from water and to improve the fuel efficiency of the ship.

特開2007−131283号公報JP 2007-131283 A

しかしながら、前記従来の気泡生成装置では、固定翼を船底に取付けることで、船舶が水から受ける抵抗力が増加し、かえって燃費が悪くなるおそれがあった。また、船舶の推進動作により、船底と固定翼との間の空間に水が流入される為、船舶の推進速度が低い場合には、前記空間を充分に負圧にすることができず、微細気泡を確実に生成できないおそれがあった。   However, in the conventional air bubble generation device, by attaching the fixed wing to the bottom of the vessel, the resistance that the vessel receives from water is increased, and the fuel efficiency may be deteriorated. In addition, since water is introduced into the space between the bottom of the vessel and the fixed wing by the propulsion operation of the vessel, when the propulsion speed of the vessel is low, the space can not be made sufficiently negative pressure, There was a possibility that bubbles could not be generated reliably.

本発明は前述した事情に鑑みてなされたものであって、船舶が水から受ける抵抗力を増加させることなく、微細気泡を確実に生成することができる気泡生成装置を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and an object thereof is to provide an air bubble generating device capable of reliably generating fine air bubbles without increasing the resistance of a ship from water. .

本発明の一態様は、船舶の船体における喫水線より下方に位置する部分に設けられる筒状の気泡生成装置であって、水が内部に流入する流入口と、この気泡生成装置の内側に気体を供給する給気部と、前記流入口から後方に向かうに従い、縮径する第1縮径部と、前記第1縮径部から後方に向かうに従い、拡径する第1拡径部と、前記第1拡径部から後方に向かうに従い、縮径する第2縮径部と、前記第2縮径部から後方に向かうに従い、拡径する第2拡径部と、前記第2拡径部から、水と気体との混相流体を排出する排出口と、を備え、前記第1縮径部および前記第2縮径部それぞれにおける流体の流速は、気泡生成装置全体における流体の平均流速と比べて増大しているとともに、前記第2縮径部における流体の流速は、超音速となっている。   One aspect of the present invention is a cylindrical bubble generating device provided in a portion of a ship hull located below a draft line, wherein an inlet through which water flows into the interior, and a gas inside the bubble generating device. A supply air supply portion for supplying, a first reduced diameter portion decreasing in diameter toward the rear from the inlet, and a first enlarged diameter portion increasing in diameter toward the rear from the first reduced diameter portion; 1) From a second reduced diameter portion which is reduced in diameter toward the rear from the enlarged diameter portion, a second enlarged diameter portion which is expanded in diameter toward the rear from the second reduced diameter portion, and the second expanded diameter portion And a discharge port for discharging a multiphase fluid of water and gas, wherein the flow velocity of the fluid in each of the first reduced diameter portion and the second reduced diameter portion is increased compared to the average flow velocity of the fluid in the entire bubble generating device. And the flow velocity of the fluid at the second reduced diameter portion is supersonic. That.

また、本発明の一態様は、前述した気泡生成装置において、第2縮径部における流体の流速は、第1縮径部における流体の流速よりも速い。
また、本発明の一態様は、前述した気泡生成装置において、前記流入口は、前記船体における船首から前方に向けて開口している。
Further, according to one aspect of the present invention, in the bubble generation device described above, the flow velocity of the fluid in the second reduced diameter portion is higher than the flow velocity of the fluid in the first reduced diameter portion.
Further, according to one aspect of the present invention, in the above-described bubble generating apparatus, the inflow port is opened forward from a bow of the hull.

また、本発明の一態様は、前述した気泡生成装置において、前記排出口は、前記船体における船底から開口している。
また、本発明の一態様は、前記給気部はマニホールドを備え、前記給気部には、前記船舶の機関部からの排気が流下してもよい。
Further, according to one aspect of the present invention, in the air bubble generation device described above, the discharge port is opened from the bottom of the hull.
In one aspect of the present invention, the air supply unit may include a manifold, and the air from the engine unit of the vessel may flow down to the air supply unit.

また、本発明の一態様は、船舶の船体における喫水線と同等の位置に設けられる筒状の気泡生成装置であって、水および空気などの流体が内部に流入する流入口と、前記流入口から後方に向かうに従い、縮径する第1縮径部と、前記第1縮径部から後方に向かうに従い、拡径する第1拡径部と、前記第1拡径部から後方に向かうに従い、縮径する第2縮径部と、前記第2縮径部から後方に向かうに従い、拡径する第2拡径部と、前記第2拡径部から、水と気体との混相流体を排出する排出口と、を備え、前記第1縮径部および前記第2縮径部それぞれにおける流体の流速は、気泡生成装置全体における流体の平均流速と比べて増大しているとともに、前記第2縮径部における流体の流速は、超音速となっている。   Further, one aspect of the present invention is a cylindrical air bubble generating device provided at a position equivalent to a draft line in a hull of a ship, wherein an inflow port through which a fluid such as water and air flows into the inside, and the inflow port A first reduced diameter portion decreasing in diameter toward the rear, a first enlarged diameter portion increasing in diameter toward the rear from the first reduced diameter portion, and a decrease in diameter toward the rear from the first enlarged diameter portion A second reduced diameter portion, a second enlarged diameter portion increasing in diameter toward the rear from the second reduced diameter portion, and an exhaust that discharges a mixed phase fluid of water and gas from the second enlarged diameter portion And an outlet, wherein the flow velocity of the fluid at each of the first reduced diameter portion and the second reduced diameter portion is increased compared to the average flow velocity of the fluid in the entire bubble generating device, and the second reduced diameter portion The flow velocity of the fluid at is supersonic.

また、本発明の一態様は、前記気泡生成装置の内側に気体を供給する給気部を備えている。   Moreover, the one aspect | mode of this invention is equipped with the air supply part which supplies gas inside the said bubble generation apparatus.

本発明によれば、船舶が水から受ける抵抗力を増加させることなく、微細気泡を確実に生成することができる気泡生成装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the bubble generation apparatus which can generate | occur | produce a micro-bubble reliably can be provided, without making the ship receive the resistance which water receives from water.

本発明の一実施形態に係る気泡生成装置を備えた船舶の側面概略図である。It is a side schematic diagram of the vessel provided with the air bubbles generating device concerning one embodiment of the present invention. 本発明の一実施形態に係る気泡生成装置の縦断面図である。It is a longitudinal cross-sectional view of the bubble generation apparatus which concerns on one Embodiment of this invention. 図2に示す気泡生成装置のうち、第2縮径部および第2拡径部における混相流体の挙動を示す模式図である。It is a schematic diagram which shows the behavior of the multi-phase fluid in a 2nd diameter reduction part and a 2nd diameter expansion part among the bubble generation apparatuses shown in FIG. 図3に示す混相流体の挙動を撮影した図である。It is the figure which image | photographed the behavior of the multiphase fluid shown in FIG.

以下、図1から図4を参照し、本発明の一実施形態に係る気泡生成装置1について説明する。
図1に示すように、気泡生成装置1は、船舶50の船体50Aのうち、喫水線Lより下方に位置する部分に設けられている。図示の例では、気泡生成装置1は、図1に2点鎖線で示すように、船舶50の船体50Aにおける喫水線Lより下方に位置する部分の下側に配置されている。
Hereinafter, a bubble generating device 1 according to an embodiment of the present invention will be described with reference to FIGS. 1 to 4.
As shown in FIG. 1, the air bubble generation device 1 is provided in a portion of the hull 50A of the ship 50 located below the draft line L. In the illustrated example, the air bubble generation device 1 is disposed below the portion of the hull 50A of the ship 50 located below the draft line L, as shown by a two-dot chain line in FIG. 1.

図2に示すように、気泡生成装置1は、筒状をなしている。気泡生成装置1の中心軸線Oは、船舶50の船首尾方向に沿って延びている。以下の説明において、船首尾方向における船舶50の船首側を前方、船尾側を後方という。また、船首尾方向から見た平面視で、中心軸線Oと交差する方向を径方向といい、中心軸線O回りに周回する方向を周方向という。   As shown in FIG. 2, the air bubble generation device 1 has a tubular shape. The central axis O of the air bubble generation device 1 extends along the ship's passing direction of the ship 50. In the following description, the bow side of the ship 50 in the ship's forward direction is referred to as the front, and the stern side is referred to as the aft. Further, in a plan view seen from the direction of the ship, a direction intersecting with the central axis O is referred to as a radial direction, and a direction circling around the central axis O is referred to as a circumferential direction.

気泡生成装置1は、水が内部に流入する流入口10と、この気泡生成装置1の内側に気体を供給する給気部12と、を備えている。
流入口10は、船体50Aにおける船首から前方に向けて開口している。図1に示すように、船体50Aの船首には、前方に向けて突出する半球体状をなし、船舶50の造波抵抗を低減するバルバス・バウ50Bが設けられている。流入口10は、バルバス・バウ50Bから、前方に向けて開口している。
The bubble generation device 1 includes an inlet 10 through which water flows into the inside, and an air supply unit 12 that supplies a gas to the inside of the bubble generation device 1.
The inlet 10 opens forward from the bow of the hull 50A. As shown in FIG. 1, the bow of the hull 50A is provided with a bulbus bow 50B that has a hemispherical shape projecting forward and that reduces the wave resistance of the vessel 50. The inflow port 10 is opened forward from the Valvas bow 50B.

給気部12は、マニホールド16を備えている。給気部12には船舶50の機関部からの排気が流下する。マニホールド16は、機関部と接続された筒状の本管16Aと、本管16Aの内周面から径方向の内側に向けて延びる複数の分岐管16Bと、を備えている。
本管16Aは、例えば、中心軸線Oと同軸に配置されている。分岐管16Bは本管16Aの周方向および船首尾方向の双方向に間隔をあけて、複数配置されている。複数の分岐管16Bは、後述する第1拡径部13の前端部内面に接続されている。
The air supply unit 12 includes a manifold 16. Exhaust gas from the engine unit of the ship 50 flows into the air supply unit 12. The manifold 16 includes a cylindrical main pipe 16A connected to the engine unit, and a plurality of branch pipes 16B extending radially inward from an inner circumferential surface of the main pipe 16A.
The main pipe 16A is, for example, disposed coaxially with the central axis O. A plurality of branch pipes 16B are arranged at intervals in both the circumferential direction of the main pipe 16A and in the forward direction of the ship. The plurality of branch pipes 16B are connected to the inner surface of the front end portion of the first enlarged diameter portion 13 described later.

図2に示すように、気泡生成装置1はまた、流入口10から後方に向かうに従い、連続的に滑らかに縮径する第1縮径部11と、第1縮径部11から後方に向かうに従い、連続的に滑らかに拡径する第1拡径部13と、を備えている。第1縮径部11および第1拡径部13は、船首尾方向に連続して形成されている。   As shown in FIG. 2, the air bubble generation device 1 also has a first diameter-reduced portion 11 that continuously and smoothly reduces the diameter as it goes from the inflow port 10 to the rear, and as it goes to the rear from the first diameter-reduced portion 11. And a first diameter-increasing portion 13 which continuously and smoothly expands in diameter. The first reduced diameter portion 11 and the first enlarged diameter portion 13 are continuously formed in the ship's forward direction.

第1縮径部11の後端部における内径D2は、第1縮径部11の前端部における内径D1よりも小さくなっている。第1拡径部13の後端部における内径D3は、第1拡径部13の前端部における内径D2よりも大きくなっている。
第1縮径部11の前端部内径D1は、後方に向かうに従い、変化しないか若しくは連続的に滑らかに縮径している。
第1拡径部13は、後方に向かうに従い漸次、拡径している。
The inner diameter D2 at the rear end of the first reduced diameter portion 11 is smaller than the inner diameter D1 at the front end of the first reduced diameter portion 11. The inner diameter D3 at the rear end of the first enlarged diameter portion 13 is larger than the inner diameter D2 at the front end of the first enlarged diameter portion 13.
The inner diameter D1 of the front end portion of the first reduced diameter portion 11 does not change or continuously decreases in diameter as it goes rearward.
The first enlarged diameter portion 13 gradually expands in diameter toward the rear.

気泡生成装置1はまた、第1拡径部13から後方に向かうに従い、縮径する第2縮径部14と、第2縮径部14から後方に向かうに従い、拡径する第2拡径部15と、を備えている。第2縮径部14および第2拡径部15は、船首尾方向に連続して形成されている。また、第2縮径部14は、第1拡径部13と船首尾方向に連続して形成されている。   The air bubble generation device 1 also has a second reduced diameter portion 14 that decreases in diameter toward the rear from the first enlarged diameter portion 13, and a second enlarged diameter portion that increases in diameter toward the rear from the second reduced diameter portion 14. It has 15 and. The second reduced diameter portion 14 and the second enlarged diameter portion 15 are continuously formed in the ship's forward direction. Further, the second reduced diameter portion 14 is formed continuously with the first enlarged diameter portion 13 in the direction of the ship.

第2縮径部14の後端部における内径D4は、第2縮径部14の前端部における内径D3よりも小さくなっている。第2拡径部15の後端部における内径D5は、第2拡径部15の前端部における内径D4よりも大きくなっている。
第2縮径部14の前端部は、後方に向かうに従い漸次、縮径している。第2拡径部15は、後方に向かうに従い漸次、拡径している。
The inner diameter D4 at the rear end of the second reduced diameter portion 14 is smaller than the inner diameter D3 at the front end of the second reduced diameter portion 14. The inner diameter D5 at the rear end of the second enlarged diameter portion 15 is larger than the inner diameter D4 at the front end of the second enlarged diameter portion 15.
The front end of the second reduced diameter portion 14 gradually reduces in diameter toward the rear. The second enlarged diameter portion 15 gradually expands in diameter toward the rear.

気泡生成装置1はまた、第2拡径部15から外部に向けて、水と気体との混相流体を排出する排出口17を備えている。排出口17は、船体50Aにおける船底50Cから外部に向けて開口している。なお、図2では、船底50Cにおける排出口17の構成の図示を省略している。   The bubble generation device 1 also includes an outlet 17 for discharging a mixed phase fluid of water and gas from the second enlarged diameter portion 15 to the outside. The discharge port 17 is opened from the bottom 50C of the hull 50A to the outside. In Drawing 2, illustration of composition of outlet 17 in bottom 50C is omitted.

そして、本実施形態では、第1縮径部11および第2縮径部14における混相流体の流速は、気泡生成装置1全体における流体の平均流速と比べて増大している。また、第2縮径部14における混相流体の流速は、超音速となっている。以下、この点について気泡生成装置1の作用と併せて詳述する。   And in this embodiment, the flow velocity of the multiphase fluid in the 1st diameter reduction part 11 and the 2nd diameter reduction part 14 is increasing compared with the average flow velocity of the fluid in bubble generation device 1 whole. Further, the flow velocity of the multiphase fluid in the second reduced diameter portion 14 is supersonic. Hereinafter, this point will be described in detail together with the operation of the bubble generation device 1.

図1に示す状態から船舶50が前方に向けて推進すると、図2に示すように、流入口10から水(符号L)が第1縮径部11の内側に流入する。ここで、第1縮径部11が縮径していることにより、水の流速が速くなり、図中矢印方向の圧力が低下する。そして、水の流速は、第1縮径部11から第1拡径部13に至る流体の経路において、第1直筒部11Aで速くなる。また、第1直筒部11A内の水の圧力は、流入口10の前方に位置する水の圧力に対して負圧となる。   When the ship 50 is propelled forward from the state shown in FIG. 1, water (symbol L) flows from the inflow port 10 into the inside of the first reduced diameter portion 11 as shown in FIG. 2. Here, since the diameter reduction of the first reduced diameter portion 11 makes the flow velocity of water faster, the pressure in the direction of the arrow in the figure decreases. And the flow velocity of water becomes quick with the 1st straight cylinder part 11A in the course of the fluid from the 1st diameter reduction part 11 to the 1st diameter increase part 13. Further, the pressure of the water in the first straight cylinder portion 11A is negative with respect to the pressure of the water located in front of the inflow port 10.

次に、水が第1縮径部11から第1拡径部13に入ると、第1拡径部13が次第に拡径していることにより、水の流速が次第に低下するとともに、図中矢印方向の圧力が上昇する。
この際、給気部12を通して、船舶50の機関部からのCOを含む排気ガス(符号G)が第1拡径部13の内部に供給される。これにより、気体である排気ガスと水とが混ざり合い、気泡Bを含む気液の混相流体となる。
Next, when water enters the first enlarged diameter portion 13 from the first reduced diameter portion 11, the diameter of the first enlarged diameter portion 13 gradually increases, so that the flow velocity of water gradually decreases, and the arrow in the drawing Directional pressure rises.
At this time, the exhaust gas (code G) including CO 2 from the engine unit of the ship 50 is supplied to the inside of the first enlarged diameter portion 13 through the air supply unit 12. As a result, the exhaust gas, which is a gas, and the water are mixed to form a gas-liquid multiphase fluid including the bubbles B.

次に、混相流体が第2縮径部14に差し掛かると、第1縮径部11と同様に、混相流体の流速が速くなるとともに、混相流体の図中矢印方向の圧力が低下する。
そして、混相流体の流速は、流入口10から排出口17に至る流体の経路において、第2直筒部14A付近で大きくなる。また、第2直筒部14A内の混相流体の図中矢印方向の圧力は、第1拡径部13内の混相流体の圧力に対して負圧となる。
Next, when the multiphase fluid reaches the second reduced diameter portion 14, the flow velocity of the multiphase fluid increases and the pressure of the multiphase fluid in the arrow direction in the figure decreases, as in the first reduced diameter portion 11.
Then, the flow velocity of the multiphase fluid increases in the vicinity of the second straight cylinder portion 14A in the path of the fluid from the inlet 10 to the outlet 17. Further, the pressure in the direction of the arrow in the drawing of the multiphase fluid in the second straight cylindrical portion 14A is negative with respect to the pressure of the multiphase fluid in the first enlarged diameter portion 13.

そして、混相流体が第2縮径部14から第2拡径部15に入ると、気泡が圧壊される。気泡が圧壊されて細分化することで、微細気泡(符号MB)が生成される。微細気泡の気泡径は、例えば10μm〜100μmである。   Then, when the multiphase fluid enters the second enlarged diameter portion 15 from the second reduced diameter portion 14, the air bubbles are crushed. The bubbles are crushed and subdivided to generate fine bubbles (symbol MB). The bubble diameter of the fine bubbles is, for example, 10 μm to 100 μm.

下記の参考文献に示すように、気体と液体との混相流体では音速が低下することが知られている。このため、流体の速度が音速を超えやすい状態となっており、第2縮径部14で流体の流速が速くなると、流体の流速が超音速となり、衝撃波が発生する。
<参考文献>混相流、27巻、5号、2014年、pp.531−538
As shown in the following reference, it is known that the speed of sound decreases in a multiphase fluid of gas and liquid. Therefore, the velocity of the fluid is likely to exceed the velocity of sound, and when the velocity of the fluid in the second reduced diameter portion 14 is increased, the velocity of the fluid becomes supersonic and a shock wave is generated.
<Reference> Multiphase flow, Vol. 27, No. 5, 2014, pp. 531-538

このため、第2縮径部14および第2拡径部15にて微細気泡が顕著に生成される状態となる。
また、第2縮径部14における流速は、第1縮径部11における流速よりも速くなっている。すなわち、気泡生成装置1の内側において、後方に位置する第2縮径部14の図中矢印方向の圧力が、第1縮径部11における同方向の圧力よりも低くなっている。この圧力差に基づいて、混相流体が後方に向けて順次流下してゆく。
For this reason, in the second reduced diameter portion 14 and the second enlarged diameter portion 15, the micro air bubbles are significantly generated.
Further, the flow velocity in the second reduced diameter portion 14 is faster than the flow velocity in the first reduced diameter portion 11. That is, the pressure in the direction indicated by the arrow in the figure of the second reduced diameter portion 14 located rearward is lower than the pressure in the same direction at the first reduced diameter portion 11 inside the bubble generation device 1. Based on this pressure difference, the multiphase fluid flows downward toward the rear.

そして、排出口17から船体50Aの外部に微細気泡を含む混相流体が排出される。微細気泡は、気泡径が小さいため浮力が小さく、気泡体積に対する表面積の割合が大きいため、水中を漂いながら船体50Aと水との界面に長時間介在する。この微細気泡の存在効果により、船体50Aと水との間の摩擦抵抗を低減させることができる。これにより船舶50の燃費を向上させることができる。   Then, the mixed phase fluid including the fine air bubbles is discharged from the discharge port 17 to the outside of the hull 50A. The fine bubbles have a small bubble diameter and therefore have small buoyancy and a large ratio of surface area to bubble volume, so they float in water and intervene in the interface between the hull 50A and water for a long time. The existence effect of the fine bubbles can reduce the frictional resistance between the hull 50A and water. Thereby, the fuel consumption of the ship 50 can be improved.

以上説明したように、本実施形態に係る気泡生成装置1によれば、流入口10が前方に向けて開口しているので、船舶50の前方に向けた推進に伴って、気泡生成装置1の内側に水を流入させることができる。
また、第1縮径部11で水が船首から船尾を向く方向に減圧されることで負圧となり、この負圧の作用により給気部12から気体を円滑に第1拡径部13の内部に供給することができる。これにより、気体を気泡生成装置1の内側に送り出すための動力が必要なく、効率的に気泡生成装置1の内側に水と気体とを流入させることができる。
As described above, according to the air bubble generation device 1 according to the present embodiment, since the inflow port 10 is opened forward, the air bubble generation device 1 of the air bubble generation device 1 along with the propulsion toward the front of the ship 50. Water can flow into the inside.
In addition, water is depressurized in the direction from the bow toward the stern at the first reduced diameter portion 11 to be a negative pressure, and the action of the negative pressure causes the gas from the air supply portion 12 to be smooth inside the first enlarged diameter portion 13 Can be supplied. As a result, there is no need for a motive power for delivering the gas to the inside of the bubble generator 1, and water and gas can be efficiently flowed into the inside of the bubble generator 1.

また、気泡生成装置1が船体50Aの内部に設けられているので、船体50Aの外部に例えば固定翼のような他の部材を取付ける構成と比較して、船体50A全体が水から受ける抵抗力を小さくすることができる。このため、船舶50が推進する際に、気泡生成装置1が原因となって、船舶50が水から受ける抵抗力を増加させることがない。
さらに、気泡生成装置1が筒状であるため、固定翼と比較して製造コストとメンテナンスコストが抑えられる。
そして、第2縮径部14および第2拡径部15を経て、微細気泡を確実に生成することができる。
In addition, since the air bubble generating device 1 is provided inside the hull 50A, the resistance that the entire hull 50A receives from water is compared with a configuration in which other members such as fixed wings are attached to the outside of the hull 50A. It can be made smaller. Therefore, when the ship 50 is propelled, the air bubble generation device 1 does not cause the ship 50 to increase the resistance from water.
Furthermore, since the air bubble generation device 1 is cylindrical, the manufacturing cost and the maintenance cost can be suppressed as compared with the fixed wing.
Then, fine bubbles can be reliably generated through the second reduced diameter portion 14 and the second enlarged diameter portion 15.

また、第2縮径部14における流体の流速が、第1縮径部11における流体の流速よりも速くなっている。このため、気泡生成装置1の内側において、後方に位置する第2縮径部14の圧力が、第1縮径部11における圧力よりも低くなり、気泡生成装置1の前方から後方に向かう流体の流れを形成することが可能になる。これにより、仮に船舶50の前方に向けた推進速度が低い場合であっても、円滑に気泡生成装置1により微細気泡を生成し、排出口17から排出することができる。   Further, the flow velocity of the fluid in the second reduced diameter portion 14 is faster than the flow velocity of the fluid in the first reduced diameter portion 11. Therefore, the pressure of the second reduced diameter portion 14 located rearward is lower than the pressure at the first reduced diameter portion 11 inside the bubble generation device 1, and the fluid flowing from the front to the rear of the bubble generation device 1 It becomes possible to form a flow. Thereby, even if the propulsion speed directed to the front of the ship 50 is low, fine air bubbles can be generated smoothly by the air bubble generation device 1 and can be discharged from the discharge port 17.

また、流入口10が船体50Aにおける船首から前方に向けて開口しているので、船舶50が前方に向けて推進した際に、船舶50の船体50Aのうち、最も水が衝突する部分に流入口10を設けることとなり、効率的に流入口10から水を取り込むことができる。   Moreover, since the inflow port 10 is opened forward from the bow in the hull 50A, the inflow port is the portion of the hull 50A of the vessel 50 that collides most with the water when the vessel 50 promotes forward. 10 can be provided, and water can be efficiently taken in from the inflow port 10.

また、排出口17が船体50Aにおける船底50Cから開口しているので、微細気泡を、船体50Aの側面よりも表面積の大きい船底50Cの近傍に排出することができる。これにより、より効率的に微細気泡を船体50Aと水との界面に介在させることが可能になり、微細気泡による燃費向上の効果を、顕著に奏功させることができる。   Further, since the discharge port 17 is opened from the bottom 50C of the hull 50A, fine air bubbles can be discharged to the vicinity of the bottom 50C having a larger surface area than the side surface of the hull 50A. As a result, it becomes possible to more efficiently intercalate the fine bubbles at the interface between the hull 50A and the water, and the effect of improving the fuel efficiency by the fine bubbles can be remarkably achieved.

また、給気部12がマニホールド16を備えているので、マニホールド16を通して円滑に第1縮径部11に気体を供給することができる。
また、マニホールド16に機関部から排出されるCOが供給される。このため、CO含む微細気泡を生成し、水中に排出することで、機関部から排気されるCOを大気に排気することなく、水に溶け込ませることができる。これにより、船舶50からのCOの排出を抑制し、環境負荷を低減することができる。
ここで、微細気泡は気泡径が小さいため、単位体積当たりの表面積が大きい。このため水と接する面積が大きくなることで、気泡が船体50Aに付着する効果が高くなるとともに、効率的にCOを水に溶け込ませることができる。
Further, since the air supply unit 12 includes the manifold 16, the gas can be smoothly supplied to the first reduced diameter portion 11 through the manifold 16.
Further, CO 2 exhausted from the engine unit is supplied to the manifold 16. Therefore, by generating fine bubbles containing CO 2 and discharging it into water, the CO 2 exhausted from the engine unit can be dissolved in water without being exhausted to the atmosphere. Thereby, the emission of CO 2 from the ship 50 can be suppressed, and the environmental load can be reduced.
Here, since the fine bubbles have a small bubble diameter, the surface area per unit volume is large. Therefore by the area in contact with water increases, with the effect that bubbles adhere to the hull 50A increases, the efficient CO 2 can dissolve in water.

なお、本発明の技術的範囲は前記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることができる。
例えば、上記実施形態においては、船舶50の船首にバルバス・バウ50Bが設けられ、バルバス・バウ50Bの内部に気泡生成装置1が設けられている構成を示したが、このような態様に限られない。船舶50の船首にバルバス・バウが設けられなくてもよい。
The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the scope of the present invention.
For example, in the above-described embodiment, the configuration has been described in which the Valvas-Bow 50B is provided on the prow of the ship 50 and the air bubble generation device 1 is provided inside the Valvas-Bowl 50B. Absent. The bow of the ship 50 may not be provided with a valve or bow.

また、上記実施形態においては、第2縮径部14における混相流体の流速は、第1縮径部11における混相流体の流速よりも速い構成を示したが、このような態様に限られない。第1縮径部11における混相流体の流速は、第2縮径部14における混相流体の流速よりも速くても同等であってもよい。   Moreover, in the said embodiment, although the flow velocity of the multiphase fluid in the 2nd diameter reduction part 14 showed the structure faster than the flow velocity of the multiphase fluid in the 1st diameter reduction part 11, it is not restricted to such an aspect. The flow velocity of the multiphase fluid in the first reduced diameter portion 11 may be faster than or equal to the flow velocity of the multiphase fluid in the second reduced diameter portion 14.

また、第1縮径部11および第2縮径部14それぞれにおける最小内径は、互いに異なっていても同じであってもよい。
また、上記実施形態においては、流入口10は、船体50Aにおける船首から前方に向けて開口している構成を示したが、このような態様に限られない。流入口10は、船体50Aにおける船首以外の部分、例えば船底50C等から、下方かつ前方に向けて開口してもよい。
Further, the minimum inner diameters of the first reduced diameter portion 11 and the second reduced diameter portion 14 may be different from or the same as each other.
Moreover, in the said embodiment, although the inflow port 10 showed the structure opened toward the front from the bow in 50A of hulls, it is not restricted to such an aspect. The inlet 10 may open downward and forward from a portion other than the bow in the hull 50A, such as the bottom 50C.

また、上記実施形態においては、排出口17は船体50Aにおける船底50Cから外部に向けて開口している構成を示したが、このような態様に限られない。排出口17は、船体50Aにおける船底50C以外の部分、例えば船体50Aの側面等から、外部に向けて開口してもよい。また、排出口17が船体50Aに向けて開口してもよい。   Moreover, in the said embodiment, although the structure which the discharge port 17 was opened toward the exterior from the bottom 50C in 50A of hulls was shown, it is not restricted to such an aspect. The discharge port 17 may be opened to the outside from a portion other than the bottom 50C of the hull 50A, for example, a side surface of the hull 50A. Moreover, the discharge port 17 may open toward the hull 50A.

また、上記実施形態においては、給気部12がマニホールド16を備えている構成を示したが、このような態様に限られない。給気部12はマニホールド16を備えていなくてもよい。
また、上記実施形態においては、機関部からの排気がマニホールド16を通して第1縮径部11に供給される構成を示したが、このような態様に限られない。例えば大気を取り込むことにより、気体を第1縮径部11に供給してもよい。
また、気泡生成装置1が取付けられる船舶50としては、海上や河川上を航行する船舶50の他、水中を潜航する潜水艇であってもよい。
Moreover, in the said embodiment, although the air supply part 12 showed the structure provided with the manifold 16, it is not restricted to such an aspect. The air supply unit 12 may not include the manifold 16.
Moreover, in the said embodiment, although the structure from which the exhaust_gas | exhaustion from an engine part is supplied to the 1st diameter reduction part 11 through the manifold 16 was shown, it is not restricted to such an aspect. For example, the gas may be supplied to the first reduced diameter portion 11 by taking in the atmosphere.
Moreover, as the ship 50 to which the air bubble generation device 1 is attached, in addition to the ship 50 that travels on the sea or on a river, a submersible that is underwater may be used.

また、上記実施形態においては、気泡生成装置1が、船舶50の船体50Aにおける喫水線Lより下方に位置している構成を示したが、このような態様に限られない。例えば、気泡生成装置1は、船舶50の船体50Aにおける喫水線Lと同等の位置に設けられてもよい。
ここで、喫水線Lと同等の位置とは、気泡生成装置1における流入口10の上下方向の内側に、喫水線Lが位置していることを意味する。このため、流入口10から水と空気とを気泡生成装置1の内側に流入させることができる。このような場合には、気泡生成装置1が給気部12を備えなくてもよい。
Moreover, in the said embodiment, although the bubble generation apparatus 1 showed the structure located below the draft line L in the hull 50A of the ship 50, it is not restricted to such an aspect. For example, the bubble generation device 1 may be provided at a position equivalent to the draft line L in the hull 50A of the ship 50.
Here, the position equivalent to the draft line L means that the draft line L is located inside the vertical direction of the inflow port 10 in the bubble generation device 1. For this reason, water and air can be made to flow into the inside of bubble generation device 1 from inflow port 10. In such a case, the air bubble generation device 1 may not include the air supply unit 12.

その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した変形例を適宜組み合わせてもよい。   In addition, it is possible to replace the components in the above-described embodiment with known components as appropriate without departing from the spirit of the present invention, and the above-described modifications may be combined as appropriate.

1 気泡生成装置
10 流入口
11 第1縮径部
12 給気部
13 第1拡径部
14 第2縮径部
15 第2拡径部
17 排出口
50 船舶
50A 船体
50B バルバス・バウ
50C 船底
DESCRIPTION OF SYMBOLS 1 Bubble formation apparatus 10 Inflow port 11 1st diameter reduction part 12 Air supply part 13 1st diameter expansion part 14 2nd diameter reduction part 15 2nd diameter expansion part 17 Discharge port 50 Ship 50A Hull 50B Vulbas ・ Bow 50C Ship bottom

Claims (7)

船舶の船体における喫水線より下方に位置する部分に設けられる筒状の気泡生成装置であって、
水が内部に流入する流入口と、
この気泡生成装置の内側に気体を供給する給気部と、
前記流入口から後方に向かうに従い、縮径する第1縮径部と、
前記第1縮径部から後方に向かうに従い、拡径する第1拡径部と、
前記第1拡径部から後方に向かうに従い、縮径する第2縮径部と、
前記第2縮径部から後方に向かうに従い、拡径する第2拡径部と、
前記第2拡径部から、水と気体との混相流体を排出する排出口と、を備え、
前記第1縮径部および前記第2縮径部それぞれにおける流体の流速は、気泡生成装置全体における流体の平均流速と比べて増大しているとともに、
前記第2縮径部における流体の流速は、超音速となっている気泡生成装置。
A cylindrical air bubble generating device provided in a portion of a ship hull located below a water draft line, comprising:
An inlet through which water flows
An air supply unit for supplying a gas to the inside of the bubble generating device;
A first diameter-reduced portion that decreases in diameter toward the rear from the inlet;
A first diameter-increasing portion that expands in diameter toward the rear from the first diameter-reducing portion;
A second reduced diameter portion that decreases in diameter toward the rear from the first enlarged diameter portion;
A second diameter-increasing portion that expands in diameter toward the rear from the second diameter-reducing portion;
And an outlet for discharging a mixed phase fluid of water and gas from the second enlarged diameter portion,
The flow velocity of the fluid in each of the first reduced diameter portion and the second reduced diameter portion is increased as compared with the average flow velocity of the fluid in the entire bubble generating device, and
The bubble generation device in which the flow velocity of the fluid at the second reduced diameter portion is supersonic.
第2縮径部における流体の流速は、第1縮径部における流体の流速よりも速い請求項1に記載の気泡生成装置。   The bubble generating device according to claim 1, wherein the flow velocity of the fluid at the second reduced diameter portion is higher than the flow velocity of the fluid at the first reduced diameter portion. 前記流入口は、前記船体における船首から前方に向けて開口している請求項1又は2に記載の気泡生成装置。   The air bubble generation device according to claim 1, wherein the inflow port is opened forward from a bow in the hull. 前記排出口は、前記船体における船底から開口している請求項1から3のいずれか1項に記載の気泡生成装置。   The air bubble generation device according to any one of claims 1 to 3, wherein the discharge port is opened from a bottom of the hull. 前記給気部はマニホールドを備え、
前記給気部には、前記船舶の機関部からの排気が流下する請求項1から4のいずれか1項に記載の気泡生成装置。
The air supply unit includes a manifold.
The air bubble generation device according to any one of claims 1 to 4, wherein exhaust gas from an engine unit of the vessel flows down to the air supply unit.
船舶の船体における喫水線と同等の位置に設けられる筒状の気泡生成装置であって、
水および空気などの流体が内部に流入する流入口と、
前記流入口から後方に向かうに従い、縮径する第1縮径部と、
前記第1縮径部から後方に向かうに従い、拡径する第1拡径部と、
前記第1拡径部から後方に向かうに従い、縮径する第2縮径部と、
前記第2縮径部から後方に向かうに従い、拡径する第2拡径部と、
前記第2拡径部から、水と気体との混相流体を排出する排出口と、を備え、
前記第1縮径部および前記第2縮径部それぞれにおける流体の流速は、気泡生成装置全体における流体の平均流速と比べて増大しているとともに、
前記第2縮径部における流体の流速は、超音速となっている気泡生成装置。
A cylindrical air bubble generating device provided at a position equivalent to a water line on a hull of a ship, comprising:
An inlet through which fluid such as water and air flows into the interior;
A first diameter-reduced portion that decreases in diameter toward the rear from the inlet;
A first diameter-increasing portion that expands in diameter toward the rear from the first diameter-reducing portion;
A second reduced diameter portion that decreases in diameter toward the rear from the first enlarged diameter portion;
A second diameter-increasing portion that expands in diameter toward the rear from the second diameter-reducing portion;
And an outlet for discharging a mixed phase fluid of water and gas from the second enlarged diameter portion,
The flow velocity of the fluid in each of the first reduced diameter portion and the second reduced diameter portion is increased as compared with the average flow velocity of the fluid in the entire bubble generating device, and
The bubble generation device in which the flow velocity of the fluid at the second reduced diameter portion is supersonic.
前記気泡生成装置の内側に気体を供給する給気部を備えている請求項6に記載の気泡生成装置。   The air bubble generation device according to claim 6, further comprising an air supply unit that supplies a gas to the inside of the air bubble generation device.
JP2018003688A 2018-01-12 2018-01-12 Bubble generator Active JP7064212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018003688A JP7064212B2 (en) 2018-01-12 2018-01-12 Bubble generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018003688A JP7064212B2 (en) 2018-01-12 2018-01-12 Bubble generator

Publications (2)

Publication Number Publication Date
JP2019123282A true JP2019123282A (en) 2019-07-25
JP7064212B2 JP7064212B2 (en) 2022-05-10

Family

ID=67397480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018003688A Active JP7064212B2 (en) 2018-01-12 2018-01-12 Bubble generator

Country Status (1)

Country Link
JP (1) JP7064212B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022547488A (en) * 2019-12-28 2022-11-14 天津市華諾通信工程有限公司 Method and device for reducing wave-making resistance and frictional resistance during navigation of a ship

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5049769A (en) * 1973-07-09 1975-05-02
JPH04260427A (en) * 1990-09-25 1992-09-16 Union Carbide Ind Gases Technol Corp Dispersion in pipe of gas into liquid
JP2001239995A (en) * 2000-02-29 2001-09-04 Mitsubishi Heavy Ind Ltd Underwater discharge devices for exhaust gas in ship
JP2002274478A (en) * 2001-03-16 2002-09-25 Uemoto Kazutoshi Frictional resistance reducing device of ship
JP2014104441A (en) * 2012-11-29 2014-06-09 Idec Corp Fine bubble generating nozzle and fine bubble generating device
JP2015163492A (en) * 2014-02-28 2015-09-10 三菱重工業株式会社 Friction reduction device of ship

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5049769A (en) * 1973-07-09 1975-05-02
JPH04260427A (en) * 1990-09-25 1992-09-16 Union Carbide Ind Gases Technol Corp Dispersion in pipe of gas into liquid
JP2001239995A (en) * 2000-02-29 2001-09-04 Mitsubishi Heavy Ind Ltd Underwater discharge devices for exhaust gas in ship
JP2002274478A (en) * 2001-03-16 2002-09-25 Uemoto Kazutoshi Frictional resistance reducing device of ship
JP2014104441A (en) * 2012-11-29 2014-06-09 Idec Corp Fine bubble generating nozzle and fine bubble generating device
JP2015163492A (en) * 2014-02-28 2015-09-10 三菱重工業株式会社 Friction reduction device of ship

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022547488A (en) * 2019-12-28 2022-11-14 天津市華諾通信工程有限公司 Method and device for reducing wave-making resistance and frictional resistance during navigation of a ship
JP7334339B2 (en) 2019-12-28 2023-08-28 天津市華諾通信工程有限公司 Method and device for reducing wave-making resistance and frictional resistance during navigation of a ship

Also Published As

Publication number Publication date
JP7064212B2 (en) 2022-05-10

Similar Documents

Publication Publication Date Title
JP4286313B1 (en) Friction resistance reducing ship and its operating method
JP7334339B2 (en) Method and device for reducing wave-making resistance and frictional resistance during navigation of a ship
JP2007307450A (en) Bubble generating device
CN104229088A (en) Single-direction negative-pressure water discharging system of engine compartment for power surfboard
JP7064212B2 (en) Bubble generator
JP2019142482A (en) System for minimizing bow wave
JP2012001115A (en) Twin skeg ship
JP2002002582A (en) Friction resistance reducing ship
JP2010208435A (en) Resistance reducing apparatus of ship
JP2017165386A (en) Hull frictional resistance reduction device
JP5651829B2 (en) Friction reduction ship and micro bubble generation pump
KR20160117654A (en) Resistance reduction apparatus of vessel
JP2005247077A (en) Water-jet-fin propelling system
EP3808648A2 (en) Wind-water machine set
KR20020020624A (en) Method of reducing frictional resistance of a hull, and frictional resistance reducing vessel
KR20160117655A (en) Bubble generating unit
US7281480B2 (en) Frictionally reduced hull
KR102514085B1 (en) Ship applied with air lubircation system and its power generating apparatus using seawater
JP2003160091A (en) Friction reducer for ship
KR101411585B1 (en) The method of energy saving and power generation using wind turbine ventilation fan in ships
JP2023522523A (en) Ship fluid resistance reduction device
JP2001106173A (en) Frictional resistance reduced-ship
JP6664907B2 (en) Air generator
CN113815828A (en) Inflatable water jet propeller
JP2001341689A (en) Ship reduced in frictional resistance

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220412

R150 Certificate of patent or registration of utility model

Ref document number: 7064212

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150