JP3619831B2 - Laminated hose manufacturing method - Google Patents

Laminated hose manufacturing method Download PDF

Info

Publication number
JP3619831B2
JP3619831B2 JP2001193424A JP2001193424A JP3619831B2 JP 3619831 B2 JP3619831 B2 JP 3619831B2 JP 2001193424 A JP2001193424 A JP 2001193424A JP 2001193424 A JP2001193424 A JP 2001193424A JP 3619831 B2 JP3619831 B2 JP 3619831B2
Authority
JP
Japan
Prior art keywords
inner pipe
machine
hose
distance
extrusion molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001193424A
Other languages
Japanese (ja)
Other versions
JP2003014167A (en
Inventor
嘉昭 稲場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyox Co Ltd
Original Assignee
Toyox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyox Co Ltd filed Critical Toyox Co Ltd
Priority to JP2001193424A priority Critical patent/JP3619831B2/en
Publication of JP2003014167A publication Critical patent/JP2003014167A/en
Application granted granted Critical
Publication of JP3619831B2 publication Critical patent/JP3619831B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • B29C47/92

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、特にシャワーヘッドなどのような持ち運びできる吐水器具に接続される積層ホースの製造方法に関する。
詳しくは、内管を送り機で定速送りしながら、その外周面に沿って押出し成形機から外被材料を押出し供給することにより、外被層が積層成形される積層ホースの製造方法に関する。
【0002】
【従来の技術】
従来、この種の積層ホースとして、例えば実開昭56−35978号公報に開示される如く、ホースの接続端部を筒状のホース接続金具で挟み込むことにより、シャワーヘッドに接続されると共に、このホース接続金具から露出する接続端部の外周に沿ってコイル状スプリングを巻き付けることにより、使用時において剛体のホース接続金具から露出する接続端部に曲げ力が作用しても、スプリングが撓みながらホースと一体になって曲げ力に抵抗し、接続端部が鋭角に曲がらずに、流体のストップしたり流量の低下やホースの破損を防ぐものがある。
更に、実開平3−48194号公報に開示される如く、薄膜状の筒状ガイド部に螺旋状の補強骨が設けられた首折れ防止具でホースの外周を覆うものや、実用新案登録第2527836号公報に開示される如く、帯材を螺旋状に形成した首折れ防止具でホースの外周を覆うものがある。
また、この種の積層ホースの製造方法としては、例えば特公平6−9844号公報に開示される如く、押出しポンプの作動(回転)速度を一定時間毎に可変して、外被材料の吐出量を交互に増減することにより、外被層として軸方向へ厚肉部と薄肉部が交互に積層形成されるものがある。
【0003】
【発明が解決しようとする課題】
しかし乍ら、このような従来の積層ホースでは、接続端部の外周に沿って螺旋状や筒状の補強材で覆うため、デザイン的に違和感があって外観が悪いだけでなく、螺旋部材の隙間に指などを噛み込むなどの事故が発生し易くて危険であるという問題がある。
また、上述した積層ホースの製造方法では、押出しポンプの作動速度を可変して外被材料の吐出量を増減コントロールすることは原理的には可能であるが、現在の押出しポンプでその作動速度を変化させることは外被材料の吐出量にムラが発生する要因となるため、厚肉部及び薄肉部の肉厚寸法を均一にできず、製品の仕上がり精度が不良となり、安定した製品を提供できないという問題がある。
これを解決するために例えば特公平6−20786号公報に開示される如く、外被材料の押出し供給量を増減させずに、押出し成形機から押出し供給された外被材料の外周に金型を装着して、この金型内に射出成形機から外被材料を追加供給することにより、厚肉部が積層形成されるものがある。
しかし、この方法の場合には、外被材料を追加供給するために金型や射出成形機が別途必要になるため、その分だけ設備が複雑化して大型化し、その結果、設備費や製造コストが高価になるという問題がある。
そこで、送り機の作動速度を可変制御して、内管の送り速度を加減速させることにより、外被層の肉厚寸法を任意に変えることが考えられる。
しかし、この場合には、送り機より上流側の内管の送り速度まで影響するため、内管を押出し形成するインナーチューブ用の押出し成形機や、更に内管と外被層との間に補強線材を一定ピッチで巻き付けて埋設する場合には、インナーチューブ用の押出し成形機からの内管材料の吐出量にムラが発生する要因となったり、補強線材の巻き付けピッチを変化して、製品の仕上がり精度が不良となるという問題がある。
【0004】
本発明のうち請求項1記載の発明は、外被材料の吐出量や送り機の作動速度を変えたり別途追加積層せずに簡単な構造で外被層の肉厚寸法を任意に変えることを目的としたものである。
請求項記載の発明は、請求項に記載の発明の目的に加えて、円筒状厚肉部から離れるのに従って肉厚寸法が徐々に肉薄となる断面略台形状に突出する積層ホースを簡単に製造することを目的としたものである。
請求項記載の発明は、請求項またはに記載の発明の目的に加えて、迂回手段の構造を簡素化することを目的としたものである。
【0005】
【課題を解決するための手段】
前述した目的を達成するために、本発明のうち請求項1記載の発明は、送り機D及び押出し成形機Eの作動速度とは関連なく該送り機Dより下流側へ送られる内管H1の送り速度のみを部分的に可変すると共に、送り機Dから押出し成形機Eへ至る内管H1の送り路Wをその距離が伸縮変化するように迂回させる迂回手段1を設け、
上記内管H1送りの減速と迂回距離の伸長とを連動させ、内管H1の送りの加速と迂回距離の短縮とを連動させることを特徴とするものである。
請求項記載の発明は、請求項記載の発明の構成に、前記押出し成形機Eの下流側に配設された引取機Fの作動速度を加減制御し、その減速に連動して内管H1の迂回距離を伸長させ、また加速に連動して内管H1の迂回距離を短縮させる構成を加えたことを特徴とする。
請求項記載の発明は、請求項または記載の発明の構成に、前記迂回手段1が、内管H1と係合するテンションプーリー1a,1bを送り路Wの最短距離方向と交差する方向へ往復移動させる構成を加えたことを特徴とする。
【0006】
【作用】
請求項1の発明は、送り機D及び押出し成形機Eの作動速度が一定に維持された状態で、内管H1送りの減速と迂回距離の伸長とを連動させることにより、内管H1送りの減速に伴って発生した内管H1の弛みが吸収されると同時に、押出し成形機Eから定量供給した外被材料H3′の積層厚さが定速送り時に比べて徐々に厚くなり、この状態から逆に内管H1の送りの加速と迂回距離の短縮とを連動させることにより、押出し成形機Eから定量供給した外被材料H3′の積層厚さが徐々に薄くなるものである。
請求項の発明は、請求項記載の構成に対して、前記押出し成形機Eの下流側に配設された引取機Fの作動速度を加減制御し、その減速に連動して内管H1の迂回距離を伸長させ、また加速に連動して内管H1の迂回距離を短縮させる構成を追加したので、引取機Fを送り機Dと同じ高速状態で連続作動させることにより、薄肉部H31が連続して積層され、この状態から引取機Fを減速させることにより、引取機Fの減速途中でテーパー状厚肉部H33が積層されると共に、引取機Fが低速状態に連続作動させることにより、円筒状厚肉部H32が連続して積層され、この状態から引取機Fを加速させることにより、上記テーパー状厚肉部H33とは逆向きのテーパー状厚肉部H34が逆向きのテーパー状厚肉部H34が積層される。
請求項の発明は、請求項または記載の構成に対して、前記迂回手段1が、内管H1と係合するテンションプーリー1a,1bを送り路Wの最短距離方向と交差する方向へ往復移動させる構成を追加したので、テンションプーリー1a,1bで内管H1を略V字形に屈曲することにより、内管H1の迂回距離が伸縮変化する。
【0007】
【発明の実施の形態】
以下、本発明の実施例を図面に基づいて説明する。
この実施例は、積層ホースHの製造装置が、図1〜図3に示す如くインナーチューブ用の押出し成形機Aの下流側に、引取機Bと、スパイラルマシンCと、送り機Dと、アウターチューブ用の押出し成形機とE、引取機Fとを順次配設することにより、内管H1の外周面に補強線材H2を巻き付けた後に、薄肉部H31と厚肉部H32とが軸方向へ交互に配置される外被層H3を積層した積層ホースHが形成される場合を示すものである。
【0008】
なお、図面中の符号Gは例えば水槽などの冷却装置であり、インナーチューブ用の押出し成形機Aから連続して押出し成形された内管H1やアウターチューブ用の押出し成形機Eから連続して押出し供給された外被材料H3′を冷却している。
【0009】
更に本実施例の場合には、これらインナーチューブ用の押出し成形機A、引取機B、スパイラルマシンC、送り機D、アウターチューブ用の押出し成形機Eを夫々定速作動させ、それ以外の引取機Fの作動速度のみを後述する如く加減制御して、外被層H3を薄肉部H31から厚肉部H32へ形状変化させるか又はその逆に形状変化させている。
【0010】
即ち、インナーチューブ用の押出し成形機Aから押出し成形された内管H1を、引取機Bにより定速引き出しさせ、該内管H1の外周面に沿ってスパイラルマシンCにより単数又は複数の補強線材H2を一定ピッチで螺旋状に巻き付け、これら内管H1及び補強線材H2を送り機Dにより、アウターチューブ用の押出し成形機Eへ向けて定速送りしている。
【0011】
このアウターチューブ用の押出し成形機Eは、送り機Dで定速送りされる内管H1の外周に沿ってダイスE1を配設し、このダイスE1から溶融状態の外被材料H3′を内管H1の外周へ向け環状に溶融押出しする従来周知構造のものであり、本実施例の場合には外被材料H3′の吐出量にムラが発生しないように、その作動(回転)速度を一定に保持して定量供給させている。
【0012】
更に、これら送り機Dから押出し成形機EのダイスE1へ至る内管H1の送り路には、その距離を伸縮変化するように迂回させる迂回手段1が設けられ、内管H1の迂回距離を伸縮変化させることにより、前記引取機Fの加減速に伴って発生した内管H1の弛みが吸収される。
【0013】
この迂回手段1は、内管H1と係合するテンションプーリーを送り路Wの最短距離方向と交差する方向へ往復移動させ、このテンションプーリーで内管H1を略V字形に屈曲することにより、内管H1の迂回距離が伸縮変化するように構成され、該テンションプーリーは内管H1の送り方向に沿って複数か又は単数配置される。
【0014】
本実施例の場合には、迂回手段1として内管H1の送り方向へ第1プーリー1a及び第2プーリー1bを2個配置し、それらを例えばエアーシリンダーなどのアキュームで後述する如く前記引取機Fの作動速度と連動するように別々に作動制御させている。
【0015】
ここで、前記引取機Fの作動制御について詳しく説明すれば、外被層H3として図1に示す如く薄肉部H31を連続して積層成形する時には、前記引取機Bや送り機Dなどと同じ高速(例えば10m/min)で連続作動させ、図2に示す如く薄肉部H31から厚肉部H32へ形状変化させる時には、低速(例えば8m/min)へ減速し、また図3に示す如く厚肉部H32から薄肉部H31へ戻す時には、低速から元の高速へ加速させる。
【0016】
更に上記迂回手段1の作動制御について詳しく説明すれば、外被層H3として図1に示す如く薄肉部H31を連続して積層成形する時には、第1プーリー1aを送り路Wの最短距離から離れた位置(図示例では上方)に保持して、内管H1の迂回距離が一定に保持される。
この薄肉部H31から図2に示す如く厚肉部H32へ形状変化させる時には、引取機Fの減速と同時に第1プーリー1aを逆の接近方向(図示例では下方)へ移動させ、これに伴って発生した内管H1の弛みが吸収されるように第2プーリー1bを送り路Wの最短距離から離れる方向(図示例では上方)へ徐々に移動させて、内管H1の迂回距離が伸長される。
この厚肉部H32から図3に示す如く薄肉部H31へ戻す時には、引取機Fの加速と同時に第2プーリー1bを逆の接近方向(図示例では下方)へ移動させ、これに伴って発生した内管H1の弛みが吸収されるように第1プーリー1aを離れる方向(図示例では上方)へ徐々に移動させて内管H1の迂回距離が短縮され、最終的には上述した薄肉部H31の積層時に戻す。
【0017】
次に、斯かる積層ホースHの製造方法を工程順に従って説明する。
先ず、外被層H3として積層ホースHの軸方向へ大部分を占める薄肉部H31の積層時には、図1に示す如く、引取機Fを引取機Bや送り機Dなどと同じ高速(例えば10m/min)状態で連続作動させると共に、迂回手段1を構成する第1プーリー1a及び第2プーリー1bは移動させず、そのままの状態で保持する。
【0018】
それにより、押出し成形機EのダイスE1を通過する内管H1の送り速度が定速状態に保持されるため、内管H1の外周面には補強線材H2を挟んで、該ダイスE1から定量供給された外被材料H3′が同一な厚さ寸法で積層され、薄肉部H31が円筒状に連続形成される。
【0019】
一方、この積層ホースHを例えばシャワーホースとして使用する場合には約1.5m毎に、また巻き取りリールに巻き付け散水ホースとして使用する場合には約20〜30m 毎に、軸方向へ適宜長さ寸法の厚肉部H32が部分的に成形される。
【0020】
この厚肉部H32の積層時には、引取機Fを上述した高速状態から低速(例えば8m/min)状態へ減速し、これと同時に図2に示す如く、第1プーリー1aを接近方向(図示例では下方)へ移動させ、第2プーリー1bを離れる方向(図示例では上方)へ徐々に移動させて、内管H1の迂回距離が伸長される。
【0021】
それにより、引取機Fの減速に伴って発生した内管H1の弛みが吸収され、所定の張力で弛むことなく張架される。
【0022】
更に、引取機Fが低速状態まで到達する減速途中では、これに伴って押出し成形機EのダイスE1を通過する内管H1の送り速度も徐々に減速され、ダイスE1から定量供給された外被材料H3′の積層厚さが定速送り時に比べ徐々に肉厚となり、その結果、内管H1の外周面には補強線材H2を挟んでテーパー状厚肉部H33が形成される。
【0023】
そして、引取機Fが低速状態に到達した後は、引取機Fより送り機Dが速いために発生する内管H1の弛みが、第2プーリー1bを離れる方向(図示例では上方)へ移動し続けて、その後も内管H1の迂回距離が伸長されることで吸収される。
【0024】
それにより、押出し成形機EのダイスE1を通過する内管H1の送り速度が低速状態に保持されるため、内管H1の外周面には補強線材H2を挟んで、該ダイスE1から定量供給された外被材料H3′が同一な厚さ寸法で積層され、厚肉部H32が円筒状に連続形成される。
【0025】
その後、この厚肉部H32から薄肉部H31へ戻すには、引取機Fを上述した低速状態から元の高速状態へ加速し、これと同時に図3に示す如く、第2プーリー1bを逆の接近方向(図示例では下方)へ移動させ、第1プーリー1aを離れる方向(図示例では上方)へ徐々に移動させて、内管H1の迂回距離が短縮される。
【0026】
それにより、引取機Fの加速に伴って発生した内管H1の弛みが吸収され、引取機Fが高速状態まで到達する加速途中では、これに伴って押出し成形機EのダイスE1を通過する内管H1の送り速度も徐々に加速され、ダイスE1から定量供給された外被材料H3′の積層厚さが定速送り時に比べて徐々に肉薄となり、その結果、内管H1の外周面には補強線材H2を挟んで上記テーパー状厚肉部H33とは逆向きのテーパー状厚肉部H34が形成される。
【0027】
そして、引取機Fが元の高速状態に到達した以降は、図1に示す状態に戻って薄肉部H31が連続形成される。
尚、この際、必要に応じて引取機Fを高速(例えば10m/min)より更に速くすれば、薄肉部H31をその肉厚寸法より更に薄くしてホース全体の軽量化を図ることも可能である。
【0028】
上述した製造方法によって得られる積層ホースHは、図4に示す如く、その軸方向へ適宜間隔毎に配置された薄肉部H31…と、円筒状厚肉部H32を中心として軸方向へテーパー状厚肉部H33と逆向きのテーパー状厚肉部H34が連続する断面略台形状に突出する部分とを交互に配置した外被層H3が積層される。
【0029】
その後工程で、これら円筒状厚肉部H32…の軸方向中央位置を、図4の一点鎖線に示す如く切断すれば、その切断された両側の接続端部H4に、適宜長さの円筒状厚肉部H32,H32が夫々適宜長さ分だけ配置されると共に、これら円筒状厚肉部H32,H32から離れるのに従って肉厚寸法が徐々に肉薄となるテーパー状厚肉部H33,H34が連続形成された複数本の積層ホースH′…に分割される。
【0030】
このようにして得られた積層ホースH′は、その両側の接続端部H4をホース接続金具Iに夫々接続して、例えばシャワーヘッドなどの吐水器具と、給水栓や湯水混合栓など給水金具とに夫々連結することにより使用される。
その具体例として、該積層ホースH′の接続端部H4とシャワーヘッドJとがホース接続金具Iで接続される場合を図5(a)(b)に示す。
【0031】
このホース接続金具Iは、上記接続端部H4の内周面に沿って差し込まれる竹の子状のニップルI1と、このニップルI1を嵌入した接続端部H4の外周面に沿って嵌挿されるカシメスリーブI2とを備え、接続端部H4を拡径しながらニップルI1が嵌入された後に、その外側からカシメスリーブI2で締め付けて挟み込むことによりこれらを一体化し、更に該カシメスリーブI2の外周面に対し回転自在に嵌合するナットI3をシャワーヘッドJの基端J1にねじ込んで、該ナットI3と上記ニップルI1の露出外周面とをパッキンI4で密閉した従来周知な構造である。
【0032】
ここで、上記積層ホースH′の接続端部H4において、ホース接続金具IのニップルI1及びカシメスリーブI2と対向する部分を、円筒状厚肉部H32で構成すると共に、これらニップルI1,カシメスリーブI2及びナットI3から露出する部分を、上記円筒状厚肉部H32から離れるのに従って徐々に肉薄となるテーパー状厚肉部H33,H34で構成するように設計する。
【0033】
それにより、図5(a)に示す如く上記積層ホースH′の接続端部H4を、ホース接続金具IのニップルI1とカシメスリーブI2とで挟み込んでも、この部分は円筒状厚肉部H32で肉厚なため、必要な深さ位置まで圧縮変形可能となってホースの抜けを確実に防止でき、しかも時間経過に伴って接続端部H4の肉厚寸法が多少痩せた場合も同様にホースの抜けを防止できる。
【0034】
またシャワーヘッドJの使用に伴って剛体であるホース接続金具IのナットI3から露出する積層ホースH′の接続端部H4に曲げ力が集中的に作用しても、この部分はテーパー状厚肉部H33,H34で曲げ強度が高いため、折れ曲がり難い。
その結果、簡単な構造で接続端部H4の首折れを確実に防止できる。
【0035】
尚、前示実施例では、前記内管H1と外被層H3との間にスパイラルマシンCで巻き付けられた補強線材H2を埋設した積層ホースHが形成される場合を示したが、これに限定されず、補強線材H2を埋設しないものや図示した補強線材H2以外の形状の補強材料を巻き付けて埋設したものであっても良い。
【0036】
更に、迂回手段1として内管H1の送り方向へ第1プーリー1a及び第2プーリー1bを2個配置したが、これに限定されず、テンションプーリーを1個又は3個以上配置しても良い。
また、このテンションプーリーを例えばエアーシリンダーなどのアキュームで駆動させずに、内管H1の張力変化に基づいて移動するよう弾性的に支持して、内管H1の弛み分だけ自動的に移動するようにしても良い。
【0037】
また更に、引取機Fの加減速により押出し成形機Eへの内管H1の送り速度のみを可変したが、これに限定されず、引取機Fを送り機Dと同速で定速作動させながら、内管H1の迂回距離を伸縮駆動させると共に、押出し成形機Eから引取機Fへ至る送り路をその距離が伸縮変化するように迂回させることによって、内管H1の送り速度が可変するように構成しても良い。
詳しく説明すれば、薄肉部H31の積層状態から、内管H1の迂回距離を伸長駆動させて送り機Dによる内管H1の定速送りを一部吸収することにより、押出し成形機Eへ内管H1の送り速度が徐々に遅くなってテーパー状厚肉部H33が積層され、この状態から逆に内管H1の迂回距離を短縮駆動させて内管H1の送り速度を徐々に速くすることにより、逆向きのテーパー状厚肉部H34が積層されて、薄肉部H31の積層状態に戻り、その結果として断面略山形状に突出する積層ホースが製造される。
【0038】
【発明の効果】
以上説明したように、本発明のうち請求項1記載の発明は、送り機D及び押出し成形機Eの作動速度が一定に維持された状態で、内管H1送りの減速と迂回距離の伸長とを連動させることにより、内管H1送りの減速に伴って発生した内管H1の弛みが吸収されると同時に、押出し成形機Eから定量供給した外被材料H3′の積層厚さが定速送り時に比べて徐々に厚くなり、この状態から逆に内管H1の送りの加速と迂回距離の短縮とを連動させることにより、押出し成形機Eから定量供給した外被材料H3′の積層厚さが徐々に薄くなるので、外被材料の吐出量や送り機の作動速度を変えたり別途追加積層せずに簡単な構造で外被層の肉厚寸法を任意に変えることができる。
従って、外被材料の押出し供給量を増減して厚肉部と薄肉部が交互に積層形成される従来のものに比べ、簡単な制御によって厚肉部及び薄肉部の肉厚寸法を均一化でき、製品の仕上がり精度が向上して安定した製品を提供できると共に、外被材料を追加供給するために金型や射出成形機が別途必要になる従来のものに比べ、設備が簡素化して小型化でき、その結果、設備費や製造コストを低減できる。
また送り機は定速送りで良いから、内管を押出し形成するインナーチューブ用の押出し成形機や、更に内管と外被層との間に補強線材を一定ピッチで巻き付けて埋設する場合でも、インナーチューブ用の押出し成形機からの内管材料の吐出量にムラが発生したり、補強線材の巻き付けピッチが変化せず、製品の仕上がり精度が向上して安定した製品を提供できる。
【0040】
請求項の発明は、請求項の発明の効果に加えて、引取機Fを送り機Dと同じ高速状態で連続作動させることにより、薄肉部H31が連続して積層され、この状態から引取機Fを減速させることにより、引取機Fの減速途中でテーパー状厚肉部H33が積層されると共に、引取機Fが低速状態に連続作動させることにより、円筒状厚肉部H32が連続して積層され、この状態から引取機Fを加速させることにより、上記テーパー状厚肉部H33とは逆向きのテーパー状厚肉部H34が逆向きのテーパー状厚肉部H34が積層されるので、円筒状厚肉部から離れるのに従って肉厚寸法が徐々に肉薄となる断面略台形状に突出する積層ホースを簡単に製造できる。
従って、一定な肉厚の積層ホースを定速で製造する既設のホース製造ラインの引取機Fを変速制御すると共にライン途中に迂回手段を追加配備してするだけで、既設のホース製造ラインがそのまま使えるから、改造が容易であり、改造期間や改造費用を抑えられて製造コストを低減できる。
【0041】
請求項の発明は、請求項またはの発明の効果に加えて、テンションプーリー1a,1bで内管H1を略V字形に屈曲することにより、内管H1の迂回距離が伸縮変化するので、迂回手段の構造を簡素化できる。
【図面の簡単な説明】
【図1】本発明の一実施例を示す積層ホースの製造装置の説明図で薄肉部の形成時を示している。
【図2】テーパー状厚肉部と円筒状厚肉部の形成開始時を示す説明図である。
【図3】逆向きのテーパー状厚肉部の形成終了時を示す説明図である。
【図4】製造された積層ホースの一部切欠正面図である。
【図5】(a)は、本発明の一実施例を示す積層ホースの接合状態を示す部分的な縦断正面図であり、(b)は、その分解状態を示す部分的な縦断正面図である。
【符号の説明】
D 送り機 E 押出し成形機
F 引取機 H1 内管
H3 外被層 H3′ 外被材料
H31 薄肉部 H32 円筒状厚肉部
H33,H34 テーパー状厚肉部 H4 接続端部
W 送り路 1 迂回手段
1a,1b テンションプーリー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a multilayer hose that is particularly connected to a water discharge device which can carry, such as a shower head.
More specifically , the present invention relates to a method for manufacturing a laminated hose in which an outer cover layer is formed by laminating by feeding an outer cover material from an extruder along an outer peripheral surface of the inner pipe while feeding the inner tube at a constant speed.
[0002]
[Prior art]
Conventionally, as a laminated hose of this type, as disclosed in, for example, Japanese Utility Model Publication No. 56-35978, the hose connection end is sandwiched between cylindrical hose connection fittings, and connected to the shower head. By winding a coiled spring along the outer periphery of the connection end exposed from the hose connection fitting, even if bending force acts on the connection end exposed from the rigid hose connection fitting in use, the hose is still bent , Which resists bending force and prevents the connection end from bending at an acute angle, preventing fluid from stopping, reducing the flow rate, and damaging the hose.
Furthermore, as disclosed in Japanese Utility Model Publication No. Hei 3-48194, the thin tube-shaped cylindrical guide portion covers the outer periphery of the hose with a neck breakage prevention device provided with a spiral reinforcing bone, or utility model registration No. 2527836. As disclosed in Japanese Laid-Open Patent Publication No. Hokukai, there are some which cover the outer periphery of the hose with a neck breakage prevention device in which a strip is formed in a spiral shape.
In addition, as a method for manufacturing this type of laminated hose, for example, as disclosed in Japanese Patent Publication No. 6-9844, the operation (rotation) speed of the extrusion pump is changed at regular intervals, and the discharge amount of the jacket material is determined. By alternately increasing / decreasing the thickness, there are cases in which thick portions and thin portions are alternately laminated in the axial direction as the outer layer.
[0003]
[Problems to be solved by the invention]
However, in such a conventional laminated hose, since it is covered with a spiral or cylindrical reinforcing material along the outer periphery of the connection end, not only the design is uncomfortable and the appearance is bad, but also the spiral member There is a problem that accidents such as biting a finger into the gap are likely to occur and are dangerous.
In addition, in the above-described manufacturing method of the laminated hose, it is possible in principle to control the discharge rate of the jacket material by changing the operating speed of the extrusion pump. Changing it will cause unevenness in the discharge rate of the jacket material, so the thickness dimensions of the thick and thin parts cannot be made uniform, resulting in poor product finish accuracy and providing a stable product. There is a problem.
In order to solve this problem, as disclosed in, for example, Japanese Patent Publication No. 6-20786, a mold is placed on the outer periphery of the jacket material extruded and supplied from the extruder without increasing or decreasing the extrusion supply amount of the jacket material. In some cases, a thick portion is laminated and formed by mounting and additionally supplying a jacket material from an injection molding machine into the mold.
However, in this method, a mold and an injection molding machine are separately required to supply the jacket material, so that the equipment becomes complicated and large, and as a result, equipment costs and manufacturing costs are increased. There is a problem that becomes expensive.
Therefore, it is conceivable to arbitrarily change the wall thickness of the jacket layer by variably controlling the operating speed of the feeder and accelerating / decelerating the feeding speed of the inner tube.
However, in this case, since it affects the feeding speed of the inner pipe upstream from the feeder, the inner tube extrusion molding machine for extruding the inner pipe, and further reinforcing between the inner pipe and the jacket layer. When the wire is wound at a constant pitch and embedded, it may cause unevenness in the discharge rate of the inner tube material from the extruder for the inner tube, or the winding pitch of the reinforcing wire may be changed to There is a problem that the finishing accuracy is poor.
[0004]
The invention according to claim 1 of the present invention is that the thickness of the jacket layer can be arbitrarily changed with a simple structure without changing the discharge amount of the jacket material and the operating speed of the feeder or without additional lamination. It is intended.
The invention of claim 2, wherein, in addition to the object of the invention described in claim 1, a laminated hose wall thickness projects into a substantially trapezoidal cross section gradually becomes thin in accordance with the distance from the cylindrical thick part easily It is intended to be manufactured.
The invention described in claim 3 is intended to simplify the structure of the bypass means in addition to the object of the invention described in claim 1 or 2 .
[0005]
[Means for Solving the Problems]
To achieve the above object, According to one aspect of the present invention, in the operating speed of the feed Ri machine D and extruder E is sent to the downstream side of the associated without said transmission Ri machine D tube H1 Only the feed speed of the inner pipe H1 from the feeder D to the extrusion molding machine E is partially varied, and a bypass means 1 is provided for bypassing the feed path W of the inner pipe H1 so that the distance changes.
The deceleration of the inner pipe H1 feed and the extension of the detour distance are linked, and the acceleration of the feed of the inner pipe H1 and the shortening of the detour distance are linked.
According to a second aspect of the present invention, in the configuration of the first aspect of the invention, the operating speed of the take-up machine F disposed on the downstream side of the extrusion molding machine E is controlled, and the inner pipe is interlocked with the deceleration. The present invention is characterized in that the detour distance of H1 is extended and the detour distance of the inner pipe H1 is shortened in conjunction with acceleration.
According to a third aspect of the present invention, in the configuration of the first or second aspect of the invention, the detour means 1 causes the tension pulleys 1a and 1b engaged with the inner pipe H1 to cross the shortest distance direction of the feed path W. It is characterized in that a configuration for reciprocating is added.
[0006]
[Action]
The invention according to claim 1, in a state where the operating speed of the feed Ri machine D and the extruder E is kept constant, by interlocking with the deceleration of the inner tube H1 feed and elongation of detour distance, the inner tube H1 feed At this time, the slack of the inner pipe H1 generated as a result of the deceleration is absorbed, and at the same time, the laminated thickness of the jacket material H3 ′ supplied from the extrusion molding machine E gradually becomes thicker than at the constant speed feeding. On the other hand, by accelerating the feeding of the inner pipe H1 and shortening the detour distance, the laminated thickness of the jacket material H3 ′ supplied from the extrusion molding machine E is gradually reduced.
The invention of claim 2 controls the operating speed of the take-up machine F disposed downstream of the extrusion molding machine E with respect to the structure of claim 1 and controls the inner pipe H1 in conjunction with the deceleration. Since the detouring distance of the inner pipe H1 is shortened in conjunction with acceleration, the thin section H31 is moved by continuously operating the take-up machine F at the same high speed as that of the feeder D. By laminating continuously, by decelerating the take-up machine F from this state, the tapered thick part H33 is laminated in the middle of decelerating the take-up machine F, and the take-up machine F is continuously operated in a low speed state, Cylindrical thick part H32 is continuously laminated, and by accelerating take-up machine F from this state, tapered thick part H34 opposite to the above-mentioned tapered thick part H33 is oppositely tapered. The meat part H34 is laminated.
According to a third aspect of the present invention, in the configuration according to the first or second aspect , the bypass means 1 causes the tension pulleys 1a and 1b engaged with the inner pipe H1 to cross the shortest distance direction of the feed path W. Since a configuration for reciprocal movement is added, the detour distance of the inner pipe H1 is expanded and contracted by bending the inner pipe H1 into a substantially V shape with the tension pulleys 1a and 1b.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
In this embodiment, as shown in FIGS. 1 to 3, the manufacturing apparatus for the laminated hose H has a take-up machine B, a spiral machine C, a feeder D, and an outer pipe on the downstream side of the extrusion molding machine A for the inner tube. By sequentially arranging the tube extrusion molding machine, E, and take-up machine F, the reinforcing wire H2 is wound around the outer peripheral surface of the inner pipe H1, and then the thin portion H31 and the thick portion H32 alternate in the axial direction. The case where the lamination | stacking hose H which laminated | stacked the jacket layer H3 arrange | positioned in FIG.
[0008]
In addition, the code | symbol G in drawing is cooling apparatuses, such as a water tank, for example, it extrudes continuously from the inner tube H1 extruded from the extrusion molding machine A for inner tubes, and the extrusion molding machine E for outer tubes. The supplied jacket material H3 'is cooled.
[0009]
Further, in the case of the present embodiment, these inner tube extrusion molding machine A, take-up machine B, spiral machine C, feeder D, and outer tube extrusion molding machine E are operated at a constant speed, respectively. Only the operating speed of the machine F is controlled to be adjusted as will be described later, and the shape of the covering layer H3 is changed from the thin portion H31 to the thick portion H32, or vice versa.
[0010]
That is, the inner tube H1 extruded from the inner tube extrusion molding machine A is drawn at a constant speed by the take-up machine B, and one or a plurality of reinforcing wires H2 are drawn by the spiral machine C along the outer peripheral surface of the inner pipe H1. Are spirally wound at a constant pitch, and the inner pipe H1 and the reinforcing wire H2 are fed at a constant speed by the feeder D toward the extrusion molding machine E for the outer tube.
[0011]
In this outer tube extrusion molding machine E, a die E1 is disposed along the outer periphery of the inner tube H1 fed at a constant speed by the feeder D, and the molten jacket material H3 'is fed from the die E1 to the inner tube. In the present embodiment, the operation (rotation) speed is kept constant so that there is no unevenness in the discharge amount of the jacket material H3 ′. It is held and supplied quantitatively.
[0012]
Further, the feed path of the inner pipe H1 from the feeder D to the die E1 of the extrusion molding machine E is provided with a detour means 1 for detouring the distance so as to change the expansion and contraction, and the detour distance of the inner pipe H1 is expanded and contracted. By changing, the slackness of the inner pipe H1 generated along with the acceleration / deceleration of the take-up machine F is absorbed.
[0013]
The detour means 1 reciprocates a tension pulley that engages with the inner pipe H1 in a direction intersecting the shortest distance direction of the feed path W, and the inner pipe H1 is bent into a substantially V shape by the tension pulley. The detour distance of the pipe H1 is configured to expand and contract, and a plurality or one of the tension pulleys are arranged along the feeding direction of the inner pipe H1.
[0014]
In the case of the present embodiment, as the bypass means 1, two first pulleys 1a and second pulleys 1b are arranged in the feed direction of the inner pipe H1, and they are arranged in an accumulator such as an air cylinder as described later. The operation is controlled separately so as to be linked with the operation speed of the.
[0015]
Here, the operation control of the take-up machine F will be described in detail. When the thin-walled portion H31 is continuously laminated and formed as the coat layer H3 as shown in FIG. 1, the same high speed as the take-up machine B and the feed machine D is used. When continuously operating at (for example, 10 m / min) and changing the shape from the thin portion H31 to the thick portion H32 as shown in FIG. 2, the speed is reduced to a low speed (eg, 8 m / min), and as shown in FIG. When returning from H32 to the thin portion H31, acceleration is performed from the low speed to the original high speed.
[0016]
Further, the operation control of the bypass means 1 will be described in detail. When the thin wall portion H31 is continuously laminated as the outer cover layer H3 as shown in FIG. 1, the first pulley 1a is separated from the shortest distance of the feed path W. The detour distance of the inner pipe H1 is kept constant by holding the position (upward in the illustrated example).
When the shape is changed from the thin wall portion H31 to the thick wall portion H32 as shown in FIG. 2, the first pulley 1a is moved in the reverse approaching direction (downward in the illustrated example) simultaneously with the deceleration of the take-up machine F. The second pulley 1b is gradually moved in the direction away from the shortest distance of the feed path W (upward in the illustrated example) so that the generated slack in the inner pipe H1 is absorbed, and the detour distance of the inner pipe H1 is extended. .
When returning from the thick part H32 to the thin part H31 as shown in FIG. 3, the second pulley 1b is moved in the reverse approaching direction (downward in the illustrated example) simultaneously with the acceleration of the take-up machine F, and is generated accordingly. The detour distance of the inner pipe H1 is shortened by gradually moving the first pulley 1a away from the first pulley 1a so that the slack of the inner pipe H1 is absorbed. Return when laminating.
[0017]
Next, the manufacturing method of such laminated hose H is demonstrated according to process order.
First, at the time of laminating the thin portion H31 occupying most of the laminated hose H in the axial direction as the covering layer H3, as shown in FIG. 1, the take-up machine F is operated at the same high speed (eg 10 m / min), the first pulley 1a and the second pulley 1b constituting the detour means 1 are not moved and are held as they are.
[0018]
As a result, the feed speed of the inner pipe H1 passing through the die E1 of the extrusion molding machine E is maintained at a constant speed. Therefore, the reinforcing wire H2 is sandwiched between the outer peripheral surface of the inner pipe H1 and a fixed amount is supplied from the die E1. The coated outer cover materials H3 'are laminated with the same thickness dimension, and the thin portion H31 is continuously formed in a cylindrical shape.
[0019]
On the other hand, when this laminated hose H is used as, for example, a shower hose, the length is appropriately increased in the axial direction about every 1.5 m, and when used as a sprinkling hose wound around a take-up reel, about 20 to 30 m. A thick portion H32 having a dimension is partially formed.
[0020]
When the thick portion H32 is stacked, the take-up machine F is decelerated from the above-mentioned high speed state to a low speed (for example, 8 m / min) state, and at the same time, as shown in FIG. The second pipe 1b is gradually moved away (upward in the illustrated example) to extend the detour distance of the inner pipe H1.
[0021]
As a result, the slack in the inner pipe H1 generated with the deceleration of the take-up machine F is absorbed and stretched without slacking with a predetermined tension.
[0022]
Further, during the deceleration of the take-up machine F reaching the low speed state, the feeding speed of the inner pipe H1 passing through the die E1 of the extrusion molding machine E is gradually reduced along with this, and the outer cover supplied quantitatively from the die E1. The laminated thickness of the material H3 ′ gradually becomes thicker than that at the time of constant speed feeding. As a result, a tapered thick portion H33 is formed on the outer peripheral surface of the inner tube H1 with the reinforcing wire H2 interposed therebetween.
[0023]
After the take-up machine F reaches the low speed state, the slack of the inner pipe H1 generated because the feeder D is faster than the take-up machine F moves in the direction away from the second pulley 1b (upward in the illustrated example). Subsequently, the detour distance of the inner pipe H1 is increased and then absorbed.
[0024]
As a result, the feed speed of the inner pipe H1 passing through the die E1 of the extrusion molding machine E is maintained at a low speed, so that a constant amount is supplied from the die E1 with the reinforcing wire H2 sandwiched between the outer peripheral surface of the inner pipe H1. The covering material H3 'is laminated with the same thickness, and the thick portion H32 is continuously formed in a cylindrical shape.
[0025]
Thereafter, in order to return from the thick part H32 to the thin part H31, the take-up machine F is accelerated from the low speed state described above to the original high speed state, and at the same time, as shown in FIG. By moving in the direction (downward in the illustrated example) and gradually moving in the direction of leaving the first pulley 1a (upward in the illustrated example), the detour distance of the inner pipe H1 is shortened.
[0026]
As a result, the slack of the inner pipe H1 generated along with the acceleration of the take-up machine F is absorbed, and in the middle of the acceleration when the take-up machine F reaches the high speed state, the inside passes through the die E1 of the extrusion molding machine E accordingly. The feeding speed of the pipe H1 is also gradually accelerated, and the thickness of the outer cover material H3 ′ supplied from the die E1 is gradually thinner than that at the time of constant speed feeding. A tapered thick portion H34 opposite to the tapered thick portion H33 is formed across the reinforcing wire H2.
[0027]
Then, after the take-up machine F reaches the original high speed state, it returns to the state shown in FIG. 1, and the thin portion H31 is continuously formed.
At this time, if the take-up machine F is made faster than a high speed (for example, 10 m / min) as necessary, the thin wall portion H31 can be made thinner than its wall thickness to reduce the weight of the entire hose. is there.
[0028]
As shown in FIG. 4, the laminated hose H obtained by the manufacturing method described above is tapered in the axial direction with the thin portions H31... Arranged at appropriate intervals in the axial direction and the cylindrical thick portion H32 as the center. A covering layer H3 is alternately stacked in which the wall portions H33 and the portions protruding in a substantially trapezoidal cross section in which the tapered thick portions H34 in the opposite direction are continuous are alternately arranged.
[0029]
If the axial center positions of these cylindrical thick portions H32... Are cut as shown by the one-dot chain line in FIG. 4 in the subsequent process, the cylindrical thicknesses having appropriate lengths are connected to the cut connection end portions H4 on both sides. The thick portions H32 and H32 are arranged by an appropriate length, and tapered thick portions H33 and H34 are continuously formed so that the thickness dimension gradually decreases as they move away from the cylindrical thick portions H32 and H32. Is divided into a plurality of laminated hoses H ′.
[0030]
The laminated hose H ′ thus obtained is connected to the hose connection fittings I at the connection ends H4 on both sides thereof, for example, a water discharge device such as a shower head, and a water supply fitting such as a water supply tap and a hot water mixing tap. To be connected to each other.
As a specific example, FIGS. 5A and 5B show a case where the connection end H4 of the laminated hose H ′ and the shower head J are connected by a hose connection fitting I. FIG.
[0031]
This hose connection fitting I includes a bamboo shoot-like nipple I1 inserted along the inner peripheral surface of the connection end H4, and a caulking sleeve I2 inserted along the outer peripheral surface of the connection end H4 into which the nipple I1 is inserted. After the nipple I1 is inserted while expanding the diameter of the connection end H4, they are integrated by tightening with a caulking sleeve I2 from the outside, and further rotatable with respect to the outer peripheral surface of the caulking sleeve I2. The nut I3 fitted to the screw is screwed into the base end J1 of the shower head J, and the nut I3 and the exposed outer peripheral surface of the nipple I1 are sealed with a packing I4.
[0032]
Here, in the connection end portion H4 of the laminated hose H ′, a portion facing the nipple I1 and the caulking sleeve I2 of the hose connection fitting I is constituted by a cylindrical thick portion H32, and these nipple I1 and caulking sleeve I2 are formed. The portion exposed from the nut I3 is designed to be configured with tapered thick portions H33 and H34 that gradually become thinner as the distance from the cylindrical thick portion H32 increases.
[0033]
As a result, even if the connection end H4 of the laminated hose H 'is sandwiched between the nipple I1 and the caulking sleeve I2 of the hose connection fitting I as shown in FIG. Because it is thick, it can be compressed and deformed to the required depth position, and the hose can be prevented from coming off reliably. Moreover, the hose can be pulled out even if the thickness of the connecting end H4 is slightly thin with time. Can be prevented.
[0034]
Even if the bending force acts on the connection end H4 of the laminated hose H ′ exposed from the nut I3 of the hose connection fitting I which is a rigid body as the shower head J is used, this portion is tapered and thick. Since the bending strength is high at the portions H33 and H34, it is difficult to bend.
As a result, the neck end of the connection end H4 can be reliably prevented with a simple structure.
[0035]
In the preceding embodiment, the case where the laminated hose H in which the reinforcing wire H2 wound by the spiral machine C is embedded between the inner pipe H1 and the outer sheath layer H3 is formed is shown. Alternatively, the reinforcing wire H2 may not be embedded, or a reinforcing material having a shape other than the illustrated reinforcing wire H2 may be wound and embedded.
[0036]
Furthermore, although the first pulley 1a and the second pulley 1b are arranged as the bypass means 1 in the feeding direction of the inner pipe H1, the present invention is not limited to this, and one or three or more tension pulleys may be arranged.
Further, the tension pulley is elastically supported so as to move based on a change in the tension of the inner tube H1, without being driven by an accumulator such as an air cylinder, and automatically moves by the amount of slack in the inner tube H1. Anyway.
[0037]
Furthermore, although only the feed speed of the inner pipe H1 to the extrusion molding machine E is varied by acceleration / deceleration of the take-up machine F, the present invention is not limited to this, while the take-up machine F is operated at the same speed as the feed machine D at a constant speed. The detouring distance of the inner pipe H1 is driven to expand and contract, and the feed path from the extrusion molding machine E to the take-up machine F is detoured so that the distance changes, so that the feeding speed of the inner pipe H1 can be varied. It may be configured.
More specifically, from the laminated state of the thin portion H31, the detour distance of the inner pipe H1 is driven to extend and part of the constant speed feed of the inner pipe H1 by the feeder D is absorbed, whereby the inner pipe is fed to the extrusion molding machine E. By gradually reducing the feed rate of H1, the tapered thick portion H33 is stacked, and conversely from this state, the detour distance of the inner tube H1 is reduced and the feed rate of the inner tube H1 is gradually increased, The taper-shaped thick part H34 of the reverse direction is laminated | stacked, it returns to the lamination | stacking state of the thin part H31, and the laminated hose which protrudes in a cross-sectional substantially mountain shape as a result is manufactured.
[0038]
【The invention's effect】
As described above, the invention according to claim 1 of the present invention is such that the inner pipe H1 feed is decelerated and the bypass distance is extended while the operating speeds of the feeder D and the extrusion molding machine E are maintained constant. Are coupled to absorb the slack in the inner pipe H1 generated by the deceleration of the feeding of the inner pipe H1, and at the same time, the laminated thickness of the jacket material H3 'supplied quantitatively from the extrusion molding machine E is fed at a constant speed. The thickness of the outer cover material H3 'supplied from the extrusion molding machine E is fixed by linking the acceleration of the feeding of the inner pipe H1 with the shortening of the detour distance. Since the thickness is gradually reduced, the thickness of the jacket layer can be arbitrarily changed with a simple structure without changing the discharge amount of the jacket material and the operating speed of the feeder or separately adding additional layers.
Therefore, compared with the conventional type in which thick parts and thin parts are alternately stacked by increasing and decreasing the extrusion supply amount of the jacket material, the thickness of the thick part and thin part can be made uniform by simple control. In addition to providing a stable product with improved product finishing accuracy, the equipment is simplified and downsized compared to conventional products that require a separate mold and injection molding machine to supply additional coating materials. As a result, equipment costs and manufacturing costs can be reduced.
Also, since the feeder may be a constant speed feed, even when an inner tube extrusion molding machine for extruding the inner tube, and even when a reinforcing wire is wound at a constant pitch and embedded between the inner tube and the outer sheath layer, The discharge amount of the inner tube material from the extrusion molding machine for the inner tube does not vary, and the winding pitch of the reinforcing wire does not change, so that the finished accuracy of the product is improved and a stable product can be provided.
[0040]
In the invention of claim 2 , in addition to the effect of the invention of claim 1 , the thin portion H31 is continuously laminated by continuously operating the take-up machine F at the same high speed as that of the feeder D. By decelerating the machine F, the tapered thick part H33 is laminated during the deceleration of the take-up machine F, and the cylindrical thick-walled part H32 is continuously operated by continuously operating the take-up machine F in a low speed state. When the take-up machine F is accelerated from this state, the tapered thick part H34 opposite to the tapered thick part H33 is laminated with the tapered thick part H34 opposite to the tapered thick part H33. A laminated hose that protrudes into a substantially trapezoidal cross section in which the thickness dimension gradually decreases as the distance from the thick portion increases can be easily manufactured.
Therefore, the existing hose production line remains as it is simply by controlling the shift of the take-up machine F of the existing hose production line that produces a constant thickness laminated hose at a constant speed and additionally installing a detour means in the middle of the line. Since it can be used, remodeling is easy and the remodeling period and remodeling cost can be suppressed, and the manufacturing cost can be reduced.
[0041]
In the invention of claim 3 , in addition to the effect of the invention of claim 1 or 2 , since the inner pipe H1 is bent into a substantially V shape by the tension pulleys 1a and 1b, the detour distance of the inner pipe H1 is expanded and contracted. The structure of the detour means can be simplified.
[Brief description of the drawings]
FIG. 1 is an explanatory view of a laminated hose manufacturing apparatus according to an embodiment of the present invention, and shows a time when a thin portion is formed.
FIG. 2 is an explanatory view showing the start of formation of a tapered thick part and a cylindrical thick part.
FIG. 3 is an explanatory view showing the end of formation of a tapered thick wall portion in the reverse direction.
FIG. 4 is a partially cutaway front view of the manufactured laminated hose.
5A is a partial longitudinal front view showing a joined state of laminated hoses according to an embodiment of the present invention, and FIG. 5B is a partial longitudinal front view showing an exploded state thereof. is there.
[Explanation of symbols]
D Feeder E Extruder F Take-up machine H1 Inner tube H3 Outer coating layer H3 'Outer coating material H31 Thin part H32 Cylindrical thick part H33, H34 Tapered thick part H4 Connection end W Feed path 1 Bypass means 1a , 1b Tension pulley

Claims (3)

内管(H1)を送り機(D)で定速送りしながら、その外周面に沿って押出し成形機(E)から外被材料(H3′)を押出し供給することにより、外被層(H3)が積層成形される積層ホースの製造方法において、
前記送り機(D)及び押出し成形機(E)の作動速度とは関連なく該送り機(D)より下流側へ送られる内管(H1)の送り速度のみを部分的に可変すると共に、送り機(D)から押出し成形機(E)へ至る内管(H1)の送り路(W)をその距離が伸縮変化するように迂回させる迂回手段(1)を設け、
上記内管(H1)送りの減速と迂回距離の伸長とを連動させ、内管(H1)の送りの加速と迂回距離の短縮とを連動させることを特徴とする積層ホースの製造方法。
While the inner pipe (H1) is fed at a constant speed by the feeder (D), the outer jacket material (H3 ′) is extruded and supplied from the extrusion molding machine (E) along the outer peripheral surface thereof. In a method for producing a laminated hose,
Only the feed rate of the inner pipe (H1) fed to the downstream side of the feeder (D) is partially varied regardless of the operating speed of the feeder (D) and the extrusion molding machine (E), and A detour means (1) for detouring the feed path (W) of the inner pipe (H1) from the machine (D) to the extrusion molding machine (E) so that the distance thereof is expanded and contracted,
A method for manufacturing a laminated hose, wherein the deceleration of the inner pipe (H1) feed and the extension of the bypass distance are linked to each other, and the acceleration of the feed of the inner pipe (H1) and the shortening of the bypass distance are linked.
前記押出し成形機(E)の下流側に配設された引取機(F)の作動速度を加減制御し、その減速に連動して内管(H1)の迂回距離を伸長させ、また加速に連動して内管(H1)の迂回距離を短縮させる請求項記載の積層ホースの製造方法。The operating speed of the take-up machine (F) arranged on the downstream side of the extrusion molding machine (E) is controlled to increase / decrease, and the detour distance of the inner pipe (H1) is extended in conjunction with the deceleration, and also linked to acceleration. method for producing a laminated hose according to claim 1, wherein to shorten the detour distance of the inner tube (H1) and. 前記迂回手段(1)が、内管(H1)と係合するテンションプーリー(1a,1b)を送り路(W)の最短距離方向と交差する方向へ往復移動させる請求項または記載の積層ホースの製造方法。The lamination according to claim 1 or 2, wherein the bypass means (1) reciprocates the tension pulleys (1a, 1b) engaged with the inner pipe (H1) in a direction intersecting the shortest distance direction of the feed path (W). Hose manufacturing method.
JP2001193424A 2001-06-26 2001-06-26 Laminated hose manufacturing method Expired - Lifetime JP3619831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001193424A JP3619831B2 (en) 2001-06-26 2001-06-26 Laminated hose manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001193424A JP3619831B2 (en) 2001-06-26 2001-06-26 Laminated hose manufacturing method

Publications (2)

Publication Number Publication Date
JP2003014167A JP2003014167A (en) 2003-01-15
JP3619831B2 true JP3619831B2 (en) 2005-02-16

Family

ID=19031716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001193424A Expired - Lifetime JP3619831B2 (en) 2001-06-26 2001-06-26 Laminated hose manufacturing method

Country Status (1)

Country Link
JP (1) JP3619831B2 (en)

Also Published As

Publication number Publication date
JP2003014167A (en) 2003-01-15

Similar Documents

Publication Publication Date Title
US9982810B2 (en) Helically wound plastic tubing with variable profile thickness and methods of making the same
AU2016216567B2 (en) Flexible tubing with embedded helical conductors and method of making
US4459168A (en) Method and apparatus for forming wire reinforced hose
US5019309A (en) Method of and apparatus for producing a pipe of thermoplastic synthetic resin
US20040187946A1 (en) Manufacturing process and apparatus for making a helical rib tube
US20110168287A1 (en) Flexible tubing with dual-level imbedded helical conductors and method of making
JPS5933085B2 (en) Synthetic resin pipe manufacturing method and manufacturing equipment
US10160009B2 (en) Method and apparatus for coating a pipe
JPS61501620A (en) Method and device for manufacturing braided reinforced hose
JP3619831B2 (en) Laminated hose manufacturing method
US9239121B1 (en) Valley shaping reinforcement
RU2685664C1 (en) Polymer pipe jet molding method and device
CN115871187B (en) Production line for circumferentially coating fibers and plastics on composite pipe
CN101532595B (en) Special-shaped fuel hose wound by 5-layer tetrafluoroethylene (TFE) resin films and preparation method thereof
JP4902400B2 (en) Rubber hose manufacturing method, reinforcing cord layer forming method, and reinforcing cord layer forming apparatus
WO2010095569A1 (en) Multilayer pressure-resistant tube and method of manufacturing same
JP2001050435A (en) Compound flexible pipe and manufacture thereof
KR100538514B1 (en) A plastic pipe jointing tube that use prominence and depression and manufacturing method thereof
CA2073402C (en) Rigid/flexible tube
RU2720086C9 (en) Multilayer polymer reinforced pipe, method of continuous production thereof and device for implementation of method
JP5567612B2 (en) Handrail manufacturing method and manufacturing equipment
JPH0480274B2 (en)
RU2647042C1 (en) Hose items assembly method and the device for its implementation
JP2630924B2 (en) Extrusion molding equipment for non-uniformly long bodies
JP4422859B2 (en) Synthetic resin molding extrusion method and hose molding method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040809

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3619831

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term