JP2017165386A - Hull frictional resistance reduction device - Google Patents

Hull frictional resistance reduction device Download PDF

Info

Publication number
JP2017165386A
JP2017165386A JP2016072853A JP2016072853A JP2017165386A JP 2017165386 A JP2017165386 A JP 2017165386A JP 2016072853 A JP2016072853 A JP 2016072853A JP 2016072853 A JP2016072853 A JP 2016072853A JP 2017165386 A JP2017165386 A JP 2017165386A
Authority
JP
Japan
Prior art keywords
air
hull
ship
frictional resistance
reduction device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016072853A
Other languages
Japanese (ja)
Inventor
輝彦 大保
Teruhiko Daiho
輝彦 大保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAN WORLD KK
Original Assignee
SAN WORLD KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAN WORLD KK filed Critical SAN WORLD KK
Priority to JP2016072853A priority Critical patent/JP2017165386A/en
Publication of JP2017165386A publication Critical patent/JP2017165386A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Abstract

PROBLEM TO BE SOLVED: To provide a hull frictional resistance reduction device using the air, capable of reducing a frictional resistance, to solve an issue of reduction of net CO2 emission amount that cannot be solved by: a method of surrounding the full with air bubbles to reduce frictional resistance that the hull receives, with a drawback of a significant increase in a power energy used for delivering the air to a hull bottom, thus, resulting in occurrence of the power energy consumption; and a method of storing the air in the hull bottom in the water, with a drawback of difference in water surface positions, i.e. contact surface positions between air and water, among respective air chambers, resulting in occurrence of new resistance in the air chambers.SOLUTION: A hull frictional resistance reduction device comprises: inclined fixed wings 13 in an underwater part, to turn flowing water coming into an air absorbing chamber 10 to make vortexes so as to create a negative pressure causing the air voluntarily introduced into the underwater part. In addition, vent holes are provided in upper parts of multiple partitions for air storage hubs in the underwater part so that the air storage hubs can be communicated to level water surface positions of the air storage hubs, whereby, frictional resistance on the hull can be reduced.SELECTED DRAWING: Figure 1

Description

本発明は船体摩擦抵抗低減装置であって、更に詳しくは船体表面と水(海水や淡水)との境界面に空気を介在させることにより、摩擦抵抗の低減を図る船体摩擦抵抗低減装置に関するものである。    The present invention relates to a hull frictional resistance reduction device, and more particularly to a hull frictional resistance reduction device that reduces frictional resistance by interposing air at the boundary surface between the hull surface and water (seawater or fresh water). is there.

地球環境の温暖化が問題提起される中、CO2の削減が国際的に求められている。国際海運におけるCO2削減も例外ではない。近年、海洋汚染防止条約(MARPOL条約)の改正条項としてまとまり、2015年からの新造船については、具体的な基準値をもったCO2削減が求められ、船舶航行のための消費燃料エネルギーを低減する革新的技術開発がなされている。その中の一つに、空気を用いて船舶の摩擦抵抗低減を図る技術がある。    While global warming has been raised, there is an international demand for CO2 reduction. CO2 reduction in international shipping is no exception. In recent years, it has been compiled as a revised provision of the MARPOL Convention, and for new ships from 2015, CO2 reduction with specific standard values is required, reducing fuel energy consumption for ship navigation Innovative technology is being developed. One of them is a technique for reducing the frictional resistance of a ship using air.

現在、知られている技術として特許文献1の示す如く、強力な動力の送風機を用いて空気を船底に送り込み、気泡で水面下の船体を覆うことで、船体と水との間に生じる摩擦抵抗の低減を図るものがある。    As shown in Patent Document 1 as a currently known technique, friction is generated between the hull and water by sending air to the ship bottom using a powerful power blower and covering the hull under the water surface with bubbles. There are some which aim to reduce this.

また特許文献2の示す如く、船底に空気槽を設けて空気を溜め、水と接する船体の表面積を少なくすることで、船体と水との間に生じる摩擦抵抗の低減を図るものもある。    In addition, as shown in Patent Document 2, there is an apparatus in which an air tank is provided at the bottom of a ship to collect air and reduce the frictional resistance generated between the ship and water by reducing the surface area of the ship in contact with water.

特許5826590号広報  Patent No. 5826590 特開2015−199489号広報  JP2015-199489 PR 特開2010−58777号広報  JP 2010-58777 A

まず初めに示す特許文献1の技術では、気泡で水面下の船体を覆い、船体が受ける摩擦抵抗を低減できても、同時に空気を船底に送る動力エネルギーも大きく消耗するために、正味のCO2排出量の低減にはつながらない。船舶の喫水が深くなればなるほど、空気を吐き出すための圧力を大きくしなければならず、更なる動力エネルギーを消耗するという問題がある。    In the technique of Patent Document 1 shown first, even if the hull below the surface of the water is covered with air bubbles and the frictional resistance received by the hull can be reduced, the power energy for sending air to the bottom of the ship at the same time is greatly consumed. It does not lead to a reduction in quantity. As the draft of the ship becomes deeper, the pressure for exhaling air has to be increased, and there is a problem that further power energy is consumed.

また特許文献2の技術では、実際の航海時においては、様々な船体の動揺があるために、船底に設けられた空気槽内の空気の流出が発生し、そしてその為に、それぞれの空気槽内の空気の量にばらつきが生じる。それを解決するために個々の空気槽に空気を補充しなければならない問題がある。前記空気槽内の空気量を40〜90%に維持するようにしているが、各空気槽の空気量が例えば50%だとすれば、常にすべての空気槽が概ね50%と均一であればよいが、ばらつきが発生する場合は、前記各空気槽内の水面、即ち空気と水の接触面の位置が、各空気槽で異なるために、新たな抵抗が前記空気槽内に発生する問題がある。    Further, in the technology of Patent Document 2, during actual voyage, various hulls are shaken, so that an air outflow occurs in the air tank provided on the bottom of the ship. Variations in the amount of air inside. In order to solve this, there is a problem that the air tanks must be refilled with air. The amount of air in the air tank is maintained at 40 to 90%. If the amount of air in each air tank is 50%, for example, all the air tanks are always approximately 50% and uniform. However, if variation occurs, the position of the water surface in each air tank, that is, the position of the contact surface of air and water is different in each air tank, so that there is a problem that a new resistance is generated in the air tank. is there.

更に特許文献3の技術では、空気の吸引は動力を使わず、ハブ後部にできる負圧によって、空気を吸引するものであるが、圧力をかけず、自吸させるためには、通気パイプから直に複数の固定翼及び前記ハブ内を通って吸引すると、圧力損失が生じる場合がある。    Further, in the technique of Patent Document 3, air is sucked without using power, and is sucked by a negative pressure generated at the rear part of the hub. If the air is sucked through the plurality of fixed blades and the hub, pressure loss may occur.

本発明の目的は、上記の問題を解決し、空気を利用して船舶の摩擦抵抗の低減を可能とする、船体摩擦抵抗低減装置を提供することである。    An object of the present invention is to provide a hull frictional resistance reduction device that solves the above-described problems and enables reduction of the frictional resistance of a ship using air.

請求項1記載の本発明の空気吸入装置として、筒の内部にハブを設け、前記ハブの周りに複数枚の固定翼を取り付ける。次に前記固定翼を前記筒の内面に取り付け固定する。前記空気吸入装置を流水の中に置くと、流入口から水が押し入り固定翼に衝突し、流入した水を旋回させるように前記固定翼に角度を持たせると、ハブの後部に渦が形成され、水中の前記ハブの後部に大きな負圧が生成される。    According to a first aspect of the present invention, a hub is provided inside the cylinder, and a plurality of fixed wings are attached around the hub. Next, the fixed wing is attached and fixed to the inner surface of the cylinder. When the air suction device is placed in running water, water enters from the inflow port and collides with the fixed wing, and if the fixed wing is angled so as to swirl the inflow water, a vortex is formed at the rear of the hub. A large negative pressure is generated at the rear of the hub in the water.

次に、前記筒を取り巻くように、広い空間を持つ空気室を設け、一方を大気に通じる通気パイプと前記空気室を連通させ、前記固定翼と前記ハブの内部を通り、前記ハブの後部に空気の排気口を設け、前記通気パイプの吸気口から、一旦前記空気室を通り、次に前記固定翼の内部を通り、前記ハブの後部の排気口までを連通させる。    Next, an air chamber having a wide space is provided so as to surround the cylinder, and a ventilation pipe that communicates with the atmosphere and one of the air chambers communicate with each other, pass through the fixed wing and the inside of the hub, and at the rear portion of the hub. An air exhaust port is provided and communicates from the air intake port of the ventilation pipe through the air chamber, then through the inside of the fixed wing to the exhaust port at the rear of the hub.

請求項2記載の本発明は、船舶の船首船底近傍に開口部を設け、請求項1の空気吸入装置を設置する。前記空気吸入装置の流入口は船舶の船首船底近傍に開口され、前記空気吸入装置の流出口は前記船舶の船底や舷側に設けられた空気開放口に通じることで、前記船舶の航行中は常に流入口から水が押し入り、ハブの後部で大きな負圧を作り、動力なして大気を吸引し、前記船底や舷側に設けられた空気開放口から吸引された空気は吐き出される。    According to a second aspect of the present invention, an opening is provided near the bow bottom of a ship, and the air suction device according to the first aspect is installed. The inlet of the air suction device is opened near the bow bottom of the ship, and the outlet of the air suction device leads to an air release port provided on the ship bottom or the shore side of the ship, so that the ship always navigates. Water enters from the inflow port, creates a large negative pressure at the rear part of the hub, sucks the air without power, and the air sucked from the air opening provided on the bottom of the ship or on the shore side is discharged.

請求項3記載の本発明に対応した空気溜りとして、船底に設けられた前記空気開放口よりも下流側(船尾側)の船底平坦部に、縦横複数の仕切板からなる複数の空気溜りを設ける。前記空気開放口より放出された空気が、前記船底平坦部に設けられた空気溜りに捕らえられ、前記空気溜りに空気が溜まることにより、水面下の船体と水と接する表面積を少なくさせる。    As an air reservoir corresponding to the present invention according to claim 3, a plurality of air reservoirs comprising a plurality of vertical and horizontal partition plates are provided in a flat portion of the bottom of the ship (stern side) downstream of the air opening provided on the bottom of the boat. . Air released from the air opening is caught in an air reservoir provided in the flat portion of the bottom of the ship, and the air accumulates in the air reservoir, thereby reducing the surface area in contact with the hull below the water surface and water.

次に、それぞれの空気溜りに捕らえられた空気の量が概ね均一になるように、前記仕切板の上部、即ち前記船底に接する側に通気口を設ける。例えば一つの空気溜りには、容量の80%の空気が溜められていて、隣に接する空気溜りには、その容量の40%しか空気が溜められていない場合に、両方の空気溜りの間の仕切り板の上部に通気口を設ければ、自然に空気量の多いところから少ないところへの流れ入り、前記両空気溜りの空気量は60%と、均一になる。それ故、隣り合う二つの前記空気溜り内の水面の位置は自ら同じになる。    Next, vents are provided on the upper part of the partition plate, that is, on the side in contact with the ship bottom so that the amount of air trapped in each air reservoir is substantially uniform. For example, if one reservoir holds 80% of the volume of air, and the adjacent reservoir holds only 40% of its volume, then there is a gap between both reservoirs. If a vent is provided in the upper part of the partition plate, the air flows naturally from a place with a large amount of air to a place with a small amount of air. Therefore, the positions of the water surfaces in the two adjacent air reservoirs are the same.

請求項4記載の本発明は、請求項2記載の船体摩擦抵抗低減装置を備え、船底に設けられた、前記空気開放口の下流側(船尾側)に請求項3記載の空気溜りを複数並べる。船舶の航行中は常に前記空気開放口より空気は放出され、前記空気開放口に近い空気溜りより空気は溜まり始める。更には、前記空気開放口より放出された空気が直接届かない空気溜りにも、前記仕切り板に設けられた通気口を通り、すべての空気溜りに空気は供給される。    According to a fourth aspect of the present invention, the hull frictional resistance reducing device according to the second aspect is provided, and a plurality of air pockets according to the third aspect are arranged on the downstream side (stern side) of the air opening provided on the bottom of the ship. . During the navigation of the ship, air is always released from the air opening, and air starts to accumulate from an air reservoir near the air opening. Furthermore, air is supplied to all the air reservoirs through an air vent provided in the partition plate even in an air reservoir where the air discharged from the air release port does not reach directly.

請求項5記載の本発明は、前記空気吸入装置を用いる船体摩擦抵抗低減装置のいずれかであって、喫水の深い船舶等の船底へ大量の空気を供給する場合等は、本空気吸入装置とブロア等の外部動力を併用し空気を船底へ送入することが出来る。    The present invention according to claim 5 is any one of the hull frictional resistance reduction devices using the air suction device, and when supplying a large amount of air to the bottom of a ship such as a deep draft, Air can be sent to the bottom of the ship using external power such as a blower.

船舶船体にかかる摩擦抵抗の低減に、空気を介在させる方法は古くから知られている。しかし、空気を水中の船底近傍に供給するために消耗されるエネルギーも同時に低減させる必要があった。しかし、本発明を用いることで、船首近傍の本空気吸引装置へ流れ入る水が固定翼に衝突し、自ら旋回する流れを作り、その旋回流がつくる負圧により、空気は船底へと自ら吸引され、船体摩擦抵抗低減がなされる。その結果、動力エネルギーを消耗することなく、空気を船底近傍に供給することが可能になり、船体の摩擦抵抗低減がなされ、船舶からのCO2排出量低減に寄与できる。    A method of interposing air to reduce the frictional resistance applied to a ship hull has been known for a long time. However, the energy consumed to supply air to the vicinity of the bottom of the ship underwater has to be reduced at the same time. However, by using the present invention, the water flowing into the air suction device near the bow collides with the fixed wing, creating a flow that turns by itself, and the negative pressure created by the swirling flow causes air to be sucked by itself to the bottom of the ship. The hull frictional resistance is reduced. As a result, it is possible to supply air to the vicinity of the ship bottom without consuming power energy, reducing the frictional resistance of the hull, and contributing to the reduction of CO2 emission from the ship.

本発明の空気吸入装置10で、左の流入口18aから水が押し入り、中央のハブ12に取り付けられた複数の固定翼13に当たり、旋回流となり、前記ハブ12の後部で負圧が生成される概念図。In the air suction device 10 of the present invention, water enters from the left inflow port 18a, hits a plurality of fixed wings 13 attached to the central hub 12, becomes a swirling flow, and a negative pressure is generated at the rear portion of the hub 12. Conceptual diagram. 本発明の船体摩擦抵抗低減装置を装備した船舶の一実施例で、船首船底近傍を開口し、空気吸入装置10を取り付けている概念図。BRIEF DESCRIPTION OF THE DRAWINGS In one Example of the ship equipped with the hull frictional resistance reduction apparatus of this invention, the conceptual diagram which opens the bow bottom vicinity and attaches the air suction device 10. FIG. 本発明の空気溜り30を船底21近傍に設けた船体摩擦抵抗低減装置を装備した船舶の一実施例で、(a)は空気溜り30を既存の船舶の船底21に取り付けた一実施例。(b)は船底21平坦部に縦横の複数の仕切板31、32からなる複数の空気溜り30の一部と、通気口33の位置を示す、一実施例。(c)は船底21平坦部に空気溜り30の全体と、通気口33の位置を示す、一実施例。更に(d)は空気溜り30を二重船底21の位置に配置した一実施例の概念図。1 is an example of a ship equipped with a hull frictional resistance reduction device in which an air reservoir 30 of the present invention is provided in the vicinity of a ship bottom 21, and (a) is an embodiment in which the air reservoir 30 is attached to the ship bottom 21 of an existing ship. (B) is one Example which shows a part of several air reservoir 30 which consists of several vertical and horizontal partition plates 31 and 32, and the vent 33 on the flat part of the ship bottom 21. FIG. (C) is one Example which shows the position of the whole air reservoir 30 and the vent 33 on the flat part of the ship bottom 21. FIG. Furthermore, (d) is the conceptual diagram of one Example which has arrange | positioned the air pocket 30 in the position of the double ship bottom 21. FIG. 本発明の空気吸入装置10とブロア等の外部動力40を併用し空気を船底へ送入する船体摩擦抵抗低減装置の一実施例の概念図。The conceptual diagram of one Example of the ship body frictional resistance reduction apparatus which sends together air into the ship bottom using together the external power 40, such as the air suction device 10 of this invention, and a blower. 本発明の空気吸入装置10を用いた、気泡23による船体摩擦抵抗低減装置の一実施例の概念図。(a)は空気吸入装置10形状を変えることで、気泡を小さくし、(b)では浮力の小さな気泡を用いる一実施例の概念図。The conceptual diagram of one Example of the ship body frictional resistance reduction apparatus by the bubble 23 using the air suction apparatus 10 of this invention. FIG. 4A is a conceptual diagram of an embodiment in which bubbles are reduced by changing the shape of the air suction device 10 and bubbles having a small buoyancy are used in FIG.

図1は本発明の一実施例としての空気吸入装置を示す。筒11の中央部にはハブ12が配置され、前記ハブ12の周囲には複数の固定翼13が設けられて、前記固定翼13の一端は、前記筒11の内面に固定されている。一方前記筒11の外部には、前記筒11を取り巻くように空気室14が設けられていて、上部は通気パイプ15に繋がり、前記通気パイプ15の一端は大気に通じている吸気口16を持つ。前記の吸気口16から通気パイプ15、空気室14を通り、固定翼13とハブ12の内部を貫通し、前記ハブ12の後部にある排気口17までを連通させる。    FIG. 1 shows an air suction device according to an embodiment of the present invention. A hub 12 is disposed at the center of the cylinder 11, and a plurality of fixed wings 13 are provided around the hub 12, and one end of the fixed wing 13 is fixed to the inner surface of the cylinder 11. On the other hand, an air chamber 14 is provided outside the cylinder 11 so as to surround the cylinder 11. The upper part is connected to a ventilation pipe 15, and one end of the ventilation pipe 15 has an intake port 16 communicating with the atmosphere. . The intake port 16 passes through the ventilation pipe 15 and the air chamber 14, passes through the fixed blade 13 and the inside of the hub 12, and communicates with the exhaust port 17 at the rear of the hub 12.

図1が示すように、例えば左側から流水が空気吸入装置10の流入口18aに押し入ると、ハブ12と筒11との間に固定されている複数の固定翼13の間を通り抜けることになるが、前記固定翼13には角度を持たせていて、流入した水は旋回し始め、前記ハブ12の後部で大きな旋回流を形成し、その中心に大きな負圧が生成され、通気パイプ15の上端の吸気口16から大気の空気は吸い込まれ、排気口17から水中への空気の自吸が始まる。圧力を掛けずに自給させるためには、細い複数本の通気パイプを用いるよりも、少し太めの通気パイプを用意し、空気室を設けると、吸引される際の圧力損失を少なくできる。    As shown in FIG. 1, for example, when flowing water enters the inlet 18 a of the air suction device 10 from the left side, it passes through a plurality of fixed blades 13 fixed between the hub 12 and the cylinder 11. The fixed wing 13 has an angle, and the water that has flowed in begins to swirl, forms a large swirling flow at the rear of the hub 12, and a large negative pressure is generated at the center thereof. Atmospheric air is sucked in from the intake port 16 and self-priming of air from the exhaust port 17 into the water begins. In order to make self-sufficiency without applying pressure, if a slightly thicker ventilation pipe is prepared and an air chamber is provided rather than using a plurality of thin ventilation pipes, the pressure loss during suction can be reduced.

図2が示すのは、本発明の空気吸入装置10を船体20に取り付けた一実施例で、前記船体20の船首船底の近傍に開口部を設け、船舶の航行時には前記空気吸入装置10の流入口18aから水が前記空気吸入装置10内に押し入り、少し後方の船底21に設けられた空気開放口22から水と空気の二相流として放出される。尚、船舶の種類や大きさ、用途に合わせ、空気吸入装置10の形状、設置場所及び数等は、最適なものに合わせられるのは当然である。例えば、船底平坦部の面積が少ない、痩せ形船体の場合、船首近傍の両舷に本空気吸入装置10を設置し、両舷側に空気開放口22を設けることもできる。    FIG. 2 shows an embodiment in which the air suction device 10 of the present invention is attached to the hull 20, and an opening is provided in the vicinity of the bow bottom of the hull 20, and the flow of the air suction device 10 is performed when the ship is sailing. Water enters the air suction device 10 from the inlet 18a and is discharged as a two-phase flow of water and air from an air opening 22 provided in the ship bottom 21 slightly behind. Of course, the shape, installation location, number, and the like of the air suction device 10 can be adjusted to the optimum one according to the type, size and application of the ship. For example, in the case of a thin hull with a small area at the bottom of the ship bottom, the air suction device 10 can be installed on both sides near the bow, and the air release ports 22 can be provided on both sides.

次に図3が示すのは請求項3および4の示す船体摩擦抵抗低減装置の実施例を示す。(a)は縦横の複数の仕切板31,32からなる複数の空気溜り30を既存の船体20の船底21下部に取り付けた一実施例を示している。(b)は船底21下部に取り付けた、流れ方向FDに平行な縦仕切板31と、流れ方向に垂直な横仕切板32からなる空気溜め30を示し、更に縦仕切板31の一部上部に通気口33aと、横仕切板32の一部上部にも通気口33bを設けている、一実施例である。(c)は船体20の船底21部を真下から見上げた概念図で、船首近傍に空気開放口22を有し、船底21平坦部に複数の空気溜り30を配している一実施例の概念図である。通気口33の形状、寸法、設置場所、個数等はそれぞれの船舶の要求する最適な設計をすればよい。(d)は新造船など、初めから、例えば二重船底の中に空気溜め30を組み入れた一実施例を示している。尚、図3で示す空気溜り30は船舶の種類や大きさ、用途に合わせ、空気溜り30の形状、設置場所及び数等は、最適なものに合わせられるのは述べるまでもない。    Next, FIG. 3 shows an embodiment of the hull frictional resistance reducing device shown in claims 3 and 4. (A) shows an embodiment in which a plurality of air reservoirs 30 composed of a plurality of vertical and horizontal partition plates 31 and 32 are attached to the lower part of the bottom 21 of the existing hull 20. (B) shows the air reservoir 30 which consists of the vertical partition plate 31 parallel to the flow direction FD and the horizontal partition plate 32 perpendicular | vertical to the flow direction, attached to the ship bottom 21 lower part, and also in a part upper part of the vertical partition plate 31. This is an embodiment in which a vent 33 b is provided also in the upper part of the vent 33 a and the horizontal partition plate 32. (C) is a conceptual diagram in which the bottom 21 of the hull 20 is looked up from directly below, and has an air release port 22 in the vicinity of the bow and a concept of an embodiment in which a plurality of air reservoirs 30 are arranged on the flat portion of the bottom 21. FIG. The shape, dimensions, installation location, number, etc. of the vents 33 may be optimally designed by each ship. (D) shows an embodiment in which the air reservoir 30 is incorporated in, for example, a double ship bottom from the beginning, such as a new shipbuilding. It should be noted that the air reservoir 30 shown in FIG. 3 can be adapted to the optimum shape, the installation location, the number, etc. of the air reservoir 30 according to the type, size and application of the ship.

図3で示したように、空気溜り30の縦横の仕切板31、32の上部に通気口33を設けることで、すべての空気溜り30の空気量を自らほぼ均一に保つことが出来、各空気溜り30内の水面の位置をほぼ統一できる。更には空気開放口22より常に空気を供給できれば、どの空気溜り30に空気が捕らえられても、概ね全ての空気溜り30に空気を一杯まで溜めておける。それ故、水面下の船体20と水とが接する表面積が低減でき、船体20の摩擦抵抗を低減することが出来る。    As shown in FIG. 3, by providing the vents 33 above the vertical and horizontal partition plates 31 and 32 of the air reservoir 30, the amount of air in all the air reservoirs 30 can be kept almost uniform by itself. The position of the water surface in the reservoir 30 can be almost unified. Furthermore, if air can always be supplied from the air release port 22, the air can be almost fully stored in all the air reservoirs 30 regardless of which air reservoir 30 catches the air. Therefore, the surface area where the hull 20 below the water contacts the water can be reduced, and the frictional resistance of the hull 20 can be reduced.

図4が示すのは、本発明の空気吸入装置10とブロア等の外部動力40を併用し空気を船底へ送入する船体摩擦抵抗低減装置の一実施例で、船首船底の近傍に空気吸入装置10を配置し、通気パイプ15の一端にブロア等の外部動力40を接続する。尚、前記通気パイプと前記外部動力40との接続位置よりも上部に、図示していない逆止弁を取り付け、前記外部動力40より供給される空気は吸気口16へ流れることなく、常に前記空気吸入装置10の排気口17から吐き出される。船舶が航行中は常に、空気吸入装置10内では負圧が生成されているので、外部動力40の動力エネルギーの消耗は小さくなる。    FIG. 4 shows an embodiment of a hull frictional resistance reduction device that uses the air suction device 10 of the present invention and an external power 40 such as a blower to send air to the bottom of the ship. 10 and an external power 40 such as a blower is connected to one end of the ventilation pipe 15. A check valve (not shown) is attached above the connection position between the ventilation pipe and the external power 40, so that air supplied from the external power 40 does not flow to the intake port 16 and is always air. It is discharged from the exhaust port 17 of the inhaler 10. Since the negative pressure is always generated in the air suction device 10 while the ship is sailing, the consumption of the motive energy of the external power 40 is reduced.

図5の一実施例の(a)では本発明の空気吸入装置10の筒11の流出口18bを小さくすぼめ、ハブ12の後部に生成された負圧に吸い込まれた空気は、激しく回転する旋回流から、狭められた流出口18bに向けて回転軸方向への速度は加速され、加速する流れの中で剪断されて微細な気泡23になる。(b)は二重船底の船底21部を真下から見上げた概念図で、図示されていない上記の空気吸入装置10から放出された微細な気泡23は、前記船底21の中央部に沿って幾つかの空気開放口22を設けている。一般的には、微細な気泡23を得るためには空気を船底21から水の流れに吐き出す場合、水の流れ方向に対して垂直方向に吐き出し、垂直方向に流れる水によって空気が剪断されるようにする。しかし本発明では、旋回流や回転軸方向に加速度する流れにより剪断された微細な気泡23はすでに水との二相流になっており、空気開放口22から船底21の水の流れに吐き出す場合、同じく水の流れ方向に沿って吐き出すことができるので、微細な気泡23は船底21を這うように空気膜を形成しながら船底21を覆うようことが出来る。それ故に効率の良い船体摩擦抵抗低減が図れる。更には前記空気吸入装置10から空気開放口22までの流れは水と微細な気泡23の二相流なので、船底21内の前記空気吸入装置10から前記空気開放口22まで装置内での、例えばフジツボ等の海洋生物が付着することは低減するので、維持管理が容易になる。    In FIG. 5 (a), the outlet 18b of the cylinder 11 of the air suction device 10 of the present invention is narrowed, and the air sucked into the negative pressure generated at the rear part of the hub 12 swirls violently. The velocity in the direction of the rotation axis is accelerated from the flow toward the narrowed outlet 18b, and is sheared in the accelerating flow to become fine bubbles 23. (B) is a conceptual view of the bottom 21 of the double bottom as viewed from directly below. The number of fine bubbles 23 discharged from the air suction device 10 (not shown) is increased along the center of the bottom 21. The air opening 22 is provided. In general, in order to obtain fine bubbles 23, when air is discharged from the ship bottom 21 into the flow of water, the air is discharged in a direction perpendicular to the flow direction of the water so that the air is sheared by the water flowing in the vertical direction. To. However, in the present invention, the fine bubbles 23 sheared by the swirling flow or the flow accelerating in the direction of the rotation axis are already in a two-phase flow with water and are discharged from the air opening 22 into the water flow at the bottom 21. Similarly, since water can be discharged along the flow direction of water, the fine bubbles 23 can cover the ship bottom 21 while forming an air film so as to crawl the ship bottom 21. Therefore, efficient hull frictional resistance reduction can be achieved. Furthermore, since the flow from the air suction device 10 to the air release port 22 is a two-phase flow of water and fine bubbles 23, for example, in the device from the air suction device 10 in the ship bottom 21 to the air release port 22, Since the adhesion of marine organisms such as barnacles is reduced, maintenance becomes easier.

船体摩擦抵抗低減装置に関し実施例を上記に幾つか述べたが、船舶の用途、規模等に合った最適な設計をするとは述べるまでもない。特に船底に施す装置の場合は、ドック入りの場合等を考慮し、強度を持たせることも当然である。    Although several embodiments of the hull frictional resistance reducing device have been described above, it is needless to say that an optimum design suitable for the use, scale, etc. of the vessel is made. In particular, in the case of a device applied to the bottom of a ship, it is natural to give it strength in consideration of a docked case.

10 空気吸入装置
11 筒
12 ハブ
13 固定翼
14 空気室
15 通気パイプ
16 吸気口
17 排気口
20 船体
21 船底
22 空気開放口
23 気泡
30 空気溜り
31 縦仕切板
32 横仕切板
33 通気口
40 外部動力
FD (船体に対する、相対的)水の流れ方向
DESCRIPTION OF SYMBOLS 10 Air suction apparatus 11 Cylinder 12 Hub 13 Fixed wing 14 Air chamber 15 Ventilation pipe 16 Intake port 17 Exhaust port 20 Hull 21 Ship bottom 22 Air release port 23 Bubble 30 Air reservoir 31 Vertical partition plate 32 Horizontal partition plate 33 Vent port 40 External power FD (relative to the hull) water flow direction

Claims (5)

水中部に設ける筒の内部にハブを設け、前記ハブの周りに複数の固定翼を取り付け、前記固定翼は前記筒の内面部に固定され、
前記筒を取り巻くように、空気室を設け、一方を大気に通じる通気パイプと前記空気室を連通させ、
次に前記固定翼と前記ハブの内部を通り、前記ハブの後部に空気の排気口を設け、
前記通気パイプの吸気口から、前記空気室、前記固定翼を通り、前記ハブの後部の排気口までが連通されていることを特徴とする空気吸入装置を有する船体摩擦抵抗低減装置。
A hub is provided inside a cylinder provided in the underwater portion, a plurality of fixed wings are attached around the hub, and the fixed wings are fixed to the inner surface of the cylinder.
An air chamber is provided so as to surround the cylinder, and the air chamber communicates with a ventilation pipe that leads to the atmosphere on one side,
Next, through the inside of the fixed wing and the hub, an air exhaust port is provided at the rear of the hub,
A hull frictional resistance reduction device having an air suction device, characterized in that the air inlet, the air passage, the fixed wing, and the rear outlet of the hub communicate with each other.
請求項1の空気吸入装置であって、前記空気吸入装置の流入口は船舶の船首船底近傍に開口され、前記空気吸入装置の流出口は前記船舶の船底や舷側に設けられた空気開放口に通じることを特徴とする空気吸入装置を有する船体摩擦抵抗低減装置。  2. The air suction device according to claim 1, wherein an inlet of the air suction device is opened near a bow bottom of the ship, and an outlet of the air suction device is an air release port provided on a ship bottom or a side of the ship. A hull frictional resistance reduction device having an air suction device. 船底平坦部に縦横の複数の仕切板からなる複数の空気溜りを設け、前記仕切板の上部、即ち前記船底に接する側に通気口が設けられていることを特徴とする空気溜りを有する船体摩擦抵抗低減装置。  Hull friction with an air reservoir, characterized in that a plurality of air reservoirs composed of a plurality of vertical and horizontal partition plates are provided on a flat portion of the ship bottom, and vents are provided on the upper portion of the partition plates, that is, on the side in contact with the ship bottom. Resistance reduction device. 請求項2の船体摩擦低減装置であって、前記空気溜りを有する船体摩擦抵抗低減装置。  The hull friction reduction device according to claim 2, wherein the hull friction resistance reduction device has the air pocket. 請求項2、または請求項4の船体摩擦抵抗低減装置のいずれかであって、ブロア等の外部動力を併用し空気を船底へ送入する船体摩擦抵抗低減装置。  5. The hull frictional resistance reduction device according to claim 2 or 4, wherein an external power such as a blower is used in combination to send air to the bottom of the ship.
JP2016072853A 2016-03-14 2016-03-14 Hull frictional resistance reduction device Pending JP2017165386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016072853A JP2017165386A (en) 2016-03-14 2016-03-14 Hull frictional resistance reduction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016072853A JP2017165386A (en) 2016-03-14 2016-03-14 Hull frictional resistance reduction device

Publications (1)

Publication Number Publication Date
JP2017165386A true JP2017165386A (en) 2017-09-21

Family

ID=59909715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016072853A Pending JP2017165386A (en) 2016-03-14 2016-03-14 Hull frictional resistance reduction device

Country Status (1)

Country Link
JP (1) JP2017165386A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108995761A (en) * 2018-07-17 2018-12-14 浙江海洋大学 A kind of hull that can reduce river water resistance
CN112238921A (en) * 2019-07-17 2021-01-19 章洪 Supercavitation hydrofoil ship
CN112238922A (en) * 2019-07-17 2021-01-19 章洪 Supercavitation high-speed ship

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108995761A (en) * 2018-07-17 2018-12-14 浙江海洋大学 A kind of hull that can reduce river water resistance
CN112238921A (en) * 2019-07-17 2021-01-19 章洪 Supercavitation hydrofoil ship
CN112238922A (en) * 2019-07-17 2021-01-19 章洪 Supercavitation high-speed ship

Similar Documents

Publication Publication Date Title
KR100441723B1 (en) Friction-reducing ship and method for reducing skin friction
US7997221B2 (en) Apparatus for reducing drag on a nautical vessel
JP2009274706A (en) Frictional resistance-reduced ship, and method for operation thereof
JP7334339B2 (en) Method and device for reducing wave-making resistance and frictional resistance during navigation of a ship
JP2017165386A (en) Hull frictional resistance reduction device
CN104229088A (en) Single-direction negative-pressure water discharging system of engine compartment for power surfboard
JP2012001115A (en) Twin skeg ship
JP2002002582A (en) Friction resistance reducing ship
JP6873459B2 (en) Ship
US20020029731A1 (en) Method of reducing frictional resistance of a hull, and frictional resistance reducing vessel
JP2001278178A (en) Method of reducing frictional resistance of hull, and frictional resistance reduced ship
EP3098156B1 (en) Frictional resistance reduction device for ship
JP2018154199A (en) Vessel
RU2299152C1 (en) Two-mode water scoop of hovercraft water-jet propeller
JP2001106171A (en) Frictional resistance reduced-ship and method of reducing frictional resistance of hull
KR20130080513A (en) The coefficient drop type boat hull construction
JPH10175588A (en) Frictional resistance reducing device for ship
KR20180023670A (en) Blade for propeller with auxiliary blade
JP2001106173A (en) Frictional resistance reduced-ship
JP2008273493A (en) Minute bubble generating device and hull resistance reduction vessel
JPH11180380A (en) Friction reduction ship and friction reducing method for hull
JP2019123282A (en) Bubble generation device
JP2007246041A (en) Low frictional resistance enlarged ship
US20230382497A1 (en) Ship resistance reduction apparatus using air
JP2023132401A (en) Friction resistance reduction system, navigating body, and friction resistance reduction method for navigating body