JP3617664B2 - Thin film photoelectric conversion device manufacturing equipment - Google Patents

Thin film photoelectric conversion device manufacturing equipment Download PDF

Info

Publication number
JP3617664B2
JP3617664B2 JP35277199A JP35277199A JP3617664B2 JP 3617664 B2 JP3617664 B2 JP 3617664B2 JP 35277199 A JP35277199 A JP 35277199A JP 35277199 A JP35277199 A JP 35277199A JP 3617664 B2 JP3617664 B2 JP 3617664B2
Authority
JP
Japan
Prior art keywords
substrate
thin film
photoelectric conversion
discharge
voltage electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35277199A
Other languages
Japanese (ja)
Other versions
JP2001168041A (en
Inventor
章弘 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP35277199A priority Critical patent/JP3617664B2/en
Publication of JP2001168041A publication Critical patent/JP2001168041A/en
Application granted granted Critical
Publication of JP3617664B2 publication Critical patent/JP3617664B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、薄膜太陽電池の製造装置の内、可撓性基板上にステッピングロール方式で薄膜を形成する薄膜光電変換素子の製造装置に関する。
【0002】
【従来の技術】
薄膜太陽電池は、薄型で軽量、製造コストの安さ、大面積化が容易であることなどから、今後の太陽電池の主流となると考えられる。
【0003】
従来の薄膜太陽電池はガラス基板を用いていたが、軽量化、施工性、量産性においてプラスチックフィルムおよび金属フィルムを用いたフレキシブルタイプの太陽電池の研究開発がすすめられている。上記薄膜太陽電池は、例えばフレキシブルな電気絶縁性フィルム基板上に金属電極層、薄膜半導体層からなる光電変換層および透明電極層が積層されてなる光電変換素子(またはセル)が複数形成されている。このフレキシブル性を生かし、ロールツーロール方式またはステッピングロール方式の製造方法により大量生産が可能となった。
【0004】
前記両方式共に、複数のロールによる基板搬送手段を備え、前者は各成膜室内を連続的に移動する基板上に連続的に成膜する方式であり、後者は各成膜室内で同時に停止させた基板上に成膜し,成膜の終わった基板部分を次の成膜室へ送り出す方式を採用している。
【0005】
ステッピングロール方式の成膜装置は、隣接する成膜室間のガス相互拡散を防止できることから各薄膜の特性が安定して得られることや装置がコンパクトとなるなどの点で優れており、その装置の構成は、例えば、特開平6−292349号公報,特開平7−6953号公報,特開平7−221025号公報,特開平8−250431号公報,特開平8−293491号公報などに記載されている。
【0006】
図11に、共通真空室内に成膜室を複数有するステッピングロール成膜方式の真空成膜装置の構成の一例の概念図を示す。図11に示す装置は、可撓性基板の巻出し用アンワインダー室290と、金属電極層(背面の接続電極層),光電変換層(a−Si層)および透明電極層(ITO層)などを形成するための複数個の独立した処理空間としてなる成膜室280と、巻取り用ワインダー室291とを備え、基板201はコア282から捲き出されコア283にまきとられる間に、複数の成膜室280で成膜されるように構成されている。共通室281は複数の成膜室280を内部に収めている。
【0007】
成膜室ではスパッタ成膜またはプラズマ化学気相成長法(以下プラズマCVD法と記す)などにより成膜が行われる。例えば、プラズマCVD法により成膜するステッピングロール方式では、成膜室開放−基板1フレーム移動−成膜室封止−原料ガス導入−圧力制御−放電開始−放電終了−原料ガス停止−ガス引き−成膜室開放からなる操作が繰り返される。
【0008】
また、量産性を高める観点から、並行して搬送される2列の可撓性基板に同時に光電変換層を成膜するプラズマCVD法ステッピングロール方式が、本件出願人により提案されている(特開平8−293491号公報参照)。
【0009】
図12および図13に上記特開平8−293491号公報に記載された装置を示す。図12は、前記装置の製膜時の状態を平面断面図として示し、図13は、製膜時の製膜室の状態を拡大図として示す。図12の薄膜光電変換素子の製造装置は、送り室11、予備真空室12、成膜用真空室13、巻き取り室14を備え、二つの可撓性基板1は、送り室11から巻き取り室14へ搬送される。成膜用真空室13内には、高電圧電極21とヒータ23を有する接地電極22が対向配置され、高周波電圧の印加の下でのプラズマCVDによりその間に停止した基板1の面上にa−Si系の薄膜を形成する。
【0010】
図13に拡大して示すように、高電圧電極21は蓋状で、その端面にシールブロック8を介して基板1が密着することにより、気密に保つことのできる成膜室5が形成される。高電圧電極21は、各基板1に対して一つずつ備えられるが、その背面部で絶縁材料よりなる排気ブロック9を介して連結されている。排気ブロック9は高電圧電極21とシール材91を介することにより密着し、排気ブロック9に開けられた排気口72、高電圧電極71の背面部の開口25を介して図示しない圧力制御機能を備えた排気系により各成膜室5は一括して成膜圧力に保たれる。
【0011】
高電圧電極21、接地電極22の間への電圧の印加でプラズマ6が生じ、成膜が行われる。二つの成膜室5の間は、排気ブロック9により電気絶縁されているため、成膜室毎にプラズマ6の制御を行うことができる。成膜終了後、接地電極22を矢印41のように図2に示すアクチュエータ24により上下に数十mm移動すると、接地電極22に抑えられていた基板1も解放され、矢印41の方向に移動する。
【0012】
ところで、高電圧電極21が成膜用真空室13の空間に露出するが、高電圧電極21に高周波電力を印加した場合でも成膜中の製膜用真空室13の圧力を0.1Pa以下に保つことにより成膜用真空室13の室内での放電は抑制される。しかしながら、排気ブロック9の中の圧力は成膜時で10〜170Pa(実用上は、40〜140Pa)となるため二つの高電圧電極間で容易に放電してしまう。電極間の位相を調整制御する方法もあるが、現実には問題があり、二つの高電圧電極間の放電を避けるため排気ブロック9を絶縁物とし、長さを100mm以上としている。
【0013】
ところで、上記従来の薄膜光電変換素子の製造装置の場合、上記100mm以上とする分だけ成膜用真空室の幅が広くなり、真空室の容積が増し大型の排気系が必要となり、真空室製作のコストも含め装置の全体コストが増大する問題がある。そこで、上記問題点を解決するために本願出願人は、図14に示すように、前記排気ブロック90の貫通孔内にガスの導通を遮断する隔壁92を設け、かつ真空排気口73を、この隔壁92により区分された各貫通孔73にまたがって連通して設ける構成を有する薄膜光電変換素子の製造装置を提案をした(特願平11−229750号参照)。
【0014】
図14に示す装置は、前記隔壁92を備えることに加えて、排気ブロック90のシール材91の温度を低く抑えてシールの安全性を向上するために、基板1と高電圧電極21の背面部との間に,この背面部と平行に,かつ前記成膜用のガスを通流させるための隙間を側面部との間に設けて背面部の略全幅にわたって,導電性材料からなる板状または箱状の前記シール材に対する熱の遮蔽体27を配設し、この遮蔽体を高電圧電極と電気的に接続し、かつ成膜用のガスは、前記隙間から前記背面部の開口に流通可能なように構成されている。
【0015】
後述するこの発明の説明の便宜上、上記従来薄膜光電変換素子の製造装置の構成を簡略化した図を、図8〜図10に示す。図8は上記図13に対応し、図10は図14に対応し、いずれも2列の基板を並行して搬送して成膜する装置を示す。これに対して、図9は、1列の基板に成膜する装置を示す。図8〜図10共に、図12〜図14に示す装置における同一機能部材には、同一の番号を付して説明を省略する。
【0016】
なお、図8〜図10においては、真空排気系に関して、図12〜図14に図示しない部材を追記しており、図8〜図10における排気系は、それぞれ電気絶縁性材料からなる絶縁性排気ライン59と、その下流の金属材料からなる金属排気ライン56とを有する排気ラインと排気ユニット58により構成された排気系を示す。また、排気ユニット58の前段には圧力制御バルブ57が設けられ、成膜中に成膜ガスの圧力制御を行うように構成した図を示す。さらに、図8または図10においては、絶縁性排気ライン59は、絶縁ブロック9または90と、絶縁配管59とから成るものを示す。
【0017】
【発明が解決しようとする課題】
ところで、上記特願平11−229750号で提案した従来の改良された薄膜光電変換素子の製造装置であっても、比較的低い成膜圧力(高い真空度)あるいは高い高周波出力投入の条件下においては、高周波高電圧電極後部に設置した排気ライン中で放電が生じてしまい、高周波のパワーロスあるいは成膜領域以外の装置内への膜付着が生じてしまう問題があることが判明した(詳細は、この発明の比較例として後述する)。パワーロスあるいは成膜領域以外の装置内への膜付着は、成膜装置のハイスループット化を難しくし、メンテナンス頻度を増加させてしまう。
【0018】
この発明は、上記のような問題点を解消するためになされたもので、この発明の課題は、排気ライン内の放電の抑制を従来より改善し、成膜装置のハイスループット化とメンテナンス頻度の低減を図り、総合的に薄膜光電変換素子の量産コストの低減を図ることにある。
【0019】
【課題を解決するための手段】
前述の課題を解決するため、請求項1の発明は、搬送される可撓性基板面に平行な背面部と基板に気密に接触可能な端面を備える側壁部とを有し,かつ前記背面部は開口を有してなる高電圧電極と、この高電圧電極に対向して前記基板の外側に設けられ,基板加熱用のヒータを有する接地電極と、前記高電圧電極の背面部に設けられ,シール材により前記背面部の開口と気密に連通する貫通孔を有し,かつこの貫通孔に連通する真空排気口を有する電気絶縁性材料からなる絶縁性排気ラインとを備え、前記高電圧電極と基板との間に形成される成膜空間に成膜用のガスを導入して,高電圧電極と接地電極間への高周波電圧の印加によって前記基板と高電圧電極間に放電を発生させ,基板の一面上に薄膜を形成するように構成した薄膜光電変換素子の製造装置において、前記絶縁性排気ライン中のガス流のコンダクタンスを低減することによって放電を防止するための放電防止手段を、前記絶縁性排気ライン中に備えたものとする。
【0020】
例えば、請求項1に記載のものにおいて、前記放電防止手段は、電気絶縁性材料からなる複数枚のガス流の邪魔板からなるものとする(請求項2)、あるいは前記放電防止手段は、電気絶縁性材料からなる網目状部材からなるものとする(請求項3)。
【0021】
上記構成によれば、邪魔板や網目状部材にガス流中の電子が衝突して消失するため、ガス中の電子密度が低下し、放電を維持することが不能となる。この原理を利用して、比較的低い成膜圧力あるいは高い高周波出力投入の条件下においても放電の抑制を図ることができる。
【0022】
また、前記請求項1に記載のものにおいて、前記ガス流のコンダクタンスを低減することによって放電を防止するための放電防止手段に代えて、前記高電圧電極の背面開口部に配設された第1の金属メッシュと、この第1の金属メッシュに近接して絶縁性排気ライン側に配設されかつ電気的に接地された第2の金属メッシュと、前記両金属メッシュの間に介挿した電気絶縁性材料からなる絶縁性シートとからなる2重メッシュ構成の放電防止手段を備えたものとする(請求項4)。
【0023】
前記2重メッシュ構成は、パッシェン曲線(放電開始電圧と換算電極間距離[圧力×電極間距離]の関係)で示される放電可能条件を利用したもので、前記のように、高周波電極と接地部位とに設けた二つのメッシュを十分近接して設置することにより、放電開始電圧を極端に高くして、放電を生じさせないようにすることができる。上記請求項4の発明の方が、請求項1ないし3の発明と比較して、放電の抑制効果は大きい。
【0024】
また、前記排気ブロックの構成材料としては、請求項5の発明のように、フッ素樹脂,ガラスまたはセラミックスの内の少なくともいずれか一つの材料が適用でき、例えば請求項4の発明に関わる絶縁シートのみをフッ素樹脂とし他をセラミックスにするなど、複数の材料から構成することもできる。
【0025】
さらに、請求項1ないし5のいずれかに記載のものにおいて、薄膜光電変換素子の製造装置を、2列の可撓性基板に薄膜光電変換素子を同時に製作可能とするために、並行して搬送される2列の可撓性基板の間に,各基板にそれぞれ対応して設けられ,基板面に平行な背面部と基板に気密に接触可能な端面を備える側壁部とを有し,かつ前記背面部は開口を有してなる二つの高電圧電極と、この高電圧電極に対向して前記各基板の外側にそれぞれ設けられ,基板加熱用のヒータを有する二つの接地電極と、前記二つの高電圧電極の背面部間に設けられ,シール材により前記背面部の開口と気密に連通する貫通孔を有し,かつこの貫通孔に連通する真空排気口を有する電気絶縁性材料からなる絶縁性排気ラインとを備え、前記高電圧電極と各基板との間に形成される成膜空間に成膜用のガスを導入して,高電圧電極と接地電極間への高周波電圧の印加によって前記基板と高電圧電極間に放電を発生させ,各基板の一面上に薄膜を形成するように構成したものとする(請求項6)のが好適である。
【0026】
さらにまた、請求項1ないし6のいずれかに記載のものにおいて、前記基板と高電圧電極の背面部との間に,この背面部と平行に,かつ前記成膜用のガスを通流させるための隙間を側面部との間に設けて背面部の略全幅にわたって,導電性材料からなる板状または箱状の前記シール材に対する熱の遮蔽体を配設し,この遮蔽体を前記高電圧電極と電気的に接続してなり、かつ前記成膜用のガスは、前記隙間から前記背面部の開口に流通可能に構成したものとすること(請求項7)により、絶縁性排気ラインのシール材の温度を低く抑えてシールの安全性を向上することができる。
【0027】
【発明の実施の形態】
図面に基づき、この発明の実施の形態について以下に述べる。
【0028】
図1ないし図3は、この発明のそれぞれ異なる実施例の概略構成を示す。図1ないし図3において、図8に示す部材と同一の部材には同一の記号を付して説明を省略する。
【0029】
(実施例1)
図1は第1の実施例を示し、絶縁性排気ライン59における絶縁配管19中に、ガス流のコンダクタンスを低減するために、電気絶縁性材料からなるガス流の邪魔板60を3枚配設した実施例を示す。邪魔板60は円板の一部を欠いた形状をしており、ガス流がこの円板の欠けた部分を、互い違いに通流するように構成される。ガス流が互い違いに通流してガスが邪魔板に衝突を繰り返す間に、ガス中の電子密度が低下し、放電の発生を抑制する。
【0030】
(実施例2)
図2は第2の実施例を示し、絶縁性排気ライン59における絶縁ブロック9中に、ガス流のコンダクタンスを低減するために、絶縁性材料からなる網目状部材61を配設した実施例を示す。この実施例においては、ガス流が網目状部材61を通過する間に、ガス流が網目状部材に衝突を繰り返し、実施例1と同様に、放電の発生を抑制することができる。
【0031】
(実施例3)
図3は、請求項4の発明に関わる第3の実施例を示し、高電圧電極の背面開口部に配設された第1の金属メッシュ62と、この第1の金属メッシュ62に近接して絶縁性排気ライン59側に配設された第2の金属メッシュ63と、前記両金属メッシュの間に介挿した電気絶縁性材料からなる絶縁性シート64とからなる放電防止手段を備える実施例を示す。第2の金属メッシュ63は、例えば金属ワイヤにより電気的に接地される。
【0032】
前記両金属メッシュは、メッシュに限定されるものではなく、パンチングボードでもよいし、また金属製のワイヤを多数横に配列したようなもので構成することもできる。また、電気絶縁性材料からなる絶縁性シート64の厚さは、1〜3mmが好適である。
【0033】
前述のように、第1の金属メッシュ62と接地された第2の金属メッシュ63とを、絶縁性シート64を介して十分近接して設置することにより、放電開始電圧を極端に高くして、放電を生じさせないようにすることができる。
【0034】
前記第1ないし第3の実施例および従来装置(比較例)に関して、放電実験をした結果を、図4ないし図7に示す。図4ないし図7は、いずれも、成膜状態を模擬するために、水素ガスを成膜室に導入し、排気ライン内の圧力を図の縦軸に示すように、27Pa〜160Pa(0.2〜1.2Torr)の範囲で6段階変え、また、高周波出力を図の横軸に示すように、30〜300Wの範囲で7段階変えて、排気ライン内の放電の発生有無を確認した実験結果を示すものである。図中の○は放電の発生が無かったことを示し、×は放電の発生が有ったことを示す。
【0035】
図4は、実施例1および2(図1および2)の装置に対する放電実験結果を示し、図5は、実施例3(図3)の装置に対する放電実験結果を示す。これに対して、図6および7は、比較例の実験結果を示し、図6は、改良された従来装置(図10)に対する放電実験結果、図7は、図8の従来装置において、排気ブロック9の長さを100mmとした装置に対する放電実験結果を示す。
【0036】
上記図5から明らかなように、請求項4の発明に関わる2重メッシュ構成を採用した第3の実施例の場合には、成膜圧力および高周波出力投入の条件の如何を問わず、排気ライン内の放電の発生がない。これに対して、実施例1および2(図1および2)の装置の場合には、図4に示すように、低成膜圧力および高い高周波出力投入の条件下において、一部放電の発生が見られるが、従来装置の結果(図7および図8)と比較すれば、かなり改善されていることが分かる。上記により、この発明によれば従来よりも成膜条件が改善され、これに伴い量産コストの低減を図ることができる。
【0037】
【発明の効果】
この発明によれば前述のように、搬送される可撓性基板面に平行な背面部と基板に気密に接触可能な端面を備える側壁部とを有し,かつ前記背面部は開口を有してなる高電圧電極と、この高電圧電極に対向して前記基板の外側に設けられ,基板加熱用のヒータを有する接地電極と、前記高電圧電極の背面部に設けられ,シール材により前記背面部の開口と気密に連通する貫通孔を有し,かつこの貫通孔に連通する真空排気口を有する電気絶縁性材料からなる絶縁性排気ラインとを備え、前記高電圧電極と基板との間に形成される成膜空間に成膜用のガスを導入して,高電圧電極と接地電極間への高周波電圧の印加によって前記基板と高電圧電極間に放電を発生させ,基板の一面上に薄膜を形成するように構成した薄膜光電変換素子の製造装置において、前記絶縁性排気ライン中のガス流のコンダクタンスを低減することによって放電を防止するための放電防止手段(例えば、電気絶縁性材料からなる複数枚のガス流の邪魔板、または網目状部材)を、前記絶縁性排気ライン中に備えたものとする(請求項1から3)か、もしくは、前記ガス流のコンダクタンスを低減することによって放電を防止するための放電防止手段に代えて、前記高電圧電極の背面開口部に配設された第1の金属メッシュと、この第1の金属メッシュに近接して絶縁性排気ライン側に配設されかつ電気的に接地された第2の金属メッシュと、前記両金属メッシュの間に介挿した電気絶縁性材料からなる絶縁性シートとからなる放電防止手段を備えたものとすること(請求項4)により、低成膜圧力あるいは高い高周波出力を投入するような成膜条件でも、排気ライン中での放電を発生すること無しに成膜が行えることとなり、成膜装置のハイスループット化およびメンテナンス頻度の低減を図ることができ、総合的に薄膜光電変換素子の量産コストの低減を図ることができる。
【図面の簡単な説明】
【図1】この発明の実施例の概略構成を示す図
【図2】この発明の異なる実施例の概略構成を示す図
【図3】この発明のさらに異なる実施例の概略構成を示す図
【図4】図1および図2の実施例に対する放電実験結果を示す図
【図5】図3の実施例に対する放電実験結果を示す図
【図6】改良された従来の薄膜光電変換素子の製造装置に対する放電実験結果を示す図
【図7】従来の薄膜光電変換素子の製造装置に対する放電実験結果を示す図
【図8】従来の薄膜光電変換素子の製造装置(2基板並列製造方式)の概略構成図
【図9】従来の薄膜光電変換素子の製造装置(1基板単列製造方式)の概略構成図
【図10】図8を改良した従来の薄膜光電変換素子の製造装置の概略構成図
【図11】ステッピングロール方式の真空成膜装置の一例の概略構成を示す図
【図12】従来の薄膜光電変換素子の製造装置の平面断面図
【図13】従来の薄膜光電変換素子の製造装置の部分拡大図
【図14】改良された従来の薄膜光電変換素子の製造装置の部分拡大図
【符号の説明】
1:基板、9:排気ブロック、19:絶縁配管、21:高電圧電極、22:接地電極、27:遮蔽体、56:金属排気ライン、58:排気ユニット、59:絶縁性排気ライン、60:邪魔板、61:網目状部材、62:第1の金属メッシュ、63:第2の金属メッシュ、64:絶縁性シート。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for manufacturing a thin film photoelectric conversion element that forms a thin film on a flexible substrate by a stepping roll method among the apparatuses for manufacturing a thin film solar cell.
[0002]
[Prior art]
Thin film solar cells are expected to become the mainstream of future solar cells because they are thin and lightweight, inexpensive to manufacture, and easy to increase in area.
[0003]
Conventional thin-film solar cells have used glass substrates, but research and development of flexible solar cells using plastic films and metal films has been promoted in terms of weight reduction, workability, and mass productivity. In the thin film solar cell, for example, a plurality of photoelectric conversion elements (or cells) formed by laminating a metal electrode layer, a photoelectric conversion layer made of a thin film semiconductor layer, and a transparent electrode layer on a flexible electrically insulating film substrate are formed. . Taking advantage of this flexibility, mass production became possible by a roll-to-roll method or a stepping roll method.
[0004]
Both of the above systems are provided with a substrate transport means by a plurality of rolls, the former is a method of continuously forming a film on a substrate that moves continuously in each film forming chamber, and the latter is simultaneously stopped in each film forming chamber. In this method, a film is formed on a substrate and the substrate portion after film formation is sent to the next film formation chamber.
[0005]
The stepping roll type film forming apparatus is superior in that the characteristics of each thin film can be stably obtained and the apparatus can be made compact because it can prevent gas mutual diffusion between adjacent film forming chambers. For example, Japanese Patent Laid-Open No. 6-292349, Japanese Patent Laid-Open No. 7-6953, Japanese Patent Laid-Open No. 7-2221025, Japanese Patent Laid-Open No. 8-250431, Japanese Patent Laid-Open No. 8-293491, etc. Yes.
[0006]
FIG. 11 is a conceptual diagram showing an example of the configuration of a stepping roll film forming type vacuum film forming apparatus having a plurality of film forming chambers in a common vacuum chamber. The apparatus shown in FIG. 11 includes an unwinder chamber 290 for unwinding a flexible substrate, a metal electrode layer (rear connection electrode layer), a photoelectric conversion layer (a-Si layer), a transparent electrode layer (ITO layer), and the like. A film forming chamber 280 serving as a plurality of independent processing spaces for forming the substrate, and a winder chamber 291 for winding, and the substrate 201 is rolled out from the core 282 and wound on the core 283. A film is formed in the film formation chamber 280. The common chamber 281 houses a plurality of film formation chambers 280 therein.
[0007]
In the film formation chamber, film formation is performed by sputtering film formation or plasma chemical vapor deposition (hereinafter referred to as plasma CVD method). For example, in the stepping roll method for forming a film by plasma CVD, the film forming chamber is opened-the substrate is moved by one frame-the film forming chamber is sealed-the raw material gas is introduced-the pressure is controlled-the discharge is started-the discharge is terminated- The operation consisting of opening the film forming chamber is repeated.
[0008]
Further, from the viewpoint of improving mass productivity, the present applicant has proposed a plasma CVD method stepping roll method in which a photoelectric conversion layer is simultaneously formed on two rows of flexible substrates that are transported in parallel (Japanese Patent Laid-Open No. Hei. 8-293491).
[0009]
12 and 13 show an apparatus described in the above-mentioned Japanese Patent Application Laid-Open No. 8-293491. FIG. 12 shows the state of the apparatus during film formation as a plan sectional view, and FIG. 13 shows the state of the film formation chamber during film formation as an enlarged view. The thin film photoelectric conversion device manufacturing apparatus of FIG. 12 includes a feeding chamber 11, a preliminary vacuum chamber 12, a film forming vacuum chamber 13, and a winding chamber 14, and the two flexible substrates 1 are wound up from the feeding chamber 11. It is conveyed to the chamber 14. A high-voltage electrode 21 and a ground electrode 22 having a heater 23 are disposed opposite to each other in the film-forming vacuum chamber 13, and a− is formed on the surface of the substrate 1 stopped in the meantime by plasma CVD under application of a high-frequency voltage. A Si-based thin film is formed.
[0010]
As shown in an enlarged view in FIG. 13, the high-voltage electrode 21 has a lid shape, and the substrate 1 is in close contact with the end surface of the high-voltage electrode 21 via the seal block 8, thereby forming a film formation chamber 5 that can be kept airtight. . One high-voltage electrode 21 is provided for each substrate 1, but is connected to the back surface of the substrate 1 via an exhaust block 9 made of an insulating material. The exhaust block 9 is brought into close contact with the high voltage electrode 21 through the sealing material 91, and has a pressure control function (not shown) through the exhaust port 72 opened in the exhaust block 9 and the opening 25 on the back surface of the high voltage electrode 71. The film forming chambers 5 are collectively maintained at the film forming pressure by the exhaust system.
[0011]
Application of a voltage between the high voltage electrode 21 and the ground electrode 22 generates plasma 6 to form a film. Since the two film forming chambers 5 are electrically insulated by the exhaust block 9, the plasma 6 can be controlled for each film forming chamber. When the ground electrode 22 is moved up and down several tens of millimeters by the actuator 24 shown in FIG. 2 after the film formation, the substrate 1 held by the ground electrode 22 is also released and moved in the direction of the arrow 41. .
[0012]
By the way, although the high voltage electrode 21 is exposed in the space of the film forming vacuum chamber 13, even when high frequency power is applied to the high voltage electrode 21, the pressure of the film forming vacuum chamber 13 during film formation is reduced to 0.1 Pa or less. By keeping it, discharge in the vacuum chamber 13 for film formation is suppressed. However, since the pressure in the exhaust block 9 is 10 to 170 Pa (practically 40 to 140 Pa) at the time of film formation, it is easily discharged between the two high voltage electrodes. Although there is a method of adjusting and controlling the phase between the electrodes, there is a problem in reality, and in order to avoid discharge between the two high voltage electrodes, the exhaust block 9 is an insulator and the length is 100 mm or more.
[0013]
By the way, in the case of the conventional apparatus for manufacturing a thin film photoelectric conversion element, the width of the vacuum chamber for film formation is increased by the amount of 100 mm or more, the volume of the vacuum chamber is increased, and a large exhaust system is required. There is a problem that the overall cost of the apparatus including the cost of the above increases. Therefore, in order to solve the above problems, the applicant of the present application provided a partition wall 92 for blocking gas conduction in the through hole of the exhaust block 90 as shown in FIG. An apparatus for manufacturing a thin film photoelectric conversion element has been proposed (see Japanese Patent Application No. 11-229750) having a configuration in which it is provided in communication with each through-hole 73 divided by a partition wall 92.
[0014]
The apparatus shown in FIG. 14 includes the back wall of the substrate 1 and the high voltage electrode 21 in order to improve the safety of the seal by keeping the temperature of the sealing material 91 of the exhaust block 90 low in addition to the provision of the partition wall 92. Between the side surface portion and the side surface portion so as to allow the gas for forming the film to flow therethrough between the side surface portion and substantially the entire width of the back surface portion. A heat shield 27 for the box-shaped sealing material is disposed, the shield is electrically connected to the high voltage electrode, and the film forming gas can flow from the gap to the opening of the back surface portion. It is configured as follows.
[0015]
For convenience of explanation of the present invention to be described later, FIGS. 8 to 10 show simplified views of the configuration of the conventional thin film photoelectric conversion device manufacturing apparatus. FIG. 8 corresponds to FIG. 13 described above, and FIG. 10 corresponds to FIG. 14, and each shows an apparatus for forming a film by transferring two rows of substrates in parallel. On the other hand, FIG. 9 shows an apparatus for forming a film on one row of substrates. 8 to 10, the same functional members in the apparatus shown in FIGS. 12 to 14 are denoted by the same reference numerals and description thereof is omitted.
[0016]
8 to 10, members not shown in FIGS. 12 to 14 are added to the vacuum exhaust system, and the exhaust system in FIGS. 8 to 10 is an insulating exhaust made of an electrically insulating material. An exhaust system including an exhaust line having a line 59 and a metal exhaust line 56 made of a metal material downstream of the line 59 and an exhaust unit 58 is shown. Further, a pressure control valve 57 is provided in the front stage of the exhaust unit 58, and a diagram is shown in which the pressure control of the film forming gas is performed during film formation. Further, in FIG. 8 or FIG. 10, the insulating exhaust line 59 is composed of an insulating block 9 or 90 and an insulating pipe 59.
[0017]
[Problems to be solved by the invention]
By the way, even the conventional improved thin film photoelectric conversion device manufacturing apparatus proposed in the above Japanese Patent Application No. 11-229750 can be used under conditions of relatively low film formation pressure (high vacuum) or high high frequency output. It has been found that there is a problem that discharge occurs in the exhaust line installed at the rear of the high-frequency high-voltage electrode, resulting in high-frequency power loss or film adhesion in the device other than the film formation region. This will be described later as a comparative example of the present invention). The power loss or the film adhesion in the apparatus other than the film formation region makes it difficult to increase the throughput of the film formation apparatus, and increases the maintenance frequency.
[0018]
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to improve the suppression of discharge in the exhaust line as compared with the conventional technique, to increase the throughput of the film forming apparatus and to maintain the maintenance frequency. The aim is to reduce the mass production cost of the thin film photoelectric conversion element comprehensively.
[0019]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention of claim 1 has a back surface portion parallel to the flexible substrate surface to be conveyed and a side wall portion having an end surface capable of airtight contact with the substrate, and the back surface portion. Is provided on the outside of the substrate facing the high voltage electrode, a ground electrode having a heater for heating the substrate, and provided on the back surface of the high voltage electrode, An insulating exhaust line made of an electrically insulating material having a through hole communicating hermetically with the opening of the back surface by a sealing material and having a vacuum exhaust port communicating with the through hole; and the high voltage electrode, A film forming gas is introduced into a film forming space formed between the substrate and a high frequency voltage is applied between the high voltage electrode and the ground electrode to generate a discharge between the substrate and the high voltage electrode. Thin film photoelectric conversion configured to form a thin film on one surface In the manufacturing apparatus of the child, the discharge preventing means for preventing the discharge by reducing the conductance of the gas flow in said insulating exhaust line, and those with in said insulating exhaust line.
[0020]
For example, in the device described in claim 1, the discharge prevention means is composed of a plurality of gas flow baffle plates made of an electrically insulating material (Claim 2), or the discharge prevention means is an electric It shall consist of a mesh-like member which consists of an insulating material (Claim 3).
[0021]
According to the above configuration, the electrons in the gas flow collide with the baffle plate or the mesh member and disappear, so that the electron density in the gas is lowered and the discharge cannot be maintained. By utilizing this principle, it is possible to suppress discharge even under conditions of relatively low film formation pressure or high frequency output.
[0022]
Further, in the above-described first aspect, in place of the discharge preventing means for preventing discharge by reducing the conductance of the gas flow, the first disposed in the back opening of the high-voltage electrode. Metal mesh, a second metal mesh disposed on the insulating exhaust line side in the vicinity of the first metal mesh and electrically grounded, and electrical insulation interposed between the two metal meshes A discharge preventing means having a double mesh structure made of an insulating sheet made of a conductive material is provided.
[0023]
The double mesh configuration uses a dischargeable condition indicated by a Paschen curve (a relationship between a discharge start voltage and a distance between converted electrodes [pressure × distance between electrodes]). By placing the two meshes provided in close proximity to each other, the discharge start voltage can be made extremely high so as not to cause discharge. The invention of claim 4 is more effective in suppressing discharge than the inventions of claims 1 to 3.
[0024]
Further, as the constituent material of the exhaust block, as in the invention of claim 5, at least one material of fluororesin, glass or ceramics can be applied. For example, only the insulating sheet according to the invention of claim 4 is applicable. It is also possible to form a plurality of materials, such as fluorinated resin and other ceramics.
[0025]
Furthermore, in the thing in any one of Claim 1 thru | or 5, in order to enable manufacture of a thin film photoelectric conversion element simultaneously on two rows of flexible substrates, the manufacturing apparatus of a thin film photoelectric conversion element is conveyed in parallel. Between the two rows of flexible substrates, each having a back surface portion parallel to the substrate surface and a side wall portion having an end surface capable of airtight contact with the substrate, and Two high-voltage electrodes each having an opening on the back surface, two ground electrodes provided on the outside of each of the substrates so as to face the high-voltage electrodes and having a heater for heating the substrate, and the two Insulation made of an electrically insulating material provided between the back portions of the high-voltage electrode, having a through hole that is hermetically communicated with the opening of the back portion by a sealing material, and having a vacuum exhaust port that communicates with the through hole An exhaust line, the high voltage electrode and each base A gas for film formation is introduced into a film formation space formed between the substrate and the high-voltage electrode between the high-voltage electrode and the ground electrode, and a discharge is generated between the substrate and the high-voltage electrode. It is preferable that a thin film be formed on one surface (claim 6).
[0026]
Furthermore, in any one of Claims 1 thru | or 6, in order to flow the said film-forming gas between the said board | substrate and the back surface part of a high voltage electrode in parallel with this back surface part. A heat shield for the plate-like or box-like sealing material made of a conductive material is disposed over the substantially entire width of the back surface portion with the gap between the side surface portion, and this shield body is disposed on the high voltage electrode. And the gas for film formation is configured to be able to flow from the gap to the opening of the back surface portion (Claim 7). The safety of the seal can be improved by keeping the temperature at a low level.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described below with reference to the drawings.
[0028]
1 to 3 show schematic configurations of different embodiments of the present invention. In FIG. 1 to FIG. 3, the same members as those shown in FIG.
[0029]
(Example 1)
FIG. 1 shows a first embodiment in which three gas flow baffle plates 60 made of an electrically insulating material are disposed in an insulating pipe 19 in an insulating exhaust line 59 in order to reduce the conductance of the gas flow. An example is shown. The baffle plate 60 has a shape lacking a part of the disk, and is configured such that the gas flow alternately flows through the lacked part of the disk. While the gas flow flows alternately and the gas repeatedly collides with the baffle plate, the electron density in the gas decreases and the occurrence of discharge is suppressed.
[0030]
(Example 2)
FIG. 2 shows a second embodiment in which a mesh member 61 made of an insulating material is disposed in the insulating block 9 in the insulating exhaust line 59 in order to reduce the conductance of the gas flow. . In this embodiment, while the gas flow passes through the mesh member 61, the gas flow repeatedly collides with the mesh member, and the occurrence of discharge can be suppressed as in the first embodiment.
[0031]
(Example 3)
FIG. 3 shows a third embodiment according to the invention of claim 4, in which a first metal mesh 62 disposed in the back opening of the high voltage electrode and a proximity to the first metal mesh 62 are shown. An embodiment provided with a discharge prevention means comprising a second metal mesh 63 disposed on the insulating exhaust line 59 side and an insulating sheet 64 made of an electrically insulating material interposed between the two metal meshes. Show. The second metal mesh 63 is electrically grounded by, for example, a metal wire.
[0032]
The both metal meshes are not limited to meshes, but may be punching boards, or may be formed by arranging a number of metal wires horizontally. The thickness of the insulating sheet 64 made of an electrically insulating material is preferably 1 to 3 mm.
[0033]
As described above, by setting the first metal mesh 62 and the grounded second metal mesh 63 sufficiently close to each other via the insulating sheet 64, the discharge start voltage is extremely increased, It is possible to prevent discharge.
[0034]
FIG. 4 to FIG. 7 show the results of discharge experiments on the first to third embodiments and the conventional apparatus (comparative example). 4 to 7, in order to simulate the film formation state, hydrogen gas was introduced into the film formation chamber, and the pressure in the exhaust line was 27 Pa to 160 Pa (0. 6 stages in the range of 2 to 1.2 Torr), and the high frequency output was changed in 7 stages in the range of 30 to 300 W as shown on the horizontal axis in the figure to confirm the occurrence of discharge in the exhaust line The result is shown. In the figure, ◯ indicates that no discharge occurred, and x indicates that discharge occurred.
[0035]
FIG. 4 shows the discharge experiment results for the devices of Examples 1 and 2 (FIGS. 1 and 2), and FIG. 5 shows the discharge experiment results for the device of Example 3 (FIG. 3). 6 and 7 show the experimental results of the comparative example, FIG. 6 shows the discharge experimental results for the improved conventional device (FIG. 10), and FIG. 7 shows the exhaust block in the conventional device of FIG. The discharge experiment result with respect to the apparatus which made length of 9 100 mm is shown.
[0036]
As apparent from FIG. 5, in the case of the third embodiment adopting the double mesh structure related to the invention of claim 4, the exhaust line is irrelevant regardless of the film forming pressure and the high-frequency output input conditions. There is no discharge inside. On the other hand, in the case of the apparatuses of Examples 1 and 2 (FIGS. 1 and 2), as shown in FIG. 4, partial discharge occurs under the conditions of low film formation pressure and high high frequency output. As can be seen, the results are considerably improved when compared with the results of the conventional apparatus (FIGS. 7 and 8). As described above, according to the present invention, the film forming conditions are improved as compared with the conventional one, and accordingly, the mass production cost can be reduced.
[0037]
【The invention's effect】
According to this invention, as described above, it has a back surface portion parallel to the flexible substrate surface to be transported and a side wall portion having an end surface that can be hermetically contacted with the substrate, and the back surface portion has an opening. A high-voltage electrode, a ground electrode provided on the outside of the substrate facing the high-voltage electrode, having a heater for heating the substrate, and a back surface of the high-voltage electrode. An insulating exhaust line made of an electrically insulating material having a through-hole communicating with the opening of the portion in an airtight manner and having a vacuum exhaust port communicating with the through-hole, and is provided between the high voltage electrode and the substrate. A film-forming gas is introduced into the formed film-forming space, and a high-frequency voltage is applied between the high-voltage electrode and the ground electrode to generate a discharge between the substrate and the high-voltage electrode, and a thin film is formed on one surface of the substrate. Thin film photoelectric conversion device manufacturing apparatus configured to form In order to prevent discharge by reducing the conductance of the gas flow in the insulating exhaust line (for example, a plurality of gas flow baffle plates or mesh members made of an electrically insulating material) ) Is provided in the insulating exhaust line (Claims 1 to 3), or instead of a discharge preventing means for preventing discharge by reducing the conductance of the gas flow, A first metal mesh disposed in the back opening of the high voltage electrode, and a second metal mesh disposed on the insulating exhaust line side in the vicinity of the first metal mesh and electrically grounded And a discharge prevention means comprising an insulating sheet made of an electrically insulating material interposed between the two metal meshes. Even under film formation conditions where high frequency output is applied, film formation can be performed without causing discharge in the exhaust line, which can increase the throughput of the film formation system and reduce the frequency of maintenance. In particular, the mass production cost of the thin film photoelectric conversion element can be reduced.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration of an embodiment of the present invention. FIG. 2 is a diagram showing a schematic configuration of a different embodiment of the invention. FIG. 3 is a diagram showing a schematic configuration of a further different embodiment of the invention. 4 is a diagram showing discharge experiment results for the embodiment of FIGS. 1 and 2. FIG. 5 is a diagram showing discharge experiment results for the embodiment of FIG. 3. FIG. 6 is for an improved conventional thin-film photoelectric conversion device manufacturing apparatus. FIG. 7 is a diagram showing a discharge experiment result for a conventional thin-film photoelectric conversion device manufacturing apparatus. FIG. 8 is a schematic configuration diagram of a conventional thin-film photoelectric conversion device manufacturing apparatus (two-substrate parallel manufacturing method). 9 is a schematic configuration diagram of a conventional thin film photoelectric conversion element manufacturing apparatus (single substrate single-row manufacturing method). FIG. 10 is a schematic configuration diagram of a conventional thin film photoelectric conversion element manufacturing apparatus improved from FIG. ] An example of a stepping roll vacuum deposition system FIG. 12 is a plan sectional view of a conventional thin film photoelectric conversion device manufacturing apparatus. FIG. 13 is a partially enlarged view of a conventional thin film photoelectric conversion device manufacturing apparatus. Partial enlarged view of conversion element manufacturing equipment [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1: Board | substrate, 9: Exhaust block, 19: Insulation piping, 21: High voltage electrode, 22: Ground electrode, 27: Shielding body, 56: Metal exhaust line, 58: Exhaust unit, 59: Insulative exhaust line, 60: Baffle plate, 61: mesh member, 62: first metal mesh, 63: second metal mesh, 64: insulating sheet.

Claims (7)

搬送される可撓性基板面に平行な背面部と基板に気密に接触可能な端面を備える側壁部とを有し,かつ前記背面部は開口を有してなる高電圧電極と、この高電圧電極に対向して前記基板の外側に設けられ,基板加熱用のヒータを有する接地電極と、前記高電圧電極の背面部に設けられ,シール材により前記背面部の開口と気密に連通する貫通孔を有し,かつこの貫通孔に連通する真空排気口を有する電気絶縁性材料からなる絶縁性排気ラインとを備え、前記高電圧電極と基板との間に形成される成膜空間に成膜用のガスを導入して,高電圧電極と接地電極間への高周波電圧の印加によって前記基板と高電圧電極間に放電を発生させ,基板の一面上に薄膜を形成するように構成した薄膜光電変換素子の製造装置において、前記絶縁性排気ライン中のガス流のコンダクタンスを低減することによって放電を防止するための放電防止手段を、前記絶縁性排気ライン中に備えたことを特徴とする薄膜光電変換素子の製造装置。A high-voltage electrode having a back surface portion parallel to the surface of the flexible substrate to be conveyed and a side wall portion having an end surface capable of airtight contact with the substrate, and the back surface portion has an opening; A through hole provided on the outside of the substrate facing the electrode, having a heater for heating the substrate, and a back surface portion of the high voltage electrode, and in airtight communication with the opening of the back surface portion by a sealing material And an insulating exhaust line made of an electrically insulating material having a vacuum exhaust port communicating with the through hole, and for forming a film in a film forming space formed between the high voltage electrode and the substrate A thin film photoelectric conversion device configured to form a thin film on one surface of the substrate by introducing a gas and generating a discharge between the substrate and the high voltage electrode by applying a high frequency voltage between the high voltage electrode and the ground electrode. In the device manufacturing apparatus, the insulating exhaust line Of the discharge preventing means for preventing the discharge by reducing the conductance of the gas flow, apparatus for manufacturing a thin film photoelectric conversion device characterized by comprising in said insulating exhaust line. 請求項1に記載のものにおいて、前記放電防止手段は、電気絶縁性材料からなる複数枚のガス流の邪魔板からなることを特徴とする薄膜光電変換素子の製造装置。2. The apparatus for manufacturing a thin film photoelectric conversion element according to claim 1, wherein the discharge preventing means comprises a plurality of gas flow baffle plates made of an electrically insulating material. 請求項1に記載のものにおいて、前記放電防止手段は、電気絶縁性材料からなる網目状部材からなることを特徴とする薄膜光電変換素子の製造装置。2. The apparatus for manufacturing a thin film photoelectric conversion element according to claim 1, wherein the discharge preventing means is a mesh member made of an electrically insulating material. 請求項1に記載のものにおいて、前記ガス流のコンダクタンスを低減することによって放電を防止するための放電防止手段に代えて、前記高電圧電極の背面開口部に配設された第1の金属メッシュと、この第1の金属メッシュに近接して絶縁性排気ライン側に配設されかつ電気的に接地された第2の金属メッシュと、前記両金属メッシュの間に介挿した電気絶縁性材料からなる絶縁性シートとからなる放電防止手段を備えたことを特徴とする薄膜光電変換素子の製造装置。2. The first metal mesh according to claim 1, wherein the first metal mesh is disposed in the back opening of the high voltage electrode in place of the discharge preventing means for preventing discharge by reducing the conductance of the gas flow. A second metal mesh disposed on the insulating exhaust line side in the vicinity of the first metal mesh and electrically grounded, and an electrically insulating material interposed between the two metal meshes. An apparatus for manufacturing a thin-film photoelectric conversion element, comprising discharge preventing means comprising an insulating sheet. 請求項1ないし4のいずれかに記載のものにおいて、前記電気絶縁性材料は、フッ素樹脂,ガラスまたはセラミックスの内の少なくともいずれか一つの材料からなることを特徴とする薄膜光電変換素子の製造装置。5. The apparatus for manufacturing a thin film photoelectric conversion element according to claim 1, wherein the electrically insulating material is made of at least one of fluororesin, glass, and ceramics. . 請求項1ないし5のいずれかに記載のものにおいて、薄膜光電変換素子の製造装置は、2列の可撓性基板に薄膜光電変換素子を同時に製作可能なように、並行して搬送される2列の可撓性基板の間に,各基板にそれぞれ対応して設けられ,基板面に平行な背面部と基板に気密に接触可能な端面を備える側壁部とを有し,かつ前記背面部は開口を有してなる二つの高電圧電極と、この高電圧電極に対向して前記各基板の外側にそれぞれ設けられ,基板加熱用のヒータを有する二つの接地電極と、前記二つの高電圧電極の背面部間に設けられ,シール材により前記背面部の開口と気密に連通する貫通孔を有し,かつこの貫通孔に連通する真空排気口を有する電気絶縁性材料からなる絶縁性排気ラインとを備え、前記高電圧電極と各基板との間に形成される成膜空間に成膜用のガスを導入して,高電圧電極と接地電極間への高周波電圧の印加によって前記基板と高電圧電極間に放電を発生させ,各基板の一面上に薄膜を形成するように構成したことを特徴とする薄膜光電変換素子の製造装置。6. The thin film photoelectric conversion device manufacturing apparatus according to claim 1, wherein the thin film photoelectric conversion device manufacturing apparatus is transported in parallel so that the thin film photoelectric conversion elements can be simultaneously manufactured on two rows of flexible substrates. Between the flexible substrates in the row, each substrate is provided corresponding to each substrate, and has a back surface portion parallel to the substrate surface and a side wall portion having an end surface capable of airtight contact with the substrate, and the back surface portion is Two high-voltage electrodes having openings, two ground electrodes provided on the outside of each of the substrates facing the high-voltage electrodes and having a heater for heating the substrates, and the two high-voltage electrodes An insulating exhaust line made of an electrically insulating material having a through-hole communicated with the opening of the rear portion in a gas-tight manner by a sealing material and having a vacuum exhaust port communicating with the through-hole. A shape between the high voltage electrode and each substrate. A film-forming gas is introduced into the film-forming space, and a high-frequency voltage is applied between the high-voltage electrode and the ground electrode to generate a discharge between the substrate and the high-voltage electrode, and a thin film is formed on one surface of each substrate. An apparatus for manufacturing a thin film photoelectric conversion element, wherein 請求項1ないし6のいずれかに記載のものにおいて、前記基板と高電圧電極の背面部との間に,この背面部と平行に,かつ前記成膜用のガスを通流させるための隙間を側面部との間に設けて背面部の略全幅にわたって,導電性材料からなる板状または箱状の前記シール材に対する熱の遮蔽体を配設し,この遮蔽体を前記高電圧電極と電気的に接続してなり、かつ前記成膜用のガスは、前記隙間から前記背面部の開口に流通可能に構成したことを特徴とする薄膜光電変換素子の製造装置。7. A device according to claim 1, wherein a gap is formed between the substrate and the back surface portion of the high voltage electrode in parallel with the back surface portion and for flowing the film forming gas. A thermal shield for the plate-like or box-like sealing material made of a conductive material is provided over the substantially entire width of the back surface provided between the side and the side, and this shield is electrically connected to the high-voltage electrode. An apparatus for manufacturing a thin film photoelectric conversion element, wherein the film forming gas is configured to be able to flow from the gap to the opening of the back surface portion.
JP35277199A 1999-12-13 1999-12-13 Thin film photoelectric conversion device manufacturing equipment Expired - Fee Related JP3617664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35277199A JP3617664B2 (en) 1999-12-13 1999-12-13 Thin film photoelectric conversion device manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35277199A JP3617664B2 (en) 1999-12-13 1999-12-13 Thin film photoelectric conversion device manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2001168041A JP2001168041A (en) 2001-06-22
JP3617664B2 true JP3617664B2 (en) 2005-02-09

Family

ID=18426335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35277199A Expired - Fee Related JP3617664B2 (en) 1999-12-13 1999-12-13 Thin film photoelectric conversion device manufacturing equipment

Country Status (1)

Country Link
JP (1) JP3617664B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5105775B2 (en) * 2006-06-05 2012-12-26 キヤノン株式会社 Insulating piping, plasma processing apparatus and method

Also Published As

Publication number Publication date
JP2001168041A (en) 2001-06-22

Similar Documents

Publication Publication Date Title
WO2011033927A1 (en) Film formation apparatus
JP3990867B2 (en) Deposited film forming apparatus and deposited film forming method
JP2006152416A (en) Plasma cvd apparatus
JP2009062579A (en) Film deposition system
US5487786A (en) Plasma chemical vapor deposition device capable of suppressing generation of polysilane powder
JP4158726B2 (en) Thin film manufacturing equipment
JP3314711B2 (en) Thin film manufacturing equipment
JP3617664B2 (en) Thin film photoelectric conversion device manufacturing equipment
JP2000307139A (en) Manufacture of thin film solar cell and thin film electrode layer forming device
JP4844881B2 (en) Thin film manufacturing equipment
JP2000303178A (en) Thin film forming device
JP3089336B2 (en) Manufacturing equipment for thin-film photoelectric conversion elements
JPH07254566A (en) Thin film forming apparatus
JP3997456B2 (en) Thin film photoelectric conversion device manufacturing equipment
JP4311223B2 (en) Thin film manufacturing apparatus, thin film manufacturing method, and thin film manufacturing apparatus cleaning method
JP4051639B2 (en) Thin film photoelectric conversion device manufacturing equipment
JP4576190B2 (en) Plasma processing equipment
JP4257586B2 (en) Substrate processing method
JP2001352085A (en) Method for forming thin film of thin-film photoelectric conversion element
JP7286477B2 (en) Thin film forming equipment
JP2000299481A (en) Manufacture of thin-film solar battery and degassing processor for solar battery substrate
JP4981387B2 (en) Thin film manufacturing apparatus and solar cell manufacturing method
JPH0927459A (en) Processing equipment for semiconductor device
JP4311222B2 (en) Thin film manufacturing apparatus, thin film manufacturing method, and thin film manufacturing apparatus cleaning method
JP2001226776A (en) Thin film deposition system by plasma discharge and method of manufacturing shower electrode for the system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041103

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees