JP3622189B2 - Bathtub temperature detector - Google Patents

Bathtub temperature detector Download PDF

Info

Publication number
JP3622189B2
JP3622189B2 JP05539797A JP5539797A JP3622189B2 JP 3622189 B2 JP3622189 B2 JP 3622189B2 JP 05539797 A JP05539797 A JP 05539797A JP 5539797 A JP5539797 A JP 5539797A JP 3622189 B2 JP3622189 B2 JP 3622189B2
Authority
JP
Japan
Prior art keywords
hot water
bath
temperature sensor
bath temperature
water temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05539797A
Other languages
Japanese (ja)
Other versions
JPH10238855A (en
Inventor
良彦 田中
康雄 中西
信之 江本
公明 朝野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritz Corp
Original Assignee
Noritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritz Corp filed Critical Noritz Corp
Priority to JP05539797A priority Critical patent/JP3622189B2/en
Publication of JPH10238855A publication Critical patent/JPH10238855A/en
Application granted granted Critical
Publication of JP3622189B2 publication Critical patent/JP3622189B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、一缶体内に二経路の熱交換器を備え、一基のバーナで浴槽の湯と給湯との二経路の熱交換器を加熱する所謂一缶二経路式の循環加熱装置において、浴槽の湯温を検出する浴槽湯温検出装置に関する。
【0002】
【従来の技術】
従来、一缶二経路式の循環加熱装置においては、浴槽に通じる配管内に温度センサを設け、該配管内の湯温を検出することによって浴槽内の湯温を検出していた。
ところが、上記従来の浴槽湯温検出方法においては、直接浴槽内の湯温を測定するものではなく、浴槽内の湯温と、温度センサの設置位置の湯温とが一致しない状態が生じ、浴槽内の湯温を適切に測定することができないという問題があった。
【0003】
この問題を解決するために、浴槽に通じる配管内に温度センサを設け、該配管内の現在湯温を検出して、前回検出した湯温データと比較し、前回検出した湯温よりも現在湯温が低い場合に、前回検出した湯温を誤検出したデータであると判定し、現在湯温を浴槽温度として更新する浴槽温度検出装置が提案されている。
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来の浴槽湯温検出装置においては、以下に述べるような問題があった。
一缶二経路式の循環加熱装置に上記従来の浴槽湯温検出装置を適用した場合、一方の経路の単使用時には加熱能力が十分であるから問題は無いものであるが、二経路を同時使用すると、給湯側に加熱能力を取られて浴槽に連通する側の経路に対する加熱能力が不足し、現在湯温が前回検出した湯温より低くなり、前回検出した湯温を誤検出したデータであると判定するという問題があった。
【0005】
本発明の目的は、一缶体内に二経路の熱交換器を備え、一基のバーナで加熱する一缶二経路式の循環加熱装置において、浴槽湯温の誤検出の誤判定を防ぐことのできる浴槽湯温検出装置を提供することである。
【0006】
【課題を解決するための手段】
上記目的を達成するために本発明の浴槽湯温検出装置は、一缶体内に二経路の熱交換器と一基のバーナを備えた一缶二経路式の循環加熱装置において、風呂側循環回路に風呂温度センサを設け、該風呂温度センサの検出した現在湯温が、所定時間前に検出して比較風呂温度データとして記憶している前回検出湯温よりも低い場合は、現在湯温を比較風呂温度データとして更新して記憶する風呂温度センサ異常検出動作を行う浴槽湯温検出装置において、風呂と給湯の同時運転が開始された時に、風呂温度センサ異常検出動作を停止することにより、風呂加熱運転中に給湯運転が行われている場合に、NGカウンタをリセットして風呂温度センサの異常検出動作を停止させるから、風呂温度センサの異常の誤検出を防止することができる。
また、一缶体内に二経路の熱交換器と一基のバーナを備えた一缶二経路式の循環加熱装置において、風呂側循環回路に風呂温度センサを設け、該風呂温度センサの検出した現在湯温が、所定時間前に検出して比較風呂温度データとして記憶している前回検出湯温よりも低い場合は、現在湯温を比較風呂温度データとして更新して記憶する風呂温度センサ異常検出動作を行う浴槽湯温検出装置において、風呂と給湯の同時運転が開始された時に、給湯運転が停止されるまで風呂温度センサ異常検出動作を中断することにより、給湯及び風呂の同時使用で、風呂加熱能力が低下しても、風呂温度センサ異常検出の誤動作を防ぐことができるとともに、給湯運転が停止すると、第2所定時間tを計測するタイマをリセットし、比較風呂温度データを再び検出するが、NGカウンタをリセットしないことで、正確に且つ速やかに風呂温度センサの異常を検出できる。
さらに、一缶体内に二経路の熱交換器と一基のバーナを備えた一缶二経路式の循環加熱装置において、風呂側循環回路に風呂温度センサを設け、該風呂温度センサの検出した現在湯温が、所定時間前に検出して比較風呂温度データとして記憶している前回検出湯温よりも低い場合は、現在湯温を比較風呂温度データとして更新して記憶する風呂温度センサ異常検出動作を行う浴槽湯温検出装置において、風呂と給湯の同時運転が開始された時に、給湯側の運転による風呂側加熱能力が低下が大きい場合に、風呂温度センサ異常検出動作を停止することにより、同時使用中に風呂側加熱能力が低下した場合にのみ風呂温度センサ異常検出動作を停止させて誤検出を防止する一方、風呂側加熱能力が低下しない場合は風呂温度センサ異常検出動作を継続して、速やか且つ正確な風呂温度センサ異常検出を実行することができる。
また、同時使用中に風呂側加熱能力が低下した場合に風呂温度センサ異常検出動作を停止させて誤検出を防止することができる。
【0007】
【発明の実施の形態】
図を参照して本発明の実施例を説明する。
図6において、本発明を適用する一缶二経路一バーナ形式の循環加熱装置の概略構成を説明すると、循環加熱装置1は、給湯用熱交換器2と、風呂用熱交換器3と、バーナノズル4、点火装置5及びファン6とを有するオイルバーナとを備えている。
【0008】
給湯用熱交換器2には、給湯入水路7と、給湯用カランに接続される給湯出湯路8とがそれぞれ連通されており、給湯入水路7には、入水量Qc を検出する給湯入水量センサ9及び入水温度Tc を検出する入水温度センサ10が設けられ、給湯出湯路8には出湯量Qo を調節する出湯量調整弁11及び出湯温度To を検出する出湯湯温センサ12が設けられている。
給湯入水路7の水量センサ9及び入水温度センサ10の設置箇所より上流側位置と、給湯出湯路8の出湯量調整弁11及び出湯湯温センサ12の設置箇所より上流側位置即ち給水源側位置とに、それぞれ両端が接続開口される給湯バイパス路13が設けられており、該給湯バイパス路13にはバイパス水量を調節するバイパス調整弁14が設置されている。
【0009】
風呂用熱交換器3には、一端が浴槽に接続開口され、浴槽内の湯を循環加熱装置1に送る風呂戻り管路15と、一端が浴槽に接続開口され、循環加熱装置1で加熱された湯を浴槽に送る風呂往き管路16とがそれぞれ接続されて風呂側循環回路が形成されており、風呂戻り管路15には、循環ポンプ19、風呂温度センサ20及び水流スイッチ21が上流側即ち浴槽側から順に設けられ、風呂温度センサ20と水流スイッチ21の間と、風呂往き管路16とに、それぞれ両端が接続開口され、逆止弁24を有する風呂バイパス路18が設けられている。
【0010】
給湯出湯路8の出湯量調整弁11及び出湯湯温センサ12の設置箇所より下流側位置と、風呂往き管路16の風呂バイパス路18分岐位置より上流側位置即ち循環加熱装置1側の位置とに、両端が接続開口された落とし込み管路17が設けられており、落とし込み管路17には、逆止弁22,23、落とし込み水量センサ24、落とし込み電磁弁25及び真空破壊弁26が設けられている。
【0011】
動作について説明すると、給湯運転時には、給湯カランを開くと、給湯入水路7から給湯用熱交換器2を経て給湯出湯路8への給湯加熱路が形成され、給湯入水路7から給湯用熱交換器2への入水量を給湯入水量センサ9で、入水温度を入水温度センサ10で検出し、その検出データに基づいて、出湯量調整弁11の開度並びにバイパス水量を調節するバイパス調整弁14の開度を調節して、給湯出湯路8からの出湯湯温を調節する。
【0012】
浴槽に湯を補給する落とし込み運転の場合は、給湯カランは閉じたままで落とし込み電磁弁25を開くと、給湯入水路7、給湯用熱交換器2、給湯出湯路8、落とし込み管路17、風呂往き管路16で落とし込み加熱路が形成され、給湯用熱交換器2で加熱された給湯出湯路8からの湯を、落とし込み管路17を介して風呂往き管路16に導き、浴槽に供給する。
浴槽内の水位が空焚きの恐れのない第1所定値(例えば、接続金具の開口を覆う水位)に達すると、浴槽内の湯温が低い場合は、落とし込み運転を継続しながら、後述の風呂追焚運転を開始する。
【0013】
浴槽内の水位が十分な第2所定値(例えば、浴槽の上縁から10〜15cm)に達すると、落とし込み電磁弁25が閉じられて落とし込み運転が停止され、浴槽内の湯温が低くなると、浴槽内の湯を追い焚きする風呂追焚運転が開始される。風呂追焚運転においては、落とし込み電磁弁25が閉じられて循環ポンプ19の運転が開始され、水流スイッチ21が浴槽の湯の循環を検出し、風呂戻り管路15に設けられた風呂温度センサ20が、湯温Te が設定温度Ts 以下であることを検出すると、オイルバーナが燃焼を開始する。
【0014】
次に、風呂温度センサ20の異常検出動作について説明する。
図1において、第1実施例を説明すると、風呂保温或いは風呂昇温の操作スイッチをオンする又はオンしている(ステップS1)時に、給湯入水路7の入水量Qc を検出する給湯入水量センサ9の検出データにより、給湯側に最低必要流量(MOQ)以上の通水が行われているか、即ち給湯が行われているか確認し(ステップS2)、MOQ以上の入水量Qc (MOQ≦Qc )である即ち給湯が行われている場合は、不都合な湯温検出状態である回数をカウントするNGカウンタをリセットする(ステップS3)。
ここで、NGカウンタは、湯温検出状態が不都合である(例えば、バーナが燃焼しているのに、風呂温度センサ20の検出する湯温Te が前回検出湯温Tb より低下している)ことが発生した回数を所定時間毎にカウント(NGカウント)するものである。
【0015】
これは、MOQ以上の入水量Qc (MOQ≦Qc )である即ち給湯が行われている場合は、循環加熱装置1の加熱能力が、給湯用熱交換器2を加熱するのに大きく摂られることになり、風呂用熱交換器3の加熱量が不足し、上述のバーナが燃焼しているのに、風呂温度センサ20が正常であるにも拘らず、その検出する湯温Te が前回検出湯温Tb より低下する等の不都合を生じる恐れがあるため、NGカウンタをリセットするものである。
【0016】
入水量Qc がMOQ未満(Qc <MOQ)である場合は、給湯が行われていないと判断して後述する通常の風呂温度センサ異常検出動作を実行し(ステップS4)、NGカウンタが所定カウント数N(例えば、3)になる(ステップS5)と風呂温度センサ20が異常であると判定する(ステップS6)。
【0017】
図2のフローチャートを参照して通常の風呂温度センサ異常検出動作(ステップS4)を説明すると、通常の風呂温度センサ異常検出動作に入ると、循環ポンプ19を運転し(ステップS7)、水流スイッチ21のオンによって循環ポンプ19の運転を確認するとともに、水流スイッチ21のオンから第1所定時間t(例えば、25秒間)継続した、即ち循環ポンプ19の運転が第1所定時間t(25秒間)継続したことを確認し(ステップS8)、風呂温度センサ20によって比較風呂温度データとして湯温A(前述の前回検出湯温Tb )を検出する(ステップS9)。
なお、水流スイッチ21を備えていない場合は、直接循環ポンプ19が運転されている時間を計測する。
【0018】
湯温Aの検出後第2所定時間t(例えば、5分間)経過(ステップS10)後、現在風呂温度データとして現在湯温A(前述の湯温Te )を検出する(ステップS11)。
比較風呂温度データ(前回湯温A)と現在風呂温度データ(現在湯温A)とを比較し(ステップS12)、比較風呂温度データ(前回湯温A)より現在風呂温度データ(現在湯温A)が低い(A>A)場合には、誤検出と判断して比較風呂温度データを現在湯温Aに更新する(ステップS13)。
【0019】
この比較風呂温度データ(前回湯温A)より現在風呂温度データ(現在湯温A)が低い(A>A)状態は、正常な状態ではないものであるから、NGカウンタにNGカウントを1カウントする(ステップS14)。
NGカウンタが所定カウント数N(例えば、3)に達すると(ステップS15)、風呂温度センサ20が異常であると判定する(ステップS16)。
【0020】
NGカウンタが所定カウント数N(3)に達していない(ステップS15)時は、比較風呂温度データの計測(ステップS9)直後の状態に戻し、第2所定時間t(5分間)経過(ステップS10)後、現在風呂温度データとして現在湯温Aを検出し(ステップS11)、比較風呂温度データ(前回湯温A)と現在風呂温度データ(現在湯温A)を比較し(ステップS12)、比較風呂温度データ(前回湯温A)より現在風呂温度データ(現在湯温A)が低い(A>A)場合には、比較風呂温度データを現在湯温Aに更新する(ステップS13)とともに、NGカウントを1カウントする(ステップS14)。
以下、同様にして比較風呂温度データを更新する。
【0021】
ステップS12において、現在風呂温度データ(現在湯温A)が比較風呂温度データ(前回湯温A)以上(A≦A)である場合、その温度差が設定値ΔT(例えば、ΔT=1度)未満である時(0°≦AーA<ΔT、即ち0°≦AーA<1°)は、正常な状態ではないと判定して、NGカウンタにNGカウントを1カウントする(ステップS14)。
現在風呂温度データ(現在湯温A)と比較風呂温度データ(前回湯温A)の差が設定値ΔT以上である(AーA≧ΔT、即ちAーA≧1°)場合は、比較風呂温度データを現在湯温Aに更新し(ステップS18)、NGカウンタをリセットして(ステップS19)比較風呂温度データの計測(ステップS9)直後の状態に戻す。
【0022】
この構成により、風呂保温或いは風呂昇温の操作スイッチがオンした時、又はオンしている時即ち風呂加熱運転中に給湯運転が行われて風呂側加熱能力の低下が大きい場合には、NGカウンタをリセットして風呂温度センサの異常検出動作を停止させるから、風呂温度センサの異常の誤検出を防止することができる。
【0023】
図3において第2実施例を説明すると、ステップS7からステップS19までは上述の通常の風呂温度センサ異常検出動作であり、比較風呂温度データとして湯温Aの検出後第2所定時間t(例えば、5分間)が経過(ステップS10)していない時に、MOQがオンして給湯運転が始まる(ステップS20)と、MOQがオフして給湯運転が停止する(ステップS21)まで、風呂温度センサ異常検出動作を停止する。
MOQがオフする即ち給湯運転が停止する(ステップS21)と、第2所定時間tを計測するタイマをリセットし(ステップS22)、比較風呂温度データとして湯温Aを再び検出する(ステップS9)。
【0024】
この構成によると、風呂の加熱運転が行われている最中にMOQがオンして給湯運転が始まると、MOQがオフして給湯運転が停止するまで、風呂温度センサ異常検出動作を停止することにより、給湯及び風呂の同時使用で、風呂加熱能力が低下しても、風呂温度センサ異常検出の誤動作を防ぐことができる。
また、MOQがオフして給湯運転が停止すると、第2所定時間tを計測するタイマをリセットし、比較風呂温度データとして湯温Aを再び検出するが、NGカウンタをリセットしないことで、正確に且つ速やかに風呂温度センサの異常を検出できる。
【0025】
図4において第3実施例を説明すると、ステップS7からステップS18までは上述の通常の風呂温度センサ異常検出動作であり、比較風呂温度データとして湯温Aの検出後第2所定時間t(例えば、5分間)が経過(ステップS10)していない時に、MOQがオンして給湯運転が始まる(ステップS20)と、給湯側入水温度Tc が入水所定温度B以下であり(ステップS23)、且つ現在風呂戻り湯温Te が風呂戻り所定温度D以上である(ステップS24)場合は、第2所定時間tを計測するタイマをリセットして(ステップS22)、風呂温度センサ異常検出動作を停止させ、比較風呂温度データとして湯温Aを再び検出する(ステップS9)。
【0026】
これは、風呂追焚運転と給湯運転の同時使用において、給湯と追焚との能力バランスが、給湯は、給湯側入水温度Tc が低い、即ち給湯側入水温度Tc が入水所定温度B以下である場合には吸熱しやすくなる、即ち吸熱量が大きくなり、追焚運転は、風呂戻り湯温Te が高い、即ち風呂戻り湯温Te が風呂戻り所定温度D以上である場合には吸熱しにくくなる、即ち吸熱量が小さくなる。
したがって、給湯側入水温度Tc が入水所定温度B以下で、且つ風呂戻り湯温Te が風呂戻り所定温度D以上である場合には、風呂側加熱能力が低下するからである。
【0027】
この構成によると、風呂追焚運転と給湯運転の同時使用において、給湯側入水温度Tc が入水所定温度B以下で、且つ風呂戻り湯温Te が風呂戻り所定温度D以上である場合には、第2所定時間tを計測するタイマをリセットして風呂温度センサ異常検出動作を停止させるものであるから、同時使用中に風呂側加熱能力が低下した場合にのみ風呂温度センサ異常検出動作を停止させて誤検出を防止する一方、風呂側加熱能力が低下しない場合は風呂温度センサ異常検出動作を継続して、速やか且つ正確な風呂温度センサ異常検出を実行することができる。
【0028】
図5を参照して第4実施例を説明すると、ステップS7からステップS19までは上述の通常の風呂温度センサ異常検出動作であり、比較風呂温度データとして湯温Aの検出後、第2所定時間t(例えば、5分間)が経過(ステップS10)していない時に、MOQがオンして給湯運転が始まる(ステップS20)と、現在給湯号数Ga を次の式で算出する(ステップS24)。
Ga =(To ─Tc )×Qo /25
ここで、To :給湯側出湯温度
Tc :給湯側入水温度
Qo :給湯側出湯量
【0029】
次に、現在風呂号数Gb を次の式で算出する(ステップS26)。
Gb =Gc ─Ga
但し、Gc :現在のバーナ出力号数(バーナの燃焼量から算出)
さらに、現在風呂号数Gb を所定号数Gs (例えば、5号)と比較し(ステップS27)、現在風呂号数Gb が所定号数Gs (例えば、5号)より低い(Gb <Gs )場合には、第2所定時間tを計測するタイマをリセットして(ステップS22)、風呂温度センサ異常検出動作を停止させ、比較風呂温度データとして湯温Aを再び検出する(ステップS9)。
【0030】
この構成によると、現在のバーナ出力号数Gc と、実際値である現在給湯号数Ga とから現在風呂号数Gb を算出し、現在風呂号数Gb が所定号数Gs (5号)未満の場合には、風呂温度センサ異常検出動作を停止させるから、同時使用中に風呂側加熱能力が低下した場合に風呂温度センサ異常検出動作を停止させて誤検出を防止することができる。
【0031】
【発明の効果】
本発明は、上述のとおり構成されているから次に述べる効果を奏する。
一缶二経路式の循環加熱装置において、風呂側循環回路に風呂温度センサを設け、該風呂温度センサの検出した現在湯温が、所定時間前に検出して比較風呂温度データとして記憶している前回検出湯温よりも低い場合は、現在湯温を比較風呂温度データとして更新して記憶する風呂温度センサ異常検出動作を行う浴槽湯温検出装置において、風呂と給湯の同時運転が開始された時に、風呂温度センサ異常検出動作を停止することにより、風呂加熱運転中に給湯運転が行われている場合に、NGカウンタをリセットして風呂温度センサの異常検出動作を停止させるから、風呂温度センサの異常の誤検出を防止することができる。
また、風呂と給湯の同時運転が開始された時に、給湯運転が停止されるまで風呂温度センサ異常検出動作を中断することにより、給湯及び風呂の同時使用で、風呂加熱能力が低下しても、風呂温度センサ異常検出の誤動作を防ぐことができるとともに、給湯運転が停止すると、第2所定時間tを計測するタイマをリセットし、比較風呂温度データを再び検出するが、NGカウンタをリセットしないことで、正確に且つ速やかに風呂温度センサの異常を検出できる。
さらに、風呂と給湯の同時運転が開始された時に、風呂側加熱能力が低下した場合に、風呂温度センサ異常検出動作を停止することにより、同時使用中に風呂側加熱能力が低下した場合にのみ風呂温度センサ異常検出動作を停止させて誤検出を防止する一方、風呂側加熱能力が低下しない場合は風呂温度センサ異常検出動作を継続して、速やか且つ正確な風呂温度センサ異常検出を実行することができる。
また、同時使用中に風呂側加熱能力が低下した場合に風呂温度センサ異常検出動作を停止させて誤検出を防止することができる。
【図面の簡単な説明】
【図1】本発明の第1実施例のフローチャートである。
【図2】本発明を適用する異常検出動作のフローチャートである。
【図3】本発明の第2実施例のフローチャートである。
【図4】本発明の第3実施例のフローチャートである。
【図5】本発明の第4実施例のフローチャートである。
【図6】本発明を適用する循環加熱装置の概略構成図である。
【符号の説明】
1 循環加熱装置、2 給湯用熱交換器、3 風呂用熱交換器
4 バーナノズル、6 ファン、7 給湯入水路、8 給湯出湯路
13 給湯バイパス路、15 風呂戻り管路、16 風呂往き管路
17 落とし込み管路、18 風呂バイパス路、19 循環ポンプ
20 風呂温度センサ、21 水流スイッチ
[0001]
BACKGROUND OF THE INVENTION
The present invention is a so-called one-can two-path circulation heating apparatus that includes a two-path heat exchanger in one can and heats the two-path heat exchanger of hot water and hot water in a bathtub with a single burner. The present invention relates to a bathtub hot water temperature detecting device for detecting a hot water temperature of a bathtub.
[0002]
[Prior art]
Conventionally, in a can and two-path circulation heating device, a temperature sensor is provided in a pipe leading to the bathtub, and the hot water temperature in the bathtub is detected by detecting the hot water temperature in the pipe.
However, in the above-described conventional bath water temperature detection method, the hot water temperature in the bathtub is not directly measured, and the hot water temperature in the bathtub does not match the hot water temperature at the installation position of the temperature sensor. There was a problem that the temperature of the hot water inside could not be measured properly.
[0003]
In order to solve this problem, a temperature sensor is provided in the pipe that leads to the bathtub, and the current hot water temperature in the pipe is detected and compared with the previously detected hot water temperature data. There has been proposed a bathtub temperature detection device that determines that the detected hot water temperature is erroneously detected data when the temperature is low and updates the current hot water temperature as the bathtub temperature.
[0004]
[Problems to be solved by the invention]
However, the conventional bath water temperature detecting device has the following problems.
When the above-mentioned conventional bath water temperature detector is applied to a single-can two-path circulating heating device, there is no problem because the heating capacity is sufficient when only one of the channels is used, but two channels are used simultaneously. Then, the heating capacity is taken by the hot water supply side and the heating capacity for the path communicating with the bathtub is insufficient, the current hot water temperature is lower than the previously detected hot water temperature, and the previously detected hot water temperature is erroneously detected data. There was a problem of judging.
[0005]
An object of the present invention is to prevent erroneous determination of erroneous detection of bath water temperature in a single-can two-path circulation heating device that includes a two-path heat exchanger in a single can and heats with a single burner. It is providing the bathtub hot-water temperature detection apparatus which can be performed.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, a bath water temperature detection device of the present invention is a bath-side circulation circuit in a one-can two-pass circulation heating device provided with a two-pass heat exchanger and one burner in one can. If the current hot water temperature detected by the bath temperature sensor is lower than the previously detected hot water temperature detected and stored as comparative bath temperature data a predetermined time ago, the current hot water temperature is compared. In bath water temperature detection device that performs bath temperature sensor abnormality detection operation that is updated and stored as bath temperature data, bath heating is performed by stopping the bath temperature sensor abnormality detection operation when simultaneous operation of bath and hot water is started When the hot water supply operation is performed during operation, the NG counter is reset to stop the abnormality detection operation of the bath temperature sensor, so that erroneous detection of the abnormality of the bath temperature sensor can be prevented.
In addition, in a one-can two-path circulation heating device equipped with a two-path heat exchanger and one burner in a single can, a bath temperature sensor is provided in the bath-side circulation circuit, and the current detected by the bath temperature sensor When the hot water temperature is lower than the previously detected hot water temperature detected and stored as comparative bath temperature data a predetermined time ago, the bath temperature sensor abnormality detection operation that updates and stores the current hot water temperature as comparative bath temperature data When the bath and hot water simultaneous operation is started in the bathtub hot water temperature detection device, the bath temperature sensor abnormality detection operation is interrupted until the hot water operation is stopped. even reduced ability, it is possible to prevent malfunction of the bath temperature sensor abnormality detection, the hot-water supply operation is stopped, the timer for measuring a second predetermined time t 2 is reset, compare bath temperature data However, the abnormality of the bath temperature sensor can be detected accurately and promptly by not resetting the NG counter.
Furthermore, in a single-can two-path circulation heating device equipped with a two-path heat exchanger and one burner in a single can, a bath temperature sensor is provided in the bath-side circulation circuit, and the current detected by the bath temperature sensor When the hot water temperature is lower than the previously detected hot water temperature detected and stored as comparative bath temperature data a predetermined time ago, the bath temperature sensor abnormality detection operation that updates and stores the current hot water temperature as comparative bath temperature data When the bath and hot water supply simultaneous operation is started in the bathtub hot water temperature detection device, the bath temperature sensor abnormality detection operation is stopped at the same time if the bath side heating capacity due to the hot water supply side operation is greatly reduced. The bath temperature sensor abnormality detection operation is stopped only when the bath side heating capacity is reduced during use to prevent false detection, while when the bath side heating capacity is not reduced, the bath temperature sensor abnormality detection operation is performed. Continuously, it is possible to perform quick and accurate bath temperature sensor abnormality detection.
Moreover, when the bath-side heating capability is reduced during simultaneous use, the bath temperature sensor abnormality detection operation can be stopped to prevent erroneous detection.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings.
In FIG. 6, a schematic configuration of a canned, two-path, and one-burner circulation heating apparatus to which the present invention is applied will be described. The circulation heating apparatus 1 includes a hot water supply heat exchanger 2, a bath heat exchanger 3, and a burner nozzle. 4. An oil burner having an ignition device 5 and a fan 6 is provided.
[0008]
The hot water supply heat exchanger 2 is connected to a hot water supply / intake channel 7 and a hot water supply / outflow channel 8 connected to the hot water supply curan, and the hot water supply / inflow channel 7 detects the amount of incoming hot water Qc. A sensor 9 and an incoming water temperature sensor 10 for detecting the incoming water temperature Tc are provided, and a hot water supply / outflow path 8 is provided with a hot water amount adjusting valve 11 for adjusting the outgoing hot water amount Qo and a hot water temperature sensor 12 for detecting the outgoing hot water temperature To. Yes.
A position upstream of the location where the water amount sensor 9 and the temperature sensor 10 are installed in the hot water supply inlet 7 and a location upstream of the location where the hot water outlet adjustment valve 11 and the hot water temperature sensor 12 are installed, ie, the location of the water supply source In addition, a hot water supply bypass passage 13 that is open at both ends is provided, and a bypass adjustment valve 14 that adjusts the amount of bypass water is installed in the hot water supply bypass passage 13.
[0009]
One end of the bath heat exchanger 3 is connected and opened to the bathtub, the bath return pipe 15 for sending hot water in the bath to the circulating heating device 1, and one end of the bath is connected to the bathtub and heated by the circulating heating device 1. A bath-side circulation circuit is formed by connecting a hot water supply pipe 16 for sending hot water to the bathtub, and a circulation pump 19, a bath temperature sensor 20, and a water flow switch 21 are upstream of the bath return pipe 15. That is, the bath bypass path 18 is provided in order from the bathtub side, and is open between the bath temperature sensor 20 and the water flow switch 21 and the bath outlet pipe line 16 at both ends and having a check valve 24. .
[0010]
A position downstream of the hot water supply / outlet channel 8 and the position of the hot water temperature sensor 12 and the upstream side of the bath bypass channel 18 branch position of the bath outlet pipe 16, that is, the position on the circulating heating device 1 side Further, a dropping pipe 17 having both ends connected to each other is provided, and the dropping pipe 17 is provided with check valves 22 and 23, a dropped water amount sensor 24, a dropping electromagnetic valve 25, and a vacuum breaking valve 26. Yes.
[0011]
In operation, when the hot water supply current is opened during hot water supply operation, a hot water supply heating path is formed from the hot water supply / intake path 7 through the hot water supply heat exchanger 2 to the hot water supply / outflow path 8 and the hot water supply / intake path 7 exchanges heat for hot water supply. A bypass adjustment valve 14 that detects the amount of water entering the vessel 2 with a hot water supply water amount sensor 9 and the incoming water temperature with a water temperature sensor 10 and adjusts the opening degree of the hot water amount adjustment valve 11 and the amount of bypass water based on the detected data. The hot water temperature from the hot water supply and hot water outlet 8 is adjusted.
[0012]
In the drop-down operation for supplying hot water to the bathtub, if the drop-off solenoid valve 25 is opened with the hot-water supply curl closed, the hot-water supply / intake channel 7, the hot-water heat exchanger 2, the hot-water supply / outlet channel 8, the drop-in conduit 17, and the bath A dropping heating path is formed in the pipe line 16, and hot water from the hot water supply / outflow path 8 heated by the hot water supply heat exchanger 2 is guided to the bath outlet pipe line 16 through the dropping pipe line 17 and supplied to the bathtub.
When the water level in the bathtub reaches a first predetermined value (for example, the water level covering the opening of the fitting) that does not cause airing, if the hot water temperature in the bathtub is low, the bath operation described below is continued while continuing the dropping operation. Start memorial operation.
[0013]
When the water level in the bathtub reaches a sufficient second predetermined value (for example, 10 to 15 cm from the upper edge of the bathtub), the dropping solenoid valve 25 is closed, the dropping operation is stopped, and the hot water temperature in the bathtub is lowered. The bath chasing operation that chases the hot water in the bathtub is started. In the bath memorial operation, the drop solenoid valve 25 is closed and the operation of the circulation pump 19 is started, the water flow switch 21 detects the circulation of the hot water in the bathtub, and the bath temperature sensor 20 provided in the bath return line 15. However, when it is detected that the hot water temperature Te is equal to or lower than the set temperature Ts, the oil burner starts combustion.
[0014]
Next, the abnormality detection operation of the bath temperature sensor 20 will be described.
Referring to FIG. 1, a first embodiment will be described. A hot water supply / inflow amount sensor for detecting the amount of water intake Qc in the hot water supply / inflow channel 7 when the operation switch for bath warming or bath temperature raising is turned on or on (step S1). 9, it is confirmed whether or not water flow exceeding the minimum required flow rate (MOQ) is performed on the hot water supply side, that is, whether or not hot water supply is performed (step S2), and the amount of incoming water Qc greater than MOQ (MOQ ≦ Qc) In other words, if hot water is being supplied, the NG counter that counts the number of times that the hot water temperature detection state is inconvenient is reset (step S3).
Here, the hot water temperature detection state of the NG counter is inconvenient (for example, although the burner is burning, the hot water temperature Te detected by the bath temperature sensor 20 is lower than the previously detected hot water temperature Tb). Is counted (NG count) every predetermined time.
[0015]
This is because when the incoming water amount Qc is equal to or greater than MOQ (MOQ ≦ Qc), that is, when hot water is being supplied, the heating capacity of the circulation heating device 1 is greatly consumed for heating the heat exchanger 2 for hot water supply. Even though the amount of heating of the heat exchanger 3 for the bath is insufficient and the above-mentioned burner is burning, the detected hot water temperature Te is the bath temperature sensor 20 detected in spite of the normal temperature of the bath temperature sensor 20. The NG counter is reset because there is a risk of inconvenience such as a drop from the temperature Tb.
[0016]
When the incoming water amount Qc is less than MOQ (Qc <MOQ), it is determined that hot water is not being supplied, and a normal bath temperature sensor abnormality detection operation described later is executed (step S4), and the NG counter is set to a predetermined count number. When N (for example, 3) is reached (step S5), it is determined that the bath temperature sensor 20 is abnormal (step S6).
[0017]
The normal bath temperature sensor abnormality detection operation (step S4) will be described with reference to the flowchart of FIG. 2. When the normal bath temperature sensor abnormality detection operation starts, the circulation pump 19 is operated (step S7), and the water flow switch 21 is operated. The operation of the circulation pump 19 is confirmed by turning on, and the first predetermined time t 1 (for example, 25 seconds) has been continued since the water flow switch 21 is turned on. That is, the operation of the circulation pump 19 is performed for the first predetermined time t 1 (25 seconds). ) After confirming that it has continued (step S8), the bath temperature sensor 20 detects the hot water temperature A 0 (the previously detected hot water temperature Tb) as comparative bath temperature data (step S9).
If the water flow switch 21 is not provided, the time during which the circulation pump 19 is operated directly is measured.
[0018]
After elapse of a second predetermined time t 2 (for example, 5 minutes) after the detection of the hot water temperature A 0 (step S10), the current hot water temperature A 1 (the aforementioned hot water temperature Te) is detected as the current bath temperature data (step S11). .
The comparison bath temperature data (previous hot water temperature A 0 ) and the current bath temperature data (current hot water temperature A 1 ) are compared (step S12), and the current bath temperature data (current hot water temperature A 0 ) is compared with the comparative bath temperature data (previous hot water temperature A 0 ). If the hot water temperature A 1 ) is low (A 0 > A 1 ), it is determined that there is a false detection, and the comparative bath temperature data is updated to the current hot water temperature A 1 (step S13).
[0019]
Since the current bath temperature data (current hot water temperature A 1 ) is lower than the comparative bath temperature data (previous hot water temperature A 0 ) (A 0 > A 1 ), it is not normal. The count is incremented by 1 (step S14).
When the NG counter reaches a predetermined count number N (for example, 3) (step S15), it is determined that the bath temperature sensor 20 is abnormal (step S16).
[0020]
When the NG counter has not reached the predetermined count number N (3) (step S15), it returns to the state immediately after the measurement of the comparative bath temperature data (step S9), and the second predetermined time t 2 (5 minutes) has elapsed (step S10) after the current now detects the hot water temperature a 2 as bath temperature data (step S11), and compares the bath temperature data (previous hot water temperature a 1) and compares the current bath temperature data (current water temperature a 2) (step S12) If the current bath temperature data (current hot water temperature A 2 ) is lower than the comparative bath temperature data (previous hot water temperature A 1 ) (A 1 > A 2 ), the comparative bath temperature data is set to the current hot water temperature A 2 . In addition to updating (step S13), the NG count is counted by 1 (step S14).
Thereafter, the comparative bath temperature data is updated in the same manner.
[0021]
In step S12, when the current bath temperature data (current hot water temperature A 1 ) is equal to or higher than the comparative bath temperature data (previous hot water temperature A 0 ) (A 0 ≦ A 1 ), the temperature difference is set to a set value ΔT (for example, ΔT = 1 degree) (0 ° ≦ A 1 −A 0 <ΔT, ie, 0 ° ≦ A 1 −A 0 <1 °), it is determined that the state is not normal, and the NG counter counts NG. Is counted by 1 (step S14).
The difference between the current bath temperature data (current hot water temperature A 1 ) and the comparative bath temperature data (previous hot water temperature A 0 ) is equal to or greater than the set value ΔT (A 1 −A 0 ≧ ΔT, that is, A 1 −A 0 ≧ 1 °). ), then updates the comparison bath temperature data to the current hot water temperature a 1 (step S18), and resets the NG counter (step S19) measurement of the comparative bath temperature data (step S9) and returns to the state immediately after.
[0022]
With this configuration, when the bath warming or bath warming operation switch is turned on, or when it is turned on, that is, when the hot water supply operation is performed during the bath heating operation and the bath side heating capacity is greatly reduced, the NG counter Is reset and the abnormality detection operation of the bath temperature sensor is stopped, so that erroneous detection of the abnormality of the bath temperature sensor can be prevented.
[0023]
Referring to FIG. 3, the second embodiment will be described with reference to the normal bath temperature sensor abnormality detection operation from step S7 to step S19, and the second predetermined time t 2 (after detection of the hot water temperature A 0 as comparison bath temperature data). For example, when 5 minutes has not elapsed (step S10), the MOQ is turned on and the hot water supply operation is started (step S20), and the MOQ is turned off and the hot water supply operation is stopped (step S21). Stop the abnormality detection operation.
MOQ is namely hot-water supply operation is stopped off (the step S21), and a second predetermined time t 2 resets the timer for counting (step S22), and again detects the water temperature A 0 as compared bath temperature data (step S9 ).
[0024]
According to this configuration, when the MOQ is turned on and the hot water supply operation is started while the bath is being heated, the bath temperature sensor abnormality detection operation is stopped until the MOQ is turned off and the hot water supply operation is stopped. Thus, even if the hot water supply and bath are used at the same time, even if the bath heating capacity is reduced, it is possible to prevent malfunction of the bath temperature sensor abnormality detection.
Further, the MOQ is turned off hot-water supply operation is stopped, it resets the timer for measuring a second predetermined time t 2, but again detects the water temperature A 0 as compared bath temperature data, without resetting the NG counter, Abnormalities in the bath temperature sensor can be detected accurately and promptly.
[0025]
Referring to FIG. 4, the third embodiment will be described with reference to the normal bath temperature sensor abnormality detecting operation from step S7 to step S18, and the second predetermined time t 2 (after detection of the hot water temperature A 0 as comparison bath temperature data). For example, when 5 minutes has not elapsed (step S10), when the MOQ is turned on and the hot water supply operation starts (step S20), the hot water supply side incoming water temperature Tc is equal to or lower than the incoming water predetermined temperature B (step S23), and If it is now bath return water temperature Te is a bath returns above a predetermined temperature D (step S24), and a timer for measuring a second predetermined time t 2 is reset (step S22), and stops the bath temperature sensor abnormality detecting operation The hot water temperature A0 is detected again as comparison bath temperature data (step S9).
[0026]
This is because the capacity balance between hot water supply and reheating is the same in simultaneous use of bath chase operation and hot water supply operation. In hot water supply, the hot water supply side incoming temperature Tc is low, that is, the hot water supply side incoming temperature Tc is lower than the predetermined incoming temperature B. In this case, the heat absorption becomes easy, that is, the amount of heat absorption becomes large, and the chasing operation becomes difficult to absorb heat when the bath return hot water temperature Te is high, that is, when the bath return hot water temperature Te is equal to or higher than the predetermined temperature D for bath return. That is, the endothermic amount is reduced.
Therefore, when the hot water supply side incoming water temperature Tc is equal to or lower than the incoming water predetermined temperature B and the bath return hot water temperature Te is equal to or higher than the bath return predetermined temperature D, the bath side heating capacity is lowered.
[0027]
According to this configuration, in the simultaneous use of the bath chase operation and the hot water supply operation, when the hot water supply side incoming water temperature Tc is equal to or lower than the incoming water predetermined temperature B and the bath return hot water temperature Te is equal to or higher than the predetermined bath return temperature D, since the timer for measuring a second predetermined time t 2 is intended to stop the bath temperature sensor abnormality detection operation is reset, to stop the bath temperature sensor abnormality detecting operation only when the bath side heating capacity drops during simultaneous use If the bath-side heating capability does not decrease, the bath temperature sensor abnormality detection operation can be continued and the bath temperature sensor abnormality detection can be performed quickly and accurately.
[0028]
To explain the fourth embodiment with reference to FIG. 5, an above-described conventional bath temperature sensor abnormality detecting operation from the step S7 to the step S19, after the detection of the hot water temperature A 0 as compared bath temperature data, the second predetermined When the time t 2 (for example, 5 minutes) has not elapsed (step S10), when the MOQ is turned on and the hot water supply operation starts (step S20), the current hot water supply number Ga is calculated by the following equation (step S24). ).
Ga = (To−Tc) × Qo / 25
Here, To: hot water supply side hot water temperature Tc: hot water supply side incoming water temperature Qo: hot water supply side hot water output amount
Next, the current bath number Gb is calculated by the following equation (step S26).
Gb = Gc-Ga
However, Gc: Current burner output number (calculated from burner combustion amount)
Further, the current bath number Gb is compared with a predetermined number Gs (for example, No. 5) (step S27), and the current bath number Gb is lower than the predetermined number Gs (for example, No. 5) (Gb <Gs). to, a timer for measuring a second predetermined time t 2 is reset (step S22), and the bath temperature sensor abnormality detecting operation is stopped, again to detect the water temperature a 0 as compared bath temperature data (step S9).
[0030]
According to this configuration, the current bath number Gb is calculated from the current burner output number Gc and the current hot water supply number Ga, which is an actual value, and the current bath number Gb is less than the predetermined number Gs (5). In this case, since the bath temperature sensor abnormality detection operation is stopped, when the bath-side heating capability is reduced during simultaneous use, the bath temperature sensor abnormality detection operation can be stopped to prevent erroneous detection.
[0031]
【The invention's effect】
Since the present invention is configured as described above, the following effects can be obtained.
In a single-can two-path circulating heating device, a bath temperature sensor is provided in the bath-side circulation circuit, and the current hot water temperature detected by the bath temperature sensor is detected a predetermined time before and stored as comparative bath temperature data. When the temperature of the hot water is lower than the previously detected hot water temperature, the bath water temperature detecting device that detects the abnormal temperature of the bath temperature sensor that updates and stores the current hot water temperature as comparative bath temperature data is used when simultaneous operation of the bath and hot water is started. By stopping the bath temperature sensor abnormality detection operation, when the hot water supply operation is performed during the bath heating operation, the bath temperature sensor abnormality detection operation is stopped by resetting the NG counter. It is possible to prevent erroneous detection of abnormality.
In addition, when simultaneous operation of bath and hot water is started, by interrupting the bath temperature sensor abnormality detection operation until hot water operation is stopped, even if the bath heating capacity decreases due to simultaneous use of hot water and bath, it is possible to prevent malfunction of the bath temperature sensor abnormality detection, the hot-water supply operation is stopped, resets the timer for measuring a second predetermined time t 2, but again detects the comparison bath temperature data, it does not reset the NG counter Therefore, the abnormality of the bath temperature sensor can be detected accurately and promptly.
Furthermore, when the bath-side heating capacity is reduced when the simultaneous operation of the bath and hot water supply is started, the bath temperature sensor abnormality detection operation is stopped so that the bath-side heating capacity is reduced during simultaneous use. While the bath temperature sensor abnormality detection operation is stopped to prevent false detection, the bath temperature sensor abnormality detection operation should be continued and the bath temperature sensor abnormality detection operation performed promptly and accurately when the bath-side heating capacity does not decrease. Can do.
Moreover, when the bath-side heating capability is reduced during simultaneous use, the bath temperature sensor abnormality detection operation can be stopped to prevent erroneous detection.
[Brief description of the drawings]
FIG. 1 is a flowchart of a first embodiment of the present invention.
FIG. 2 is a flowchart of an abnormality detection operation to which the present invention is applied.
FIG. 3 is a flowchart of a second embodiment of the present invention.
FIG. 4 is a flowchart of the third embodiment of the present invention.
FIG. 5 is a flowchart of the fourth embodiment of the present invention.
FIG. 6 is a schematic configuration diagram of a circulating heating apparatus to which the present invention is applied.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Circulating heating apparatus, 2 Heat exchanger for hot water supply, 3 Heat exchanger for bath 4 Burner nozzle, 6 Fan, 7 Hot water supply / reception channel, 8 Hot water supply / discharge channel 13 Hot water bypass channel, 15 Bath return pipeline, 16 Bath outlet pipeline 17 Drop pipe, 18 Bath bypass, 19 Circulation pump 20 Bath temperature sensor, 21 Water switch

Claims (3)

一缶体内に二経路の熱交換器と一基のバーナを備えた一缶二経路式の循環加熱装置において、風呂側循環回路に風呂温度センサを設け、該風呂温度センサの検出した現在湯温が、所定時間前に検出して比較風呂温度データとして記憶している前回検出湯温よりも低い場合は、現在湯温を比較風呂温度データとして更新して記憶する風呂温度センサ異常検出動作を行う浴槽湯温検出装置において、風呂と給湯の同時運転が開始された時に、風呂温度センサ異常検出動作を停止することを特徴とする浴槽湯温検出装置。In a one-can two-path circulation heating device equipped with a two-path heat exchanger and one burner in a single can, a bath temperature sensor is provided in the bath-side circulation circuit, and the current hot water temperature detected by the bath temperature sensor However, if the detected hot water temperature is lower than the previously detected hot water temperature detected and stored as comparative bath temperature data before a predetermined time, a bath temperature sensor abnormality detection operation is performed to update and store the current hot water temperature as comparative bath temperature data. In the bathtub water temperature detection device, the bath temperature sensor abnormality detection operation is stopped when simultaneous operation of the bath and hot water supply is started. 一缶体内に二経路の熱交換器と一基のバーナを備えた一缶二経路式の循環加熱装置において、風呂側循環回路に風呂温度センサを設け、該風呂温度センサの検出した現在湯温が、所定時間前に検出して比較風呂温度データとして記憶している前回検出湯温よりも低い場合は、現在湯温を比較風呂温度データとして更新して記憶する風呂温度センサ異常検出動作を行う浴槽湯温検出装置において、風呂と給湯の同時運転が開始された時に、給湯運転が停止されるまで風呂温度センサ異常検出動作を中断することを特徴とする浴槽湯温検出装置。In a one-can two-path circulation heating device equipped with a two-path heat exchanger and one burner in a single can, a bath temperature sensor is provided in the bath-side circulation circuit, and the current hot water temperature detected by the bath temperature sensor However, if the detected hot water temperature is lower than the previously detected hot water temperature detected and stored as comparative bath temperature data before a predetermined time, a bath temperature sensor abnormality detection operation is performed to update and store the current hot water temperature as comparative bath temperature data. In the bathtub hot water temperature detection device, when the simultaneous operation of the bath and hot water is started, the bath temperature sensor abnormality detection operation is interrupted until the hot water supply operation is stopped. 一缶体内に二経路の熱交換器と一基のバーナを備えた一缶二経路式の循環加熱装置において、風呂側循環回路に風呂温度センサを設け、該風呂温度センサの検出した現在湯温が、所定時間前に検出して比較風呂温度データとして記憶している前回検出湯温よりも低い場合は、現在湯温を比較風呂温度データとして更新して記憶する風呂温度センサ異常検出動作を行う浴槽湯温検出装置において、風呂と給湯の同時運転が開始された時に、給湯側の運転による風呂側加熱能力が低下が大きい場合に、風呂温度センサ異常検出動作を停止することを特徴とする浴槽湯温検出装置。In a one-can two-path circulation heating device equipped with a two-path heat exchanger and one burner in a single can, a bath temperature sensor is provided in the bath-side circulation circuit, and the current hot water temperature detected by the bath temperature sensor However, if the detected hot water temperature is lower than the previously detected hot water temperature detected and stored as comparative bath temperature data before a predetermined time, a bath temperature sensor abnormality detection operation is performed to update and store the current hot water temperature as comparative bath temperature data. In the bathtub hot water temperature detecting device, when the simultaneous operation of the bath and hot water is started, the bath temperature sensor abnormality detecting operation is stopped when the bath side heating capability due to the hot water supply side operation is greatly reduced. Hot water temperature detector.
JP05539797A 1997-02-25 1997-02-25 Bathtub temperature detector Expired - Fee Related JP3622189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05539797A JP3622189B2 (en) 1997-02-25 1997-02-25 Bathtub temperature detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05539797A JP3622189B2 (en) 1997-02-25 1997-02-25 Bathtub temperature detector

Publications (2)

Publication Number Publication Date
JPH10238855A JPH10238855A (en) 1998-09-08
JP3622189B2 true JP3622189B2 (en) 2005-02-23

Family

ID=12997406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05539797A Expired - Fee Related JP3622189B2 (en) 1997-02-25 1997-02-25 Bathtub temperature detector

Country Status (1)

Country Link
JP (1) JP3622189B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4988608B2 (en) * 2008-01-09 2012-08-01 株式会社コロナ Hot water bath equipment
JP6684444B2 (en) * 2016-05-25 2020-04-22 株式会社ノーリツ 1 can 2 water type water heater

Also Published As

Publication number Publication date
JPH10238855A (en) 1998-09-08

Similar Documents

Publication Publication Date Title
US8584625B2 (en) Storage type water heater
JP3622189B2 (en) Bathtub temperature detector
AU2016266056A1 (en) Water Heater
JP2616437B2 (en) Water heater drainage plug leak detector
JP5589876B2 (en) Hot water storage water heater
JP3777676B2 (en) Water heater
JPH07174411A (en) Automatic hot water supply bath apparatus
JP3674014B2 (en) Water heater
JP3271428B2 (en) Water heater drain plug leak detector
JPH0530167Y2 (en)
JP3767012B2 (en) Water heater
JP2867758B2 (en) Operation control method of bath kettle with water heater
JP3485989B2 (en) Water heater
JPH11351662A (en) Hot water supply device for bathtub
JP3787940B2 (en) Water heater
JPH08219448A (en) Gas boiler with combustion abnormality detecting function
JP3892737B2 (en) Water heater
JP3572958B2 (en) Water heater
JP3047625B2 (en) Bath equipment
JP2861521B2 (en) Operation control method of bath kettle with water heater
JP3271427B2 (en) Water heater drain plug leak detector
JPH0387564A (en) Automatic bath apparatus
JP2616435B2 (en) Water heater drainage plug leak detector
JP2020016380A (en) Water heater
JP2002130808A (en) Bath boiler heater with water heating function

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040901

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20041007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees