JP3711463B2 - Fluid regulation conveying means - Google Patents

Fluid regulation conveying means Download PDF

Info

Publication number
JP3711463B2
JP3711463B2 JP05243296A JP5243296A JP3711463B2 JP 3711463 B2 JP3711463 B2 JP 3711463B2 JP 05243296 A JP05243296 A JP 05243296A JP 5243296 A JP5243296 A JP 5243296A JP 3711463 B2 JP3711463 B2 JP 3711463B2
Authority
JP
Japan
Prior art keywords
conveying means
fluid
sheet
ridge
planar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05243296A
Other languages
Japanese (ja)
Other versions
JPH09222289A (en
Inventor
敬 高橋
Original Assignee
敬 高橋
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 敬 高橋 filed Critical 敬 高橋
Priority to JP05243296A priority Critical patent/JP3711463B2/en
Priority to US08/799,843 priority patent/US5954129A/en
Publication of JPH09222289A publication Critical patent/JPH09222289A/en
Application granted granted Critical
Publication of JP3711463B2 publication Critical patent/JP3711463B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、管理された状態で流体を拘束的に流すための流体規正搬送手段、特に、流動媒体の移動方向を規正して均等に流動させる流動媒体規正搬送手段に関係している。従って、本発明に係る規正搬送手段は、熱交換器、蒸発器およびこれに類似した設備機器に利用することができる。
【0002】
流体規正搬送手段を屋根にはり付けて使用する場合、この手段に沿って温水を流せば、屋根の除雪または融雪を行える。夏期には太陽熱を集熱する集熱シートとして、また屋根や壁面の冷却シートとして使用することができる。建物の内壁側に設置する場合、内壁面は空調/温度管理用の熱交換面として機能する。流体規正搬送手段はそれ自身を建造物の建材として使用することも可能である。流体規正搬送手段を膜体として製造し、この膜体を利用して表面が熱交換性能を備えた膜構造体を構築することができる。流体規正搬送手段をボード材料にはり付けておき、組立式の接続ユニットとして連結使用することもできる。
【0003】
また本発明の規正搬送手段は、流体の拡散を促進させるための部材として、例えば、栽培液を均等に供給し適切に分配する栽培床を兼ねた液体規正搬送手段として、または土壌中に埋設して使用する保水(水供給)兼排水シートとして利用することができる。流体規正搬送手段を土中に平面的に埋設して使用する場合、この部材に沿って水を流せば人工的に冷水が得られる。また、埋設の形態は様々であり、土中に埋設した流体規正搬送手段を介して地中蓄熱を行うことも可能である。またシートを路面に敷設すれば融雪路面となり、建物の基礎部分に敷設しておけば湧水の収集手段として使用できる。
【0004】
流体規正搬送手段を水中に係留したり、水面に浮揚させたり、あるいは水中に浸漬させた状態で設置した場合、この部材に沿って熱媒体を流せば接水面を介しての熱交換が行われる。
【0005】
本発明に係る流体規正搬送手段の用途を具体的に列挙するならば、以下のようになる。
・熱交換設備への利用:屋内外プール、ボイラー給水加熱
・栽培漁業施設への利用:飼育槽に供給する冬期循環海水の低温加熱
・洗浄施設への利用:航空機や鉄道車両の冬期循環水の低温加熱
・活性汚泥槽の冬期における処理水加熱
・施設栽培農業への利用:ぶどう、メロン等の温室、ハウスの加温/夏期冷却
・純水製造用集熱器:工業用、農業用、飲料用
・放熱器/蒸発器:屋根融雪、屋根面冷却、膜体表面冷却、蒸発
・壁面冷却による恒温倉庫:冷蔵庫、茸栽培、農産物保存
・微生物栽培施設:クロレラ/スピルリナ等の栽培液の温度管理
・水耕栽培用への利用:栽培溶液の加温/冷却、液体流路付き栽培床シート
・植物人工栽培床、屋内外の空中架設栽培シートへの利用
・ウォーターキャリア搬送経路:配管シート、扁平配管、汚泥水流下フィルター
・地中埋設用シート:地中熱交換、排水、保水
・蓄熱装置:シート多重積層蓄熱ブロック
・蒸発濃縮シート:天塩製造、排液濃縮
・河川等の水草繁殖シート床:水溶性基材シート
・流水装飾ディスプレイシート
【0006】
【従来の技術】
液体を平面状に広げた状態で流動させるためには、流体の移動経路に沿って均等な通路断面が形成されていなければならない。従来、こうした流体移動経路装置には、繊維質材料の中間介在層を持つ積層ラミネートシート(特願平7−228534号、および実公平7−48040号)や、一対のシート材料の間に並列する帯状のスペーサ層を介在させた規正シート(実公平7−8996号、実願平1−7330号)が用いられている。これら従来例は、一対の材料の間に形成された隙間を通じ熱媒体液を流下させ、流下する熱媒体液の流下方向を規正する構造に基づくものである。添付図面の図13は前者の従来例の基本構造を明らかにしており、また図14は後者の従来例について説明したものである。
【0007】
【発明が解決しようとする課題】
しかしながら、これら従来例によると、先ず前者の方式のものでは基材1に対しすじ状に表面ラミネート層2を転圧溶着させるため、溶融樹脂の転圧時に予め設けた経路内に樹脂が入り込み、結果的に、的確に必要とする流路断面を確保することができない。従って、搬送流体の流量について大幅な制約があり、また流速が大きいと規正効果が失われる欠点がある。このシートの特徴は、露出する保液層に沿った経路3が流れの主流を形成し、表面すじ状ラミネート層2の下側部分は伏在経路4を形成している。
【0008】
後者の方式によれば、前者のものに比べて、流量を比較的大きく設定してもある程度の規正効果は保持される利点がある。この規正シートは、一方の基材5に対し平坦なカバーシート6を被せて構成されており、流量が多ければ上側のカバーシートが膨らみ変形して内圧を解放する構造が取り入れられている。しかしながら、このシートは流体の大量輸送の可能性を予め考慮に入れた構成を採用してはいるものの、経路7毎の流量を精度よく調整することは困難であり、各経路を流れる流体の流量(移動流体の厚み)が不均一となる欠点がある。図15は、カバーシート6がだれて基材側に接触した状態(実線)と、流量が大きいことでシートが浮き上がった状態(2点鎖線)を示している。シートのだれの原因には、熱膨張によるシートの延び、および経路中の流体量の減少に伴う負圧による延びがある。また、流体の動きが停止している場合にも、経路中に残留する液体によりカバーシートが経路底に付着して経路を塞ぐ現象が認められた。こうした状況は、シートが熱交換装置として使用される場合、性能(熱交換)、応答性(伝熱)にばらつきが生じ、また液体の搬送シートとして使用する場合には端面側での流量が不均一となる等の障害の原因をなしていた。さらに、シートは片側から加わる圧下力に弱く、構造上、荷重が加わると流路は容易に閉塞を起こし、流量にアンバランスな状態が発生すると共に、この不均衡な状態は一定せず時間の経過と共に不規則に変化し、平衡した精度のよい流体の搬送管理を行えないことが経験された。
【0009】
本発明の目的は、前述した従来技術の欠点を解決するものであり、簡単に製作できる、予め必要とされる流体の流量および流速に見合う流路断面の経路を必要間隔毎に備えた構造を持ち、圧縮荷重を受けても荷重が均等に分散され流路が閉塞しにくい耐圧性を持つ流体規正搬送手段を提供することにある。
【0010】
また、本発明の目的は、流体の流量が大きく変動しても、流量に見合う流通断面が得られるように変形する機能を付与し、増大する内圧に順応する自己調整作用を持たせることで破損しにくい構造とした搬送経路を内蔵する流体規正搬送手段を提供することにある。
【0011】
本発明の他の目的は、流体経路同志が互いに導通し、内圧の増減に順応できる機能を備えた流体規正搬送手段を提供することにある。
【0012】
本発明のその他の目的は、前述した複数の目的を同時に達成できる特徴を備えた流体規正搬送手段を提供することにある。
【0013】
【課題を解決するための手段】
前記目的を達成するため、本発明の第1の形態によれば、流体規正搬送手段は、基材上に並列に設けたうね状突起とこれらうね状突起の間に形成された並列する空間を備えた対の面状要素を用い、それぞれの面状要素のうね状突起を相対する面状要素の空間の一部を占めるように重ね合わせ、内部に任意の断面の包囲通路を必要間隔毎に形成して構成されている。
前記目的を達成するため、本発明の第2の形態によれば、流体規正搬送手段は、基材上に並列に設けたうね状突起を備え、これらうね状突起の間の空間が流体の移動経路を形成する一方の側の面状要素と、この面状要素に相対して配置される、前記流体の移動経路を覆うカバー部材と、隣接するうね状突起の間の経路空間に入り込む、面状要素の基材表面に対し相対的に位置変移可能にカバー部材の内側表面に装着された昇降突起とで構成されている。
前記目的を達成するため、本発明の第3の形態によれば、流体規正搬送手段は、基材上に並列に設けた液体透過性のあるうね状突起とこれらうね状突起の間に形成された並列する空間を備えた対の面状要素を用い、それぞれの面状要素のうね状突起を相対する面状要素の空間の一部を占めるように重ね合わせ、内部に任意の断面の包囲通路を必要間隔毎に形成すると共に、それぞれの包囲通路がうね状突起を介して液体の相互導通関係にあるように構成されている。
【0014】
【作用】
本発明の流体規正搬送手段は任意の姿勢で設置される。具体的には、ほぼ水平または垂直に、必要に応じ勾配を持たせて設置される。
構成要素として対の面状要素が使用される。面状要素同士を2枚合わせとする場合、横方向にずらす操作により隣接する包囲経路の流通断面は変化する。この操作により、必要とする流量断面の包囲経路を流体規正搬送手段の全面にめぐらせることができる。
【0015】
面状要素は任意の方法でお互いに対し固定することができる。例えば、面状要素の突起を相対する面状要素に対し接着することができる。接着箇所はすべての突起とせず、適当に間隔を置いて選んだうね状突起に沿って接着することができる。勿論、面状要素の縁を互いに溶着して袋状構造とし、一方の面状要素を他方の面状要素に対し離れる向きに平行移動できるようにして使用することも可能である。うね状突起を面状要素に固定した場合、このうね状突起が液体透過性のある素材から構成されていれば、例えば、繊維質材料、連続気泡質を持つ発泡樹脂材料、各種のコンパウンド、焼結金属、多孔質セラミック等から構成されているなら、このうね状突起を介しての圧力解放が行われる。
【0016】
一方の面状素材のうね状突起を他方の面状素材に接着していなければ、うね状突起に直交しての規正搬送手段の屈曲に際し、その形態に応じてうね状突起は滑り移動し面状素材は柔軟に変形でき、圧縮側の面状素材に皺がよることはない。
【0017】
面状素材のうね状突起を相対する面状素材に溶着一体化してあれば、平面的な使用形態の下で、外部から大きな荷重を受けても規正搬送手段は一体構造のものとしてこれに対抗し、容易に破損しない強靭な平面配管が形成される。
【0018】
一方の面状素材のうね状突起が他方の面状素材に対し相対的に移動できる前述した例では、経路内圧の増減に伴いうね状突起は昇降動作しながら内圧に見合う位置にあって経路の左右対称性を保つことができる。このため、内圧および流速が変動しても流量平均化作用と規正効果は維持され、精度のよい流体の搬送を行える。
【0019】
うね状突起が液体透過性を備えている場合、または前述した昇降突起構造を採用している場合、流体規正搬送手段が突然に折り曲げられたり、風により局部的な変形が生じたり、上部を人が歩行したり車両が走行することで経路に沿って急激な圧力変化が生じても、うね状突起そのものを通し、また昇降突起の上昇動作により圧力の分散が図られ、減圧と共に速やかに元の平衡状態が再現される。こうした自己調節性能を利用すれば、この流体規正搬送手段は融雪道路、融雪歩道等の特殊な用途にも使用できることになる。
以下、添付図面に沿って本発明の流体規正搬送手段の使用例につき具体的に説明する。
【0020】
【実施例】
図1は、本発明に係る流体規正搬送手段の構成例を示している。流体規正搬送手段は一対の面状要素10、10を備えている。各面状要素10は基材とこの基材上に並列に設けたうね状突起11、11を備え、うね状突起の間には並列する空間、すなわち流体の移動経路12、12が形成されている。面状要素は、それぞれの面状要素のうね状突起が相対する面状要素の前記空間の一部を占めるように重ね合わされる。図2は、一対の面状要素を重ね合わせて構成した流体規正搬送手段の具体例を示している。
【0021】
図2の面状要素は、うね状突起11が空間12、12の中央に位置するように組み合わせた状態を示している。従って、内部には等しい断面の包囲通路13が等間隔に形成されている。面状要素を横にずらして組み合わせれば、ずらした程度に見合う分だけ包囲通路13の断面は増減する。一方の側の面状要素のうね状突起11の幅とうね状突起同士の間隔、および他方の側の面状要素の空間12の位置と幅を適宜選択すれば、任意断面の包囲通路を適当な間隔に配列した流体規正搬送手段が得られる。
【0022】
図3は、非拘束の面状要素同士が内圧を受けて広がった状態を示している。この状態では、上下のうね状突起は移動する流体に対し移動方向を充分に拘束しつつ、隣接する包囲通路への流体の逃げを許しており、従って、シートは膨らみつつも局部的な膨張はなく、過剰流体による内圧は全体に均一に分散される。うね状突起と相対する面状要素とは適当な間隔を置いて予め接着しておくことができる。
【0023】
面状要素10の基材とうね状突起11は、異種材料から構成して差し支えない。同種材料から構成する場合でも、密度の異なる、保水性に違いのある、透水率に差のある材料をそれぞれの基材とうね状突起に使用し、両者の物性を変えておくことが可能である。例えば、うね状突起を保水性に富む不織布から構成し、基材を高密度不織布から構成し両者を接着して製作したり、不織布をローラ転圧して構成することもできる。図示の面状要素は、外側にラミネート樹脂層14を備えている。
【0024】
図4は、下側の面状要素20が硬質材料から構成され、上側の面状要素20’が透水材料から構成された流体規正搬送手段の例を示している。この例の流体規正搬送手段は、融雪道路や融雪歩道として使用することができる。図6は、路床R上に流体規正搬送手段を敷設した状態を示している。この例における流体規正搬送手段は、包囲通路に加わる内圧により上側の面状要素の浮上する図3の例とは異なり、上側の面状要素20’はそのままの位置で内部から流体が上方に漏出し表層流25となって上側の面状要素の表面に沿って広がり、または内部の包囲通路23の向きに流動していく。この表層流は降雪粒子に速やかに吸収され、急速な熱交換が行われる。雪は速やかに解けるかシャーベット状になり、このシャーベットを介しさらに降り積もる雪に対し熱媒流体の供給が行われ融雪が促進される。
【0025】
下側と上側の面状要素20、20’は剛性のあるうね状突起21と保水性のあるうね状突起21’を備え、それぞれの面状要素の空間22に入り込んで包囲通路23を形成している。下側の面状要素20の基材にはラミネート樹脂層24がコーティング加工されている。
【0026】
図4から図6の流体規正搬送手段は、土中に埋設して排水シート、給水シート、保水シート、地下水採取シート等に利用することができる。
【0027】
図7から図9は、本発明に係る流体規正搬送手段を使用した地中蓄熱装置の例を示している。図7は、図9のVII−VII線に沿った縦断面図である。図8は図7のVIII−VIII線に沿った縦断面図であり、図9は図7のIX−IX線に沿った横断面図である。
この地中蓄熱装置は、不透水層Sの上部に連続地中壁Wを構築し、地中壁に囲まれた地盤を開削した後、ローラ転圧作業により蓄熱材31を敷き詰め、ローラ転圧面上に流体規正搬送手段30を並列に敷設し、さらに上部に蓄熱材31を敷き詰め、上部に流体規正搬送手段30を敷設する作業を繰り返して多段の熱交換面30とこの熱交換面の間に介在する蓄熱層を繰り返して形成されている。地中壁Wの内側には、積層工事に前後して水が散水され、全体が保水状態に保たれていることが好ましい。
【0028】
地中壁Wの相対する端部側には2つの水槽32、33が設置され、これら2つの水槽の間をそれぞれの流体規正搬送手段30が連絡している。図示の例では、一方の水槽32に投入される熱媒体は流体規正搬送手段30を通じて反対側の水槽33に至り、その移動の途中に蓄熱材31との間で熱交換が行われる。水槽内の水頭は地中壁内部の帯水位および負荷の程度により調節され、流体規正搬送手段の流量は選択される。
この事例は、都市部において、駐車場の地下の有効利用の一策として現在検討されている。使用後、現場にビル等を構築する際においても現状復帰は容易である。
【0029】
図10および図11は、水路に設置した大型熱交換器の実例を示している。図11は図10のXI−XI線に沿った縦断面図である。
図中にて、40は熱媒体供給配管、41は回収樋、42は屈曲設置した流体規正搬送手段、43は吊下げ用のサポートを示している。この熱交換装置の原理は、液体/液体、液体/気体の間での熱交換に使用することができる。例えば、流体規正搬送手段には、フィルターを通して導入される新鮮海水を通し、水路には使用済みの廃棄温海水を流せば、両者の間で効率のよい低温熱交換が行われる。
【0030】
こうした構成において、浸漬した流体規正搬送手段には浮力が作用するため、規模を大きくしても流体規正搬送手段には大きな荷重は加わりにくいため、大規模な熱交換システムを構築することができる。この方式は、蓄熱水槽にも転用することができる。
【0031】
図12は、屋根面に流体規正搬送手段を設置した事例を示している。この例の流体規正搬送手段は、融雪、集熱、放熱等に利用することができる。
【図面の簡単な説明】
【図1】本発明に係る流体規正搬送手段の一実施例を示す斜視説明図。
【図2】図1の流体規正搬送手段の断面図。
【図3】面状要素が内圧を受けて広がった状態を示す断面図。
【図4】本発明に係る流体規正搬送手段の変更例を示す斜視説明図。
【図5】図4の流体規正搬送手段の断面図。
【図6】路床に設置した状態を示す説明図。
【図7】流体規正搬送手段を使用した地中蓄熱システムの一例を示す縦断面図。
【図8】図7のVIII−VIII線に沿った縦断面図。
【図9】図7のIX−IX線に沿った横断面図。
【図10】流体規正搬送手段を使用したクロスフロー熱交換システムの具体例を示す平面図。
【図11】図10のXI−XI線に沿った縦断面図。
【図12】流体規正搬送手段を屋根面に設置した事例を示す説明図。
【図13】すじ状ラミネートコーティング表層を持つ規正シートの構造例を示した断面説明図。
【図14】カバー層を持つ規正シートの構造例を示した断面説明図。
【図15】図14の規正シートの問題点を図解した断面説明図。
【符号の説明】
10 面状要素
11 うね状突起
12 空間
13 包囲通路
14 ラミネート樹脂層
20 面状要素
20’ 面状要素
21 うね状突起
21’ うね状突起
22 空間
23 包囲通路
24 ラミネート樹脂層
25 表層流
30 流体規正搬送手段
31 蓄熱材
32 水槽
33 水槽
40 熱媒体供給配管
41 回収樋
42 流体規正搬送手段
43 吊下げ用のサポート
[0001]
[Industrial application fields]
The present invention relates to fluid regulating and conveying means for restricting the flow of fluid in a controlled state, and more particularly to fluid medium regulating and conveying means for regulating the moving direction of the flowing medium and causing it to flow evenly. Therefore, the regulation conveying means according to the present invention can be used for heat exchangers, evaporators and similar equipment.
[0002]
When the fluid regulation conveying means is used by being attached to the roof, it is possible to remove snow from the roof or melt snow by flowing warm water along this means. In summer, it can be used as a heat collecting sheet for collecting solar heat and as a cooling sheet for roofs and walls. When installed on the inner wall side of a building, the inner wall surface functions as a heat exchange surface for air conditioning / temperature management. The fluid regulation conveying means can itself be used as a building material of a building. The fluid regulating / conveying means is manufactured as a film body, and a film structure having a surface with heat exchange performance can be constructed by using the film body. The fluid regulation conveying means may be attached to the board material and used as an assembly type connection unit.
[0003]
Further, the regulation conveying means of the present invention is a member for accelerating the diffusion of fluid, for example, as a liquid regulation conveying means that also serves as a cultivation floor that supplies and appropriately distributes the cultivation liquid, or is embedded in the soil. It can be used as a water retention (water supply) and drainage sheet. When the fluid regulating / conveying means is used by being buried in a plane in the ground, cold water can be artificially obtained by flowing water along this member. Moreover, the form of embedding is various, and it is also possible to store underground heat through the fluid leveling and conveying means buried in the soil. If a sheet is laid on the road surface, it becomes a snowmelt road surface, and if it is laid on the foundation of the building, it can be used as a means of collecting spring water.
[0004]
When the fluid regulation conveying means is moored underwater, floated on the surface of the water, or installed in a state immersed in water, heat exchange is performed via the water contact surface by flowing a heat medium along this member. .
[0005]
The applications of the fluid regulation conveying means according to the present invention will be specifically listed as follows.
・ Use for heat exchange equipment: Indoor and outdoor pools, boiler water heating / use for cultivation and fishery facilities: Low temperature heating and washing facilities for winter circulation seawater supplied to breeding tanks: Winter circulation water for aircraft and railway vehicles Use of low-temperature heating / activated sludge tank for heating of treated water in winter and cultivation of farms in greenhouses: Greenhouses such as grapes and melons, heating of greenhouses / cooling in summer / collectors for production of pure water: Industrial, agricultural, and beverages・ Radiator / evaporator: Roof snow melting, roof surface cooling, membrane surface cooling, evaporation / wall cooling, constant temperature warehouse: refrigerator, straw cultivation, agricultural product preservation, microbial cultivation facility: temperature control of cultivation liquids such as Chlorella / Spirulina・ Use for hydroponics: Heating / cooling of cultivation solution, cultivation floor sheet with liquid flow path ・ Use for plant cultivation floor, indoor and outdoor aerial cultivation sheet ・ Water carrier transport route: piping sheet, flat Piping, sludge water Lower filter and underground burial sheet: underground heat exchange, drainage, water retention / heat storage device: sheet multi-layer heat storage block, evaporative concentration sheet: salt salt production, drainage concentration, river and other aquatic grass breeding sheet floor: water-soluble substrate Sheet / running water display sheet [0006]
[Prior art]
In order for the liquid to flow in a state of being spread in a flat shape, an equal passage section must be formed along the fluid movement path. Conventionally, in such a fluid movement path device, laminated laminate sheets (Japanese Patent Application Nos. 7-228534 and 7-48040) having an intermediate intervening layer of a fibrous material, or a pair of sheet materials are arranged in parallel. A regulation sheet (Act No. 7-8996, No. 1-7330) having a belt-like spacer layer is used. These conventional examples are based on a structure in which the heat medium liquid flows down through a gap formed between a pair of materials and the flow direction of the flowing heat medium liquid is regulated. FIG. 13 of the accompanying drawings clarifies the basic structure of the former conventional example, and FIG. 14 illustrates the latter conventional example.
[0007]
[Problems to be solved by the invention]
However, according to these conventional examples, in the former method, first, the surface laminate layer 2 is rolled and welded to the base material 1 in a streak form, so that the resin enters the path provided in advance when the molten resin is pressed, As a result, it is not possible to ensure a required flow path cross section. Accordingly, there are significant limitations on the flow rate of the carrier fluid, and there is a drawback that the effect of regulation is lost when the flow velocity is large. The feature of this sheet is that the path 3 along the exposed liquid retaining layer forms the main flow, and the lower portion of the surface streaky laminate layer 2 forms the underlying path 4.
[0008]
According to the latter method, there is an advantage that a certain level of effect is maintained even if the flow rate is set to be relatively large as compared with the former method. This regulation sheet is configured by covering one base member 5 with a flat cover sheet 6 and adopts a structure in which the upper cover sheet swells and deforms to release the internal pressure when the flow rate is large. However, although this sheet adopts a configuration that takes into consideration the possibility of mass transport of fluids in advance, it is difficult to accurately adjust the flow rate for each path 7, and the flow rate of the fluid flowing through each path There is a drawback that (the thickness of the moving fluid) is not uniform. FIG. 15 shows a state in which the cover sheet 6 has come into contact with the substrate side (solid line) and a state in which the sheet has been lifted due to a large flow rate (two-dot chain line). The cause of the drooping of the sheet includes the extension of the sheet due to thermal expansion and the extension due to the negative pressure accompanying the decrease in the amount of fluid in the path. In addition, even when the movement of the fluid was stopped, a phenomenon was observed in which the cover sheet adhered to the bottom of the path due to the liquid remaining in the path and blocked the path. In such a situation, when the sheet is used as a heat exchange device, performance (heat exchange) and responsiveness (heat transfer) vary, and when it is used as a liquid transport sheet, the flow rate at the end face side is inadequate. It was the cause of obstacles such as being uniform. Furthermore, the sheet is weak against the rolling force applied from one side, and structurally, when a load is applied, the flow path is easily clogged, and an unbalanced state occurs in the flow rate, and this unbalanced state is not constant and time It has been experienced that it is irregularly changed with the passage of time, and it is impossible to carry out balanced and accurate fluid transport management.
[0009]
An object of the present invention is to solve the above-mentioned disadvantages of the prior art, and to provide a structure that can be easily manufactured and has a path of a flow path cross section corresponding to a required fluid flow rate and flow velocity at every necessary interval. An object of the present invention is to provide a fluid regulation conveying means having pressure resistance that is evenly distributed even when a compressive load is applied and the flow path is not easily blocked.
[0010]
In addition, the object of the present invention is to provide a function of deforming so that a flow cross section corresponding to the flow rate can be obtained even if the flow rate of the fluid fluctuates greatly, and to provide a self-adjusting action that adapts to the increasing internal pressure. It is an object of the present invention to provide a fluid regulation conveying means incorporating a conveyance path having a structure difficult to perform.
[0011]
Another object of the present invention is to provide a fluid regulation conveying means having a function of allowing fluid paths to conduct with each other and adapting to an increase or decrease in internal pressure.
[0012]
Another object of the present invention is to provide a fluid leveling / conveying means having a feature capable of simultaneously achieving a plurality of the aforementioned objects.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, the fluid regulating and conveying means includes a ridge-like protrusion provided in parallel on the substrate and a parallel arrangement formed between these ridge-like protrusions. Using a pair of planar elements with spaces, the ridge-like projections of each planar element are overlapped so as to occupy a part of the space of the opposing planar elements, and an enclosed passage with an arbitrary cross section is required inside They are formed at intervals.
In order to achieve the above object, according to the second aspect of the present invention, the fluid regulation conveying means includes ridge-like protrusions provided in parallel on the substrate, and the space between these ridge-like protrusions is a fluid. In a path space between a planar element on one side forming the movement path of the liquid, a cover member covering the fluid movement path, which is disposed relative to the planar element, and an adjacent ridge-shaped projection It is comprised with the raising / lowering protrusion with which the inner side surface of the cover member was mounted | worn so that a position change was possible relatively with respect to the base-material surface of the planar element which penetrates.
In order to achieve the above object, according to the third aspect of the present invention, the fluid regulation conveying means includes a liquid-permeable ridge-like protrusion provided in parallel on the substrate and the ridge-like protrusion between the ridge-like protrusions. Using a pair of planar elements with parallel spaces formed, the ridge-like projections of each planar element are overlapped so as to occupy a part of the space of the opposing planar elements, and an arbitrary cross section inside The surrounding passages are formed at every necessary interval, and the respective surrounding passages are configured to have a liquid mutual conduction relationship via the ridge-like projections.
[0014]
[Action]
The fluid regulation conveying means of the present invention is installed in an arbitrary posture. Specifically, it is installed substantially horizontally or vertically, with a gradient if necessary.
A pair of planar elements is used as a component. When two planar elements are put together, the flow cross section of the adjacent enclosed path changes by the operation of shifting in the horizontal direction. By this operation, the enclosing path of the required flow rate cross section can be passed over the entire surface of the fluid regulation conveying means.
[0015]
The planar elements can be secured to each other in any way. For example, the projection of the planar element can be bonded to the opposing planar element. The bonding location is not all projections, but can be bonded along the ridges selected at appropriate intervals. Of course, the edges of the planar elements can be welded together to form a bag-like structure so that one planar element can be translated in a direction away from the other planar element. When the ridge-like protrusions are fixed to the planar element, if the ridge-like protrusions are made of a liquid-permeable material, for example, a fibrous material, a foamed resin material having an open cell quality, various compounds, etc. If it is made of sintered metal, porous ceramic, etc., the pressure is released through the ridge-like projections.
[0016]
If the ridge-like protrusions of one sheet material are not bonded to the other sheet-like material, the ridge-like protrusions will slide according to the shape of the corrective conveying means perpendicular to the ridge-like protrusions. The moving sheet material can be flexibly deformed, and the sheet material on the compression side is not wrinkled.
[0017]
If the ridge-like projections of the planar material are welded and integrated with the opposing planar material, even if a large load is received from the outside under a flat usage pattern, the corrective conveying means will be an integral structure. A tough flat pipe is formed that resists and does not break easily.
[0018]
In the above-mentioned example in which the ridge-like projection of one planar material can move relative to the other planar material, the ridge-like projection is in a position corresponding to the internal pressure while moving up and down as the path internal pressure increases and decreases. The left-right symmetry of the route can be maintained. For this reason, even if the internal pressure and the flow velocity fluctuate, the flow rate averaging operation and the regulation effect are maintained, and fluid can be transported with high accuracy.
[0019]
When the ridge-like projections are liquid permeable, or when the above-described lifting projection structure is adopted, the fluid regulation conveying means is suddenly bent, the wind is locally deformed, the upper part is Even if a sudden pressure change occurs along the route when a person walks or a vehicle travels, the ridge-like protrusions themselves pass through, and the lifting and lowering protrusions move up to disperse the pressure. The original equilibrium state is reproduced. If such self-regulating performance is utilized, the fluid regulation conveying means can be used for special applications such as a snow melting road and a snow melting sidewalk.
Hereinafter, the usage example of the fluid regulation conveying means of the present invention will be specifically described with reference to the accompanying drawings.
[0020]
【Example】
FIG. 1 shows an example of the configuration of a fluid regulation conveying means according to the present invention. The fluid regulation conveying means includes a pair of planar elements 10 and 10. Each planar element 10 includes a base material and corrugated protrusions 11 and 11 provided in parallel on the base material, and parallel spaces, that is, fluid movement paths 12 and 12 are formed between the corrugated protrusions. Has been. The planar elements are overlapped so that the ridges of each planar element occupy part of the space of the opposing planar elements. FIG. 2 shows a specific example of the fluid regulation conveying means constructed by superposing a pair of planar elements.
[0021]
The planar element in FIG. 2 shows a state in which the ridge-like protrusions 11 are combined so as to be positioned at the center of the spaces 12 and 12. Therefore, the surrounding passages 13 having the same cross section are formed at equal intervals inside. If the planar elements are shifted and combined horizontally, the cross section of the surrounding passage 13 increases or decreases by an amount corresponding to the shifted amount. If the width of the ridge-like protrusions 11 of the planar element on one side, the interval between the ridge-like protrusions, and the position and width of the space 12 of the planar element on the other side are appropriately selected, an enclosed passage having an arbitrary cross section can be formed. Fluid regulating and conveying means arranged at appropriate intervals can be obtained.
[0022]
FIG. 3 shows a state where the unconstrained planar elements are expanded by receiving the internal pressure. In this state, the upper and lower ridge-shaped projections sufficiently restrain the moving direction with respect to the moving fluid, and allow the fluid to escape to the adjacent enclosing passages. Therefore, the sheet is swollen but locally expanded. Rather, the internal pressure due to excess fluid is evenly distributed throughout. The ridge-like protrusion and the planar element facing each other can be bonded in advance at an appropriate interval.
[0023]
The substrate of the planar element 10 and the ridge-like protrusion 11 may be made of different materials. Even when it is made of the same kind of material, it is possible to use different materials with different density, different water retention, and different water permeability for each base material and ridge-like protrusions, and change the physical properties of both. is there. For example, the ridge-like projections can be made from a nonwoven fabric rich in water retention, the base material can be made from a high-density nonwoven fabric, and both can be bonded together, or the nonwoven fabric can be rolled by a roller. The illustrated planar element includes a laminate resin layer 14 on the outside.
[0024]
FIG. 4 shows an example of a fluid regulation conveying means in which the lower planar element 20 is made of a hard material and the upper planar element 20 ′ is made of a water-permeable material. The fluid regulation conveying means of this example can be used as a snow melting road or a snow melting sidewalk. FIG. 6 shows a state in which the fluid regulation conveying means is laid on the road bed R. Unlike the example shown in FIG. 3 in which the upper planar element floats due to the internal pressure applied to the surrounding passage, the fluid regulating conveying means in this example is such that the upper planar element 20 ′ leaks upward from the inside at the same position. The surface flow 25 then spreads along the surface of the upper planar element or flows in the direction of the internal surrounding passage 23. This surface current is quickly absorbed by the snow particles and a rapid heat exchange takes place. The snow melts quickly or becomes a sherbet, and the heat transfer fluid is supplied to the snow that further accumulates through the sherbet to promote snow melting.
[0025]
The lower and upper planar elements 20, 20 ′ are provided with a rigid ridge-like protrusion 21 and a water-retaining ridge-like protrusion 21 ′, and enter the space 22 of the respective planar elements to enter the surrounding passage 23. Forming. A laminate resin layer 24 is coated on the base material of the lower planar element 20.
[0026]
4 to 6 can be used as a drainage sheet, a water supply sheet, a water retention sheet, a groundwater collection sheet, etc. by being buried in the soil.
[0027]
7 to 9 show an example of an underground heat storage device using the fluid regulation conveying means according to the present invention. 7 is a longitudinal sectional view taken along line VII-VII in FIG. 8 is a longitudinal sectional view taken along line VIII-VIII in FIG. 7, and FIG. 9 is a transverse sectional view taken along line IX-IX in FIG.
In this underground heat storage device, a continuous underground wall W is constructed on the upper part of the impermeable layer S, the ground surrounded by the underground wall is excavated, and then the heat storage material 31 is spread by a roller rolling operation, and the roller rolling surface The fluid regulation conveying means 30 is laid in parallel on the top, the heat storage material 31 is further laid on the upper part, and the operation of laying the fluid regulation conveying means 30 on the upper part is repeated, so that the multistage heat exchange surface 30 and the heat exchange surface are interposed between them. It is formed by repeating the interposed heat storage layer. It is preferable that water is sprinkled on the inner side of the underground wall W before and after the laminating work so that the whole is kept in a water retaining state.
[0028]
Two water tanks 32 and 33 are installed on the opposite end sides of the underground wall W, and the fluid regulating and conveying means 30 communicate with each other between the two water tanks. In the illustrated example, the heat medium introduced into one water tank 32 reaches the water tank 33 on the opposite side through the fluid regulation conveying means 30, and heat exchange is performed with the heat storage material 31 during the movement. The head in the aquarium is adjusted by the aquifer level inside the underground wall and the degree of load, and the flow rate of the fluid regulation conveying means is selected.
This case is currently being studied in urban areas as a measure for effective use of parking lot underground. When building a building or the like on site after use, it is easy to return to the current state.
[0029]
10 and 11 show an example of a large heat exchanger installed in a water channel. 11 is a longitudinal sectional view taken along line XI-XI in FIG.
In the figure, reference numeral 40 denotes a heat medium supply pipe, 41 denotes a recovery rod, 42 denotes a fluid regulating / conveying means installed in a bent state, and 43 denotes a support for suspension. The principle of this heat exchange device can be used for heat exchange between liquid / liquid and liquid / gas. For example, if fresh seawater introduced through a filter is passed through the fluid regulation conveying means and used waste warm seawater is passed through the water channel, efficient low-temperature heat exchange is performed between the two.
[0030]
In such a configuration, since the buoyancy acts on the immersed fluid regulating and conveying means, a large load is not easily applied to the fluid regulating and conveying means even if the scale is increased, so that a large-scale heat exchange system can be constructed. This method can also be diverted to a heat storage tank.
[0031]
FIG. 12 shows an example in which the fluid regulation conveying means is installed on the roof surface. The fluid regulating / conveying means of this example can be used for melting snow, collecting heat, radiating heat and the like.
[Brief description of the drawings]
FIG. 1 is an explanatory perspective view showing an embodiment of a fluid regulating and conveying means according to the present invention.
FIG. 2 is a cross-sectional view of the fluid regulation conveying means of FIG.
FIG. 3 is a cross-sectional view showing a state in which a planar element is expanded by receiving internal pressure.
FIG. 4 is a perspective explanatory view showing a modified example of the fluid regulation conveying means according to the present invention.
5 is a cross-sectional view of the fluid regulation conveying means of FIG.
FIG. 6 is an explanatory view showing a state where the vehicle is installed on the road bed.
FIG. 7 is a longitudinal sectional view showing an example of an underground heat storage system using a fluid regulation conveying means.
8 is a longitudinal sectional view taken along line VIII-VIII in FIG.
9 is a cross-sectional view taken along line IX-IX in FIG.
FIG. 10 is a plan view showing a specific example of a cross-flow heat exchange system using a fluid regulation conveying means.
11 is a longitudinal sectional view taken along line XI-XI in FIG.
FIG. 12 is an explanatory view showing an example in which the fluid regulation conveying means is installed on the roof surface.
FIG. 13 is an explanatory cross-sectional view showing an example of the structure of a regulation sheet having a stripe-shaped laminate coating surface layer.
FIG. 14 is a cross-sectional explanatory view showing an example of the structure of a regulation sheet having a cover layer.
15 is a cross-sectional explanatory view illustrating the problem of the regulation sheet of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Planar element 11 Corrugated protrusion 12 Space 13 Surrounding passage 14 Laminate resin layer 20 Planar element 20 'Planar element 21 Corrugated protrusion 21' Corrugated protrusion 22 Space 23 Surrounding passage 24 Laminate resin layer 25 Surface flow 30 Fluid regulation transport means 31 Heat storage material 32 Water tank 33 Water tank 40 Heat medium supply pipe 41 Recovery rod 42 Fluid regulation transport means 43 Suspension support

Claims (2)

基材上に並列に設けたうね状突起を備え、これらうね状突起の間の空間が流体の移動経路を形成する一方の側の面状要素と、この面状要素に相対して配置される、前記流体の移動経路を覆うカバー部材と、隣接するうね状突起の間の経路空間に入り込む、面状要素の基材表面に対し相対的に位置変移可能にカバー部材の内側表面に装着された昇降突起とからなる流体規正搬送手段。  A corrugated protrusion provided in parallel on the substrate, and a space between the corrugated protrusions is disposed on one side of the surface element forming a fluid movement path, and is disposed relative to the planar element. The cover member covering the fluid movement path and the path space between the adjacent ridge-like projections, and the inner surface of the cover member is movable relative to the substrate surface of the planar element. Fluid regulation conveying means comprising a mounted lifting projection. 基材上に並列に設けた液体透過性のあるうね状突起とこれらうね状突起の間に形成された並列する空間を備えた対の面状要素を用い、それぞれの面状要素のうね状突起を相対する面状要素の空間の一部を占めるように重ね合わせ、内部に任意の断面の包囲通路を必要間隔毎に形成すると共に、それぞれの包囲通路がうね状突起を介した液体の相互導通関係にある流体規正搬送手段。  Using a pair of planar elements each having a liquid-permeable corrugated protrusion provided in parallel on a substrate and a parallel space formed between the corrugated protrusions, the corrugations of each planar element are used. The ridges are overlapped so as to occupy a part of the space of the opposing planar elements, and the surrounding passages of arbitrary cross sections are formed at the required intervals, and each surrounding passage passes through the ridges. Fluid regulation conveying means in a liquid mutual conduction relationship.
JP05243296A 1996-02-14 1996-02-14 Fluid regulation conveying means Expired - Fee Related JP3711463B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP05243296A JP3711463B2 (en) 1996-02-14 1996-02-14 Fluid regulation conveying means
US08/799,843 US5954129A (en) 1996-02-14 1997-02-13 Flow control unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05243296A JP3711463B2 (en) 1996-02-14 1996-02-14 Fluid regulation conveying means

Publications (2)

Publication Number Publication Date
JPH09222289A JPH09222289A (en) 1997-08-26
JP3711463B2 true JP3711463B2 (en) 2005-11-02

Family

ID=12914604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05243296A Expired - Fee Related JP3711463B2 (en) 1996-02-14 1996-02-14 Fluid regulation conveying means

Country Status (1)

Country Link
JP (1) JP3711463B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0316864D0 (en) * 2003-07-18 2003-08-20 Linertech Ltd Improvements in and relating to container liners

Also Published As

Publication number Publication date
JPH09222289A (en) 1997-08-26

Similar Documents

Publication Publication Date Title
CA2033691C (en) Heat exchanger and use thereof
JP3665975B2 (en) Fluid regulation conveying means
JP2007333296A (en) Heat storage system
KR20140043073A (en) Lawn grid
EP1049901B1 (en) Method for installing an energy conversion apparatus in a paving
JP3711463B2 (en) Fluid regulation conveying means
JP3817642B2 (en) Flat piping for fluid regulation transfer
US5724479A (en) Fluid flow controlling member
JP3253231B2 (en) Lawn management method and management device
US5954129A (en) Flow control unit
US4315496A (en) Apparatus for storage and recovery of low temperature thermal energy
CN107574906B (en) Highway water saving system
JP3443751B2 (en) Roof snow removal method
JPH09229489A (en) Pressure fluid regulation and transport sheet
JPH04189906A (en) Snow melting device of solar heat storage type for road surface
JP3516176B2 (en) Snow removal equipment
RU2060316C1 (en) Device for protecting coating applied on construction
JP3870222B2 (en) Snow melting device and piping unit block therefor
JPS62258009A (en) Snow melting treatment apparatus
JP3080876B2 (en) Lawn management method and management device
JP3817641B2 (en) Liquid flow guide member
SU988959A1 (en) Retaining structure
JPH0135893Y2 (en)
WO2000029791A1 (en) Paving or revetment provided with a heat conveying element
CA1307933C (en) Apparatus for making and maintaining an ice surface

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050429

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050802

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110826

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110826

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130826

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees