JP3620030B2 - Liquid flow regulation method - Google Patents

Liquid flow regulation method Download PDF

Info

Publication number
JP3620030B2
JP3620030B2 JP33652994A JP33652994A JP3620030B2 JP 3620030 B2 JP3620030 B2 JP 3620030B2 JP 33652994 A JP33652994 A JP 33652994A JP 33652994 A JP33652994 A JP 33652994A JP 3620030 B2 JP3620030 B2 JP 3620030B2
Authority
JP
Japan
Prior art keywords
liquid
ridge
snow
absorbing material
projections
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33652994A
Other languages
Japanese (ja)
Other versions
JPH08177175A (en
Inventor
敬 高橋
Original Assignee
敬 高橋
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 敬 高橋 filed Critical 敬 高橋
Priority to JP33652994A priority Critical patent/JP3620030B2/en
Publication of JPH08177175A publication Critical patent/JPH08177175A/en
Application granted granted Critical
Publication of JP3620030B2 publication Critical patent/JP3620030B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • Y02P60/216

Landscapes

  • Hydroponics (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、液体の流下規正方法、とりわけ、融雪/冷却/集熱/放熱等の目的で使用する熱媒体を管理された状態で規正流下させる方法、また蒸発濃縮される排液、海水等の液体の拡散を促進させる流下方法、水耕栽培溶液を均等分布させる拡散供給方法、あるいは泥水、モルタル等の固形分と水を含む混合液を安定した状態で搬送する方法に関係している。
本発明の流下規正方法は、液体が固形分を含まない液状のものであれば、液体の拡散均等分布のための流下規正方法であり、また液体が固形分を含む場合、液体の拡散が混合液の横移動を誘導して固形分の液体からの分離を抑制する流下規正方法であり、以下、これらの方法を一括して液体の流下規正方法と称する。
本発明を説明するにあたり、便宜上、積雪面の屋根の融雪技術に関連して解説することにする。なお、ここで言う「積雪面」とは、瓦屋根、瓦棒屋根、板敷き屋根、その他形式の屋根、柔軟性のあるテント屋根、大型膜体構造のドーム状屋根、コンクリート構築物壁面、路面を含む概念である。
【0002】
【従来の技術】
本件出願人は、流下規正テープを使用して屋根、その他の除雪について様々な検討を加えてきた。本件出願人の居住する岡山県を例にとると、鳥取県境近くに中国山脈が横たわり、この山岳地帯南側斜面には毎年相当量の降雪がある。北陸、東北地方においては、日本側より山を越えた内陸部に雪が多く、多量の降雪による雪害を長年被ってきた地帯である。
【0003】
融雪方法には様々な方法がある。例えば、熱交換器を積雪面に設置したり、屋根に直接水を流して融雪する方法が行われている。本発明の技術問題解決の対象は、流水による融雪技術の欠点に対してのものである。屋根の流水融雪技術は、東北地方各都市に見られる多量の地下水を利用した道路の流水除雪に似通った技術である。
【0004】
【本発明が解決しようとする課題】
流水除雪は、降雪量を予想し必要とする融雪熱量を求め、これに見合う供給水の温度と流量を特定する方法によるため、どの事例においても水の総量は甚だしく多い。水は収束したり分岐したりする傾向を見せるため、中途半端な少量の水で融雪が効果的に行えることについての認識はなく、少量の水しか入手できない事情があればこうした流水融雪は実際に行い得ないとされてきた。地下水を利用する場合、充分な水量を確保できないのが通例であり、屋根の流水融雪は意外に利用されていないのが現状である。
【0005】
積雪面に沿って流下する水が不充分であれば、積雪層の下部にトンネルが形成され、最終的にはアーチ状の雪ブリッジができあがる。雪ブリッジを形成する雪は比較的粘着性があるため、この雪ブリッジが崩れないまま残ることがあり、上部に雪が堆積して融雪効果が失われる。
本発明の目的は、高額の設備投資を必要とせず、簡単な作業により既存の屋根および新設屋根、各種構築物の積雪面に確実な除雪機能を持たせ、効果的な除雪を行う具体的な方法を提供することにある。
【0006】
【課題を解決するための手段】
こうした従来技術の欠点を解決するため、吸液素材の流下経路に沿い、液体の流下方向と交差する向きに液体吸収性のある並列する多数のうね状突起の密集する区域を設け、吸液素材に供給された流下する液体をこのうね状突起により吸収し、うね状突起に沿って横に広げながらうね状突起を越えて流下させ、後に続く吸液素材の全面に液体を拡散させるようにしている。
【0007】
【作用】
吸液素材は任意の横幅を備えている。この任意の横幅を横切って設けた多数の並列するうね状突起は液体吸収性を備えている。吸液素材上または吸液素材の上端に供給された熱媒体は吸液素材に沿って流下しようとするが、うね状突起により横方向への拡散を強要され、このうね状突起のない吸液素材に比べて急速に横に広がり全体を覆うようになる。この拡散流下の速度は素材表面に沿って比較的均一であり、局部的に滞ることはない。
積雪面の面積が大きければ熱媒体の供給箇所も多数必要となるが、こうした積極的な横方向への拡散性能を持たせることにより、比較的少数の熱媒体供給箇所から吸液素材全面に熱媒体を拡散供給することができる。
熱媒体供給箇所が特定の場所になくても、吸液素材に遭遇した熱媒体はこの吸液素材により捕捉され、吸液素材の持つうね状突起により横に広がる挙動を積極的に示すため、吸液素材は熱媒体の流下方向に連続させておく必要はない。
【0008】
すなわち、吸液素材上部の不特定の部分からこの吸液素材に流入する熱媒体は前記うね状突起を越流して流下していくが、その際、熱媒体はうね状突起により捕捉されうね状突起に沿って横に移動していく。この移動速度は吸液素材自身の熱媒体に対する含浸速度を上回り、熱媒体の横移動に伴い熱媒体の流下面も横に急速に広がっていく。一旦熱媒体が吸液素材を覆ってしまえば、吸液素材面は熱媒体によく馴染み、吸液素材に流入してくる熱媒体を常に適当に拡散させるようになる。
なお、織布を使用した場合、使用する糸/撚り糸の性質、太さ、織り方を適切に選択することによりうね状突起の持つ液体吸収性能を横方向に、また上下に隣接する突起同士で変化させることができ、またうね状突起の丈(膨らみの程度)も自由に選定することができる。こうして形成されるうね状突起は細かい形態で非常に多数のものを整然と配列することができ、熱媒体の横方向への安定した挙動を確実に誘起することができる。
吸液素材を融雪用に使用した場合、均等に拡散して流下する吸液素材が保有する熱媒体は降雪粒子が吸収し、降雪粒子との間で良好な熱交換が行われる。雪の溶解水は吸液素材が捕捉し、他の雪の融雪熱源として有効利用される。
【0009】
このような熱媒体吸収特性を示す吸液素材を使用すれば、例えば、ロール状に巻いて保管してある吸液素材を熱媒体の流下経路に沿って適宜装着する単純な現場作業により誰でもが融雪面を簡単に造成することができ大変に実用的である。吸液素材は、上下に連続する流下経路を形成したり、上下に、または上下左右に適当に間隔を設けて配置することができる。
吸液素材は支持面に載せて使用しても、シート材として架台やワイヤを用い張り渡して設営することができる。シート材として使用する場合、吸液素材の表面にはコーティング層を接着しておくことができる。このシート材は単体として使用でき、あるいは他のシートに重ね合わせて使用することも可能である。
【0010】
【実施例】
以下、添付図面に沿って本発明の実施例につき詳細に説明する。
図1および図2は、本発明に係る流下規正方法を瓦棒屋根の融雪に適用した具体的事例を示す斜視説明図と縦断面説明図である。
積雪面は平面状の吸液素材2で覆われる。図示の例では、吸液素材2は液体供給手段1の下部に配置されたうね状突起の密集する区域2aと、このうね状突起区域2aの後に続く吸液素材部分2bからなる。この吸液素材2には、液体供給手段1より融雪用の熱媒体が供給される。熱媒体は融雪の呼び水となる性質を備えた液体、例えば、地下水等の温水である。吸液素材に沿って流下する熱媒体は降雪粒子が吸収する。降雪粒子に吸液素材から流下する熱媒体の一部を吸収させれば雪の白色は消え、雪は速やかに溶解し、一部に透明なシャーベットが形成される。シャーベットの比重は1よりも小さいため、熱媒体に浮揚するシャーベットがあれば、この浮遊状態のシャーベットは熱媒体の流速により流下経路に沿って流下し易くなる。
【0011】
吸液素材2は、うね状突起区域2aを間隔を設けて設置し、これらうね状突起区域の間を吸液素材部分2bで連絡することができる。この場合、下方のうね状突起区域は上方のうね状突起区域から流出し吸液素材部分に沿って流下してきた液体を受ける。うね状突起区域の間隔は、吸液素材部分を流下する液体の収束傾向に応じて設定すればよい。吸液素材2は連続する細長い形態で使用することができるが、横幅は選択事項である。またうね状突起区域の形状は選択事項である。図示した矩形以外にも、V字形、円形、楕円形、菱形、その他の自由形状を選択することができる。吸液素材設置工事を迅速に行うには、吸液素材は連続したものの使用が好ましいが、うね状突起素材のみをうね状突起区域を所持していない吸液素材の表面に適宜張り付けて使用することも可能である。屋根の角の部分のような不定形箇所では、はさみを使用して適当な大きさの吸液素材、およびうね状突起素材を切り出し重ね合わせて使用するとよい。
【0012】
吸液素材2に設けたうね状突起区域2aは、熱媒体の流下方向に交差して液体吸収性のある多数の並列するうね状突起5から構成されている。ここで言う液体吸収性とは、必ずしも親液性を意味するわけではなく、疎液性であってもよい。ただし、使用する熱媒体に対し適当な液体吸着保持力を備えているものを指している。
【0013】
吸液素材は、図3に示すような形態のものから図4に示す幅広のものまで利用することができる。うね状突起区域は必ずしも横に連続していなくてもよい。
図5は、適当な液体吸着保持力を備えた液体吸収性のあるうね状突起5の具体例を示している。この例での吸液素材2は織布からできており、織布を構成する横糸4には、例えば、親水性を示すポリエステル/ビニロン複合繊維または疎水性のポリエステル、アクリル繊維が使用される。図示の吸液素材は平編み織布からなり、横糸4の2つの列が引き揃えられ並列するうね状突起5を形成している。引き揃える糸の本数は選択事項である。このような織布を使用すれば、使用する縦糸と横糸の本数、糸の太さ、撚り糸の本数、織り方を変更することにより、所望の厚み/液体保有量の吸液素材を簡単に量産でき、また特に横糸の液体吸収性能を適宜選択することで吸液素材に所定の拡散速度/機能を持たせることができる。なお、図5に示す生地構造は参考のために図示した単なる説明用のものである。
【0014】
前述の如く構成することにより、吸液素材2上または吸液素材の上端から流入する液体は前記うね状突起4を越流して流下していくが、その際、液体はうね状突起により捕捉されうね状突起に沿って横に移動していく。この移動速度は吸液素材自身の液体に対する含浸速度を上回り、液体の横移動に伴い液体の流下面も横に急速に広がっていく。一旦液体が吸液素材2を覆ってしまえば、吸液素材面は液体によく馴染み、吸液素材に流入してくる液体を常に適当に拡散させるようになる。織布を使用した場合、使用する糸の性質を適切に選択することによりうね状突起の持つ液体吸収性能を横方向に徐々に変化させることができ、またうね状突起の丈も自由に選定することができる。こうして形成されるうね状突起は細かい形態で非常に多数のものを整然と配列することができ、液体の横方向への挙動を確実に誘導することができる。
【0015】
なお、図5の例では、うね状突起を並列して配置したうね状突起区域2aの上下に通常の平編み区域の吸液素材部分2bを設け、うね状突起の区域と平編み区域が交互に並ぶように配置してある。従って、うね状突起で拡散した液体はそのまま平編み区域が受け継ぎ、この平編み区域が一定距離続いた後に、さらに別のうね状突起の区域が続き、平編み区域を流下する液体が偏流を起こしても後続のうね状突起の区域で元の拡散状態に戻すことが可能である。
【0016】
融雪に話を戻すと、液体の熱により生じた融雪水は吸液素材2が保持し、流下液体と融雪水を含浸する平面蓄熱体が形成される。融雪水は低温ではあるが所定の熱量を所有しており、この熱も有効利用される。こうして、吸液素材の流下経路は平面放熱体を形成し、この流下経路の上方に位置する雪を他の部分の雪に先行して融雪させることができる。
【0017】
前記液体は連続的または間欠的に供給される。間欠的に供給する場合、流下経路に沿って流下する液体にパルス波動を生じさせるように供給圧を変動させることも可能である。こうした間欠的供給によれば、シャーベットの運搬能率が高まることがある。
【0018】
前記吸液素材は、吸液表面層と基材層から構成することができる。吸液素材はこの基材層の表面に塗布される接着剤により積雪面に貼り付けることができる。また、この基材層は、透磁率の大きな磁性材料からなる被接着面に対して磁力作用により貼り付くように、少なくとも一部分を、例えば、多量の鉄粉を含む熱伝導性に優れたプラスチック製またはゴム製の磁石から構成することができる。なお、吸水素材は任意の固定手段を用いて積雪面に対しずれないように固定してもよい。
【0019】
前記吸液素材には、織布、不織布または編布を使用することができる。また、吸液素材部分は平織りとし、うね状突起区域は横糸を使用した綾織りとする等、任意の織り方を採用できる。液体吸収性のある流下経路とは、必ずしも親液性繊維を使用した部分であるというわけではなく、疎液性繊維を使用した液体保有性に富む流下経路も含まれる。親液性繊維を使用していたとしても、疎液性繊維の部分に比べてスポット吸収性に劣るならば液体吸収性に劣る流下経路であると言える。液体吸収性については、繊維の張力を変えることである程度調節することも可能である。
【図面の簡単な説明】
【図1】本発明の液体の流下規正方法を実施した場合の状況を示す、瓦棒屋根の斜視説明図。
【図2】本発明の液体の流下規正方法を実施した場合の状況を示す、瓦棒屋根の縦断面図。
【図3】縦長の吸液素材の構成例を示す模式図。
【図4】横長の吸液素材の構成例を示す模式図。
【図5】吸液素材を織布で構成した場合の具体例を示す説明図。
【符号の説明】
1 液体供給手段
2 吸液素材
4 織布の横糸
5 うね状突起
[0001]
[Industrial application fields]
The present invention relates to a method for regulating the flow of liquid, in particular, a method for regulating the flow of a heat medium used for the purpose of snow melting / cooling / heat collection / heat radiation, etc. The present invention relates to a flow-down method that promotes the diffusion of liquid, a diffusion supply method that distributes a hydroponics solution evenly, or a method that transports a mixed liquid containing solids such as mud and mortar and water in a stable state.
The flow down regulation method of the present invention is a flow down regulation method for the diffusion uniform distribution of liquid if the liquid is liquid without solids, and when the liquid contains solids, the diffusion of liquid is mixed. This is a flow-down regulation method that induces lateral movement of the liquid and suppresses separation of solids from the liquid. Hereinafter, these methods are collectively referred to as a liquid flow-down regulation method.
In describing the present invention, for the sake of convenience, a description will be given in relation to snow melting techniques for a snow-covered roof. The term “snow cover” as used herein includes tiled roofs, tiled rod roofs, planed roofs, other types of roofs, flexible tent roofs, dome-shaped roofs with large film structures, concrete building walls, and road surfaces. It is a concept.
[0002]
[Prior art]
The Applicant has made various studies on roofs and other snow removal using flow regulation tape. Taking Okayama Prefecture, where the applicant is resident, as an example, the Chugoku Mountain Range lies near the border of Tottori Prefecture, and there is a considerable amount of snowfall every year on the south slope of this mountainous area. In the Hokuriku and Tohoku regions, there is a lot of snow in the inland area beyond the mountain from the Japanese side, and it has suffered snow damage due to heavy snowfall for many years.
[0003]
There are various methods for melting snow. For example, a method of installing a heat exchanger on a snow-covered surface or flowing snow directly on a roof to melt snow is performed. The object of the technical problem solution of the present invention is for the shortcomings of snow melting technology by running water. The running snow melting technology on the roof is similar to the running snow removal on the road using a large amount of groundwater found in cities in the Tohoku region.
[0004]
[Problems to be solved by the present invention]
Since running snow removal is a method of predicting the amount of snowfall, obtaining the amount of snow melting required, and specifying the temperature and flow rate of the supplied water corresponding to this, the total amount of water in all cases is extremely large. Since water tends to converge or diverge, there is no recognition that snow melting can be done effectively with a small amount of halfway water, and if there is only a small amount of water available, such flowing snow melting is actually It has been considered impossible. When using groundwater, it is usual that a sufficient amount of water cannot be secured, and the current situation is that the running snowmelt on the roof is not used unexpectedly.
[0005]
If there is insufficient water flowing along the snow surface, a tunnel will be formed below the snow layer and eventually an arched snow bridge will be created. Since the snow forming the snow bridge is relatively sticky, the snow bridge may remain undisrupted, and snow accumulates on the top, losing the snow melting effect.
An object of the present invention is to provide a specific method for performing effective snow removal by providing a reliable snow removal function on the snow-covering surfaces of existing roofs, new roofs, and various structures through simple operations without requiring high capital investment. Is to provide.
[0006]
[Means for Solving the Problems]
In order to solve such disadvantages of the prior art, a region where a large number of parallel ridge-like projections having liquid absorbability are arranged in the direction crossing the flow direction of the liquid along the flow path of the liquid absorption material is provided. The flowing liquid supplied to the material is absorbed by the ridge-like protrusions, and spreads laterally along the ridge-like protrusions to flow over the ridge-like protrusions, and the liquid is diffused over the entire surface of the subsequent liquid-absorbing material. I try to let them.
[0007]
[Action]
The liquid-absorbing material has an arbitrary width. A large number of parallel ridge-like projections provided across the arbitrary lateral width have liquid absorbency. The heat medium supplied on the liquid absorbent material or at the upper end of the liquid absorbent material tries to flow down along the liquid absorbent material, but it is forced to diffuse laterally by the ridge-like protrusions, and there is no ridge-like protrusion. Compared to the liquid-absorbing material, it spreads sideways and covers the entire surface. The velocity under this diffusion flow is relatively uniform along the material surface and does not stagnate locally.
If the area of the snow cover is large, a large number of heat medium supply points are required, but by providing such a positive lateral diffusion performance, heat is supplied from a relatively small number of heat medium supply points to the entire surface of the liquid-absorbing material. The medium can be supplied by diffusion.
Even if the heat medium supply location is not in a specific place, the heat medium encountered in the liquid absorbent material is captured by the liquid absorbent material, and actively exhibits the behavior of spreading laterally due to the ridge-like projections of the liquid absorbent material. The liquid-absorbing material need not be continuous in the flow direction of the heat medium.
[0008]
In other words, the heat medium flowing into the liquid absorbent material from an unspecified portion above the liquid absorbent material flows over the ridge-shaped protrusions, and at that time, the heat medium is captured by the ridge-shaped protrusions. Move sideways along the ridges. This moving speed exceeds the impregnation speed of the liquid-absorbing material itself with respect to the heat medium, and the flow surface of the heat medium rapidly spreads sideways as the heat medium moves laterally. Once the heat medium covers the liquid absorbing material, the surface of the liquid absorbing material is well adapted to the heat medium, and the heat medium flowing into the liquid absorbing material is always properly diffused.
When woven fabric is used, the liquid absorption performance of the ridge-like projections can be adjusted in the lateral direction and between the projections adjacent in the vertical direction by appropriately selecting the nature, thickness, and weaving method of the yarn / twisted yarn to be used. In addition, the length of the ridge-like projection (the degree of swelling) can be freely selected. The ridge-like projections formed in this way can be arranged in a very fine manner in a very fine manner, and a stable behavior in the lateral direction of the heat medium can be reliably induced.
When the liquid-absorbing material is used for melting snow, the snow medium absorbs the heat medium held by the liquid-absorbing material that diffuses and flows down evenly, and good heat exchange is performed with the snow-falling particles. The melted water of snow is captured by the liquid-absorbing material and is effectively used as a heat source for melting snow of other snow.
[0009]
If a liquid absorbent material exhibiting such heat medium absorption characteristics is used, for example, anyone can perform simple on-site work by appropriately mounting the liquid absorbent material that is wound and stored in a roll shape along the flow path of the heat medium. However, it is very practical because it can easily create a snow melting surface. The liquid-absorbing material can form a downward flow path that is continuous in the vertical direction, or can be arranged at an appropriate interval in the vertical direction or in the vertical and horizontal directions.
Even if the liquid-absorbing material is placed on the support surface and used, it can be installed by using a frame or a wire as the sheet material. When used as a sheet material, a coating layer can be adhered to the surface of the liquid-absorbing material. This sheet material can be used as a single body, or can be used by being superposed on another sheet.
[0010]
【Example】
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 and FIG. 2 are a perspective explanatory view and a longitudinal sectional explanatory view showing a specific example in which the flow down regulation method according to the present invention is applied to snow melting on a roof tile roof.
The snowy surface is covered with a flat liquid-absorbing material 2. In the illustrated example, the liquid absorbing material 2 is composed of an area 2a where ridge-like protrusions are arranged at the lower part of the liquid supply means 1, and a liquid absorbing material portion 2b following the ridge-like protrusion area 2a. The liquid absorbing material 2 is supplied with a heat medium for melting snow from the liquid supply means 1. The heat medium is a liquid having a property that serves as a priming water for melting snow, for example, warm water such as groundwater. Snow particles absorb the heat medium flowing down along the liquid-absorbing material. If the snow particles absorb a part of the heat medium flowing down from the liquid-absorbing material, the white color of the snow disappears, the snow dissolves quickly, and a transparent sherbet is formed in part. Since the specific gravity of the sherbet is less than 1, if there is a sherbet that floats on the heat medium, the sherbet in the floating state can easily flow along the flow path due to the flow velocity of the heat medium.
[0011]
The liquid absorbent material 2 can be provided with ridge-like projection areas 2a at intervals, and the ridge-like projection areas can be communicated with each other through the liquid absorbent material portion 2b. In this case, the lower ridge-like projection area receives the liquid flowing out from the upper ridge-like projection area and flowing down along the liquid-absorbing material portion. What is necessary is just to set the space | interval of a corrugated projection area | region according to the convergence tendency of the liquid which flows down the liquid absorption raw material part. The liquid absorbing material 2 can be used in a continuous elongated form, but the width is a matter of choice. Also, the shape of the ridge-like projection area is a matter of choice. In addition to the illustrated rectangle, a V shape, a circle, an ellipse, a diamond, and other free shapes can be selected. For quick installation of liquid absorbent material, it is preferable to use a continuous liquid absorbent material, but only the ridge-shaped projection material should be attached to the surface of the liquid-absorbing material that does not have a ridge-shaped projection area. It is also possible to use it. In an irregular place such as a corner portion of the roof, it is preferable to use scissors to cut and superimpose a liquid absorbing material and a ridge-shaped projection material of an appropriate size.
[0012]
The ridge-like projection area 2a provided on the liquid-absorbing material 2 is composed of a large number of ridge-like projections 5 arranged in parallel with each other so as to intersect the flow direction of the heat medium and absorb liquid. The liquid absorptivity here does not necessarily mean lyophilicity but may be lyophobic. However, the thing which has the suitable liquid adsorption | suction retention strength with respect to the heat medium to be used is pointed out.
[0013]
The liquid-absorbing material can be used from the form shown in FIG. 3 to the wide one shown in FIG. The ridge-like projection area does not necessarily have to be laterally continuous.
FIG. 5 shows a specific example of the ridge-shaped protrusion 5 having a liquid absorption property having an appropriate liquid adsorption holding force. The liquid-absorbing material 2 in this example is made of woven fabric, and for the weft 4 constituting the woven fabric, for example, hydrophilic polyester / vinylon composite fiber or hydrophobic polyester or acrylic fiber is used. The illustrated liquid-absorbing material is made of a plain knitted woven fabric, and two rows of weft yarns 4 are aligned to form parallel ridge-like projections 5. The number of yarns to be aligned is a matter of choice. By using such a woven fabric, it is possible to easily mass-produce liquid absorbent materials with the desired thickness / liquid holding capacity by changing the number of warp and weft yarns used, the thickness of the yarn, the number of twisted yarns, and the weaving method. In particular, the liquid absorbing material can be given a predetermined diffusion rate / function by appropriately selecting the liquid absorbing performance of the weft. Note that the fabric structure shown in FIG. 5 is for illustration only for reference.
[0014]
With the configuration as described above, the liquid flowing in on the liquid absorbent material 2 or from the upper end of the liquid absorbent material flows down the ridge-like protrusions 4, and at that time, the liquid is caused by the ridge-like protrusions. It moves sideways along the trapped ridges. This moving speed exceeds the impregnation speed of the liquid-absorbing material itself with the liquid, and the liquid flow surface rapidly spreads laterally as the liquid moves laterally. Once the liquid covers the liquid absorbing material 2, the surface of the liquid absorbing material is well adapted to the liquid, and the liquid flowing into the liquid absorbing material is always properly diffused. When woven fabric is used, the liquid absorption performance of the ridges can be gradually changed in the lateral direction by selecting the properties of the thread to be used, and the length of the ridges can be freely set. Can be selected. The ridge-like projections formed in this way can be arranged in a very fine manner in a very fine manner, and the behavior of the liquid in the lateral direction can be reliably induced.
[0015]
In the example of FIG. 5, the liquid absorbing material portion 2 b of the normal flat knitting area is provided above and below the ridge-like protrusion area 2 a in which the ridge-like protrusions are arranged in parallel, and the ridge-like protrusion area and the flat knitting are provided. The areas are arranged in an alternating fashion. Accordingly, the liquid diffused by the ridge-like projections is directly inherited by the flat knitting area, and after this flat knitting area continues for a certain distance, another ridge-like area continues, and the liquid flowing down the flat knitting area drifts. However, it is possible to return to the original diffusion state in the area of the subsequent ridge-like projection.
[0016]
Returning to the melting of snow, the water-absorbing material 2 holds the snow-melting water generated by the heat of the liquid, and a flat heat storage body that impregnates the flowing-down liquid and the snow-melting water is formed. Although the snowmelt water has a low temperature but possesses a predetermined amount of heat, this heat is also effectively used. In this way, the flow path of the liquid absorbing material forms a flat radiator, and the snow located above the flow path can be melted prior to other parts of the snow.
[0017]
The liquid is supplied continuously or intermittently. In the case of intermittent supply, it is possible to vary the supply pressure so that a pulse wave is generated in the liquid flowing down along the flow path. Such intermittent supply may increase the efficiency of sherbet transport.
[0018]
The liquid-absorbing material can be composed of a liquid-absorbing surface layer and a base material layer. The liquid-absorbing material can be attached to the snow-covered surface with an adhesive applied to the surface of the base material layer. In addition, this base material layer is made of a plastic having excellent thermal conductivity, for example, containing a large amount of iron powder, so that it adheres to an adherend surface made of a magnetic material having a high magnetic permeability by a magnetic action. Or it can comprise a rubber magnet. In addition, you may fix a water absorption raw material so that it may not slip | deviate with respect to a snowy surface using arbitrary fixing means.
[0019]
A woven fabric, a nonwoven fabric or a knitted fabric can be used as the liquid-absorbing material. Also, any weaving method can be adopted, such as plain weaving for the liquid-absorbing material portion and twill weaving for the ridge-like projection area. The flow path with liquid absorption is not necessarily a portion using lyophilic fibers, but also includes a flow path rich in liquid retention using lyophobic fibers. Even if lyophilic fibers are used, it can be said that the flow path is inferior in liquid absorbency if the spot absorbability is inferior to that of the lyophobic fiber. The liquid absorbability can be adjusted to some extent by changing the tension of the fiber.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a perspective explanatory view of a roof tile roof showing a situation when a liquid flow regulation method according to the present invention is implemented.
FIG. 2 is a vertical cross-sectional view of a roof tile roof showing the situation when the liquid flow regulation method of the present invention is implemented.
FIG. 3 is a schematic diagram showing a configuration example of a vertically long liquid-absorbing material.
FIG. 4 is a schematic diagram showing a configuration example of a horizontally long liquid-absorbing material.
FIG. 5 is an explanatory view showing a specific example when the liquid-absorbing material is composed of a woven fabric.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Liquid supply means 2 Liquid absorption material 4 Weft of woven fabric 5 Ridge-shaped protrusion

Claims (3)

吸液素材の流下経路に沿い、液体の流下方向と交差する向きに液体吸収性のある並列する多数のうね状突起の密集する区域を設け、吸液素材に供給された流下する液体をこのうね状突起により吸収し、うね状突起に沿って横に広げながらうね状突起を越えて流下させ、後に続く吸液素材の全面に液体を拡散させる液体の流下規正方法。Along the flow path of the liquid absorbent material, there is provided a dense area of a large number of parallel ridged projections that absorb liquid in the direction crossing the liquid flow direction, and this allows the liquid flowing down to be supplied to the liquid absorbent material. A liquid flow regulation method in which the liquid is absorbed by the ridge-like projections, flows down over the ridge-like projections while spreading laterally along the ridge-like projections, and the liquid is diffused over the entire surface of the subsequent liquid-absorbing material. 請求項1に記載された液体の流下規正方法において、前記うね状突起の密集する区域が吸液素材への液体の供給箇所に配置され、供給された直後の液体を拡散させる液体の流下規正方法。The liquid flow regulation method according to claim 1, wherein the area where the ridge-shaped protrusions are concentrated is arranged at a liquid supply position to the liquid-absorbing material and diffuses the liquid immediately after being supplied. Method. 請求項1に記載された液体の流下規正方法において、前記うね状突起の密集する区域が液体の流下経路に沿って間隔を置いて配置され、流下してくる収束しつつある液体を再び拡散させる液体の流下規正方法。2. The liquid flow regulation method according to claim 1, wherein the dense areas of the ridge-like projections are spaced along the liquid flow path to diffuse the converging liquid flowing down again. How to make liquid flow down.
JP33652994A 1994-12-22 1994-12-22 Liquid flow regulation method Expired - Fee Related JP3620030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33652994A JP3620030B2 (en) 1994-12-22 1994-12-22 Liquid flow regulation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33652994A JP3620030B2 (en) 1994-12-22 1994-12-22 Liquid flow regulation method

Publications (2)

Publication Number Publication Date
JPH08177175A JPH08177175A (en) 1996-07-09
JP3620030B2 true JP3620030B2 (en) 2005-02-16

Family

ID=18300081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33652994A Expired - Fee Related JP3620030B2 (en) 1994-12-22 1994-12-22 Liquid flow regulation method

Country Status (1)

Country Link
JP (1) JP3620030B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023595A (en) * 2005-07-15 2007-02-01 Ig Tech Res Inc Method of constructing snow melting roof
JP5057207B2 (en) * 2006-11-13 2012-10-24 敬 高橋 Sprinkling heat exchange method for folding roof
JP5339575B2 (en) * 2008-01-29 2013-11-13 大成建設株式会社 Heat reduction device for living space

Also Published As

Publication number Publication date
JPH08177175A (en) 1996-07-09

Similar Documents

Publication Publication Date Title
JP3620030B2 (en) Liquid flow regulation method
JP3557560B2 (en) Snow melting sheet
US5724479A (en) Fluid flow controlling member
AU2018374203A1 (en) Stabilized water flow control ground cover
JP3458219B2 (en) How to melt snow on the snow surface
JP3443751B2 (en) Roof snow removal method
JPH08261569A (en) Liquid down flow control member
JP3704591B2 (en) Snow melting / snow removal method on snowy surface
JP3569903B2 (en) Roof melting method
JP3817641B2 (en) Liquid flow guide member
WO2008072073A2 (en) A synthetic turf mat, a synthetic turf structure including the mat, and a manufacturing method of the mat
JP3588780B2 (en) How to melt snow on the snow surface
JP3840568B2 (en) Snow melting floor
JP2006037470A (en) Drain plate
JP3516176B2 (en) Snow removal equipment
JP5374792B2 (en) Surface structure of drainage pavement
JP2001246682A (en) Network body and manufacturing method thereof
JP4035624B2 (en) Heat exchanger
JP4165367B2 (en) Wettability system
JP3817642B2 (en) Flat piping for fluid regulation transfer
JP2008248678A (en) Down-flow regulating method for liquid
JP5057207B2 (en) Sprinkling heat exchange method for folding roof
KR101270152B1 (en) floating cover
JPH0449242Y2 (en)
JPH08218338A (en) Snow-removing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees