JPH0480274B2 - - Google Patents

Info

Publication number
JPH0480274B2
JPH0480274B2 JP1208608A JP20860889A JPH0480274B2 JP H0480274 B2 JPH0480274 B2 JP H0480274B2 JP 1208608 A JP1208608 A JP 1208608A JP 20860889 A JP20860889 A JP 20860889A JP H0480274 B2 JPH0480274 B2 JP H0480274B2
Authority
JP
Japan
Prior art keywords
strip
mandrel
corrugated pipe
synthetic resin
reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1208608A
Other languages
Japanese (ja)
Other versions
JPH02134484A (en
Inventor
Juichi Onoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainippon Plastics Co Ltd
Original Assignee
Dainippon Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Plastics Co Ltd filed Critical Dainippon Plastics Co Ltd
Priority to JP1208608A priority Critical patent/JPH02134484A/en
Publication of JPH02134484A publication Critical patent/JPH02134484A/en
Publication of JPH0480274B2 publication Critical patent/JPH0480274B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 この発明はコルゲート管、その押圧部材及び芯
型に関し、更に詳しくは、大きな耐圧強度を具備
しているので土中に埋設して排水管としてよく用
いられるコルゲート管、特に表面に螺旋状の凸状
部分を有するコルゲート管、その接合用押圧部材
及び保形用芯型に関する。
[Detailed Description of the Invention] (a) Field of Industrial Application This invention relates to a corrugated pipe, its pressing member, and core type, and more specifically, it has a large pressure resistance, so it can be buried in the ground and used as a drainage pipe. The present invention relates to a corrugated pipe often used as a corrugated pipe, particularly a corrugated pipe having a spiral convex portion on its surface, a pressing member for joining the corrugated pipe, and a core mold for shape retention.

(ロ) 従来の技術 一般にコルゲート管には、管壁の凹・凸形状が
軸対称のものと螺旋状のものとがあり、凹・凸形
状が螺旋状の、つまり螺旋凸条を有するコルゲー
ト管は、例えば、回転マンドレル周面に合成樹脂
の溶融した帯条体を螺旋状に捲回し、この捲回に
際して先に捲回した帯状体の部分に対し後から捲
回する帯状体の部分の一部が重なり合うように供
給すると共に、その帯状体の供給に併せて帯状体
の長さ方向に沿つて特定の断面形状を有する可撓
性芯材を供給し、表面に螺旋凸条を形成して得ら
れる。
(B) Prior art In general, there are two types of corrugated pipes, one in which the concave and convex shapes of the pipe wall are axially symmetrical and the other in a spiral shape. For example, a strip made of molten synthetic resin is wound spirally around the circumferential surface of a rotating mandrel, and during this winding, a portion of the strip to be wound later is separated from a portion of the strip that is wound first. At the same time, along with the supply of the strip, a flexible core material having a specific cross-sectional shape is supplied along the length of the strip, and a spiral convex strip is formed on the surface. can get.

そして帯状体の重なり合う部分は、回転マンド
レルの周面に並行して対設された1つの押圧ロー
ラによつて押圧接合され、それによつて一体のコ
ルゲート管に成形される(特開昭56−101832号公
報参照)。
The overlapping parts of the strips are pressed together by one pressure roller installed parallel to the peripheral surface of the rotating mandrel, thereby forming an integral corrugated pipe (Japanese Patent Laid-Open No. 56-101832 (see publication).

(ハ) 発明が解決しようとする課題 しかしながら、上述のごとく押圧ローラを用い
て帯状体の重なり合う部分を押圧接合する際に
は、押圧ローラが1つであり、且つ押圧がほぼ点
接触にて行われるに過ぎないので、長い押圧接合
時間がとれず、合成樹脂が硬い場合は接合性に欠
けたり、一方合成樹脂が軟かい場合は螺旋凸条の
断面形状がくずれたりし、所定の強靭なコルゲー
ト管が得られ難いという問題があつた。
(c) Problems to be Solved by the Invention However, as described above, when pressing and joining the overlapping parts of the strips using a pressing roller, there is only one pressing roller and the pressing is performed almost by point contact. If the synthetic resin is hard, the bonding properties may be lacking, and if the synthetic resin is soft, the cross-sectional shape of the spiral convex strips may be distorted, resulting in the failure of the specified strong corrugated material. There was a problem that tubes were difficult to obtain.

一方これらのコルゲート管は、上述のごとく土
中に埋設して排水管としてよく用いられるが、帯
状体の重なり合う部分の接合性が不十分な場合
は、排水が漏出したり、土中の水が侵入し、従つ
て排水量の調整・管理が難しいという問題があ
る。
On the other hand, as mentioned above, these corrugated pipes are often buried in the ground and used as drainage pipes, but if the joints of the overlapping parts of the strips are insufficient, drainage may leak or water in the soil may leak. There is a problem in that water invades and therefore it is difficult to adjust and manage the amount of drainage.

(ニ) 課題を解決するための手段及びその作用 この発明は、マンドレルの周囲に、押出機から
溶融状態の合成樹脂帯状体を供給し螺旋状に捲回
して重ね合わせつつ、帯状体の内部もしくは裏面
に帯状体の長手方向に沿つて補強用空間部を区画
形成して、表面に螺旋の凹・凸状部分を形成され
るコルゲート管において、凸状部分は、コルゲー
ト管がマンドレル上に保持される間、溶融状態の
合成樹脂帯状体で形成される上記補強用空間内に
保形用芯型が挿入されて保形され、次いで補強用
空間部の区画層がカツトされて保形用芯型が取り
出された後そのカツト部が別に供給される帯状材
で外部から閉塞され、且つその帯状材の外周面の
少なくとも頂部がその頂部の長手方向に沿つて細
かい補強用突条を多数有してなるコルゲート管で
ある。
(d) Means for Solving the Problems and Their Effects This invention involves supplying a molten synthetic resin strip from an extruder around a mandrel, winding it spirally and overlapping it, and then In a corrugated pipe in which a reinforcing space is defined on the back side along the longitudinal direction of the strip and a spiral concave/convex portion is formed on the surface, the convex portion is formed when the corrugated tube is held on a mandrel. During this time, the shape-retaining core mold is inserted into the reinforcing space formed by the molten synthetic resin strip to retain its shape, and then the partitioning layer of the reinforcing space is cut to remove the shape-retaining core mold. After the cut portion is taken out, the cut portion is closed from the outside with a separately supplied strip material, and at least the top portion of the outer peripheral surface of the strip material has a large number of fine reinforcing ridges along the longitudinal direction of the top portion. It is a corrugated pipe.

すなわち、この発明は、補強用空間内に保形用
として挿入されていた保形用芯型を取り出した後
のカツト部を、帯状材で閉塞し、かつその帯状材
の少なくとも頂部に特定の補強用突条を形成する
ことによつて、カツトによつて機械的に弱くなつ
た凸状部分を補強し、それによつて簡単な構成で
強靭なコルゲート管を提供しようとするものであ
る。
That is, this invention closes the cut portion with a strip material after taking out the shape-retaining core inserted into the reinforcing space for shape-retaining purposes, and provides specific reinforcement at least on the top of the strip material. By forming the protrusions, the convex portion mechanically weakened by the cut is reinforced, thereby providing a strong corrugated pipe with a simple structure.

この発明は、特定の線状押圧部材によつて、コ
ルゲート管の凸状部分及び/又は凹状部分を半周
以上にわたつて線状に連続して係合押圧する。こ
の押圧によつて合成樹脂の軟・硬にかかわらずコ
ルゲート管の少なくとも接合性がより良好とな
り、併せて整形性を良好とし、強靭なコルゲート
管が得られる。
In this invention, a specific linear pressing member continuously engages and presses a convex portion and/or a concave portion of a corrugated pipe over half the circumference or more in a linear manner. Due to this pressing, at least the bondability of the corrugated pipe becomes better regardless of whether the synthetic resin is soft or hard, and at the same time, the shaping property is improved, and a strong corrugated pipe can be obtained.

ここで線状押圧部材とは、コルゲート管の凸状
部分又はその凸状部分間に形成されている凹状部
分を、コルゲート管の約半周以上、すなわち螺旋
角度約180度以上にわたつて連続して同時に係合
押圧する部材を意味し、具体的には、実施例のご
とくエンドレスベルトが好ましいものとして挙げ
られる。そして線状押圧部材が凸状部分及び/又
は凹状部分に係合押圧する範囲は、コルゲート管
がマンドレル上にある間全てでもよいが、そのう
ちの1周(螺旋角度360度)〜5周の胴巻きが好
ましく、より好ましくは2〜4周の胴巻きであ
る。もちろんこれらの胴巻きは、最初の捲回から
のほか、最初の2〜3周の後で行つてもよい。な
お重ね合せ部分が凹状部分に沿つている場合はそ
の重ね合せ部分を直接押圧できるように線状押圧
部材の断面を決めるのが望ましい。
Here, the linear pressing member refers to a linear pressing member that continuously presses the convex portion of the corrugated pipe or the concave portion formed between the convex portions over about half the circumference of the corrugated pipe or more, that is, over a helical angle of about 180 degrees or more. It means a member that engages and presses at the same time, and specifically, an endless belt as in the embodiment is preferred. The range in which the linear pressing member engages and presses the convex portion and/or the concave portion may be the entire range while the corrugated pipe is on the mandrel, but the range of the corrugated pipe being engaged with and pressed against the convex portion and/or the concave portion may be within the range of 1 to 5 turns (helical angle of 360 degrees). is preferable, and more preferably 2 to 4 turns around the body. Of course, these windings may be performed not only from the first winding but also after the first two or three turns. Note that when the overlapping portion is along a concave portion, it is desirable to determine the cross section of the linear pressing member so that the overlapping portion can be directly pressed.

以上のような構成のエンドレスベルトは、溶融
状態で高温の合成樹脂に常に接触することになる
ので、本来の強靭性と可撓性のほかに特に耐熱性
が要求される。具体的な材料例としては適宜布を
ゴムで張り合せたものが挙げられるが、特にゴム
としては耐熱性ゴムが用いられる。もちろん、こ
のようなエンドレスベルトは冷水、冷風などによ
つて冷却されるのが好ましい。
Since the endless belt with the above structure constantly comes into contact with the high temperature synthetic resin in a molten state, it is required to have particularly heat resistance in addition to its original toughness and flexibility. A specific example of the material is a cloth laminated with rubber, and heat-resistant rubber is particularly used as the rubber. Of course, such an endless belt is preferably cooled by cold water, cold air, or the like.

この発明において、円筒状のマンドレルは、押
出機から溶融状態で供給される合成樹脂帯状体の
一部を重ね合わすように螺旋状に捲回して一方向
に連続的にコルゲート管を送り出し形成する。従
つて円筒状のマンドレルは、具体的には円筒状の
マンドレルの本来胴面に斜めに(軸方向に対し
て)多数の回転子が回転自在に支持されるか、マ
ンドレルを、円筒状に配列された細い円筒体によ
つて構成し、それらの細い円筒体が互いに略並行
で斜めに(マンドレル仮想円筒軸に対して)配列
される。更に円筒状のマンドレル自体がコルゲー
ト管を一方向に送り出す機能を有しない場合は、
そのマンドレル自体を軸方向にレール等で横方向
に移動させるか、マンドレルを固定とし合成樹脂
押出機をレール等で横方向に移動させてもよい。
In this invention, a cylindrical mandrel is used to continuously feed a corrugated tube in one direction by winding a synthetic resin strip supplied in a molten state from an extruder in a helical manner so as to overlap a portion of the synthetic resin strip. Therefore, in a cylindrical mandrel, a large number of rotors are rotatably supported obliquely (with respect to the axial direction) on the original body surface of the cylindrical mandrel, or the mandrels are arranged in a cylindrical shape. The thin cylinders are arranged substantially parallel to each other and obliquely (with respect to the virtual cylindrical axis of the mandrel). Furthermore, if the cylindrical mandrel itself does not have the function of feeding the corrugated pipe in one direction,
The mandrel itself may be axially moved laterally using a rail or the like, or the mandrel may be fixed and the synthetic resin extruder may be moved laterally using a rail or the like.

この発明は、次の()()のごときコルゲ
ート管接合用押圧部材又は()の保形用芯型を
提供する。
The present invention provides a pressing member for joining corrugated pipes or a shape-retaining core mold as shown in () below.

() マンドレルの周囲に、押出機から溶融状態
の合成樹脂帯状体を供給し螺旋状に捲回して重
ね合わせつつ、帯状体の内部もしくは裏面に帯
状体の長手方向に沿つて可撓性補強材を挿入又
は補強用空間部を区画形成して、表面に螺旋の
凹・凸状部分を形成されるコルゲート管がマン
ドレル上に保持される間、コルゲート管の凸条
部分及び/又は凹条部分にコルゲート管の半周
以上にわたつて係合し、コルゲート管の帯状体
の重ね合わせ部分のマンドレル上へ押圧し接合
を行うための押圧部材であつて、 無端ベルト状の基層と、この基層の表面のう
ち、少なくともマンドレルに近い部分に形成さ
れ、すべり摩擦係数が小さくコルゲート管との
係合前のマンドレルとの接触時にすべりを許容
するすべり層とからなるコルゲート管接合用押
圧部材。
() A molten synthetic resin strip is supplied from an extruder around the mandrel, and while it is spirally wound and overlapped, a flexible reinforcing material is added inside or on the back of the strip along the longitudinal direction of the strip. While the corrugated pipe, which has spiral concave and convex portions formed on its surface, is held on the mandrel, the convex and/or concave portions of the corrugated pipe are A pressing member that engages over half the circumference of a corrugated pipe and presses and joins the overlapping portion of the corrugated pipe onto a mandrel, and includes an endless belt-shaped base layer and a surface of this base layer. A pressing member for joining corrugated pipes, which comprises a sliding layer formed at least in a portion close to the mandrel, which has a small sliding friction coefficient and allows slipping when in contact with the mandrel before engagement with the corrugated pipe.

() マンドレルの周囲に、押出機から溶融状態
の合成樹脂帯状体を供給し螺旋状に捲回して重
ね合わせつつ、帯状体の内部もしくは裏面に帯
状体の長手方向に沿つて補強用空間部を区画形
成して、表面に螺旋の凹・凸状部分を形成され
るコルゲート管がマンドレル上に保持される
間、溶融状態を合成樹脂帯状体で形成される上
記補強用空間内に連続的に挿入され、コルゲー
ト管の帯状体の重ね合せ部分をマンドレル上へ
押圧し接合を行い、次いで補強用空間部の区画
層がカツトされて取り出される無端ベルト状の
押圧部材であつて無端ベルト状の基層と、この
基層の表面のうち、少なくともマンドレルに近
い部分に形成され、すべり摩擦係数が小さくコ
ルゲート管に挿入する前のマンドレルとの接触
時にすべりを許容するすべり層とからなるコル
ゲート管接合用押圧部材。
() A molten synthetic resin strip is supplied from an extruder around the mandrel, and while it is spirally wound and overlaid, a reinforcing space is created inside or on the back side of the strip along the longitudinal direction of the strip. While the corrugated pipe, which is partitioned and has spiral concave and convex portions formed on its surface, is held on a mandrel, the molten state is continuously inserted into the reinforcing space formed by the synthetic resin strip. The overlapping part of the corrugated pipe strips is pressed onto a mandrel to join them, and then the partitioning layer of the reinforcing space is cut and taken out. A pressing member for joining corrugated pipes, comprising a sliding layer formed on at least a portion of the surface of the base layer close to the mandrel, which has a small sliding friction coefficient and allows slipping when in contact with the mandrel before being inserted into the corrugated pipe.

() マンドレルの周囲に、押出機から溶融状態
の合成樹脂帯状体を供給し螺旋状に捲回して重
ね合わせつつ、帯状体の内部もしくは裏面に帯
状体の長手方向に沿つて補強用空間部を区画形
成して、表面に螺旋の凹・凸状部分を形成され
るコルゲート管がマンドレル上に保持される
間、溶融状態の合成樹脂帯状体で形成される上
記補強用空間内に連続的に挿入され、コルゲー
ト管の帯状体の保形を行い、次いで補強用空間
部の区画層がカツトされて取り出される無端ベ
ルト状の保形用芯型であつて無端ベルト状の基
層と、この基層の表面のうち、少なくともマン
ドレルに近い部分に形成され、すべり摩擦係数
が小さくコルゲート管に挿入する前のマンドレ
ルとの接触時にすべりを許容するすべり層とか
らなる保形用芯型。
() A molten synthetic resin strip is supplied from an extruder around the mandrel, and while it is spirally wound and overlaid, a reinforcing space is created inside or on the back side of the strip along the longitudinal direction of the strip. While the corrugated pipe, which is partitioned and has spiral concave and convex portions on its surface, is held on the mandrel, it is continuously inserted into the reinforcing space formed by the molten synthetic resin strip. An endless belt-like shape-retaining core mold from which the reinforcing space partition layer is cut and taken out, and an endless belt-like base layer, and the surface of this base layer. Among them, a shape-retaining core type consisting of a sliding layer formed at least in a portion close to the mandrel, which has a small sliding friction coefficient and allows slipping when in contact with the mandrel before being inserted into the corrugated pipe.

すなわち、この発明に係るコルゲート管接合用
押圧部材又は保形用芯型は、通常のエンドレスベ
ルトとは異なり、少なくともマンドレルの接触部
にすべり摩擦係数が小さい層を有するので、溶融
状態の合成樹脂帯状体との係合前(一部係合時を
含む)においてマンドレルとの接触による螺旋ピ
ツチの乱れが少なく、それによつて均一な螺旋ピ
ツチのコルゲート管が得られる。
That is, unlike a normal endless belt, the pressing member for joining corrugated pipes or the shape-retaining core mold according to the present invention has a layer with a low sliding friction coefficient at least in the contact area of the mandrel. Before engagement with the body (including during partial engagement), there is little disturbance of the helical pitch due to contact with the mandrel, and as a result, a corrugated pipe with a uniform helical pitch can be obtained.

(ホ) 実施例 以下図に示す具体的装置例に基づいてこの発明
の詳述する。なお、これによつてこの発明が限定
されるものではない。
(E) Embodiments The present invention will be described in detail below based on specific examples of devices shown in the figures. Note that this invention is not limited to this.

まず第1〜2図において、コルゲート管の連続
製造装置1は、溶融状態の合成樹脂帯状体Aを連
続的に押し出す合成樹脂押出機2と、可撓性補強
材としての合成樹脂管状体Bを連続的に押し出す
補強材押出機3と、これらの両押出機から供給さ
れる帯状体Aと管状体Bとを螺旋状に重ね合わせ
て捲回し螺旋管Cを連続的に形成する回転マンド
レル4と、帯状体の重ね合わせ部分の間に連続的
に細長い金属線Mを供給して介在させる金属線供
給手段11と、得られる螺旋管Cの重ね合わせ部
分を押圧して接合させ、且つ後述する螺旋凸条D
を整形させるための線状押圧部材としてのエンド
レスベルト5とから主としてなる。
First, in FIGS. 1 and 2, a corrugated pipe continuous manufacturing apparatus 1 includes a synthetic resin extruder 2 that continuously extrudes a synthetic resin strip A in a molten state, and a synthetic resin tubular body B as a flexible reinforcing material. A reinforcing material extruder 3 that continuously extrudes a reinforcing material, and a rotating mandrel 4 that continuously forms a spiral tube C by overlapping the strip A and the tubular body B supplied from these extruders in a spiral manner. , a metal wire supplying means 11 that continuously supplies and interposes an elongated metal wire M between the overlapped portions of the strips, and presses and joins the overlapped portions of the obtained helical tube C, and also forms a spiral to be described later. Convex D
It mainly consists of an endless belt 5 as a linear pressing member for shaping.

回転マンドレル4は、複数本の中空軸6,7…
…を一つの仮想円筒の周面に沿つて所定の間隔を
おいて略平行に配設して構成され、各中空軸は図
示しない軸端(第1図の左方)に備えるスプロケ
ツトにチエーンを掛けて同一方向に等速回転する
ように構成され、それによつて実質的に回転マン
ドレル4が回転するようにされている。
The rotating mandrel 4 has a plurality of hollow shafts 6, 7...
... are arranged approximately parallel to each other at predetermined intervals along the circumferential surface of one virtual cylinder, and each hollow shaft has a chain attached to a sprocket provided at the shaft end (left side in Fig. 1), not shown. The rotating mandrel 4 is configured to rotate at a constant speed in the same direction, thereby substantially rotating the rotating mandrel 4.

エンドレスベルト5は、得られる螺旋管Cの後
述する螺旋凹条Eの断面形状に対応する断面を有
し、ローラ8,9,10にて移動自在に支持され
ている。
The endless belt 5 has a cross-section corresponding to the cross-sectional shape of a helical groove E, which will be described later, of the obtained helical tube C, and is movably supported by rollers 8, 9, and 10.

金属線供給手段11は、ローラ14と、このロ
ーラから金属線Mを帯状体の重ね合わせ部分に案
内するガイド15とからなる。
The metal wire supply means 11 includes a roller 14 and a guide 15 that guides the metal wire M from the roller to the overlapping portion of the strips.

次に以上の構成を備えたコルゲート管の連続製
造装置1の作動を第1〜2図に基づいて説明し、
それによりコルゲート管の連続製造方法を説明す
る。
Next, the operation of the continuous manufacturing apparatus 1 for corrugated pipes having the above configuration will be explained based on FIGS. 1 and 2.
A continuous manufacturing method for corrugated pipes will now be explained.

回転マンドレル4を回転させ(実質的に)、そ
の回転マンドレル4の周囲に、合成樹脂押出機2
から溶融状態のポリエチレン樹脂帯状体Aを供給
すると、その帯状体が螺旋状に捲回されて螺旋管
Cを形成する。更にその帯状体Aが捲回される際
には、帯状体の裏部に、補強材押出機3からポリ
エチレン樹脂管状体Bを帯状体Aの長手方向に沿
つて供給する。かくして螺旋管Cの表面には凸状
部分としての螺旋凸条Dが表出形成され、実質的
にコルゲート管Fの体裁が整う。
The rotating mandrel 4 is rotated (substantially), and the synthetic resin extruder 2 is placed around the rotating mandrel 4.
When a molten polyethylene resin strip A is supplied, the strip is spirally wound to form a spiral tube C. Further, when the strip A is wound, a polyethylene resin tubular body B is supplied from the reinforcing material extruder 3 to the back side of the strip A along the longitudinal direction of the strip A. In this way, the spiral protrusions D as convex portions are formed on the surface of the helical tube C, and the appearance of the corrugated tube F is substantially arranged.

また上述の螺旋管Cの形成は、先に捲回した帯
状体Aの部分に対し後から捲回する帯状体Aを部
分の一部を金属線Mを介してはさんで重ね合わせ
て行われ、この重ね合わせ部分がエンドレスベル
ト5によつて胴巻き状に押圧され、それによつて
より強く接合される。通常、回転マンドレル4の
回転により帯状体A及び管状体Bを引張る速さ
は、それらの各体が押し出される速さより速く且
つ両体がまだ軟らかい状態なので、上述の帯状体
の重ね合わせ部分の接合は一応行われるが、不十
分になることもある。これに対しては、従来、押
圧ローラを用いて重ね合わせ部分を押圧している
が、押圧時間(又は距離)が瞬間的なので、合成
樹脂の状態によつては効果が十分とは言えない。
しかるに上述のエンドレスベルト5による胴巻き
状の押圧、つまり約3.5周の螺旋回転(約360×
3.5度)の間を継続する押圧によれば、重ね合わ
せの部分の接合が長時間継続して行われるので十
分保障される。またエンドレスベルト5の断面が
螺旋凸条間に形成されている凹状部分としての螺
旋凹条(凹溝)のそれに対応し、同様長時間継続
して係合しているので、所望形状、つまり所望の
耐圧強度のコルゲート管Fが得られる。特に回転
マンドレル4の回転は、溶融状態の溶融状態A及
び管条体Bを引張り状態にしているので、例えば
管条体Bが回転マンドレル4の回転軸に平行な方
向に偏平になりやすく、従つて通常耐圧強度の低
下がさけられないが、上述のエンドレスベルト5
の整形作用により、管状体Bの断面が所定の真円
形状に維持され、所望の耐圧強度が得られる。な
お、金属線Mは、帯状体の重ね合せ部分の接合が
十分に行なわれているかどうかを検査するために
主として用いられるもので(補強効果もある)、
高電圧・高周波発生装置の誘電端子(図示省略)
を外部から近接させて、この誘電端子と金属線M
との間で』安定スパークが発生した場合に接合が
不十分と判断される。
In addition, the above-mentioned spiral tube C is formed by superimposing a part of the band-like body A that is previously wound on a part of the band-like body A that is wound later by sandwiching a part of the part through the metal wire M. This overlapping portion is pressed in a wrap-around manner by the endless belt 5, thereby making it more strongly joined. Normally, the speed at which the belt-like body A and the tubular body B are pulled by the rotation of the rotating mandrel 4 is faster than the speed at which each of these bodies is extruded, and both bodies are still in a soft state, so that the overlapping portions of the above-mentioned belt-like bodies are joined. Although this is done to some extent, it may not be sufficient. Conventionally, a pressure roller has been used to press the overlapping portions, but since the pressing time (or distance) is instantaneous, the effect may not be sufficient depending on the state of the synthetic resin.
However, the above-mentioned endless belt 5 presses around the body, that is, about 3.5 turns of spiral rotation (about 360×
If the pressure is continued between 3.5 degrees and 3.5 degrees, the overlapping portions will continue to be joined for a long period of time, so it is sufficiently guaranteed. In addition, the cross section of the endless belt 5 corresponds to that of the spiral concave strips (concave grooves) as the concave portions formed between the spiral convex strips, and is similarly engaged continuously for a long time, so that the desired shape, that is, the desired shape. A corrugated pipe F having a pressure resistance strength of . In particular, the rotation of the rotating mandrel 4 puts the molten state A in the molten state and the tube body B in tension, so that, for example, the tube body B tends to become flat in the direction parallel to the rotation axis of the rotating mandrel 4. However, the above-mentioned endless belt 5
Due to the shaping action, the cross section of the tubular body B is maintained in a predetermined perfect circular shape, and the desired pressure resistance strength is obtained. The metal wire M is mainly used to check whether the overlapping parts of the strips are sufficiently joined (it also has a reinforcing effect).
Dielectric terminal of high voltage/high frequency generator (not shown)
This dielectric terminal and the metal wire M are brought close to each other from the outside.
If a stable spark occurs between the two, it is determined that the bond is insufficient.

以上の例とは異なり、帯状体の重ね合わせと、
これらの帯状体の間の管状体の介在の仕方を第3
図のごとく変えることもできる。つまり、帯状体
Aは1つの横幅で2巻き管状体Ba,Baを外側か
ら覆つている。
Unlike the above example, the overlapping of strips and
The third method of interposing the tubular body between these strip-shaped bodies is
It can also be changed as shown in the figure. That is, the band-like body A has one width and covers the two-wound tubular bodies Ba from the outside.

次に第4図に示すコルゲート管の連続製造装置
1bは、2台の合成樹脂押出機2b,2′bと、
2本のエンドレスベルト5b,5′bとを備え、
更に2の金属線供給手段11′b,11bを備え
ている。つまり、まず回転マンドレル4bの周囲
に、押出機2′bから溶融状態のポリエチレン樹
脂帯状体A′bを供給し、その帯状体が螺旋状に捲
回され重ね合わせ部分に金属線M′bを介在して螺
旋管C′bが形成される。そしてこの螺旋管C′bは
螺旋凹・凸条の全く有してないので、その螺旋条
の重ね合わせ部分をエンドレスベルト5′bにて
押圧し、それによつて接合を確実にする。次い
で、得られた螺旋管C′bの上に、第1図と同様
に、帯状体Abと管状体Bbとが重ねられ、更に重
ね合わせ部分に金属線Mbが介在される。説明を
省略するが、得られるコルゲート管Fbは第5図
に示すごとく、二重管構造である。なお、Gb,
Gbは帯状体A′bの重ね合わせ部分である。
Next, the continuous corrugated pipe manufacturing apparatus 1b shown in FIG. 4 includes two synthetic resin extruders 2b, 2'b,
Equipped with two endless belts 5b and 5'b,
Furthermore, two metal wire supply means 11'b, 11b are provided. That is, first, a molten polyethylene resin strip A'b is supplied from an extruder 2'b around a rotating mandrel 4b, and the strip is spirally wound and a metal wire M'b is attached to the overlapped portion. A spiral tube C′b is formed therebetween. Since this spiral tube C'b does not have any spiral concave or convex lines, the overlapping part of the spiral lines is pressed by the endless belt 5'b, thereby ensuring the connection. Next, the strip Ab and the tubular body Bb are superimposed on the obtained spiral tube C'b, as in FIG. 1, and a metal wire Mb is further interposed in the overlapped portion. Although the explanation will be omitted, the obtained corrugated pipe Fb has a double pipe structure as shown in FIG. In addition, Gb,
Gb is the overlapping portion of the strip A'b.

以上の各例とは異なり、合成樹脂管状体を帯状
体の内部に挿入して螺旋状に捲回してもよく、更
に重ね合わせ部分に介在させる金属部材として断
面略L字状部分を基本的に有するものを用いても
よい。すなわち、第6図Aにおいて、溶融状態の
段階で、合成樹脂状体Ac内部には合成樹脂管状
体Bcが挿入され、図示しない回転マンドレルの
周囲に螺旋状に捲回し、更に重ね合わせ部分に断
面略コ字状の金属部材を介在させて螺旋管に形成
する。そして一点鎖線で示すエンドレスベルト5
cによつて帯状体Acの重ね合わせ部分Gcが押圧
接合され、且つ帯状体Acの螺旋凸条Dcが整形さ
れる。なお、帯条体Acは、先に成形された管条
体Bcを合成樹脂押出機内に供給し、押出しノズ
ルから管状体Bcを中央に維持して溶融状態の合
成樹脂と共に押出して得られる。もちろん押出ノ
ズルはその開口断面形状を帯状体Acの断面に対
応して略逆T字型に形成している。第6図Bの例
は金属部材の断面が略F字状の場合である。
Different from each of the above examples, a synthetic resin tubular body may be inserted into the inside of a band-shaped body and wound spirally, and furthermore, a roughly L-shaped cross section can be basically used as a metal member interposed between the overlapped parts. You may use what you have. That is, in FIG. 6A, a synthetic resin tubular body Bc is inserted into the synthetic resin body Ac in a molten state, and is spirally wound around a rotating mandrel (not shown), and a cross section is formed at the overlapped portion. It is formed into a spiral tube with a substantially U-shaped metal member interposed therebetween. And the endless belt 5 shown by the dashed line
c, the overlapping portion Gc of the band-like body Ac is pressed and joined, and the spiral convex line Dc of the band-like body Ac is shaped. The strip body Ac is obtained by feeding the previously molded tube body Bc into a synthetic resin extruder, and extruding it together with the molten synthetic resin from an extrusion nozzle while keeping the tube body Bc in the center. Of course, the opening of the extrusion nozzle has a cross-sectional shape of an approximately inverted T shape corresponding to the cross-section of the strip Ac. The example shown in FIG. 6B is a case where the cross section of the metal member is approximately F-shaped.

このようにコルゲート管の重ね合わせ部分に介
在される細長い金属部材は、帯状体の押出機とは
別の供給機により供給してもよいが、帯状体の押
出機で帯状体と共に押出してもよい。また金属部
材として、断面略L字状部分(基本断面構造とし
て)を備えた異形断面のものを用いることによつ
て、更に耐圧強度の大きな(断面係数の大きな)
コルゲート管を得ることができる。特に耐圧強度
を必要とする用度、例えば道路、鉄道、造成地等
の排水管、給・排水管、工場敷地、高層団地内等
の汚水の給・排水管のごとき各種の給・排水管、
又は地中に配線する電線、配管それらの保護管、
その他の埋設用耐圧管として広範な用途により好
適である。
The elongated metal member interposed in the overlapped portion of the corrugated pipes may be supplied by a separate feeder from the extruder for the strip, or may be extruded together with the strip by the extruder for the strip. . In addition, by using a metal member with an irregular cross section that has a roughly L-shaped section (basic cross-sectional structure), it is possible to achieve even greater pressure resistance (larger section modulus).
You can get corrugated pipe. In particular, applications that require pressure resistance, such as drain pipes for roads, railways, developed areas, etc., various water supply/drainage pipes such as sewage supply/drainage pipes for factory sites, high-rise housing complexes, etc.
or underground wiring, piping, and their protective pipes;
It is more suitable for a wide range of applications as other buried pressure tubes.

更に異なる例として、第6図cのイ,ロのごと
く、帯状体Ayc,Azcを供給して一部を重ね合わ
すように螺旋状に捲回するに際して、単に断面が
屈曲状になるよう供給し、重ね合わせ部分に細長
い金属線Myc,Mzcを介在させてもよい。この
例の場合は、上記の例とは異なり、コルゲート管
の内面が平らでなく、螺旋状の凹条を有すること
になる。
As a further different example, as shown in FIG. , elongated metal wires Myc and Mzc may be interposed in the overlapping portion. In this example, unlike the above example, the inner surface of the corrugated pipe is not flat but has a spiral groove.

更に第6図Dのイ,ロ,ハのごとく帯状体
Aαc,Aβc,Aγcを供給して一部を重ね合わすよ
うに螺旋状に捲回するに際して、単に断面が平ら
になるように供給し、重ね合わせ部分に細長い金
属線Mαc,Mβc,Mγcをそれぞれ介在させるこ
ともできる。これらの場合は管体はコルゲート管
ではなく、単なる円筒状の管であり、もちろん
内・外面共平らな円胴面を有する。
Furthermore, belt-shaped bodies as shown in A, B, and C in Figure 6D
When supplying Aαc, Aβc, and Aγc and winding them in a spiral shape so that some overlap, they are simply supplied so that the cross section is flat, and elongated metal wires Mαc, Mβc, and Mγc are interposed in the overlapped portions, respectively. You can also do it. In these cases, the tube is not a corrugated tube, but a simple cylindrical tube, and of course has flat inner and outer cylindrical surfaces.

更に以上のような螺旋管を、第4〜5図に示す
ような内側螺旋管の上に(外側に)被せ、第7図
のごとく二重構造に構成することもできる。
Furthermore, the spiral tube as described above can be placed over (outside of) the inner spiral tube as shown in FIGS. 4 and 5 to form a double structure as shown in FIG. 7.

以下その他のコルゲート管の断面構造例を挙げ
る。
Examples of other cross-sectional structures of corrugated pipes are listed below.

第8図 第8図は帯状体Aeの裏面に帯状体Aeの長手方
向に沿つて硬質塩化ビニル樹脂のごとき可撓性補
強材Beを挿入している例を示す。
FIG. 8 FIG. 8 shows an example in which a flexible reinforcing material Be such as hard vinyl chloride resin is inserted on the back surface of the strip Ae along the longitudinal direction of the strip Ae.

第9図〜第10図 第9図は、断面略コ字状金属部材M′xdを溶融
状態の合成樹脂と共に押出して(インサートし
て)螺旋内管A′xdを形成し、次いでその内管の
周囲に、補強部材として合成樹脂管状体Bxdを溶
融状体の合成樹脂と共に押出して(インサートし
て)螺旋外管Axdを形成する装置例を第1図又は
第4図に対応して示したものである。第10図は
得られたコルゲート管の断面を示している。この
コルゲート管は、両重ね合わせ部分が管軸方向に
おいて位置を違えているので、非密着部の発生を
少なくできる。
Figures 9 to 10 Figure 9 shows a metal member M'xd having a substantially U-shaped cross section being extruded (inserted) together with a molten synthetic resin to form a spiral inner tube A'xd, and then inserted into the inner tube. An example of an apparatus for forming a helical outer tube Axd by extruding (inserting) a synthetic resin tubular body Bxd as a reinforcing member together with a molten synthetic resin around the helical outer tube Axd is shown corresponding to FIG. 1 or 4. It is something. FIG. 10 shows a cross section of the corrugated pipe obtained. In this corrugated tube, since both overlapping portions are at different positions in the tube axis direction, the occurrence of non-adherent portions can be reduced.

第11〜13図 帯状体のだ面構造が逆U字片Hhとこの片の両
端から水平外向きに延びる大小水平片Ih,Jhとか
らなり、螺旋凹状の底部で両片の結合部と、小水
平片Jhと、大水平片Ih先端部とが重ね合わせら
れ、適宜エンドレスベルト(図示省略)により接
合されている。
Figures 11 to 13 The double-sided structure of the strip consists of an inverted U-shaped piece Hh and large and small horizontal pieces Ih and Jh extending horizontally outward from both ends of this piece, and a spiral concave bottom that connects the two pieces, The small horizontal piece Jh and the tip of the large horizontal piece Ih are overlapped and connected by an endless belt (not shown) as appropriate.

第14〜16図 帯状体の断面構造が、第14図において、逆U
字片Hmとこの片の一端(右端)から水平外向き
に延びる水平片Jmと、他端からやや下向きの延
びる傾斜片Imとからなる硬質片部、並びにこの
硬質片部の下向開口部分を閉じる硬質片部Kmか
らなる。第15〜16図は、帯状体の断面構造が
以上とはわずかつづ異なる例を示す。
Figures 14 to 16 The cross-sectional structure of the strip is shown in Figure 14 as an inverted U.
A hard piece part consisting of a letter piece Hm, a horizontal piece Jm extending horizontally outward from one end (right end) of this piece, and an inclined piece Im extending slightly downward from the other end, and a downward opening part of this hard piece. Consists of a closed hard piece Km. 15 and 16 show examples in which the cross-sectional structure of the strip is slightly different from the above.

第17図 以上のごとく得られるコルゲート管の螺旋凸条
部分の外周囲に別体の補強層を形成してもよい。
特に補強力を強めるために表面に多数の細かい突
条を形成してもよい。第17図の例は凸条部分の
頂部に、表面に多数の細かい突条Ns,Nsを形成
し、凸条部分の断面係数を大きくすることによつ
て、通空構造であるために陥没しやすくまたキズ
や通孔ができやすい頂部を補強している。また凸
条部分の頂部はキズが目立ちやすいが、それらの
細かい突条によつてその問題を解消し、またそれ
らの突条をフインとして熱交換促進用として用い
ることもできる(特に溶融状態を補強層を早期に
冷却する効果がある)。
FIG. 17 A separate reinforcing layer may be formed around the outer periphery of the spiral convex portion of the corrugated pipe obtained as described above.
In particular, a large number of fine protrusions may be formed on the surface in order to strengthen the reinforcing force. In the example shown in Figure 17, a large number of fine protrusions Ns, Ns are formed on the surface of the top of the protruding part, and by increasing the section modulus of the protruding part, the structure is air-permeable, so it does not sink. The top part, which is prone to scratches and holes, is reinforced. In addition, scratches tend to be noticeable at the top of the protruding parts, but these fine protrusions solve this problem, and these protrusions can also be used as fins to promote heat exchange (especially for reinforcing the molten state). (This has the effect of cooling the layer quickly).

続いて、この発明の更に他の実施例を図面に基
づいて詳細に説明する。
Next, still other embodiments of the present invention will be described in detail based on the drawings.

第18図乃至第20図に示したこの実施例装置
は、管口径及び補強条の螺旋ピツチが変更可能な
合成樹脂製コルゲート管の製造装置に適用したも
のを示しており、図において101は基台、10
2は基台101に多数の支持杆103を介して固
定支持した面板であつて、この基台101と面板
102とにより作動軸104を回転可能に支持し
ている。
This embodiment device shown in FIGS. 18 to 20 is applied to a manufacturing device for synthetic resin corrugated pipes in which the pipe diameter and the helical pitch of reinforcing strips can be changed. In the figures, 101 is the base. stand, 10
Reference numeral 2 denotes a face plate that is fixedly supported on the base 101 via a number of support rods 103, and the base 101 and the face plate 102 rotatably support the operating shaft 104.

上記作動軸104を中心とする仮想円柱面に沿
うごとく数本の成形軸105が配置されるもの
で、各成形軸105は、それぞれ自在継手106
を介して連結した大経の長軸105aと小径の短
軸105bとにより構成されると共に、前記自在
継手106をして長軸105aを短軸105bに
対しやや屈曲させることにより、長軸105aが
前記作動軸104に対しやや傾斜するようにして
いる。また前記各短軸105bは、それぞれ伸縮
並びに屈曲可能な連結軸107を介して駆動手段
(図示せず)に連動連結されるもので、この駆動
手段により前記の各成形軸105が同一方向に一
斉駆動するようになつている。
Several shaping shafts 105 are arranged along a virtual cylindrical surface centered on the operating shaft 104, and each shaping shaft 105 is connected to a respective universal joint 106.
It is composed of a long axis 105a with a large diameter and a short axis 105b with a small diameter, which are connected through It is slightly inclined with respect to the operating axis 104. Further, each of the short shafts 105b is connected to a driving means (not shown) via a connecting shaft 107 which can be expanded, contracted and bent, and this driving means causes each of the forming shafts 105 to move simultaneously in the same direction. It is designed to be driven.

また、前記作動軸104には、これの回動操作
により軸方向で互いに近接或いは離間する方向に
移動するコマ部材108a,108bが装着さ
れ、この各コマ部材108a,108bに前記長
軸105aをそれぞれ連接杆109a,109b
を介して揺動可能に枢着することにより、前記各
成形軸105を作動軸104上に径方向移動可能
に支持しており、また前記コマ部材108a,1
08bを作動軸104に対し相対的に回動させる
ことにより、各形成軸105の作動軸104に対
する傾斜角を変更すべくしている。
Further, the actuating shaft 104 is equipped with top members 108a and 108b that move toward or away from each other in the axial direction by rotating the actuating shaft 104. Connecting rods 109a, 109b
The respective forming shafts 105 are supported on the actuating shaft 104 so as to be movable in the radial direction by being pivotally mounted via the
08b relative to the operating shaft 104, the inclination angle of each forming shaft 105 with respect to the operating shaft 104 is changed.

なお、この実施例では成形される合成樹脂管の
管径及び補強条の螺旋ピツチを可変とするために
複数本の成形軸105を用い、上記のように構成
したものであるが、このように管径および螺旋ピ
ツチを可変としない場合には、一般的な成形軸を
使用すればよい。ここでいう一般的な成形軸とは
従来公知のもので、例えば一本の成形用主軸の外
周に筒状の保持器により多数のコロ軸を傾斜状に
配設支持させて構成した成形軸などいかなる構造
のものであつてもよい。
In this embodiment, a plurality of molding shafts 105 are used to vary the diameter of the synthetic resin pipe to be molded and the helical pitch of the reinforcing strips, and the construction is as described above. If the tube diameter and helical pitch are not variable, a general molding shaft may be used. The general forming shaft referred to here is one that is conventionally known, such as a forming shaft constructed by arranging and supporting a large number of roller shafts in an inclined manner around the outer periphery of a single forming main spindle using a cylindrical cage. It may have any structure.

しかして、上記の各成形軸105上間に亘るよ
うに巻回される条素材110は、例えばポリエチ
レン樹脂、ポリプロピレン樹脂などポリオレフイ
ン系の硬質合成樹脂や塩化ビニール樹脂などから
なるもので、押出成形手段112の成形用ダイ1
13から所要の形状、例えば平板状に押出成形す
ると共に、半溶融状態で各成形軸105上に供給
されて、各成形軸105上間に亘るよう螺旋状に
巻回され、重ね合せ部分に金属線100Mがロー
ラ111からガイド115を介して供給介在され
る。そしてこの各成形軸105上で、後記する成
形用芯型114により第19図に示すごとく断面
コ字状部分(逆U字片)110aと、該コ字状部
分110aの一側方下端部から延びる板状の長辺
部分(大水平片)110bと、他側方下端部から
延びる板状の短辺部分(小水平片)110cとが
一連に成形されるのである。
The strip material 110 wound over the above-mentioned molding shafts 105 is made of, for example, polyolefin-based hard synthetic resin such as polyethylene resin or polypropylene resin, or vinyl chloride resin, and is formed by extrusion molding means. 112 molding die 1
13 is extruded into a desired shape, for example, a flat plate, and is supplied in a semi-molten state onto each forming shaft 105, and is spirally wound so as to span between the upper parts of each forming shaft 105, and the overlapping portion is filled with metal. A wire 100M is fed from a roller 111 via a guide 115. Then, on each molding shaft 105, as shown in FIG. 19, a molding core mold 114 (to be described later) forms a U-shaped cross section (inverted U-shaped piece) 110a, and from the lower end of one side of the U-shaped portion 110a. An extending plate-shaped long side portion (large horizontal piece) 110b and a plate-shaped short side portion (small horizontal piece) 110c extending from the lower end on the other side are formed in series.

一方、前記各成形軸105上間に亘るよう可撓
性をもつ無端状の成形用芯型114が螺旋状に巻
き付けられている。
On the other hand, a flexible, endless molding core mold 114 is wound spirally over the molding shafts 105.

上記した成形用芯型114は、例えば条素材1
10のコ字状部分110aと略同じ断面形状とし
た一本の可撓性ベルト材からなるもので、このベ
ルト材を各成形軸105上間に亘るよう予め螺旋
状に巻き付けると共に、巻回終端を巻回始端にま
で延長して、その両端を繋いで無端状としたもの
である。なお前記芯型114の頂部には、後記す
るカツター118の進入を許すV字状等の条溝1
14aが形成され、また必要に応じて第20図に
示すごとく条素材110が巻回時に進入する始端
部にガイドローラー115を設けて、芯型114
の進入位置を規制するようにしている。
The above-described molding core mold 114 is, for example, a strip material 1
It is made of a single piece of flexible belt material having approximately the same cross-sectional shape as the U-shaped portion 110a of No. is extended to the starting end of the winding, and both ends are connected to form an endless shape. Note that the top of the core mold 114 is provided with a V-shaped groove 1 that allows a cutter 118 (to be described later) to enter.
14a is formed, and if necessary, a guide roller 115 is provided at the starting end where the strip material 110 enters during winding, as shown in FIG.
The approach position is regulated.

また、前記芯型114と同様各成形軸105上
間に亘り、かつ螺旋状に巻回されたこの芯型11
4の間に位置するように条素材110押え込み用
の無端体116が螺旋状に巻き付けられている。
この無端体116も芯型114と同様巻回終端を
巻回始端にまで延長して、その両端を繋いで無端
状としたものであるが、この無端体116は前記
芯型114上で条素材110が成形されて後、そ
の上から巻き付けるものである。図中117は無
端体116の進入を案内するガイドローラーであ
る。
In addition, similar to the core mold 114, this core mold 11 extends over each molding shaft 105 and is spirally wound.
An endless body 116 for holding down the strip material 110 is wound spirally so as to be located between the ends of the strip material 110.
Like the core mold 114, this endless body 116 also extends the winding end to the winding start end and connects both ends to form an endless shape. 110 is formed and then wrapped over it. In the figure, 117 is a guide roller that guides the endless body 116 to enter.

斯くて、上記のごとく各成形軸105上で成形
用芯型114と無端体116とを用い、前記条素
材110を螺旋状に巻回して、外周に螺旋状の補
強条(凸条部分)100Bを備えた合成樹脂管1
00Aを形成するときに、前記補強条100Bの
頂部に切溝100Cを連続的に形成し、その後、
切溝100Cを閉鎖すべく構成するのであつて、
前記合成樹脂管100Aの螺旋進み方向前方にカ
ツター118を配設すると共に、このカツター1
18より螺旋進み方向前方に押出成形手段119
の成形用ダイ120を配設して、前記補強条10
0Bの頂部に前記条素材110と同質の合成樹脂
製帯状素材(帯状材)111を供給添設するので
ある。
Therefore, as described above, the strip material 110 is spirally wound using the molding core mold 114 and the endless body 116 on each molding shaft 105 to form a spiral reinforcing strip (protruding strip portion) 100B around the outer periphery. Synthetic resin pipe 1 equipped with
When forming 00A, a cut groove 100C is continuously formed on the top of the reinforcing strip 100B, and then,
It is configured to close the kerf 100C, and
A cutter 118 is disposed in front of the synthetic resin pipe 100A in the helical advancing direction, and this cutter 1
Extrusion molding means 119 ahead of 18 in the spiral advancing direction
A molding die 120 is disposed to form the reinforcing strip 10.
A synthetic resin strip material (strip material) 111 of the same quality as the strip material 110 is supplied and attached to the top of 0B.

次に、このコルゲート管の製造装置の作動につ
いて説明する。
Next, the operation of this corrugated pipe manufacturing apparatus will be explained.

先ず、押出成形手段112の成形用ダイ113
から供給される半溶融状の条素材110は、一斉
に駆動回転される各成形軸105上間に亘るよう
巻回される。このとき各成形軸105上間には、
予め成形用芯型114が巻き付けられているの
で、前記条素材110は、コ字状部分110aと
長辺部分110bと短辺部分110cとを形作る
ように成形されている。またこの各成形軸105
がやや傾斜していることから、前記条素材110
は螺旋状に巻回されると共に、先行する各素材1
10の長辺部分110b上に後続する条素材11
0のコ字状部分110aと短辺部分110cとが
重なり、更にその重なり部分に金属線100Mが
介在される。そして一体的に溶着されて外周に螺
旋状の補強条100Bを備え、管壁内面を平坦と
した合成樹脂管100Aが順次形作られる。殊
に、前記コ字状部分110aにより螺旋状の補強
条100Bが、また互いに重合する長辺部分11
0bと短辺部分110cとにより管壁が形成され
るもので、この管壁内面は平坦となるのである。
First, the molding die 113 of the extrusion molding means 112
The semi-molten strip material 110 supplied from the forming shaft 105 is wound so as to span between the forming shafts 105 that are driven and rotated simultaneously. At this time, between the upper parts of each molding shaft 105,
Since the molding core 114 is wrapped in advance, the strip material 110 is formed to form a U-shaped portion 110a, a long side portion 110b, and a short side portion 110c. In addition, each molding shaft 105
Since the strip material 110 is slightly inclined, the strip material 110
is spirally wound, and each preceding material 1
The strip material 11 that follows on the long side portion 110b of 10
The U-shaped portion 110a of 0 and the short side portion 110c overlap, and a metal wire 100M is further interposed in the overlapping portion. Then, they are integrally welded to form a synthetic resin tube 100A having a spiral reinforcing strip 100B on the outer periphery and a flat inner surface of the tube wall. In particular, the spiral reinforcing strips 100B are formed by the U-shaped portion 110a, and the long side portions 11 overlap with each other.
0b and the short side portion 110c form a tube wall, and the inner surface of this tube wall is flat.

一方、前記合成樹脂管100Aの補強条100
B間外周には、無端体116が供給されるもの
で、上記したごとく互いに重合する長辺部分11
0bと短辺部分110cとを圧着して、その重合
状態をより一層高めて、その溶着を確実に行わせ
るものである。
On the other hand, the reinforcing strip 100 of the synthetic resin pipe 100A
An endless body 116 is supplied to the outer periphery between B, and the long side portions 11 overlap each other as described above.
0b and the short side portion 110c are pressed together to further enhance the state of polymerization, thereby ensuring reliable welding.

次いで、上記のごとく連続的に成形される合成
樹脂管100Aの補強条100B頂部にカツター
118を突刺して、該補強条100Bの頂部に切
溝100Cを連続的に形成し、この後、切溝10
0Cを介して芯型114が補強条100B内から
抜き取られて巻回始端部に戻るのである。なお、
前記カツター118は芯型114のV字状条溝1
14aまで刃先が突入するので、その切断を完全
に行うことができる。なお前記補強条100B
は、芯型114を抜き取るときに形崩れしない程
度にまで冷却しておく。
Next, the cutter 118 is inserted into the top of the reinforcing strip 100B of the synthetic resin pipe 100A that is continuously molded as described above to continuously form the kerf 100C at the top of the reinforcing strip 100B. 10
The core mold 114 is extracted from within the reinforcing strip 100B via 0C and returned to the winding start end. In addition,
The cutter 118 is connected to the V-shaped groove 1 of the core mold 114.
Since the cutting edge penetrates up to 14a, the cutting can be performed completely. In addition, the reinforcement strip 100B
The core mold 114 is cooled to such an extent that it does not lose its shape when removed.

この後、押出成形手段119の成形用ダイ12
0から半溶融状の帯状素材111を補強条100
Bの頂部に供給添設し、補強条100B頂部の切
溝100Cを閉鎖するのである。この帯状素材1
11は状素材110と同質の合成樹脂からなれも
ので、補強条100Bの頂部幅と同程度の板状に
形成されたものである。また上記切溝100C
は、芯型114の抜き取り時に拡開するもので、
抜き取り後において完全に閉合せず、稍開いた状
態となるが、この切溝100C内に半溶融状の前
記帯状素材111が一部進入した後固化し、前記
切溝100Cにより分断された補強条100Bの
頂部を強固に接合するバインダー的役割を果たす
のである。
After this, the molding die 12 of the extrusion molding means 119
A reinforcing strip 100 is formed from a semi-molten strip material 111.
It is supplied to the top of reinforcing strip 100B and closes kerf 100C at the top of reinforcing strip 100B. This strip material 1
Reference numeral 11 is made of the same synthetic resin as the shape material 110, and is formed into a plate shape having the same width as the top of the reinforcing strip 100B. Also, the above cut groove 100C
, which expands when the core mold 114 is extracted;
After being extracted, the material does not close completely and remains slightly open, but the semi-molten strip material 111 partially enters into the kerf 100C and solidifies, resulting in the reinforcing strip separated by the kerf 100C. It plays the role of a binder to firmly join the top of 100B.

なお、上記のようにして成形された合成樹脂管
100Aは、図示例では条素材110及び帯状素
材111の各接合境界を明示しているが、実際に
は全て同質の材料が熱溶着され一体化している。
Although the synthetic resin pipe 100A formed as described above clearly shows the joining boundaries of the strip material 110 and the strip material 111 in the illustrated example, in reality, all of the same materials are thermally welded and integrated. ing.

第22図に示すごとく本実施例装置により製造
された合成樹脂管100Aは、その管壁が互いに
重合して管軸方向に連続する長辺部分110bと
短辺部分110cとによつて形成されるもので、
その内面は平坦とされ、柔軟な可撓性及び低い管
内流路抵抗を実現したものであり、また螺旋状の
補強条100Bがコ字状部分110aによつて形
成されるもので、高い耐圧潰強度を与え得るもの
である。
As shown in FIG. 22, the synthetic resin pipe 100A manufactured by the apparatus of this embodiment has a pipe wall formed by a long side portion 110b and a short side portion 110c that overlap each other and are continuous in the tube axis direction. Something,
Its inner surface is flat, achieving flexibility and low resistance to the flow path inside the pipe, and the spiral reinforcing strip 100B is formed by the U-shaped portion 110a, providing high pressure collapse resistance. It can give strength.

なお、本発明は既述実施例において述べたごと
き構造に特定されるものではなく、適宜設計変更
及び改良を加え得るものである。例えば第23図
及び第24図に示すごとく押出成形手段112に
おける成形用ダイ113の下部から成形用芯型1
14を条素材110とともに送り出して、成形軸
105に螺旋状に巻回し、その巻回終端を成形用
ダイ113の下部に戻すようにしてもよい。
It should be noted that the present invention is not limited to the structure described in the above-mentioned embodiments, and design changes and improvements can be made as appropriate. For example, as shown in FIGS. 23 and 24, from the lower part of the molding die 113 in the extrusion molding means 112,
14 may be sent out together with the strip material 110, wound spirally around the forming shaft 105, and the end of the winding may be returned to the lower part of the forming die 113.

また、同図に示すごとくリング状とした無端体
116aを一本乃至数本用い、これを成形軸10
5上で整形される合成樹脂管100Aの補強条1
00B螺旋間に掛け渡すと共に、各リング状無端
体116aの下端部に重錘116cをもつプーリ
ーのごとき滑動体116bを掛設して、条素材1
10の互いに重合する長短辺部分110b,11
0cの圧着と、コ字状部分110aの変形防止と
を行わせるようにしてもよい。このとき前記重錘
116cを取替可能とし、前記長短辺部分100
b,110cの圧着荷重を調整できるようにして
もよい。
Further, as shown in the figure, one or several ring-shaped endless bodies 116a are used, and this is attached to the forming shaft 10.
Reinforcement strip 1 of synthetic resin pipe 100A to be shaped on 5
00B spirals, and a sliding body 116b such as a pulley having a weight 116c is hung from the lower end of each ring-shaped endless body 116a.
10 overlapping long and short side portions 110b, 11
0c and prevention of deformation of the U-shaped portion 110a may be performed. At this time, the weight 116c is made replaceable, and the long and short side portions 100
It may also be possible to adjust the crimp loads of b and 110c.

また、上記したいずれの実施例も、条素材11
0を平板状に成形して、これを半溶融状態とした
まま芯型114に巻き付けて成形したものである
が、これに代えてコ字状部分110aと長辺部分
110bと短辺部分110cとからなる条素材1
10を、予め成形用ダイ113で成形しておき、
この成形された条素材110を成形軸105上に
供給するようにしてもよく、さらには前記条素材
110として、単一のコ字状部分110aを設け
たものの外、第25図に示すごとく2個形成し、
或いは3個以上形成して、それぞれを成形時に重
合するようにしてもよい。また第26図に示すご
とくコ状部分110aの頂部に薄肉部110dを
予め形成しておき、その後の切溝100C形成を
簡単確実に行わ得るようにしてもよい。
In addition, in any of the above embodiments, the strip material 11
0 is molded into a flat plate shape, which is then wrapped in a semi-molten state around a core mold 114, but instead of this, a U-shaped portion 110a, a long side portion 110b, and a short side portion 110c are formed. Strip material 1 consisting of
10 is molded in advance with a molding die 113,
This formed strip material 110 may be supplied onto a forming shaft 105, and in addition to the strip material 110 provided with a single U-shaped portion 110a, the strip material 110 may be provided with two U-shaped portions as shown in FIG. Individually formed,
Alternatively, three or more may be formed and each may be polymerized during molding. Further, as shown in FIG. 26, a thin wall portion 110d may be formed in advance at the top of the U-shaped portion 110a, so that the subsequent formation of the kerf 100C can be easily and reliably performed.

また、帯状素材111は既述実施例のごとく切
溝100C内に進入するようにしてもよいが、第
27図乃至第29図に示すごとく進入しないよう
にしてもよく、また同第28図に示すごとくこの
帯状素材111の幅を切溝100Cの幅よりやや
大きい程度としてもよく、さらには第29図に示
すごとく帯状素材111の形状を補強条100B
を全体的に覆うような形状としてもよい。
Further, the strip material 111 may enter into the cut groove 100C as in the previously described embodiment, but it may also not enter into the groove 100C as shown in FIGS. 27 to 29, or as shown in FIG. As shown, the width of this strip material 111 may be slightly larger than the width of the cut groove 100C, and further, as shown in FIG.
It may be shaped so as to cover the entire area.

また、補強条100Bの頂部に形成する切溝1
00Cはカツター118の刃厚を極薄くして、第
30図に示すごとく〓間ができないようにしても
よい。
Moreover, the cut groove 1 formed at the top of the reinforcing strip 100B
For 00C, the blade thickness of the cutter 118 may be made extremely thin so that there is no gap as shown in FIG.

また、成形用芯型114及び無端体116はベ
ルト材で形成する外、硬質ゴム、合成樹脂、皮革
等により作成することもでき、さらにはアルミニ
ウムやアルミニウム合金等の金属によつて形成す
ることもできる。この場合多数のブロツクに分割
して、これをワイヤー等で屈曲可能に連結すれば
よい。このとき内側となる面に薄いベルト材を添
設してもよい。またその形状も台形断面の他、必
要に応じて例えば半円状や角形、丸形断面のもの
としてもよい。
In addition, the molding core mold 114 and the endless body 116 can be made of hard rubber, synthetic resin, leather, etc., in addition to being made of belt material, and can also be made of metal such as aluminum or aluminum alloy. can. In this case, it may be divided into a large number of blocks, and these blocks may be connected in a bendable manner using wires or the like. At this time, a thin belt material may be attached to the inner surface. In addition to the trapezoidal cross section, the cross section may also be semicircular, square, or round, if necessary.

第31図はこの半円状断面の補強条100Bを
有する合成樹脂管の一例を示すものであり、前記
実施例の各部に相当する箇所には同一符号を付し
てその説明を省略する。
FIG. 31 shows an example of a synthetic resin pipe having a reinforcing strip 100B with a semicircular cross section, and the same reference numerals are given to the parts corresponding to the parts of the previous embodiment, and the explanation thereof will be omitted.

ここで、得られたコルゲート管は、その凸条部
分に、形成される切溝100Cを閉塞しその凸条
部分の補強をも行う帯状素材(補強層)が、その
表面に、第32〜34図のごとく、多数の細かい
突条100Nt、100Nu、100Nvを有して
補強力を強化してもよい。
Here, the obtained corrugated pipe has a band-shaped material (reinforcing layer) on its surface that closes the kerf 100C to be formed and also reinforces the protruding portion. As shown in the figure, a large number of fine protrusions 100Nt, 100Nu, and 100Nv may be provided to strengthen the reinforcing force.

さて以上のごときコルゲート管の製造に際し
て、帯状体の重ね合わせ部分を押圧し接合するた
めに、押圧部材(第1図の5、第4図の5b及び
5′b、第9図の5xb及び5′xb、第18図の1
16)及びエンドレスベルト状成形用芯型(第1
8図の114)が用いられている。しかしなが
ら、これらの押圧部材及び芯型としては、通常動
力伝達に供せられるエンドレスベルトが簡便に利
用できるが、このエンドレスベルトが動力伝達を
主目的とするために、その表面が動力伝達対象の
プーリーなどに対してできるだけすべらないよう
に処理されている(すべり摩擦係数が大きい)。
Now, when manufacturing the above corrugated pipe, in order to press and join the overlapping parts of the strips, pressing members (5 in Fig. 1, 5b and 5'b in Fig. 4, 5xb and 5 in Fig. 9) are used. 'xb, 1 in Figure 18
16) and core mold for endless belt-like molding (first
114) in Figure 8 is used. However, as these pressing members and core types, endless belts that are normally used for power transmission can be easily used, but since the main purpose of this endless belt is to transmit power, the surface of the endless belt is similar to that of the pulley to which power is transmitted. It has been treated to prevent slipping as much as possible (the coefficient of sliding friction is large).

しかし上記コルゲート管の製造に用いる押圧部
材や芯型としては、逆に、第35図のごとく芯型
214の基層221と、この基層の表面のうち、
マンドレルに近い部分に形成され、すべり摩擦係
数が小さく、コルゲート管との係合前のマンドレ
ルとの接触時にすべりを許容するすべり層222
とからなるものが好適に用いられる。
However, as for the pressing member and the core mold used in manufacturing the above-mentioned corrugated pipe, on the contrary, as shown in FIG. 35, among the base layer 221 of the core mold 214 and the surface of this base layer,
A sliding layer 222 is formed near the mandrel, has a small sliding friction coefficient, and allows sliding when in contact with the mandrel before engagement with the corrugated pipe.
Those consisting of the following are preferably used.

つまり、押圧部材や芯型をマンドレルに対して
すべりやすくすることによつて、押圧部材や芯型
は、第36図のごとく溶融状態の合成樹脂帯状体
との係合前(一部係合時を含む)において、マン
ドレル204と接触しても、接触抵抗が小さいの
で螺旋ピツチPが全体的に所定の大きさに均一に
維持され、それによつて、所定の耐圧強度を備え
たコルゲート管が得られるわけである。なお、第
36図のマンドレル204には押圧部材が、芯型
214と同様、胴巻きされているが、図示を省略
している。また223は芯型214をマンドレル
204との間で張設するためのもう1つのマンド
レルである。
In other words, by making the pressing member and the core mold slippery against the mandrel, the pressing member and the core mold can be easily slid against the mandrel before the pressing member and the core mold engage with the molten synthetic resin strip as shown in FIG. ), even if it makes contact with the mandrel 204, the contact resistance is small, so the helical pitch P is uniformly maintained at a predetermined size as a whole, thereby obtaining a corrugated pipe with a predetermined pressure resistance strength. That's why. Note that a pressing member is wrapped around the mandrel 204 in FIG. 36, similar to the core mold 214, but is not shown. Further, 223 is another mandrel for stretching the core mold 214 and the mandrel 204.

第37図のごとき押圧部材314についても同
様であるが、第38〜39図のごとく、螺旋状に
捲回される間に接触することがあり、この接触抵
抗を小さくするため押圧部材314の側壁にもす
べり層322を設け、それによつて螺旋模様が変
形することを防止している。
The same applies to the pressing member 314 as shown in FIG. 37, but as shown in FIGS. 38 to 39, the side wall of the pressing member 314 may come into contact with the pressing member 314 while being wound in a spiral shape, and in order to reduce this contact resistance. A slipping layer 322 is also provided on the spiral pattern to prevent the spiral pattern from being deformed.

ここで芯型214のすべり層222及び押圧部
材314のそれ322の材料として、四フツ化エ
チレン樹脂(テフロン樹脂)、ポリアミド樹脂
(ナイロン樹脂)、ポリアセタール樹脂(ジユラコ
ン樹脂)などの合成樹脂、又はコツトン織布、テ
トロン織布などの織布が好適に利用できる。コツ
トン織布としては、具体的には、木綿の単繊維を
たばねた太さ0.3mmを糸を十文字に織つた厚み1.2
mmのもの(“CC帆布”と称される)が例示でき、
この織布に合成ゴム(クツシヨンゴム)を貼り合
せ、そのゴムを押圧部材又は芯型の基層に適宜接
着剤にて接着する。一方テトロン織布としては、
具体的には、飽和ポリエステル樹脂(テトロンな
ど)の単繊維をたばねた太さ0.8mmの糸を十文字
に編み込んで接着剤でかためたもの(例えば“テ
トロン帆布”)が挙げられる。
Here, the material of the sliding layer 222 of the core mold 214 and that 322 of the pressing member 314 is a synthetic resin such as tetrafluoroethylene resin (Teflon resin), polyamide resin (nylon resin), polyacetal resin (Dyuracon resin), or cotton. Woven fabrics such as woven fabrics and Tetoron woven fabrics can be suitably used. Specifically, Kotsuton woven fabric is 1.2 mm thick, made by weaving cotton single fibers with a thickness of 0.3 mm in a criss-cross pattern.
mm (referred to as “CC canvas”) is an example.
Synthetic rubber (cushion rubber) is laminated to this woven fabric, and the rubber is adhered to the pressing member or the base layer of the core type with an appropriate adhesive. On the other hand, as Tetoron woven fabric,
A specific example is one in which 0.8 mm thick thread made from single fibers of saturated polyester resin (such as Tetron) is woven in a criss-cross pattern and hardened with adhesive (for example, "Tetron Canvas").

なお、押圧部材及び芯型の基層の材料として
は、通常のエンドレスベルトに適用できるものが
そのまま適用できる。
Note that as the materials for the pressing member and the base layer of the core type, materials applicable to ordinary endless belts can be used as they are.

(ヘ) 発明の効果 この発明によれば、コルゲート管接合用押圧部
材又は保形用芯型が、少なくともマンドレルとの
接触部にすべり摩擦係数の小さい層を有している
ので、溶融状態の合成樹脂帯状体との係合前(一
部係合時を含む)において、マンドレルとの接触
による螺旋ピツチの乱れが少なく、それによつて
均一な螺旋ピツチのコルゲート管を得ることがで
きる。
(f) Effects of the Invention According to this invention, since the pressing member for joining corrugated pipes or the shape-retaining core mold has a layer with a small sliding friction coefficient at least in the contact portion with the mandrel, it is possible to easily synthesize the molten state. Before engagement with the resin strip (including during partial engagement), there is little disturbance of the helical pitch due to contact with the mandrel, thereby making it possible to obtain a corrugated pipe with a uniform helical pitch.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係るコルゲート管の製造装
置の一例を示す要部機能説明斜視図、第2図はそ
の装置で得られるコルゲート管の要部縦断面図、
第3図は他の例を示す第2図相当図、第4図は他
の例を示す第1図相当図、第5図はその第2図相
当図、第6図A,B,C,D,E、第7図及び第
8図はいずれもその他の例を示す第2図相当図、
第9図は更に他の例を示す第1図相当図、第10
図はその第2図相当図、第11図は更に他の例を
示すコルゲート管の一部側面説明図、第12図は
そのコルゲート管の縦断面図、第13図はその縦
断面図の要部拡大断面図、第14〜17図は更に
他の例を示す第13図相当図、第18図はこの発
明に係るもう1つの実施例を示す平面図、第19
図は要部の一部切欠拡大平面図、第20図はその
側面図、第21図は成形軸上で成型された条素材
の断面図、第22図は成型工程説明図、第23図
は別の実施例を示す要部の側面図、第24図はそ
の平面図、第25〜34図は条素材の異なるパタ
ーンを示す断面又は端面図である。第35図は芯
型の他の実施例を示す横断面図、第36図はその
芯型の使用状態を示す平面図、第37図は押圧部
材の他の実施例を示す横断面図、第38はその押
圧部材を用いた場合の第2図相当図、第39図は
その押圧部材の全体構造説明図である。 1……コルゲート管の連続製造装置、2……合
成樹脂押出機、3……補強材押出機、4……回転
マンドレル、A……帯状体、B……可撓性補強
材、C……螺旋管、D……螺旋凸条(凸条部分)、
F……コルゲート管。
FIG. 1 is a functional explanatory perspective view of an example of a corrugated pipe manufacturing apparatus according to the present invention, and FIG. 2 is a vertical cross-sectional view of a corrugated pipe obtained by the apparatus.
Figure 3 is a diagram equivalent to Figure 2 showing another example, Figure 4 is a diagram equivalent to Figure 1 showing another example, Figure 5 is a diagram equivalent to Figure 2, Figure 6 A, B, C, D, E, Figures 7 and 8 are all equivalent to Figure 2 showing other examples;
Fig. 9 is a diagram corresponding to Fig. 1 showing still another example, and Fig. 10 shows another example.
The figure is a diagram corresponding to Figure 2, Figure 11 is a partial side explanatory view of a corrugated pipe showing another example, Figure 12 is a vertical cross-sectional view of the corrugated pipe, and Figure 13 is an essential view of the vertical cross-sectional view. 14 to 17 are views corresponding to FIG. 13 showing still another example, FIG. 18 is a plan view showing another embodiment of the present invention, and FIG.
The figure is a partially cutaway enlarged plan view of the main part, Figure 20 is a side view, Figure 21 is a sectional view of the strip material molded on the forming axis, Figure 22 is an explanatory diagram of the molding process, and Figure 23 is FIG. 24 is a side view of the main part showing another embodiment, FIG. 24 is a plan view thereof, and FIGS. 25 to 34 are cross-sectional or end views showing different patterns of the strip material. FIG. 35 is a cross-sectional view showing another embodiment of the core mold, FIG. 36 is a plan view showing how the core mold is used, and FIG. 37 is a cross-sectional view showing another embodiment of the pressing member. 38 is a view corresponding to FIG. 2 when the pressing member is used, and FIG. 39 is an explanatory diagram of the entire structure of the pressing member. DESCRIPTION OF SYMBOLS 1... Continuous manufacturing apparatus for corrugated pipes, 2... Synthetic resin extruder, 3... Reinforcement extruder, 4... Rotating mandrel, A... Band-shaped body, B... Flexible reinforcing material, C... Spiral tube, D...Spiral convex line (convex line part),
F...Corrugated pipe.

Claims (1)

【特許請求の範囲】 1 マンドレルの周囲に、押出機から溶融状態の
合成樹脂帯状体を供給し螺旋状に捲回して重ね合
わせつつ、帯状体の内部もしくは裏面に帯状体の
長手方向に沿つて補強用空間部を区画形成して、
表面に螺旋の凹・凸状部分を形成されるコルゲー
ト管において、 凸状部分は、コルゲート管がマンドレル上に保
持される間、溶融状態の合成樹脂帯状体で形成さ
れる上記補強用空間内に保形用芯型が挿入されて
保形され、 次いで補強用空間部の区画層がカツトされて保
形用芯型が取り出された後そのカツト部が別に供
給される帯状材で外部から閉塞され、 且つその帯状材の外周面の少なくとも頂部がそ
の頂部の長手方向に沿つて細かい補強用突条を多
数有してなるコルゲート管。 2 マンドレルの周囲に、押出機から溶融状態の
合成樹脂帯状体を供給し螺旋状に捲回して重ね合
わせつつ、帯状体の内部もしくは裏面に帯状体の
長手方向に沿つて可撓性補強材を挿入又は補強用
空間部を区画形成して、表面に螺旋の凹・凸状部
分を形成されるコルゲート管がマンドレル上に保
持される間、コルゲート管の凸状部分及び/又は
凹状部分にコルゲート管の半周以上にわたつて係
合し、コルゲート管の帯状体の重ね合わせ部分を
マンドレル上へ押圧し接合を行うための押圧部材
であつて、 無端ベルト状の基層と、この基層の表面のう
ち、少なくともマンドレルに近い部分に形成さ
れ、すべり摩擦係数が小さくコルゲート管との係
合前のマンドレルとの接触時にすべりを許容する
すべり層とからなるコルゲート管接合用押圧部
材。 3 マンドレルの周囲に、押出機から溶融状態の
合成樹脂帯状体を供給し螺旋状に捲回して重ね合
わせつつ、帯状体の内部もしくは裏面に帯状体の
長手方向に沿つて補強用空間部を区画形成して、
表面に螺旋の凹.凸状部分を形成されるコルゲー
ト管がマンドレル上に保持される間、溶融状態の
合成樹脂帯状体で形成される上記補強用空間内に
連続的に挿入され、コルゲート管を帯状体の重ね
合わせ部分をマンドレル上へ押圧し接合を行い、
次いで補強用空間部の区画層がカツトされて取り
出される無単ベルト状の押圧部材であつて、 無端ベルト状の基層と、この基層の表面のう
ち、少なくともマンドレルに近い部分に形成さ
れ、すべり摩擦係数が小さくコルゲート管に挿入
する前のマンドレルとの接触時にすべりを許容す
るすべり層とからなるコルゲート管接合用押圧部
材。 4 マンドレルの周囲に、押出機から溶融状態の
合成樹脂帯状体を供給し螺旋状に捲回して重ね合
わせつつ、帯状体の内部もしくは裏面に帯状体の
長手方向に沿つて補強用空間部を区画形成して、
表面に螺旋の凹・凸状部分を形成されるコルゲー
ト管がマンドレル上に保持される間、溶融状態の
合成樹脂帯状体で形成される上記補強用空間内に
連続的に挿入され、コルゲート管の帯状体の保形
を行い、次いで補強用空間部の区画層がカツトさ
れて取り出される無端ベルト状の保形用芯型であ
つて、 無端ベルト状の基層と、この基層の表面のう
ち、少なくともマンドレルに近い部分に形成さ
れ、すべり摩擦係数が小さくコルゲート管に挿入
する前のマンドレルとの接触時にすべりを許容す
るすべり層とからなる保形用芯型。 5 すべり層が、コツトン織布、テトロン織布、
テフロン樹脂層、又はナイロン樹脂層である請求
項2又は3記載の押圧部材又は請求項4記載の保
形用芯型。
[Scope of Claims] 1. A molten synthetic resin strip is supplied from an extruder around a mandrel, and while it is spirally wound and overlapped, a synthetic resin strip is supplied inside or on the back side of the strip along the longitudinal direction of the strip. By forming a reinforcement space into sections,
In a corrugated pipe that has spiral concave and convex portions formed on its surface, the convex portions are inserted into the reinforcing space formed by the molten synthetic resin strip while the corrugated tube is held on the mandrel. The shape-retaining core mold is inserted and shape-retained, and then the partitioning layer of the reinforcing space is cut and the shape-retaining core mold is taken out, and the cut portion is closed from the outside with a separately supplied strip material. and a corrugated pipe in which at least the top portion of the outer circumferential surface of the strip material has a large number of fine reinforcing ridges along the longitudinal direction of the top portion. 2. A molten synthetic resin strip is supplied from an extruder around the mandrel, and while it is spirally wound and overlaid, a flexible reinforcing material is attached inside or on the back side of the strip along the longitudinal direction of the strip. While the corrugated pipe, which defines a space for insertion or reinforcement and has a spiral concave and convex portion on its surface, is held on a mandrel, the corrugated pipe is attached to the convex portion and/or concave portion of the corrugated tube. A pressing member that engages over more than half the circumference of the corrugated pipe and presses and joins the overlapping portion of the corrugated pipe band onto the mandrel, and includes an endless belt-shaped base layer and the surface of this base layer. A pressing member for joining corrugated pipes, comprising a sliding layer formed at least in a portion close to the mandrel and having a small sliding friction coefficient that allows slipping when in contact with the mandrel before engagement with the corrugated pipe. 3. A molten synthetic resin strip is supplied from an extruder around the mandrel, and while it is spirally wound and overlapped, a reinforcing space is defined inside or on the back side of the strip along the longitudinal direction of the strip. form,
Spiral concave on the surface. While the corrugated tube in which the convex portion is formed is held on the mandrel, it is continuously inserted into the reinforcing space formed by the molten synthetic resin strip, and the corrugated tube is inserted into the overlapping portion of the strip. Press onto the mandrel to join.
Next, the dividing layer of the reinforcing space is cut and taken out.The pressing member is in the form of an endless belt, and is formed on the surface of this base layer at least in a portion close to the mandrel to prevent sliding friction. A pressing member for joining corrugated pipes, comprising a sliding layer that has a small coefficient and allows slipping when in contact with a mandrel before being inserted into a corrugated pipe. 4. A molten synthetic resin strip is supplied from an extruder around the mandrel, and while it is spirally wound and overlaid, a reinforcing space is defined inside or on the back side of the strip along the longitudinal direction of the strip. form,
While the corrugated pipe, which has spiral concave and convex portions formed on its surface, is held on the mandrel, it is continuously inserted into the reinforcing space formed by the molten synthetic resin strip, and the corrugated pipe is An endless belt-like shape-retaining core mold that maintains the shape of the strip and then cuts and takes out the partitioning layer of the reinforcing space, the endless belt-like base layer and at least the surface of this base layer. A shape-retaining core type consisting of a sliding layer that is formed near the mandrel and has a small sliding friction coefficient that allows it to slip when it comes into contact with the mandrel before being inserted into the corrugated pipe. 5 The slip layer is made of cotton woven fabric, Tetoron woven fabric,
The pressing member according to claim 2 or 3, or the shape-retaining core mold according to claim 4, which is a Teflon resin layer or a nylon resin layer.
JP1208608A 1989-08-11 1989-08-11 Corrugated pipe, pressing member, and core die Granted JPH02134484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1208608A JPH02134484A (en) 1989-08-11 1989-08-11 Corrugated pipe, pressing member, and core die

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1208608A JPH02134484A (en) 1989-08-11 1989-08-11 Corrugated pipe, pressing member, and core die

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP63121285 Division

Publications (2)

Publication Number Publication Date
JPH02134484A JPH02134484A (en) 1990-05-23
JPH0480274B2 true JPH0480274B2 (en) 1992-12-18

Family

ID=16559029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1208608A Granted JPH02134484A (en) 1989-08-11 1989-08-11 Corrugated pipe, pressing member, and core die

Country Status (1)

Country Link
JP (1) JPH02134484A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7198742B2 (en) * 2003-12-30 2007-04-03 Kimberly-Clark Worldwide, Inc. Apparatus and method for deforming sheet material
CA2582288C (en) * 2004-06-25 2012-10-30 Nova-Duct Technologies Pty Ltd Mandrel assembly for manufacturing tubular products
JP4960154B2 (en) * 2007-06-21 2012-06-27 青木マリーン株式会社 Sand ship
WO2009084339A1 (en) * 2007-12-28 2009-07-09 Fitt Toyox Co., Ltd. Metal-like hose
JP4685124B2 (en) * 2008-03-18 2011-05-18 クラレプラスチックス株式会社 Manufacturing method of spiral molded body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56101832A (en) * 1980-01-17 1981-08-14 Toyo Chem Co Ltd Manufacture of corrugated pipe

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56101832A (en) * 1980-01-17 1981-08-14 Toyo Chem Co Ltd Manufacture of corrugated pipe

Also Published As

Publication number Publication date
JPH02134484A (en) 1990-05-23

Similar Documents

Publication Publication Date Title
EP0046080B1 (en) Method of and apparatus for making reinforced hoses and pipes
US4395298A (en) Method and apparatus for making toothed belts and belt made employing same
EP1030776B1 (en) Spiral formed products and method of manufacture
EP0429506B1 (en) Spiral-wound tube
US3938929A (en) Flexible plastics hose making apparatus
AU2006269189A1 (en) Method and apparatus for making plastic drainage pipe reinforced by steel strips and the plastic drainage pipe reinforced by steel
US4957792A (en) Self-molding hose and a continuous vulcanization method
US6231711B1 (en) Methods and apparatus for making paint roller covers with thermoplastic cores
EP0816050B1 (en) Process and equipment for manufacturing pipes from recycled thermoplastic resins
US5862591A (en) Method for manufacturing paint rollers
JPH0480274B2 (en)
JP3868274B2 (en) Method for producing synthetic resin hose having joints at both ends
JP6325366B2 (en) Method and apparatus for manufacturing synthetic resin hose
US9239121B1 (en) Valley shaping reinforcement
US4063988A (en) Machine and method for forming continuous tubing
KR100290302B1 (en) Tripple pipe and manufacturing apparatus and its method
JP2001050435A (en) Compound flexible pipe and manufacture thereof
JP2607111B2 (en) Synthetic resin tube and method of manufacturing the same
CA2287126C (en) Methods and apparatus for making paint roller covers with thermoplastic cores
EP0033798B1 (en) Method of manufacturing flexible hose
JPH08258177A (en) Synthetic resin pipe and production thereof
JP2567616B2 (en) Synthetic resin pipe manufacturing equipment
JPH0757536B2 (en) Synthetic resin pipe manufacturing equipment
JPH01105729A (en) Plastic helically wound double tube and manufacture thereof
JP3037953B2 (en) Manufacturing method of pressure resistant synthetic resin pipe