JP3619286B2 - Underwater laser welding equipment - Google Patents

Underwater laser welding equipment Download PDF

Info

Publication number
JP3619286B2
JP3619286B2 JP16119395A JP16119395A JP3619286B2 JP 3619286 B2 JP3619286 B2 JP 3619286B2 JP 16119395 A JP16119395 A JP 16119395A JP 16119395 A JP16119395 A JP 16119395A JP 3619286 B2 JP3619286 B2 JP 3619286B2
Authority
JP
Japan
Prior art keywords
shield gas
nozzle
tip
underwater
processing head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16119395A
Other languages
Japanese (ja)
Other versions
JPH0910981A (en
Inventor
桂 大脇
祐孝 金澤
圭之介 前田
和之 土屋
末美 平田
昭浩 西見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Scube Co Ltd
Original Assignee
IHI Scube Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Scube Co Ltd filed Critical IHI Scube Co Ltd
Priority to JP16119395A priority Critical patent/JP3619286B2/en
Publication of JPH0910981A publication Critical patent/JPH0910981A/en
Application granted granted Critical
Publication of JP3619286B2 publication Critical patent/JP3619286B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1462Nozzles; Features related to nozzles
    • B23K26/1464Supply to, or discharge from, nozzles of media, e.g. gas, powder, wire
    • B23K26/1476Features inside the nozzle for feeding the fluid stream through the nozzle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/1224Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/146Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor the fluid stream containing a liquid

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、水中レーザ溶接装置に関するものである。
【0002】
【従来の技術】
水中に没しているワーク(被溶接材)をレーザ溶接する技術としては、例えば特願平3−189752号(特開平5−31591号公報)等が既に提案されており、ここに開示されている水中レーザ溶接装置では、下部を開口したチャンバ状のドライ化装置により水中に没しているワークの溶接部全域を包囲し、前記ドライ化装置内の水をアルゴンガス等の注入により排除して空洞を形成し、前記ドライ化装置内に位置調整可能に装備されているレーザ照射光学系に光ファイバを介して導いたレーザ光を前記ワークに向け照射して溶接作業を行うようになっている。
【0003】
【発明が解決しようとする課題】
しかしながら、上記した如き従来の水中レーザ溶接装置では、複雑且つ大型のドライ化装置が必要となる為に構造が肥大化し、複雑な構造物内や狭隘箇所に対するアクセス性及び操作性が悪いという不具合があった。
【0004】
本発明は上述の実情に鑑みてなしたもので、複雑且つ大型のドライ化装置を必要とすることなく溶接部の局所的な排水を行い得る水中レーザ溶接装置を提供することによって、複雑な構造物内や狭隘箇所に対するアクセス性及び操作性を向上することを目的としている。
【0005】
【課題を解決するための手段】
本発明は、YAGレーザ発振器から発振されるレーザ光を光ファイバを介して水中の加工ヘッドに導き、該加工ヘッド内の光学レンズ系を介して集光したレーザ光を前記加工ヘッド先端から水中のワークに向け照射して溶接作業を行う水中レーザ溶接装置であって、前記加工ヘッドの先端側にレーザスポット付近まで延び且つ先端中央にノズル口を開口したノズル部を形成すると共に、該ノズル部のノズル口周囲にシールドガスに対し旋回力を付与し得るよう前記ノズル口を中心とする円周方向に傾斜した複数のシールドガス補助噴出孔を開口し、前記ノズル部内及び各シールドガス補助噴出孔の基端側にシールドガスを導入し得るよう構成したことを特徴とするものである。
【0006】
また、本発明においては、ノズル部内と各シールドガス補助噴出孔の基端側とに対しシールドガスを夫々別系統で導入し得るよう構成することが好ましい。
【0007】
更に、ノズル部の基端側から先端側に向けて末広がりとなるスカート形状を有し且つ前記ノズル部の先端で各シールドガス補助噴出孔を取り囲むよう環状に開口する水噴出口を前記ノズル部に穿設し、前記水噴出口の基端側に水を導入し得るよう構成することも可能である。
【0008】
【作用】
従って、本発明では、ノズル部内及び各シールドガス補助噴出孔の基端側にシールドガスを導入すると、ノズル部先端のノズル口から噴射されるメインのシールドガスの周囲に、各シールドガス補助噴出孔から円周方向に噴射されたシールドガスにより旋回流が形成されるので、このようなシールドガスの旋回流によりワークの溶接部周囲が局所的に効率良く強制排水されてドーム状の良好なシールドガス雰囲気が形成される。
【0009】
更に、ノズル部内と各シールドガス補助噴出孔の基端側とに対しシールドガスを夫々別系統で導入し得るよう構成した場合には、ノズル口と各シールドガス補助噴出孔とから夫々噴射されるシールドガスの流量や圧力を別個に調整することが可能となる。
【0010】
また、ノズル部の基端側から先端側に向けて末広がりとなるスカート形状を有し且つ前記ノズル部の先端で各シールドガス補助噴出孔を取り囲むよう環状に開口する水噴出口を前記ノズル部に穿設し、前記水噴出口の基端側に水を導入し得るよう構成した場合には、シールドガスが前記ノズル部のノズル口及び該ノズル口周囲の各シールドガス補助噴出孔からワークの溶接部に向け噴射されることになり、しかも、前記ノズル口及び各シールドガス補助噴出孔から噴射されるシールドガスを包囲する如く水噴出口の先端から円筒状に噴射されることになるので、この円筒状に噴射された水で包囲されるシールドガスによりワークの溶接部周囲が局所的に効率良く強制排水されてドーム状の良好なシールドガス雰囲気が形成される。
【0011】
【実施例】
以下本発明の実施例を図面を参照しつつ説明する。
【0012】
図1〜図3は本発明の第一実施例を示すものであり、水1を貯留した金属製の大型容器2の底部に貫通配置した配管3をワークとして前記大型容器2の底部に隅肉溶接する場合を例示しており、前記配管3の実質的な溶接作業を行う為の加工ヘッド4が、支持ロッド5により水中に吊り降ろされた多関節マニピュレータ6により支持され、前記支持ロッド5は、大型容器2の上部に架設した門型クレーン7により三軸方向(上下、前後、左右の互いに直角な三方向)に移動可能に支持されており、この門型クレーン7による支持ロッド5の移動と前記多関節マニピュレータ6による操作とによって、前記加工ヘッド4が所定の溶接方向(配管3の円周方向)に移動されるようになっている。
【0013】
前記加工ヘッド4の基端には、水1の外に配置されたYAGレーザ発振器8から導いた光ファイバ9が接続されており、前記YAGレーザ発振器8から発振されるレーザ光10が光ファイバ9を介して伝送されるようになっている。
【0014】
前記加工ヘッド4内には、複数枚の集光レンズ11からなる光学レンズ系12が保持されており、前記光ファイバ9により加工ヘッド4まで伝送されたレーザ光10が、前記光学レンズ系12を介し集光されて加工ヘッド4の先端から前記配管3の溶接部に向け照射されるようになっている。
【0015】
また、前記加工ヘッド4のケーシング13の先端は、レーザスポット14付近まで延びる先細り形状のノズル部15として形成されており、該ノズル部15を含む加工ヘッド4のケーシング13には、加工ヘッド4の基端から前記ノズル部15の先端まで貫通するワイヤ送給ノズル16が穿設され、該ワイヤ送給ノズル16の基端には、水1の外に配置されたワイヤ送給装置19から導いたワイヤコンジット18が接続されており、前記ワイヤ送給装置19から送給される溶接用ワイヤ20が、前記ワイヤコンジット18内に挿通されてワイヤ送給ノズル16の先端から前記レーザ光10のレーザスポット14に向け案内されるようにしてある。
【0016】
ここで、前記加工ヘッド4のノズル部15は、ワイヤ送給ノズル16を通してレーザスポット14に案内される溶接用ワイヤ20が、レーザ光10の軸心に対し適切な挿入角度θで案内されるような適切な先細り形状を付しておくと良い。
【0017】
更に、前記加工ヘッド4のケーシング13におけるワイヤ送給ノズル16とは円周方向に異なる位相に、加工ヘッド4の基端からノズル部15付近まで延びて該ノズル部15内に貫通するガス流路21が穿設されており、該ガス流路21の基端には、水1の外に配置されたシールドガスボンベ22から導いたガス供給管23が接続されており、前記シールドガスボンベ22から供給されるシールドガス24(アルゴンガス等の不活性ガス)が、前記ガス供給管23内を流れてガス流路21からノズル部15内に導入し該ノズル部15の先端から配管3の溶接部に向け噴射されるようになっている。
【0018】
ここで、ノズル部15のノズル口28周囲には、シールドガス24に対し旋回力を付与し得るよう前記ノズル口28を中心とする円周方向に傾斜した複数のシールドガス補助噴出孔29(図3参照)が開口されており、各シールドガス補助噴出孔29の基端側には、シールドガス24を別系統で導入し得るようにしてある(図2参照)。
【0019】
尚、図中26は前記ガス供給管のシールドガスボンベ22側に備えた電磁弁である。
【0020】
而して、電磁弁26を開けてシールドガスボンベ22からシールドガス24をガス供給管23に導入すると共に、各シールドガス補助噴出孔29へも別系統でシールドガス24を導入すると、ノズル部15先端のノズル口28から噴射されるメインのシールドガス24の周囲に、各シールドガス補助噴出孔29から円周方向に噴射されたシールドガス24により旋回流が形成されるので、このようなシールドガス24の旋回流により配管3の溶接部周囲が局所的に効率良く強制排水されてドーム状の良好なシールドガス雰囲気が形成される。
【0021】
特に、本実施例の如く、ノズル部15先端のノズル口28から噴射されるシールドガス24と、各シールドガス補助噴出孔29から噴射されるシールドガス24とを別系統とした場合には、ノズル口28と各シールドガス補助噴出孔29とから夫々噴射されるシールドガス24の流量や圧力を別個に調整することが可能となる。
【0022】
次いで、ワイヤ送給装置19から送給される溶接用ワイヤ20をワイヤコンジット18を介して加工ヘッド4のワイヤ送給ノズル16に導き、該ワイヤ送給ノズル16の先端から前記配管3の溶接部に対し溶接用ワイヤ20を随時送給すると共に、YAGレーザ発振器8から発振されるレーザ光10を光ファイバ9を介して水中の加工ヘッド4に導き、該加工ヘッド4内の光学レンズ系12を介して集光したレーザ光10を前記加工ヘッド4先端から水中の配管3の溶接部に向け照射して溶接作業を行う。
【0023】
従って、上記実施例によれば、複雑且つ大型のドライ化装置を必要とすることなく、加工ヘッド4のノズル部15先端のノズル口28からシールドガス24の旋回流を噴射して前記溶接部の局所的な排水を効率良く行うことができるので、複雑な構造物内や狭隘箇所に対するアクセス性及び操作性を著しく向上することができる。
【0024】
図4及び図5は本発明の第二実施例を示すもので、前述した第一実施例と略同様に構成した加工ヘッド4の先端に、レーザスポット14付近まで延びるフラットボトム形状のノズル部27が形成されており、該ノズル部27を含む加工ヘッド4のケーシング13には、加工ヘッド4の基端から前記ノズル部27の先端まで貫通するワイヤ送給ノズル16が穿設され、ワイヤ送給装置19からワイヤコンジット18を介して送給される溶接用ワイヤ20が、ワイヤ送給ノズル16の先端からレーザ光10のレーザスポット14に向け案内されるようにしてある。
【0025】
ここで、前記ワイヤ送給ノズル16には、該ワイヤ送給ノズル16を通してレーザスポット14に案内される溶接用ワイヤ20が、レーザ光10の軸心に対し適切な挿入角度θで案内されるよう適切な屈曲形状を付しておく。
【0026】
更に、前記加工ヘッド4のケーシング13におけるワイヤ送給ノズル16とは円周方向に異なる位相に、加工ヘッド4の基端からノズル部27付近まで延びて該ノズル部27内に貫通するガス流路21が穿設されており、該ガス流路21の基端には、水1の外に配置されたシールドガスボンベ22から導いたガス供給管23が接続されており、前記シールドガスボンベ22から供給されるシールドガス24(アルゴンガス等の不活性ガス)が、前記ガス供給管23内を流れてガス流路21からノズル部27内に導入されるようになっている。
【0027】
また、前記ノズル部27の先端中央に開口するノズル口28の周囲には、前記ノズル部27内に連通する複数のシールドガス補助噴出孔29が開口されており、各シールドガス補助噴出孔29は前記ノズル部27の基端側から先端側に向けて互いに末広がり状に且つノズル口28を中心とする円周方向に傾斜させた状態で配置されるようになっている。
【0028】
ここで、前記ワイヤ送給ノズル16は、各シールドガス補助噴出孔29の間を通すことにより干渉が生じないようにしてある。
【0029】
更に、前記ノズル部27には、該ノズル部27の基端側から先端側に向けて末広がりとなるスカート形状を有し且つ前記ノズル部27の先端で各シールドガス補助噴出孔29を取り囲むよう環状に開口する水噴出口30が穿設され、前記ノズル部27の基端側外周部における周方向複数箇所には、水1の外の適当な水源から図示しないポンプを介して導いた水供給管31が接続されており、前記水源から送給される水1’が、前記各水供給管31内を流れて前記水噴出口30の基端側に導入されるようになっている。
【0030】
尚、図中32は水噴出口30の基端側に環状に形成されたマニホールドである。
【0031】
而して、この実施例の場合には、電磁弁26を開けてシールドガスボンベ22からシールドガス24をガス供給管23に導入すると、該ガス供給管23に導入されたシールドガス24は、前記加工ヘッド4のガス流路21を通してノズル部27内に供給され、該ノズル部27のノズル口28及び該ノズル口28周囲の各シールドガス補助噴出孔29から配管3の溶接部に向け噴射されることになり、しかも、水1の外の適当な水源から図示しないポンプを駆動して水1’を各水供給管31に導入すると、該各水供給管31に導入された水1’は、水噴出口30の基端側に導入されて先端側へと流れ、前記ノズル口28及び各シールドガス補助噴出孔29から噴射されるシールドガス24を包囲する如く前記ノズル部27の先端から円筒状に噴射されることになるので、この円筒状に噴射された水1’で包囲されるシールドガス24により配管3の溶接部周囲が局所的に効率良く強制排水されてドーム状の良好なシールドガス雰囲気が形成される。
【0032】
従って、この実施例の場合においても、複雑且つ大型のドライ化装置を必要とすることなく、溶接部の局所的な排水を効率良く行うことができるので、複雑な構造物内や狭隘箇所に対するアクセス性及び操作性を著しく向上することができ、しかも、各シールドガス補助噴出孔29をシールドガス24に対し旋回力を付与し得るようノズル口28を中心とする円周方向に傾斜しているので、水噴出口30から円筒状に噴射された水1’で包囲されるシールドガス24に対し旋回力を付与してシールドガス24の旋回流を形成することができ、配管3の溶接部周囲を更に効率良く強制排水することができる。
【0033】
尚、本発明の水中レーザ溶接装置は、上述の実施例にのみ限定されるものではなく、溶接用ワイヤを導く為のワイヤ送給ノズルやシールドガスを導く為のガス流路は、必ずしも加工ヘッドのケーシングに穿設する必要はなく、加工ヘッドの外部に付属させるようにしても良いこと、また、水噴射口から噴射する為の水は、ワークが没している周囲の水をフィルタ等を介して取り込んで利用するようにしても良いこと、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
【0034】
【発明の効果】
上記した本発明の水中レーザ溶接装置によれば、複雑且つ大型のドライ化装置を必要とすることなく、溶接部の局所的な排水を効率良く行うことができるので、複雑な構造物内や狭隘箇所に対するアクセス性及び操作性を著しく向上することができるという優れた効果を奏し得る。
【図面の簡単な説明】
【図1】本発明の第一実施例を示す全体概略図である。
【図2】図1の加工ヘッドの断面図である。
【図3】図2のIII−III方向の矢視図である。
【図4】本発明の第二実施例を示す断面図である。
【図5】図4のV−V方向の矢視図である。
【符号の説明】
1 水
1’ 水
3 配管(ワーク)
4 加工ヘッド
8 YAGレーザ発振器
9 光ファイバ
10 レーザ光
12 光学レンズ系
14 レーザスポット
15 ノズル部
24 シールドガス
27 ノズル部
28 ノズル口
29 シールドガス補助噴出孔
30 水噴出口
[0001]
[Industrial application fields]
The present invention relates to an underwater laser welding apparatus.
[0002]
[Prior art]
As a technique for laser welding a workpiece (material to be welded) submerged in water, for example, Japanese Patent Application No. 3-189752 (Japanese Patent Laid-Open No. 5-31591) has already been proposed and disclosed herein. In an underwater laser welding apparatus, a chamber-shaped drying apparatus having an opening at the bottom surrounds the entire welded portion of the workpiece submerged in water, and water in the drying apparatus is excluded by injecting argon gas or the like. A cavity is formed, and a laser beam guided through an optical fiber to a laser irradiation optical system that is equipped in the drying apparatus so as to be position-adjustable is irradiated toward the workpiece to perform a welding operation. .
[0003]
[Problems to be solved by the invention]
However, in the conventional underwater laser welding apparatus as described above, a complicated and large-sized drying apparatus is required, so that the structure is enlarged and the accessibility and operability to a complicated structure or a narrow part are poor. there were.
[0004]
The present invention has been made in view of the above circumstances, and by providing an underwater laser welding apparatus capable of locally draining a welded portion without requiring a complicated and large drying apparatus, a complicated structure is provided. The purpose is to improve the accessibility and operability of objects and narrow spaces.
[0005]
[Means for Solving the Problems]
The present invention guides laser light oscillated from a YAG laser oscillator to an underwater processing head via an optical fiber, and condenses the laser light collected via an optical lens system in the processing head from the tip of the processing head into the underwater. An underwater laser welding apparatus that performs a welding operation by irradiating a workpiece, forming a nozzle portion that extends to the vicinity of a laser spot on the tip side of the processing head and that has a nozzle opening at the center of the tip, A plurality of shield gas auxiliary injection holes that are inclined in the circumferential direction around the nozzle port so as to apply a turning force to the shield gas around the nozzle port are opened, and the inside of the nozzle part and each of the shield gas auxiliary injection holes The present invention is characterized in that a shield gas can be introduced to the base end side.
[0006]
Moreover, in this invention, it is preferable to comprise so that shield gas can be introduce | transduced with respect to the inside of a nozzle part and the base end side of each shield gas auxiliary | assistant jet hole by a separate system, respectively.
[0007]
Further, the nozzle portion has a water jet port that has a skirt shape that widens toward the tip side from the base end side of the nozzle portion and opens in an annular shape so as to surround each shield gas auxiliary jet hole at the tip end of the nozzle portion. It is also possible to form a hole so that water can be introduced to the base end side of the water jet port.
[0008]
[Action]
Therefore, in the present invention, when the shield gas is introduced into the nozzle portion and the base end side of each shield gas auxiliary injection hole, each shield gas auxiliary injection hole is disposed around the main shield gas injected from the nozzle port at the tip of the nozzle portion. Since the swirl flow is formed by the shield gas injected in the circumferential direction from above, the area around the welded part of the workpiece is effectively and efficiently drained locally by such a swirl flow of the shield gas, so that a good dome-shaped shield gas An atmosphere is formed.
[0009]
Further, when the shield gas can be introduced into the nozzle portion and the base end side of each shield gas auxiliary injection hole by separate systems, the nozzle port and each shield gas auxiliary injection hole are respectively injected. The flow rate and pressure of the shield gas can be adjusted separately.
[0010]
In addition, the nozzle portion has a water jet port that has a skirt shape that widens toward the tip side from the base end side of the nozzle portion and opens in an annular shape so as to surround each shield gas auxiliary jet hole at the tip of the nozzle portion. When it is drilled and water is introduced to the base end side of the water jet port, the shield gas is welded to the workpiece from the nozzle port of the nozzle part and each shield gas auxiliary jet hole around the nozzle port. In addition, it is injected in a cylindrical shape from the tip of the water outlet so as to surround the shield gas injected from the nozzle opening and each shield gas auxiliary injection hole. The shield gas surrounded by the cylindrically jetted water locally and efficiently forcibly drains the periphery of the welded portion of the workpiece, thereby forming a good dome-shaped shield gas atmosphere.
[0011]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0012]
1 to 3 show a first embodiment of the present invention, and a fillet is formed at the bottom of the large container 2 using a pipe 3 penetrating the bottom of a metal large container 2 storing water 1 as a work. A case of welding is illustrated, and a processing head 4 for performing a substantial welding operation of the pipe 3 is supported by an articulated manipulator 6 suspended in water by a support rod 5, and the support rod 5 is The portal crane 7 installed on the upper part of the large container 2 is supported so as to be movable in three axial directions (three directions perpendicular to the top, bottom, front and rear, and right and left). The movement of the support rod 5 by the portal crane 7 The operation of the multi-joint manipulator 6 moves the machining head 4 in a predetermined welding direction (circumferential direction of the pipe 3).
[0013]
An optical fiber 9 guided from a YAG laser oscillator 8 disposed outside the water 1 is connected to the base end of the processing head 4, and laser light 10 oscillated from the YAG laser oscillator 8 is transmitted to the optical fiber 9. Is transmitted through the network.
[0014]
An optical lens system 12 including a plurality of condenser lenses 11 is held in the processing head 4, and laser light 10 transmitted to the processing head 4 by the optical fiber 9 passes through the optical lens system 12. The light is condensed and irradiated from the tip of the processing head 4 toward the welded portion of the pipe 3.
[0015]
The tip of the casing 13 of the processing head 4 is formed as a tapered nozzle portion 15 extending to the vicinity of the laser spot 14, and the casing 13 of the processing head 4 including the nozzle portion 15 has the processing head 4. A wire feed nozzle 16 penetrating from the base end to the tip of the nozzle portion 15 is formed, and the wire feed nozzle 16 is led from a wire feed device 19 disposed outside the water 1 to the base end. A wire conduit 18 is connected, and a welding wire 20 fed from the wire feeding device 19 is inserted into the wire conduit 18 so that the laser spot of the laser beam 10 is emitted from the tip of the wire feeding nozzle 16. 14 to be guided.
[0016]
Here, the nozzle portion 15 of the processing head 4 is configured such that the welding wire 20 guided to the laser spot 14 through the wire feed nozzle 16 is guided at an appropriate insertion angle θ with respect to the axis of the laser beam 10. It is advisable to attach an appropriate taper shape.
[0017]
Further, a gas flow path extending from the base end of the processing head 4 to the vicinity of the nozzle portion 15 and penetrating into the nozzle portion 15 at a phase different from the wire feed nozzle 16 in the casing 13 of the processing head 4 in the circumferential direction. A gas supply pipe 23 led from a shield gas cylinder 22 arranged outside the water 1 is connected to the base end of the gas flow path 21 and supplied from the shield gas cylinder 22. Shield gas 24 (inert gas such as argon gas) flows through the gas supply pipe 23 and is introduced from the gas flow path 21 into the nozzle portion 15, and from the tip of the nozzle portion 15 toward the welded portion of the pipe 3. It comes to be injected.
[0018]
Here, around the nozzle opening 28 of the nozzle portion 15, a plurality of shield gas auxiliary injection holes 29 (see FIG. 5) inclined in the circumferential direction centering on the nozzle opening 28 so as to apply a turning force to the shielding gas 24. 3) is opened, and the shield gas 24 can be introduced by a separate system to the base end side of each shield gas auxiliary injection hole 29 (see FIG. 2).
[0019]
In the figure, reference numeral 26 denotes an electromagnetic valve provided on the shield gas cylinder 22 side of the gas supply pipe.
[0020]
Thus, when the solenoid valve 26 is opened and the shield gas 24 is introduced from the shield gas cylinder 22 into the gas supply pipe 23 and the shield gas 24 is also introduced into each shield gas auxiliary injection hole 29 by another system, the tip of the nozzle 15 Since a swirl flow is formed around the main shield gas 24 injected from the nozzle port 28 by the shield gas 24 injected in the circumferential direction from each shield gas auxiliary injection hole 29, such a shield gas 24 is formed. As a result of the swirling flow, the periphery of the welded portion of the pipe 3 is forcibly drained locally and efficiently, and a good dome-shaped shield gas atmosphere is formed.
[0021]
In particular, as in this embodiment, when the shield gas 24 injected from the nozzle port 28 at the tip of the nozzle portion 15 and the shield gas 24 injected from each shield gas auxiliary injection hole 29 are provided in different systems, the nozzle It becomes possible to separately adjust the flow rate and pressure of the shield gas 24 injected from the opening 28 and each shield gas auxiliary injection hole 29.
[0022]
Next, the welding wire 20 fed from the wire feeding device 19 is guided to the wire feeding nozzle 16 of the machining head 4 through the wire conduit 18, and the welded portion of the pipe 3 is connected from the tip of the wire feeding nozzle 16. The welding wire 20 is fed as needed to the laser beam 10 and the laser beam 10 oscillated from the YAG laser oscillator 8 is guided to the underwater processing head 4 through the optical fiber 9, and the optical lens system 12 in the processing head 4 is moved. Then, the laser beam 10 condensed through the processing head 4 is irradiated from the tip of the processing head 4 toward the welded portion of the underwater pipe 3 to perform a welding operation.
[0023]
Therefore, according to the above-described embodiment, a swirling flow of the shield gas 24 is injected from the nozzle port 28 at the tip of the nozzle portion 15 of the machining head 4 without requiring a complicated and large drying apparatus, and the welding portion Since local drainage can be performed efficiently, the accessibility and operability to complicated structures and narrow places can be remarkably improved.
[0024]
FIGS. 4 and 5 show a second embodiment of the present invention. A flat bottom-shaped nozzle portion 27 extending to the vicinity of the laser spot 14 at the tip of the machining head 4 configured substantially the same as the first embodiment described above. The wire feed nozzle 16 penetrating from the base end of the machining head 4 to the tip of the nozzle portion 27 is bored in the casing 13 of the machining head 4 including the nozzle portion 27, and the wire feed A welding wire 20 fed from the device 19 via the wire conduit 18 is guided from the tip of the wire feed nozzle 16 toward the laser spot 14 of the laser beam 10.
[0025]
Here, the welding wire 20 guided to the laser spot 14 through the wire feeding nozzle 16 is guided to the wire feeding nozzle 16 at an appropriate insertion angle θ with respect to the axis of the laser beam 10. Appropriate bend shape is attached.
[0026]
Further, a gas flow path extending from the proximal end of the machining head 4 to the vicinity of the nozzle portion 27 and penetrating into the nozzle portion 27 in a phase different from the wire feed nozzle 16 in the casing 13 of the machining head 4. A gas supply pipe 23 led from a shield gas cylinder 22 arranged outside the water 1 is connected to the base end of the gas flow path 21 and supplied from the shield gas cylinder 22. A shielding gas 24 (inert gas such as argon gas) flows through the gas supply pipe 23 and is introduced into the nozzle portion 27 from the gas flow path 21.
[0027]
In addition, a plurality of shield gas auxiliary injection holes 29 communicating with the inside of the nozzle portion 27 are opened around the nozzle opening 28 that opens at the center of the tip of the nozzle portion 27. The nozzle portion 27 is arranged so as to be divergent from the proximal end side to the distal end side and inclined in the circumferential direction around the nozzle port 28.
[0028]
Here, the wire feed nozzle 16 is configured to prevent interference by passing between the shield gas auxiliary ejection holes 29.
[0029]
Further, the nozzle portion 27 has a skirt shape that widens from the proximal end side toward the distal end side of the nozzle portion 27 and has an annular shape so as to surround each shield gas auxiliary injection hole 29 at the distal end of the nozzle portion 27. A water supply pipe led from an appropriate water source outside the water 1 through a pump (not shown) is provided at a plurality of circumferential positions on the base end side outer peripheral portion of the nozzle portion 27. 31 is connected, and water 1 ′ fed from the water source flows through the water supply pipes 31 and is introduced to the proximal end side of the water jet port 30.
[0030]
In the figure, reference numeral 32 denotes a manifold formed in an annular shape on the proximal end side of the water outlet 30.
[0031]
Thus, in the case of this embodiment, when the electromagnetic valve 26 is opened and the shield gas 24 is introduced from the shield gas cylinder 22 into the gas supply pipe 23, the shield gas 24 introduced into the gas supply pipe 23 is converted into the processing gas. The gas is supplied into the nozzle portion 27 through the gas flow path 21 of the head 4 and is injected toward the welded portion of the pipe 3 from the nozzle port 28 of the nozzle unit 27 and each shield gas auxiliary injection hole 29 around the nozzle port 28. In addition, when a pump (not shown) is driven from an appropriate water source outside the water 1 to introduce the water 1 ′ into the water supply pipes 31, the water 1 ′ introduced into the water supply pipes 31 It is introduced into the proximal end side of the ejection port 30 and flows toward the distal end side, and is cylindrical from the distal end of the nozzle portion 27 so as to surround the shield gas 24 injected from the nozzle port 28 and each shield gas auxiliary ejection hole 29. injection Therefore, the shielding gas 24 surrounded by the cylindrically jetted water 1 ′ locally and efficiently drains the periphery of the welded portion of the pipe 3 to form a good dome-shaped shielding gas atmosphere. Is done.
[0032]
Therefore, even in the case of this embodiment, the local drainage of the welded portion can be efficiently performed without the need for a complicated and large-sized drying apparatus, so that access to complicated structures and narrow places is possible. In addition, the shield gas auxiliary injection holes 29 are inclined in the circumferential direction around the nozzle port 28 so as to apply a turning force to the shield gas 24. The swirl force can be applied to the shield gas 24 surrounded by the water 1 ′ jetted in a cylindrical shape from the water outlet 30 to form a swirl flow of the shield gas 24, and the periphery of the welded portion of the pipe 3 can be formed. Furthermore, forced drainage can be performed efficiently.
[0033]
The underwater laser welding apparatus of the present invention is not limited to the above-described embodiment, and the wire feed nozzle for guiding the welding wire and the gas flow path for guiding the shield gas are not necessarily the machining head. It is not necessary to pierce the casing, and it may be attached to the outside of the processing head, and the water to be sprayed from the water spray port is a filter etc. Of course, various modifications may be made without departing from the spirit of the present invention.
[0034]
【The invention's effect】
According to the above-described underwater laser welding apparatus of the present invention, since the local drainage of the welded portion can be efficiently performed without the need for a complicated and large-sized drying apparatus, It is possible to achieve an excellent effect that the accessibility and operability to the place can be remarkably improved.
[Brief description of the drawings]
FIG. 1 is an overall schematic view showing a first embodiment of the present invention.
FIG. 2 is a cross-sectional view of the processing head of FIG.
3 is a view taken in the direction of arrows III-III in FIG.
FIG. 4 is a sectional view showing a second embodiment of the present invention.
FIG. 5 is a view taken in the direction of arrows VV in FIG. 4;
[Explanation of symbols]
1 water 1 'water 3 piping (work)
4 Processing Head 8 YAG Laser Oscillator 9 Optical Fiber 10 Laser Light 12 Optical Lens System 14 Laser Spot 15 Nozzle Portion 24 Shielding Gas 27 Nozzle Portion 28 Nozzle Port 29 Shielding Gas Auxiliary Jetting Hole 30 Water Jetting Port

Claims (3)

YAGレーザ発振器から発振されるレーザ光を光ファイバを介して水中の加工ヘッドに導き、該加工ヘッド内の光学レンズ系を介して集光したレーザ光を前記加工ヘッド先端から水中のワークに向け照射して溶接作業を行う水中レーザ溶接装置であって、前記加工ヘッドの先端側にレーザスポット付近まで延び且つ先端中央にノズル口を開口したノズル部を形成すると共に、該ノズル部のノズル口周囲にシールドガスに対し旋回力を付与し得るよう前記ノズル口を中心とする円周方向に傾斜した複数のシールドガス補助噴出孔を開口し、前記ノズル部内及び各シールドガス補助噴出孔の基端側にシールドガスを導入し得るよう構成したことを特徴とする水中レーザ溶接装置。The laser beam oscillated from the YAG laser oscillator is guided to the underwater processing head via the optical fiber, and the laser beam condensed via the optical lens system in the processing head is irradiated from the tip of the processing head toward the underwater workpiece. An underwater laser welding apparatus for performing a welding operation by forming a nozzle portion extending to the vicinity of the laser spot on the tip side of the processing head and opening a nozzle port at the center of the tip, and around the nozzle port of the nozzle portion A plurality of shield gas auxiliary injection holes inclined in the circumferential direction centering on the nozzle port are provided so as to apply a turning force to the shield gas, and the inside of the nozzle part and the base end side of each shield gas auxiliary injection hole are opened. An underwater laser welding apparatus characterized in that a shield gas can be introduced. ノズル部内と各シールドガス補助噴出孔の基端側とに対しシールドガスを夫々別系統で導入し得るよう構成したことを特徴とする請求項1に記載の水中レーザ溶接装置。2. The underwater laser welding apparatus according to claim 1, wherein the shield gas can be introduced in a separate system into the nozzle portion and the proximal end side of each shield gas auxiliary injection hole. ノズル部の基端側から先端側に向けて末広がりとなるスカート形状を有し且つ前記ノズル部の先端で各シールドガス補助噴出孔を取り囲むよう環状に開口する水噴出口を前記ノズル部に穿設し、前記水噴出口の基端側に水を導入し得るよう構成したことを特徴とする請求項1又は2に記載の水中レーザ溶接装置。The nozzle part has a water jet port that has a skirt shape that widens toward the tip side from the base end side of the nozzle part and opens in an annular shape so as to surround each shield gas auxiliary jet hole at the tip of the nozzle part The underwater laser welding apparatus according to claim 1, wherein water can be introduced to a proximal end side of the water jet port.
JP16119395A 1995-06-27 1995-06-27 Underwater laser welding equipment Expired - Fee Related JP3619286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16119395A JP3619286B2 (en) 1995-06-27 1995-06-27 Underwater laser welding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16119395A JP3619286B2 (en) 1995-06-27 1995-06-27 Underwater laser welding equipment

Publications (2)

Publication Number Publication Date
JPH0910981A JPH0910981A (en) 1997-01-14
JP3619286B2 true JP3619286B2 (en) 2005-02-09

Family

ID=15730359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16119395A Expired - Fee Related JP3619286B2 (en) 1995-06-27 1995-06-27 Underwater laser welding equipment

Country Status (1)

Country Link
JP (1) JP3619286B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001046316A1 (en) 1999-12-21 2001-06-28 Asahi Kasei Kabushiki Kaisha Thermoplastic resin composition
WO2007099996A1 (en) 2006-02-28 2007-09-07 Kabushiki Kaisha Toshiba Underwater repair welding method
WO2008123240A1 (en) 2007-03-26 2008-10-16 Asahi Kasei Chemicals Corporation Thermoplastic composition and molded article produced from the same
WO2009099105A1 (en) 2008-02-08 2009-08-13 Asahi Kasei Chemicals Corporation Thermoplastic elastomer composition and method for producing the same
WO2009128397A1 (en) 2008-04-14 2009-10-22 旭化成ケミカルズ株式会社 Adhesive composition
WO2010067564A1 (en) 2008-12-10 2010-06-17 旭化成ケミカルズ株式会社 Thermoplastic elastomer composition
US9475917B2 (en) 2012-12-28 2016-10-25 Chi Mei Corporation Rubber composition and manufacturing method for the same
DE102019107726B4 (en) 2018-04-04 2024-09-26 Asahi Kasei Kabushiki Kaisha Additive for bituminous sealing membrane, process for producing a bituminous sealing membrane, bitumen composition and use of the bitumen composition

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6060686A (en) * 1996-10-15 2000-05-09 General Electric Company Underwater laser welding nozzle
JP4155489B2 (en) 2000-09-28 2008-09-24 株式会社東芝 Underwater laser repair welding equipment
US7017390B1 (en) * 2004-12-07 2006-03-28 Asml Holding N.V. Proximity sensor nozzle shroud with flow curtain
JP6679351B2 (en) * 2015-12-18 2020-04-15 三菱重工業株式会社 Processing nozzle and processing equipment
JP7393944B2 (en) * 2017-03-31 2023-12-07 株式会社ニコン Treatment method and treatment system
WO2019058176A1 (en) * 2017-09-21 2019-03-28 Panasonic Intellectual Property Management Co., Ltd. Lens arrangements for varying numerical aperture in laser delivery systems
US20240227070A9 (en) * 2021-05-28 2024-07-11 Komatsu Industries Corporation Laser machining device and nozzle unit for laser machining device
CN117047268A (en) * 2023-07-19 2023-11-14 南京宇众自动化装备有限公司 Welding equipment and pressure head assembly thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001046316A1 (en) 1999-12-21 2001-06-28 Asahi Kasei Kabushiki Kaisha Thermoplastic resin composition
WO2007099996A1 (en) 2006-02-28 2007-09-07 Kabushiki Kaisha Toshiba Underwater repair welding method
JP2007229757A (en) * 2006-02-28 2007-09-13 Toshiba Corp Underwater repair welding method
WO2008123240A1 (en) 2007-03-26 2008-10-16 Asahi Kasei Chemicals Corporation Thermoplastic composition and molded article produced from the same
WO2009099105A1 (en) 2008-02-08 2009-08-13 Asahi Kasei Chemicals Corporation Thermoplastic elastomer composition and method for producing the same
US8415428B2 (en) 2008-02-08 2013-04-09 Asahi Kasei Chemicals Corporation Thermoplastic elastomer composition and method for producing the same
WO2009128397A1 (en) 2008-04-14 2009-10-22 旭化成ケミカルズ株式会社 Adhesive composition
WO2010067564A1 (en) 2008-12-10 2010-06-17 旭化成ケミカルズ株式会社 Thermoplastic elastomer composition
US9475917B2 (en) 2012-12-28 2016-10-25 Chi Mei Corporation Rubber composition and manufacturing method for the same
DE102019107726B4 (en) 2018-04-04 2024-09-26 Asahi Kasei Kabushiki Kaisha Additive for bituminous sealing membrane, process for producing a bituminous sealing membrane, bitumen composition and use of the bitumen composition

Also Published As

Publication number Publication date
JPH0910981A (en) 1997-01-14

Similar Documents

Publication Publication Date Title
JP3619286B2 (en) Underwater laser welding equipment
US4127761A (en) Laser welding
US6294754B1 (en) Laser beam machining head
US4128753A (en) Laser beam welding
US4382170A (en) Thermal cutting jet device with suction apparatus
JP6704029B2 (en) Processing nozzle and processing equipment
KR970005525B1 (en) Laser torch
KR20100007741U (en) / laser processing machine having means for sprinkling and/or for cooling the inside wall of a pipe and method for processing a pipe by means of such a machine
JPH11216589A (en) Method and device for preventing contamination and breakage of optical system member in laser processing machine
JP3621753B2 (en) Underwater laser welding equipment
JP3943226B2 (en) Laser welding head of laser processing equipment
JPH06155066A (en) Machining head device for laser beam welding equipment
JP3012175B2 (en) Underwater laser welding equipment
JP3291097B2 (en) Processing head of laser processing machine
JP6811824B2 (en) Machining nozzle and machining equipment
JPH05131288A (en) Nozzle for side shielding of laser welding
KR101059370B1 (en) Air Nozzle for Laser Optics Head
JP2017177136A (en) Laser surface processing device
JPS58212888A (en) Laser welding method
JP2004042113A (en) Laser machining head and laser machining method
JPH0550284A (en) Shielding gas nozzle for laser beam welding
JPH11789A (en) Emitting end nozzle of laser beam machine
JP2002103078A (en) Laser welding method and device
JP3395712B2 (en) Shield gas supply nozzle for welding
JPH09220687A (en) Laser beam machining head

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees