JP3817642B2 - Flat piping for fluid regulation transfer - Google Patents

Flat piping for fluid regulation transfer Download PDF

Info

Publication number
JP3817642B2
JP3817642B2 JP05698296A JP5698296A JP3817642B2 JP 3817642 B2 JP3817642 B2 JP 3817642B2 JP 05698296 A JP05698296 A JP 05698296A JP 5698296 A JP5698296 A JP 5698296A JP 3817642 B2 JP3817642 B2 JP 3817642B2
Authority
JP
Japan
Prior art keywords
fluid
ridge
wall surface
flat
flat pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05698296A
Other languages
Japanese (ja)
Other versions
JPH09224492A (en
Inventor
敬 高橋
Original Assignee
敬 高橋
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 敬 高橋 filed Critical 敬 高橋
Priority to JP05698296A priority Critical patent/JP3817642B2/en
Priority to US08/799,843 priority patent/US5954129A/en
Publication of JPH09224492A publication Critical patent/JPH09224492A/en
Application granted granted Critical
Publication of JP3817642B2 publication Critical patent/JP3817642B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Greenhouses (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、管理された状態で流体を拘束的に流すための流体規正搬送用の扁平配管、特に、流動媒体の移動方向を規正して均等に流動させる流動媒体規正搬送用の扁平配管に関係している。従って、本発明に係る規正搬送扁平配管は、熱交換器、蒸発器およびこれに類似した設備機器に利用することができる。
【0002】
本発明の利用分野を具体的に列挙すると以下のようになる。
本発明の流体規正搬送用の扁平配管を屋根にはり付けて使用する場合、この扁平配管に沿って温水を流せば、屋根の除雪または融雪を行える。夏期には太陽熱を集熱する集熱シートとして、また屋根や壁面の冷却シートとして使用することができる。建物の内壁側に設置する場合、内壁面は空調/温度管理用の熱交換面として機能する。流体規正搬送用の扁平配管はそれ自身を建造物の建材として使用することも可能である。流体規正搬送用の扁平配管を膜体にはり付けて使用すれば、表面が熱交換性能を備えた膜構造体を構築することができる。流体規正搬送用の扁平配管をボード材料にはり付けておき、組立式の接続ユニットとして連結使用することもできる。
【0003】
流体規正搬送用の扁平配管を土中に埋設して使用する場合、この部材に沿って水を流せば人工的に冷水が得られる。また、埋設の形態は様々であり、土中に埋設した流体規正搬送用の扁平配管を介して地中蓄熱を行うことも可能である。またシートを路面に敷設すれば融雪路面となる。
【0004】
本発明の流体規正搬送用の扁平配管を水中に係留したり、水面に浮揚させたり、あるいは水中に浸漬させた状態で設置した場合、この部材に沿って熱媒体を流せば接水面を介しての熱交換が行われる。
【0005】
次に、流体規正搬送用の扁平配管の用途を具体的に列挙する。
・熱交換設備への利用:屋内外プール、ボイラー給水加熱
・栽培漁業施設への利用:飼育槽に供給する冬期循環海水の低温加熱
・洗浄施設への利用:航空機や鉄道車両の冬期循環水の低温加熱
・活性汚泥槽の冬期における処理水加熱
・施設栽培農業への利用:ぶどう、メロン等の温室、ハウスの加温/夏期冷却
・純水製造用集熱器:工業用、農業用、飲料用
・放熱器/蒸発器:屋根融雪、屋根面冷却、膜体表面冷却、蒸発
・壁面冷却による恒温倉庫:冷蔵庫、茸栽培、農産物保存
・微生物栽培施設:クロレラ/スピルリナ等の栽培液の温度管理
・水耕栽培用への利用:栽培溶液の加温/冷却、液体流路付き栽培床シート
・植物人工栽培床、屋内外の空中架設栽培シートへの利用
・ウォーターキャリア搬送経路:配管シート、扁平配管、汚泥水流下フィルター
・地中埋設用シート:地中熱交換、排水、保水
・蓄熱装置:シート多重積層蓄熱ブロック
・蒸発濃縮シート:天塩製造、排液濃縮
・河川等の水草繁殖シート床:水溶性基材シート
・流水装飾ディスプレイシート
【0006】
【従来の技術】
扁平な形状をした内部が中空のストリップと、このストリップの平坦な一方の壁と他方の壁に挟まれている、液体吸収性のある繊維質材料から構成された自然落下または自然流下する液体の移動方向を拘束するための誘道路と、この誘道路の両側に形成された誘道路に沿って延びる圧力調節空気通路とを備えた扁平配管テープは、実願平5−73393号より公知となっている。
【0007】
【発明が解決しようとする課題】
この公開明細書に記載の液体吸収性のある繊維質材料について、本件出願人は様々な素材を用いて試作研究を続けてきた。前述の扁平配管テープの横幅は単なる選択事項であるが、横幅が拡大するにつれ残留する空気量が増え、空気溜まりを細分化することが困難となる。空気溜まりが残留したまま大きく成長すると流れが不均一となる欠点がある。
【0008】
従って、本件出願人は、流路幅の大きい扁平配管を製作するにあたり、液体を平面状に広げた状態で流動させるためには、流体の移動経路に沿って均等な通路断面が形成されていなければならないとする認識を持つに至った。流体移動経路装置には、一対のシート材料の間に並列する帯状の隔壁要素層を介在させた規正シート(実公平7−8996号)を用いることを検討した。これら従来例は、一対の材料の間に形成された隙間を通じ熱媒体液を流下させ、流下する熱媒体液の流下方向を規正する構造に基づくものである。
【0009】
この従来例によれば、流量を比較的大きく設定してもある程度の規正効果は保持される利点がある。前記従来例は、一方の基材に対し平坦なカバーシートを被せて構成されており、流量が多ければ上側のカバーシートが膨らみ変形して内圧を解放する構造が取り入れられている。しかしながら、シートは流体の大量輸送の可能性を予め考慮に入れた構成を採用してはいるものの、経路毎の流量を精度よく調整することは困難であり、各経路を流れる流体の流量(移動流体の厚み)が不均一となる欠点がある。カバーシートがだれて基材側に接触した状態と、流量が大きいことでシートが浮き上がった状態を示している。シートのだれの原因には、熱膨張によるシートの延び、および経路中の流体量の減少に伴う負圧による延びがある。また、流体の動きが停止している場合にも、経路中に残留する液体によりカバーシートが経路底に付着して経路を塞ぐ現象が認められた。こうした状況は、シートが熱交換扁平配管として使用される場合、性能(熱交換)、応答性(伝熱)にばらつきが生じ、また液体搬送用扁平配管として使用する場合には端面側での流量が不均一となる等の障害の原因をなしていた。さらに、シートは片側から加わる圧下力に弱く、構造上、荷重が加わると扁平配管は容易に閉塞を起こし、流量にアンバランスな状態が発生すると共に、この不均衡な状態は一定せず時間の経過と共に不規則に変化し、平衡した精度のよい流体の搬送管理を行えないことが経験された。
【0010】
本発明の目的は、流体の流量が大きく変動しても、これに追随して比例的に流通断面を拡大する変形機能と、増減する内圧に順応できる自己調整作用を持たせることで破損しにくい構造にした流体規正搬送用の扁平配管を提供することにある。
【0011】
本発明の他の目的は、前述した効果に加えて、流体経路同士が流体透過性のある隔壁要素を介して互いに導通し、内圧の増減に速やかに順応できる圧力分散機能を備えている流体規正搬送用の扁平配管を提供することにある。
【0012】
【課題を解決するための手段】
前記目的を達成するため、本発明は、相対する扁平な壁面を持つチューブ状の形態をした配管基材と、この配管基材の相対する壁面の内壁の各々に並列に設置され間に平行する空間を形成したうね状突起とを有し、それぞれの壁面のうね状突起を相対する壁面の前記平行する空間の一部を占めるように重ね合わせ、内部に任意の断面の包囲通路を必要間隔毎に形成して構成されている。
【0013】
【作用】
本発明の流体規正搬送用の扁平配管は任意の姿勢で設置される。具体的には、ほぼ水平または垂直に、必要に応じ勾配を持たせて設置される。
【0014】
包囲経路の断面は、うね状突起の幅および厚みを適宜選択することで自由に設定することができる。また、包囲通路の断面は配管の側部に近いものから順に変化させることができる。
【0015】
基材壁面は任意の方法でお互いに対し固定することができる。例えば、うね状突起を介して互いを接着することができる。接着箇所はすべての突起とせず、適当に間隔を置いて選んだうね状突起に沿って接着することができる。うね状突起を基材壁面に固定した場合、このうね状突起が液体透過性のある素材から構成されていれば、例えば、繊維質材料、連続気泡質を持つ発泡樹脂材料、各種のコンパウンド、焼結金属、多孔質セラミック等から構成されているなら、このうね状突起を介しての圧力解放が行われる。
【0016】
一方の面状素材のうね状突起を他方の基材壁面に接着していなければ、うね状突起に直交しての屈曲に際し、その形態に応じてうね状突起は滑り移動し基材壁面は柔軟に変形でき、圧縮側の基材壁面に皺がよることはない。
【0017】
基材壁面のうね状突起を相対する基材壁面に溶着一体化してあれば、平面的な使用形態の下で、外部から大きな荷重を受けても規正搬送手段は一体構造のものとしてこれに対抗し、容易に破損しない強靭な平面配管が形成される。
【0018】
一方の基材壁面のうね状突起が他方の基材壁面に対し相対的に移動できる前述した例では、経路内圧の増減に伴いうね状突起は昇降動作しながら内圧に見合う位置にあって経路の左右対称性を保つことができる。このため、内圧および流速が変動しても流量平均化作用と規正効果は維持され、精度のよい流体の搬送を行える。
【0019】
うね状突起が液体透過性を備えている場合、または前述した昇降突起構造を採用している場合、扁平配管が突然に折り曲げられたり、風により局部的な変形が生じたり、上部を人が歩行したり車両が走行することで経路に沿って急激な圧力変化が生じても、うね状突起そのものを通し、また昇降突起の上昇動作により圧力の分散が図られ、減圧と共に速やかに元の平衡状態が再現される。こうした自己調節性能を利用すれば、この流体規正搬送用の扁平配管は融雪道路、融雪歩道等の特殊な用途にも使用できることになる。
以下、添付図面に沿って本発明の流体規正搬送用の扁平配管の使用例につき具体的に説明する。
【0020】
【実施例】
図1は、本発明に係る流体規正搬送用の扁平配管の構成例を示している。流体規正搬送用の扁平配管は、一対の基材壁面10、10を備えたチューブの形態をしている。各基材壁面10は基材とこの基材上に並列に設けたうね状突起11、11を備え、うね状突起の間には並列する空間、すなわち流体の移動経路12、12が形成されている。基材壁面は、それぞれの基材壁面のうね状突起が相対する基材壁面の前記空間の一部を占めるように重ね合わされる。チューブ状の扁平配管の基材壁面は、例えば、押出し成形ダイスによりチューブ状のものとして連続的に製造できる。あるいは、シートの側面を溶着することでチューブ状に加工したり、基材シートに予めうね状突起を形成しておき、この基材シートの外側表面に樹脂層をラミネートして扁平配管に加工することもできる。
【0021】
図示の基材壁面は、うね状突起11が空間12、12の中央に位置するように組み合わせた状態を示している。従って、内部には等しい断面の包囲通路13が等間隔に形成されている。うね状突起を横にずらして組み合わせれば、ずらした程度に見合う分だけ包囲通路13の断面は増減する。一方の側の基材壁面のうね状突起11の幅とうね状突起同士の間隔、および他方の側の基材壁面の空間12の位置と幅を適宜選択すれば、任意断面の包囲通路を適当な間隔に配列した流体規正搬送用の扁平配管が得られる。
【0022】
図2は、非拘束の基材壁面同士が内圧を受けて広がった状態を示している。この状態では、上下のうね状突起は移動する流体に対し移動方向を充分に拘束しつつ、隣接する包囲通路への流体の逃げを許しており、従って、シートは膨らみつつも局部的な膨張はなく、過剰流体による内圧は全体に均一に分散される。うね状突起と相対する基材壁面とは適当な間隔を置いて予め接着しておくことができる。
【0023】
基材壁面10とうね状突起11は、異種材料から構成して差し支えない。また基材壁面も単一層から構成するのではなく、ラミネート複合層から構成することができる。基材壁面とうね状突起を同種材料から構成する場合でも、密度の異なる、保水性に違いのある、透水率に差のある材料をそれぞれの基材とうね状突起に使用し、両者の物性を変えておくことが可能である。例えば、うね状突起を保水性に富む不織布から構成し、基材を高密度不織布から構成し両者を接着して製作したり、不織布をローラ転圧して構成することもできる。図示の基材壁面は、内側がうね状突起と同種の材料からなり、外側が押出し成形によるラミネート樹脂層14から形成されてる。
【0024】
図3、押出し成形された基材壁面にうね状突起を溶着してなる扁平配管構造を示している。図4は、膨らんだ状態の扁平配管の断面図である。
【0025】
図5は、扁平配管の製造装置の概略を示す平面図である。図中にて、参照番号20は押出し成形ダイス、21は転圧ローラを示している。押出し成形ダイス20に送り込まれたうね状突起となるストリップ材はチューブ状に押し出される樹脂と共に転圧ローラ21により押圧され、ストリップ材は基材壁面に対し圧着されうね状突起となる。
【0026】
転圧量、押出し速度等の加工条件は適宜選択される。
【0027】
図6から図8は、本発明に係る流体規正搬送用の扁平配管を使用した地中蓄熱装置の例を示している。図6は、図8の VI-VI線に沿った縦断面図である。図7は図6の VII-VII線に沿った縦断面図であり、図8は図6の VIII-VIII線に沿った横断面図である。
この地中蓄熱装置は、不透水層Sの上部に連続地中壁Wを構築し、地中壁に囲まれた地盤を開削した後、ローラ転圧作業により蓄熱材31を敷き詰め、ローラ転圧面上に流体規正搬送用の扁平配管30を並列に敷設し、さらに上部に蓄熱材31を敷き詰め、上部に流体規正搬送用の扁平配管30を敷設する作業を繰り返して多段の熱交換面30とこの熱交換面の間に介在する蓄熱層を繰り返して形成されている。地中壁Wの内側には、積層工事に前後して水が散水され、全体が保水状態に保たれていることが好ましい。
【0028】
地中壁Wの相対する端部側には2つの水槽32、33が設置され、これら2つの水槽の間をそれぞれの流体規正搬送用の扁平配管30が連絡している。図示の例では、一方の水槽32に投入される熱媒体は流体規正搬送用の扁平配管30を通じて反対側の水槽33に至り、その移動の途中に蓄熱材31との間で熱交換が行われる。水槽内の水頭は地中壁内部の帯水位および負荷の程度により調節され、流体規正搬送用の扁平配管の流量は選択される。
この事例は、都市部において、駐車場の地下の有効利用の一策として現在検討されている。使用後、現場にビル等を構築する際においても現状復帰は容易である。
【0029】
図9および図10は、水路に設置した大型熱交換器の実例を示している。図10は図9のX−X線に沿った縦断面図である。
図中にて、40は熱媒体供給配管、41は回収樋、42は屈曲設置した流体規正搬送用の扁平配管、43は吊下げ用のサポートを示している。この熱交換装置の原理は、液体/液体、液体/気体の間での熱交換に使用することができる。例えば、流体規正搬送用の扁平配管には、フィルターを通して導入される新鮮海水を通し、水路には使用済みの廃棄温海水を流せば、両者の間で効率のよい低温熱交換が行われる。
【0030】
こうした構成において、浸漬した流体規正搬送用の扁平配管には浮力が作用するため、規模を大きくしても流体規正搬送用の扁平配管には大きな荷重は加わりにくいため、大規模な熱交換システムを構築することができる。この方式は、蓄熱水槽にも転用することができる。
【0031】
図11は、屋根面に流体規正搬送用の扁平配管を設置した事例を示している。この例の流体規正搬送用の扁平配管は、融雪、集熱、放熱等に利用することができる。
【図面の簡単な説明】
【図1】本発明に係る流体規正搬送用の扁平配管の一実施例を示す断面図。
【図2】図1に示す扁平配管の膨らんだ状態を示す断面図。
【図3】本発明に係る流体規正搬送用の扁平配管の他の実施例を示す断面図。
【図4】図3に示す扁平配管の膨らんだ状態を示す断面図。
【図5】押出しダイス成形による扁平配管の製造例を示す平面図。
【図6】流体規正搬送用の扁平配管を使用した地中蓄熱システムの一例を示す断面図。
【図7】図6の VII-VII線に沿った縦断面図。
【図8】図6の VIII-VIII線に沿った横断面図。
【図9】流体規正搬送用の扁平配管を使用したクロスフロー熱交換システムの具体例を示す平面図。
【図10】図9のX−X線に沿った縦断面図。
【図11】流体規正搬送用の扁平配管を屋根面に設置した事例を示す説明図。
【符号の説明】
10 基材壁面
11 うね状突起
12 空間
13 包囲通路
14 ラミネート樹脂層
20 押出し成形ダイス
21 転圧ローラ
30 流体規正搬送用の扁平配管
31 蓄熱材
32 水槽
33 水槽
40 熱媒体供給配管
41 回収樋
42 流体規正搬送用の扁平配管
43 吊下げ用のサポート
[0001]
[Industrial application fields]
The present invention relates to a flat pipe for fluid regulation conveyance for restricting the flow of fluid in a controlled state, and more particularly to a flat pipe for fluid medium regulation conveyance that regulates the moving direction of the fluid medium and flows uniformly. is doing. Therefore, the regulation conveyance flat piping which concerns on this invention can be utilized for a heat exchanger, an evaporator, and equipment similar to this.
[0002]
The fields of use of the present invention are specifically listed as follows.
When the flat pipe for transporting the fluid according to the present invention is used by being attached to the roof, snow removal or melting of the roof can be performed by flowing warm water along the flat pipe. In summer, it can be used as a heat collecting sheet for collecting solar heat and as a cooling sheet for roofs and walls. When installed on the inner wall side of a building, the inner wall surface functions as a heat exchange surface for air conditioning / temperature management. The flat piping for fluid regulation conveyance itself can be used as a building material of a building. If a flat pipe for fluid regulation transport is attached to a membrane body, a membrane structure having a surface with heat exchange performance can be constructed. A flat pipe for fluid regulation conveyance can be pasted on the board material and used as an assembly type connection unit.
[0003]
In the case of using a flat pipe for transporting the fluid for use in the soil, cold water is artificially obtained by flowing water along this member. Moreover, the form of embedding is various, and it is also possible to perform underground heat storage through the flat piping for the fluidity regulation conveyance embed | buried in the soil. If a sheet is laid on the road surface, it becomes a snowmelt road surface.
[0004]
When the flat pipe for transporting the fluid according to the present invention is moored in the water, floated on the surface of the water, or installed in a state immersed in the water, if a heat medium flows along this member, The heat exchange is performed.
[0005]
Next, applications of flat piping for fluid regulation conveyance will be specifically listed.
・ Use for heat exchange equipment: Indoor and outdoor pools, boiler water heating / use for cultivation and fishery facilities: Low temperature heating and washing facilities for winter circulation seawater supplied to breeding tanks: Winter circulation water for aircraft and railway vehicles Use of low-temperature heating / activated sludge tank for heating of treated water in winter and cultivation of farms in greenhouses: Greenhouses such as grapes and melons, heating of greenhouses / cooling in summer / collectors for production of pure water: Industrial, agricultural, and beverages・ Radiator / evaporator: roof snow melting, roof surface cooling, film surface cooling, evaporation / wall cooling, constant temperature warehouse: refrigerator, straw cultivation, agricultural product preservation, microbial cultivation facility: temperature control of cultivation liquids such as chlorella / spirulina・ Use for hydroponics: Heating / cooling of cultivation solution, cultivation floor sheet with liquid flow path ・ Use for plant artificial cultivation floor, indoor and outdoor aerial cultivation sheet ・ Water carrier transport route: piping sheet, flat Piping, sludge water Lower filter and underground burial sheet: underground heat exchange, drainage, water retention / heat storage device: sheet multi-layer heat storage block, evaporative concentration sheet: salt salt production, drainage concentration, river and other aquatic grass breeding sheet floor: water-soluble substrate Sheet / running water display sheet [0006]
[Prior art]
A flat shaped hollow strip and a naturally falling or naturally flowing liquid composed of a liquid-absorbing fibrous material sandwiched between one flat wall and the other wall of the strip. A flat piping tape provided with an induction road for restraining the direction of movement and a pressure-regulating air passage extending along the induction road formed on both sides of the induction road is known from Japanese Utility Model Application No. 5-73393. ing.
[0007]
[Problems to be solved by the invention]
With respect to the liquid-absorbing fibrous material described in this published specification, the applicant has continued trial manufacture research using various materials. The width of the flat piping tape described above is merely a matter of choice, but as the width increases, the amount of remaining air increases, making it difficult to subdivide the air pool. There is a disadvantage that the flow becomes non-uniform if it grows large with an air pocket remaining.
[0008]
Therefore, when manufacturing the flat pipe having a large flow path width, the applicant of the present application must form an equal passage section along the fluid movement path in order to allow the liquid to flow in a flat state. I came to realize that I had to do it. For the fluid movement path device, it was examined to use a regulation sheet (Act No. 7-8996) in which a band-shaped partition wall element layer arranged in parallel between a pair of sheet materials was interposed. These conventional examples are based on a structure in which the heat medium liquid flows down through a gap formed between a pair of materials and the flow direction of the flowing heat medium liquid is regulated.
[0009]
According to this conventional example, even if the flow rate is set to be relatively large, there is an advantage that a certain degree of regulation effect is maintained. The conventional example is configured by covering one substrate with a flat cover sheet, and adopts a structure in which the upper cover sheet swells and deforms to release the internal pressure when the flow rate is large. However, although the seat adopts a configuration that takes into consideration the possibility of mass transport of fluids in advance, it is difficult to accurately adjust the flow rate of each route, and the flow rate (movement) of the fluid flowing through each route is difficult. There is a drawback that the thickness of the fluid is not uniform. It shows a state in which the cover sheet has come into contact with the substrate side and a state in which the sheet has been lifted due to a large flow rate. The cause of the drooping of the sheet includes the extension of the sheet due to thermal expansion and the extension due to the negative pressure accompanying the decrease in the amount of fluid in the path. In addition, even when the movement of the fluid was stopped, a phenomenon was observed in which the cover sheet adhered to the bottom of the path due to the liquid remaining in the path and blocked the path. When the sheet is used as a heat exchange flat pipe, performance (heat exchange) and responsiveness (heat transfer) vary, and when it is used as a liquid transfer flat pipe, the flow rate at the end face side Caused non-uniformity. In addition, the sheet is weak to the rolling force applied from one side, and because of the structure, when a load is applied, the flat pipe easily clogs, and an unbalanced state occurs in the flow rate, and this unbalanced state is not constant and time It has been experienced that it is irregularly changed with the passage of time, and it is impossible to carry out balanced and accurate fluid transport management.
[0010]
The object of the present invention is to prevent deformation even when the flow rate of fluid greatly fluctuates by providing a deformation function that proportionally expands the flow cross-section following this and a self-adjusting action that can adapt to increasing or decreasing internal pressure. An object of the present invention is to provide a flat pipe for transporting a fluid regulation having a structure.
[0011]
In addition to the above-described effects, another object of the present invention is to provide a fluid regulation having a pressure dispersion function that allows fluid paths to communicate with each other via a fluid-permeable partition wall element and to quickly adapt to the increase or decrease in internal pressure. It is to provide flat piping for conveyance.
[0012]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present invention is arranged in parallel on a pipe base material in the form of a tube having opposite flat wall surfaces and inner walls of the opposite wall surfaces of the pipe base material in parallel. It has ridge-like projections that form a space, and the ridge-like projections on each wall surface are overlapped so as to occupy a part of the parallel space on the opposite wall surface, and an enclosed passage with an arbitrary cross section is required inside They are formed at intervals.
[0013]
[Action]
The flat pipe for fluid regulation conveyance of the present invention is installed in an arbitrary posture. Specifically, it is installed substantially horizontally or vertically, with a gradient if necessary.
[0014]
The cross section of the enclosing path can be freely set by appropriately selecting the width and thickness of the ridge-like protrusion. Further, the cross section of the surrounding passage can be changed in order from the one near the side of the pipe.
[0015]
The substrate wall surfaces can be fixed to each other by any method. For example, they can be bonded to each other via a ridge-like projection. The bonding location is not all projections, but can be bonded along the ridges selected at appropriate intervals. If the ridge-like protrusions are fixed to the substrate wall surface, if the ridge-like protrusions are made of a liquid-permeable material, for example, fibrous materials, foamed resin materials having open cell quality, various compounds, etc. If it is made of sintered metal, porous ceramic, etc., the pressure is released through the ridge-like projections.
[0016]
If the ridge-like projection of one planar material is not bonded to the other substrate wall surface, the ridge-like projection slides and moves according to the shape when bending perpendicular to the ridge-like projection. The wall surface can be deformed flexibly, and wrinkles do not occur on the base material wall surface on the compression side.
[0017]
If the corrugated projections of the base wall are welded and integrated with the opposing base wall, the corrective conveying means will be integrated as one even under a planar usage pattern even if a large load is applied from the outside. A tough flat pipe is formed that resists and does not break easily.
[0018]
In the above-mentioned example in which the ridge-shaped protrusion on one base wall surface can move relative to the other base-material wall surface, the ridge-shaped protrusion is in a position commensurate with the internal pressure while moving up and down as the path internal pressure increases and decreases. The left-right symmetry of the route can be maintained. For this reason, even if the internal pressure and the flow velocity fluctuate, the flow rate averaging operation and the regulation effect are maintained, and fluid can be transported with high accuracy.
[0019]
When the ridge-like projections are liquid permeable, or when the above-mentioned lifting projection structure is adopted, the flat pipe is suddenly bent, local deformation occurs due to the wind, or the upper part is Even if a sudden pressure change occurs along the route due to walking or running of the vehicle, the ridge-like projections themselves pass through, and the pressure is dispersed by the ascending and descending projections. The equilibrium state is reproduced. If such self-regulating performance is used, the flat pipe for conveying the fluid regulation can be used for special applications such as a snow melting road and a snow melting sidewalk.
Hereinafter, a usage example of the flat pipe for fluid regulation conveyance according to the present invention will be specifically described with reference to the accompanying drawings.
[0020]
【Example】
FIG. 1 shows a configuration example of a flat pipe for fluid regulation conveyance according to the present invention. The flat piping for fluid regulation conveyance is in the form of a tube provided with a pair of substrate wall surfaces 10 and 10. Each substrate wall surface 10 includes a substrate and ridge-like protrusions 11 and 11 provided in parallel on the substrate, and parallel spaces, that is, fluid movement paths 12 and 12 are formed between the ridge-like protrusions. Has been. The substrate wall surfaces are overlaid so that the ridge-like projections of the respective substrate wall surfaces occupy part of the space of the opposite substrate wall surfaces. The substrate wall surface of the tube-shaped flat pipe can be continuously manufactured as a tube-shaped material by, for example, an extrusion die. Alternatively, it can be processed into a tube shape by welding the side surfaces of the sheet, or a ridge-shaped projection is formed in advance on the base sheet, and a resin layer is laminated on the outer surface of the base sheet and processed into a flat pipe You can also
[0021]
The illustrated substrate wall surface shows a state in which the ridge-like protrusions 11 are combined so that they are located at the centers of the spaces 12 and 12. Therefore, the surrounding passages 13 having the same cross section are formed at equal intervals inside. If the ridge-like protrusions are shifted and combined, the cross section of the surrounding passage 13 increases or decreases by an amount corresponding to the shifted degree. If the width of the ridge-like projections 11 on the one side of the substrate wall surface, the interval between the ridge-like projections, and the position and width of the space 12 on the other side of the substrate wall surface are appropriately selected, the enclosed passage having an arbitrary cross section A flat pipe for fluid regulation transfer arranged at an appropriate interval is obtained.
[0022]
FIG. 2 shows a state in which the unconstrained base wall surfaces are expanded by receiving an internal pressure. In this state, the upper and lower ridge-shaped projections sufficiently restrain the moving direction with respect to the moving fluid, and allow the fluid to escape to the adjacent enclosing passages. Therefore, the sheet is swollen but locally expanded. Rather, the internal pressure due to excess fluid is evenly distributed throughout. The ridge-like protrusions and the substrate wall surface facing each other can be bonded in advance with an appropriate interval.
[0023]
The substrate wall surface 10 and the ridge-like protrusion 11 may be made of different materials. Further, the substrate wall surface can also be composed of a laminated composite layer rather than a single layer. Even when the substrate wall surface and ridge-shaped projections are made of the same material, materials with different densities, different water retention properties, and differences in water permeability are used for each substrate and ridge-shaped projections. Can be changed. For example, the ridge-like projections can be made from a nonwoven fabric rich in water retention, the base material can be made from a high-density nonwoven fabric, and both can be bonded together, or the nonwoven fabric can be rolled by a roller. The base material wall surface shown in the figure is made of the same kind of material as the ridge-shaped protrusions on the inner side, and is formed from the laminate resin layer 14 by extrusion molding on the outer side.
[0024]
FIG. 3 shows a flat piping structure in which ridge-like projections are welded to an extruded base material wall surface. FIG. 4 is a cross-sectional view of the flat pipe in an expanded state.
[0025]
FIG. 5 is a plan view schematically showing a flat pipe manufacturing apparatus. In the figure, reference numeral 20 denotes an extrusion die, and 21 denotes a rolling roller. The strip material that forms the ridge-like projections fed into the extrusion die 20 is pressed by the rolling roller 21 together with the resin extruded in a tube shape, and the strip material is pressed against the substrate wall surface to form ridge-like projections.
[0026]
Processing conditions such as the amount of rolling and the extrusion speed are appropriately selected.
[0027]
6 to 8 show examples of the underground heat storage device using the flat piping for fluid regulation conveyance according to the present invention. FIG. 6 is a longitudinal sectional view taken along line VI-VI in FIG. 7 is a longitudinal sectional view taken along line VII-VII in FIG. 6, and FIG. 8 is a transverse sectional view taken along line VIII-VIII in FIG.
In this underground heat storage device, a continuous underground wall W is constructed on the upper part of the impermeable layer S, the ground surrounded by the underground wall is excavated, and then the heat storage material 31 is spread by a roller rolling operation, and the roller rolling surface The flat pipe 30 for fluid regulation conveyance is laid in parallel on the top, the heat storage material 31 is further laid on the upper part, and the operation of laying the flat pipe 30 for fluid regulation conveyance on the upper part is repeated, and this heat exchange surface 30 and this The heat storage layer interposed between the heat exchange surfaces is formed repeatedly. It is preferable that water is sprinkled on the inner side of the underground wall W before and after the laminating work so that the whole is kept in a water retaining state.
[0028]
Two water tanks 32 and 33 are installed on the opposite end side of the underground wall W, and a flat pipe 30 for fluid regulation conveyance communicates between these two water tanks. In the illustrated example, the heat medium introduced into one water tank 32 reaches the opposite water tank 33 through the flat pipe 30 for fluid regulation conveyance, and heat exchange is performed with the heat storage material 31 during the movement. . The water head in the tank is adjusted by the aquifer level inside the underground wall and the degree of load, and the flow rate of the flat pipe for fluid regulation transfer is selected.
This case is currently being studied in urban areas as a measure for effective use of parking lot underground. When building a building or the like on site after use, it is easy to return to the current state.
[0029]
9 and 10 show an example of a large heat exchanger installed in a water channel. 10 is a longitudinal sectional view taken along line XX in FIG.
In the figure, reference numeral 40 denotes a heat medium supply pipe, 41 denotes a recovery rod, 42 denotes a flat pipe for fluid regulation conveyance that is bent, and 43 denotes a support for suspension. The principle of this heat exchange device can be used for heat exchange between liquid / liquid and liquid / gas. For example, when fresh seawater introduced through a filter is passed through a flat pipe for fluid regulation conveyance and used waste warm seawater is passed through a water channel, efficient low-temperature heat exchange is performed between the two.
[0030]
In such a configuration, buoyancy acts on the immersed flat pipe for fluid regulation transportation, so even if the scale is increased, it is difficult to apply a large load to the flat pipe for fluid regulation conveyance. Can be built. This method can also be diverted to a heat storage tank.
[0031]
FIG. 11 shows an example in which a flat pipe for fluid regulation conveyance is installed on the roof surface. The flat piping for fluid regulation conveyance in this example can be used for snow melting, heat collection, heat dissipation, and the like.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of a flat pipe for conveying fluid according to the present invention.
FIG. 2 is a cross-sectional view showing a swelled state of the flat pipe shown in FIG.
FIG. 3 is a cross-sectional view showing another embodiment of a flat pipe for conveying fluid according to the present invention.
4 is a cross-sectional view showing a swelled state of the flat pipe shown in FIG. 3;
FIG. 5 is a plan view showing an example of manufacturing a flat pipe by extrusion die forming.
FIG. 6 is a sectional view showing an example of an underground heat storage system using a flat pipe for fluid regulation conveyance.
7 is a longitudinal sectional view taken along line VII-VII in FIG.
8 is a cross-sectional view taken along line VIII-VIII in FIG.
FIG. 9 is a plan view showing a specific example of a cross-flow heat exchange system using a flat pipe for fluid regulation conveyance.
10 is a longitudinal sectional view taken along line XX in FIG.
FIG. 11 is an explanatory diagram showing an example in which flat pipes for fluid regulation conveyance are installed on the roof surface.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Substrate wall surface 11 Ridge-shaped protrusion 12 Space 13 Surrounding passage 14 Laminate resin layer 20 Extrusion die 21 Rolling roller 30 Flat pipe 31 for fluid regulation conveyance Heat storage material 32 Water tank 33 Water tank 40 Heat medium supply pipe 41 Recovery rod 42 Flat piping 43 for fluid regulation transfer Suspension support

Claims (1)

基材上に並列に設けたうね状突起を備え、これらうね状突起の間の空間が流体の移動経路を形成する一方の側の基材壁面と、この基材壁面に相対して配置される、前記流体の移動経路を覆う他方の側の基材壁面と、隣接するうね状突起の間の空間に入り込む、一方の側の基材壁面に対し相対的に位置変移可能に他方の側の基材壁面に装着されたうね状突起とを有し、前記一方の側の基材壁面と他方の側の基材壁面は扁平なチューブの形態をしていて、流体移動経路の内圧の増減に伴いうね状突起は昇降動作することのできる流体規正搬送用の扁平配管。  It is provided with corrugated protrusions provided in parallel on the base material, and the space between the corrugated protrusions is disposed relative to the base material wall surface on one side forming a fluid movement path and the base material wall surface. The base wall surface on the other side that covers the fluid movement path and the space between the adjacent ridge-shaped projections, and the other base wall can be moved relative to the base wall surface on one side. Ridge-like projections mounted on the side wall surface of the side, and the side wall surface of the one side and the side wall surface of the other side are in the form of a flat tube, and the internal pressure of the fluid movement path A flat pipe for fluid regulation conveyance, in which the ridge-like projections can be moved up and down with the increase / decrease.
JP05698296A 1996-02-14 1996-02-19 Flat piping for fluid regulation transfer Expired - Fee Related JP3817642B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP05698296A JP3817642B2 (en) 1996-02-19 1996-02-19 Flat piping for fluid regulation transfer
US08/799,843 US5954129A (en) 1996-02-14 1997-02-13 Flow control unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05698296A JP3817642B2 (en) 1996-02-19 1996-02-19 Flat piping for fluid regulation transfer

Publications (2)

Publication Number Publication Date
JPH09224492A JPH09224492A (en) 1997-09-02
JP3817642B2 true JP3817642B2 (en) 2006-09-06

Family

ID=13042719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05698296A Expired - Fee Related JP3817642B2 (en) 1996-02-14 1996-02-19 Flat piping for fluid regulation transfer

Country Status (1)

Country Link
JP (1) JP3817642B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102022863A (en) * 2011-01-24 2011-04-20 重庆大学 Air-conditioning heat exchanger at tail end of parallel flow capillary imbibition core plate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5269662B2 (en) * 2009-03-19 2013-08-21 株式会社東芝 Road thermoelectric power generation unit and system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102022863A (en) * 2011-01-24 2011-04-20 重庆大学 Air-conditioning heat exchanger at tail end of parallel flow capillary imbibition core plate

Also Published As

Publication number Publication date
JPH09224492A (en) 1997-09-02

Similar Documents

Publication Publication Date Title
CA2033691C (en) Heat exchanger and use thereof
US5327737A (en) Method and apparatus for heat exchange, where channels, e.g. tubes, are secured in recesses in heat-isolating boards
FI62180C (en) REFRIGERATION FOR THE CONDITIONING OF TEMPERATURE IN ASFALT- ELLER BETONGKROPPAR
JP3665975B2 (en) Fluid regulation conveying means
KR20010020553A (en) A method for stratified construction and heating a grasspitch, particularly a football ground, and a grass playing field built up in accordance with the method
CN107522287A (en) A kind of process for purifying water of artificial wet land system
KR20140043073A (en) Lawn grid
US4173212A (en) Self-contained solar greenhouse
US4979373A (en) Apparatus for making and maintaining an ice surface
JP3817642B2 (en) Flat piping for fluid regulation transfer
EP1049901B1 (en) Method for installing an energy conversion apparatus in a paving
JP3711463B2 (en) Fluid regulation conveying means
KR101631508B1 (en) Temperature control system for road using solar heat and geothermal heat pump
US5724479A (en) Fluid flow controlling member
US5566525A (en) Method of erecting walls, and form elements therefor
US5954129A (en) Flow control unit
WO1994028706A1 (en) Irrigation membrane material and irrigation method
DE2217338C3 (en) Device for de-icing, irrigation and drainage of sports fields
JPH09229489A (en) Pressure fluid regulation and transport sheet
CA1129285A (en) Method and device for storage and recovery of low temperature thermal energy
CN107574906B (en) Highway water saving system
JP3443751B2 (en) Roof snow removal method
JP2019219159A (en) Waste hot water heat regenerator and waste hot water heat regeneration system using the same
JP3516176B2 (en) Snow removal equipment
JP3239174B2 (en) Fluid transfer sheet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060529

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees