JP4158726B2 - Thin film manufacturing equipment - Google Patents

Thin film manufacturing equipment Download PDF

Info

Publication number
JP4158726B2
JP4158726B2 JP2004070201A JP2004070201A JP4158726B2 JP 4158726 B2 JP4158726 B2 JP 4158726B2 JP 2004070201 A JP2004070201 A JP 2004070201A JP 2004070201 A JP2004070201 A JP 2004070201A JP 4158726 B2 JP4158726 B2 JP 4158726B2
Authority
JP
Japan
Prior art keywords
thin film
voltage application
application electrode
manufacturing apparatus
central portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004070201A
Other languages
Japanese (ja)
Other versions
JP2005256100A (en
Inventor
均 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2004070201A priority Critical patent/JP4158726B2/en
Publication of JP2005256100A publication Critical patent/JP2005256100A/en
Application granted granted Critical
Publication of JP4158726B2 publication Critical patent/JP4158726B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

本発明は薄膜製造装置に関し、特に、搬送される可撓性基板上に各層を成膜する薄膜製造装置に関する。   The present invention relates to a thin film manufacturing apparatus, and more particularly to a thin film manufacturing apparatus that forms each layer on a flexible substrate to be transported.

薄膜光電変換素子を製造する場合、例えばアモルファスシリコン(a−Si)を主原料とする光電変換層などを、高分子材料あるいはステンレス鋼などの金属からなる長尺状の可撓性基板上に形成することは生産性の点で優れている。   When manufacturing a thin film photoelectric conversion element, for example, a photoelectric conversion layer mainly made of amorphous silicon (a-Si) is formed on a long flexible substrate made of a polymer material or a metal such as stainless steel. Doing is excellent in terms of productivity.

上記のように、可撓性基板上に複数の層を形成して薄膜光電変換素子を製造するための装置として、従来、搬送される可撓性基板上に各層を成膜する薄膜製造装置がある。
このような薄膜製造装置には、主にロールツーロール方式のものとステッピングロール方式のものとがある。ロールツーロール方式は、成膜室を連続的に移動していく可撓性基板上に連続的に成膜していく方式であり、ステッピングロール方式は、成膜室内で可撓性基板を一旦停止させて成膜した後、成膜の終わった可撓性基板部分をその成膜室から次の成膜室へと送り出す方式である。ステッピングロール方式の成膜は、ロールツーロール方式の成膜に比べて、隣接する成膜室とのガス相互拡散がないことや、装置がコンパクトになるといった点で優れている。
As described above, as a device for forming a plurality of layers on a flexible substrate and manufacturing a thin film photoelectric conversion element, conventionally, a thin film manufacturing device for forming each layer on a flexible substrate to be transported is used. is there.
Such a thin film manufacturing apparatus mainly includes a roll-to-roll system and a stepping roll system. The roll-to-roll method is a method in which a film is continuously formed on a flexible substrate that moves continuously in the film formation chamber, and the stepping roll method is a method in which a flexible substrate is temporarily placed in the film formation chamber. After the film formation is stopped, the flexible substrate portion after film formation is sent from the film formation chamber to the next film formation chamber. The stepping roll type film formation is superior to the roll-to-roll type film formation in that there is no gas interdiffusion between adjacent film forming chambers and the apparatus is compact.

従来の一般的な薄膜製造装置としては、可撓性基板を水平にして搬送するものが用いられている。しかしながら、このような装置では、設置スペースを広く確保する必要があるという問題があったため、このような問題の改善を目的とした技術として、従来、可撓性基板を鉛直にして搬送する技術がある。また、1つの装置での成膜効率の向上を目的とした技術として、従来、複数の可撓性基板を並行して搬送し、それぞれの基板面上に成膜する技術もある。   As a conventional general thin film manufacturing apparatus, an apparatus that transports a flexible substrate horizontally is used. However, in such an apparatus, there is a problem that it is necessary to secure a wide installation space. Therefore, as a technique for improving such a problem, there is a conventional technique for conveying a flexible substrate vertically. is there. Further, as a technique for improving the film formation efficiency in one apparatus, there is a technique in which a plurality of flexible substrates are transported in parallel and a film is formed on each substrate surface.

図4は、基板面を鉛直にして搬送される2枚の可撓性基板をそれぞれ並行して搬送し、両者の一面上に薄膜を形成する従来の薄膜製造装置の平面断面図である。
図4に示す薄膜製造装置100では、まず送り室111に収納された2つの搬入ロール102から可撓性基板101がそれぞれ引き出され、それらは予備真空室112を経て成膜用真空室113に入る。この成膜用真空室113内では、1つの電圧印加電極121の外側に2つの接地電極122がそれぞれ対向配置されており、両電極の間に搬送された各可撓性基板101は成膜室105で一旦停止されて成膜が行われる。成膜終了後、アクチュエータ124が起動し、各可撓性基板101は巻き取り室114に収納された2つの搬送ロール103にそれぞれ巻き取られる。
FIG. 4 is a cross-sectional plan view of a conventional thin film manufacturing apparatus that transports two flexible substrates that are transported with the substrate surface vertical, and forms a thin film on one surface of both.
In the thin film manufacturing apparatus 100 shown in FIG. 4, first, the flexible substrate 101 is pulled out from the two carry-in rolls 102 accommodated in the feeding chamber 111, and they enter the film forming vacuum chamber 113 through the preliminary vacuum chamber 112. . In this film-forming vacuum chamber 113, two ground electrodes 122 are arranged opposite to each other on the outside of one voltage application electrode 121, and each flexible substrate 101 transported between both electrodes is placed in the film-forming chamber. At 105, the film is temporarily stopped and film formation is performed. After the film formation is completed, the actuator 124 is activated, and each flexible substrate 101 is wound around the two transport rolls 103 accommodated in the winding chamber 114.

図5は、図4に示す薄膜製造装置での成膜の詳細を示す図であり、(a)は成膜時、(b)は基板搬送時を示す。
成膜用真空室113は壁体115によって外界と区切られており、図5(a)に示す成膜時には、搬送ローラ104に挟まれた各可撓性基板101の外側に接地電極122がそれぞれ密着し、さらにその内側に成膜室壁151のシール材152が密着することにより気密状態の成膜室105が形成される。そして、電圧印加電極121と接地電極122との間に電圧が印加されてプラズマ106が生じ、接地電極122に内蔵されたヒータ123により加熱された各可撓性基板101の表面上には、反応ガスの分解による薄膜が形成される。成膜終了後、各可撓性基板101を搬送する際には、各搬送ローラ104及び各接地電極122を、図4に示すアクチュエータ124により矢印Aの示す方向に約1cm移動させる。図5(b)は、この移動が行われた後の状態である。このようにして、各可撓性基板101を成膜室壁151及び接地電極122に接触させないで矢印Bに示す方向に搬送することが可能となる。
FIGS. 5A and 5B are diagrams showing details of film formation in the thin film manufacturing apparatus shown in FIG. 4. FIG. 5A shows a film formation time, and FIG. 5B shows a substrate transfer time.
The film forming vacuum chamber 113 is separated from the outside by a wall 115, and when forming the film shown in FIG. 5A, a ground electrode 122 is provided outside each flexible substrate 101 sandwiched between the transport rollers 104. The film forming chamber 105 in an airtight state is formed by the close contact and the sealing material 152 of the film forming chamber wall 151 in close contact therewith. Then, a voltage is applied between the voltage applying electrode 121 and the ground electrode 122 to generate plasma 106, and a reaction is performed on the surface of each flexible substrate 101 heated by the heater 123 built in the ground electrode 122. A thin film is formed by gas decomposition. When the flexible substrates 101 are transported after film formation, the transport rollers 104 and the ground electrodes 122 are moved by about 1 cm in the direction indicated by the arrow A by the actuator 124 shown in FIG. FIG. 5B shows a state after this movement is performed. In this way, each flexible substrate 101 can be transported in the direction indicated by arrow B without contacting the film forming chamber wall 151 and the ground electrode 122.

また、従来の薄膜製造装置を用いて、例えばpin構造を有する半導体薄膜を成膜するには、可撓性基板を異なる反応ガスが導入される複数の成膜室に通す必要がある。しかしながら、このような構成とする場合、一般に成膜室間にゲートを設ける必要があり、装置構成が複雑になるという問題があった。このような問題を改善する技術として、従来、隣接して配置された複数の成膜室によって順次成膜を行う技術がある。   Further, in order to form a semiconductor thin film having, for example, a pin structure using a conventional thin film manufacturing apparatus, it is necessary to pass the flexible substrate through a plurality of film formation chambers into which different reaction gases are introduced. However, in the case of such a configuration, it is generally necessary to provide a gate between the film forming chambers, and there is a problem that the apparatus configuration becomes complicated. As a technique for improving such a problem, there is conventionally a technique for sequentially forming a film in a plurality of film forming chambers arranged adjacent to each other.

図6は、隣接して配置された複数の成膜室を有する、従来の薄膜製造装置の平面断面図である。
図6に示す薄膜製造装置200は、同一可撓性基板201上に対して、長手方向に隣接して配置された複数の成膜室205によって順次成膜が行われる。接地電極222は各成膜室205に対して共通に用意され、各成膜室205は接地された導電性側壁253を挟んで隣接している。各電圧印加電極221と導電性側壁253とは、絶縁物259によって絶縁されている。各成膜室を囲む成膜用真空室213は、真空排気管271によって連通しており、導電性側壁253に連通孔254を設けることで、内部の圧力が均一にされる。また、各成膜室205にも真空排気口272が開口して排気される。可撓性基板201の搬送は、接地電極222を可撓性基板201から浮かすことによって行う。このような構成とすることで、装置構成を複雑にすることなく、複数の成膜室を配置することが可能となる。
FIG. 6 is a plan sectional view of a conventional thin film manufacturing apparatus having a plurality of film forming chambers arranged adjacent to each other.
In the thin film manufacturing apparatus 200 shown in FIG. 6, film formation is sequentially performed on the same flexible substrate 201 by a plurality of film formation chambers 205 disposed adjacent to each other in the longitudinal direction. The ground electrode 222 is prepared in common for each film forming chamber 205, and the film forming chambers 205 are adjacent to each other with a grounded conductive side wall 253 interposed therebetween. Each voltage application electrode 221 and the conductive side wall 253 are insulated by an insulator 259. The film formation vacuum chambers 213 surrounding each film formation chamber are communicated by a vacuum exhaust pipe 271, and the internal pressure is made uniform by providing the communication holes 254 in the conductive side wall 253. Further, each film forming chamber 205 is also evacuated by opening a vacuum exhaust port 272. The flexible substrate 201 is transported by floating the ground electrode 222 from the flexible substrate 201. With such a configuration, a plurality of film forming chambers can be arranged without complicating the apparatus configuration.

しかしながら、上記の薄膜製造装置200では、他の成膜室205の印加電圧によって発生するノイズが膜質に悪影響を及ぼすという問題があった。
このような問題を改善するため、従来、電圧印加電極の背面及び側面をシールド体で覆う技術が開示されている(例えば、特許文献1参照)。
However, the above-described thin film manufacturing apparatus 200 has a problem that noise generated by the voltage applied to the other film forming chamber 205 adversely affects the film quality.
In order to improve such a problem, the technique which covers the back surface and side surface of a voltage application electrode with a shield body conventionally is disclosed (for example, refer patent document 1).

図7は、電圧印加電極の背面及び側面をシールド体で覆った、従来の薄膜製造装置の成膜室部分を示す平面断面図である。また、図8は、図7に示す薄膜製造装置の一般的な給電方式を示す縦断面図である。   FIG. 7 is a plan sectional view showing a film forming chamber portion of a conventional thin film manufacturing apparatus in which the back surface and side surfaces of the voltage application electrode are covered with a shield body. FIG. 8 is a longitudinal sectional view showing a general power feeding method of the thin film manufacturing apparatus shown in FIG.

図7に示す薄膜製造装置300は、並行して搬送される2列の可撓性基板301の間に排気部材307を介して結合された2つの電圧印加電極302が配置され、さらにそれぞれの可撓性基板301を挟んで対向する側に接地電極303がそれぞれ配置される。各々の電圧印加電極302の背面及び側面はシールド体304で覆われ、これに導電性の枠体305が導電的に結合されている。このような構成とすることで、成膜室308がシールドされ、複数の成膜室308を有する場合、他の成膜室308の印加電圧によって発生するノイズの影響が防止される。また、電圧印加電極302への給電方式としては、図8に示すように、絶縁体によって覆われた導体からなる給電体306の一端を薄膜製造装置300の上部に設置されたインピーダンス整合器351に接続し、その他端をシールド体304を貫通させて電圧印加電極302の上端部に接続する。このような接続によって、高周波電源352から電圧印加電極302への給電が行われ、薄膜形成に必要となるプラズマが成膜室308に生成される。   In the thin film manufacturing apparatus 300 shown in FIG. 7, two voltage application electrodes 302 coupled via an exhaust member 307 are arranged between two rows of flexible substrates 301 transported in parallel. Ground electrodes 303 are arranged on opposite sides of the flexible substrate 301, respectively. The back and side surfaces of each voltage application electrode 302 are covered with a shield body 304, and a conductive frame 305 is conductively coupled thereto. With such a structure, when the film formation chamber 308 is shielded and has a plurality of film formation chambers 308, the influence of noise generated by the voltage applied to the other film formation chamber 308 is prevented. In addition, as a power feeding method to the voltage application electrode 302, as shown in FIG. 8, one end of a power feeding body 306 made of a conductor covered with an insulator is connected to an impedance matching unit 351 installed on the upper part of the thin film manufacturing apparatus 300. The other end is connected to the upper end portion of the voltage application electrode 302 through the shield body 304. With such connection, power is supplied from the high-frequency power source 352 to the voltage application electrode 302, and plasma necessary for forming a thin film is generated in the film formation chamber 308.

ところで近年、高周波電源の周波数として、従来主に用いられてきた13.56MHzの2〜4倍程度の高い周波数が利用され始めてきており、さらにこれ以上の周波数域の研究もなされている。このような高周波数域への移行が進行しつつあることの要因としては、主に以下のような2点が挙げられる。即ち、第1には、薄膜の形成速度の向上に加えて膜質の向上を図ることが可能であると分かり始めたことであり、第2には、高い周波数によりプラズマを発生した場合、電圧印加電極及び接地電極の間に電子がトラップされ、低い印加電圧でプラズマを維持できるので、成膜中に可撓性基板に入射するエネルギー粒子によるダメージが軽減されることである。   In recent years, as a frequency of a high-frequency power source, a frequency that is about 2 to 4 times higher than 13.56 MHz, which has been mainly used in the past, has begun to be used. The following two points are mainly cited as factors that cause the transition to such a high frequency range. That is, firstly, it has been found that it is possible to improve the film quality in addition to the improvement of the formation speed of the thin film. Second, when plasma is generated at a high frequency, voltage is applied. Electrons are trapped between the electrode and the ground electrode, and the plasma can be maintained at a low applied voltage, thereby reducing damage caused by energetic particles incident on the flexible substrate during film formation.

しかしながら、図8に示すような従来の給電方式では、高周波電源から供給される印加電圧の周波数が高くなるに従って、その波長が電圧印加電極と同程度となるため、電圧印加電極の各部位の電位が異なることになる。特に、給電側に比べてその反対側の電位が大きくなるという現象が生じ、高い周波数域になるほど顕著にその電位差が発生する。従って、このような電位差に対応してプラズマ密度にも差が生じるため、結果として得られる薄膜は、給電側が薄くその反対側が厚いきわめて不均一な膜厚分布になるという問題があった。   However, in the conventional power supply method as shown in FIG. 8, as the frequency of the applied voltage supplied from the high frequency power supply becomes higher, the wavelength becomes the same as that of the voltage applied electrode. Will be different. In particular, a phenomenon occurs in which the potential on the opposite side becomes larger than that on the power feeding side, and the potential difference becomes more significant as the frequency becomes higher. Accordingly, since the plasma density also varies in response to such a potential difference, the resulting thin film has a problem that it has a very non-uniform film thickness distribution where the power supply side is thin and the opposite side is thick.

このような問題を改善するために、従来、電圧印加電極の中央部に給電する方式がある。
図9は、電圧印加電極の中央部に給電する方式を用いた、従来の薄膜製造装置の断面図である。なお、図8と同じものには同じ符号を付し、説明を省略する。
In order to improve such a problem, there is a conventional method of supplying power to the central portion of the voltage application electrode.
FIG. 9 is a cross-sectional view of a conventional thin film manufacturing apparatus using a method of supplying power to the central portion of the voltage application electrode. In addition, the same code | symbol is attached | subjected to the same thing as FIG. 8, and description is abbreviate | omitted.

図9に示す薄膜製造装置300aでは、給電体306を構成する導体306aの一端がインピーダンス整合器351に接続され、その他端がシールド体304を貫通して直下に配され、電圧印加電極302の中央部に接続される。これによって、高周波電源352から電圧印加電極302の中央部への給電が行われ、図8に示す給電方式の問題が改善される。
特開平8−293491号公報(段落番号〔0010〕,第6図)
In the thin film manufacturing apparatus 300 a shown in FIG. 9, one end of the conductor 306 a constituting the power supply body 306 is connected to the impedance matching device 351, and the other end passes through the shield body 304 and is arranged directly below. Connected to the part. Thus, power is supplied from the high-frequency power source 352 to the central portion of the voltage application electrode 302, and the problem of the power supply method shown in FIG. 8 is improved.
JP-A-8-293491 (paragraph number [0010], FIG. 6)

しかしながら、上記の薄膜製造装置では、給電体を構成する導体が電圧印加電極及びシールド体によって形成される空間内を配される構造となっているため、導体と電圧印加電極との間には、前述の図9に示すような浮遊キャパシタンス309が発生する。また、上記のような構造は導体からの電磁波が伝播し易い構造でもある。これらの要因によって、高周波電源から供給される印加電圧の周波数が高くなるに従い、電圧印加電極の上部に高周波電流がより流れ易くなって電圧印加電極に電位差が生じることになる。これに対応して、成膜室に発生するプラズマの密度も不均一になり、結果として得られる薄膜は、電極上部側の膜厚が薄くなるという問題があった。上記の浮遊キャパシタンスを低減すると共に電磁波伝播の影響を抑制するためには、導体と電圧印加電極との距離を大きく取る必要がある。しかしながら、このような手段を取ることは、反応室容積の増大と共に装置の大型化を招き、装置コストの増大のみならず装置を設置する建屋の建設費も増大するという問題を伴った。   However, in the above thin film manufacturing apparatus, since the conductor constituting the power feeding body has a structure arranged in the space formed by the voltage application electrode and the shield body, between the conductor and the voltage application electrode, A stray capacitance 309 as shown in FIG. 9 is generated. In addition, the structure as described above is a structure in which electromagnetic waves from the conductor easily propagate. Due to these factors, as the frequency of the applied voltage supplied from the high-frequency power source increases, a high-frequency current flows more easily over the voltage-applying electrode, causing a potential difference in the voltage-applying electrode. Corresponding to this, the density of the plasma generated in the film forming chamber becomes non-uniform, and the resulting thin film has a problem that the film thickness on the upper side of the electrode becomes thin. In order to reduce the above stray capacitance and suppress the influence of electromagnetic wave propagation, it is necessary to increase the distance between the conductor and the voltage application electrode. However, taking such a measure has a problem in that the reaction chamber volume is increased and the apparatus is increased in size, which increases not only the apparatus cost but also the construction cost of the building in which the apparatus is installed.

本発明はこのような点に鑑みてなされたものであり、コストを抑制しつつ良好な膜厚分布を実現することのできる薄膜製造装置を提供することを目的とする。   This invention is made | formed in view of such a point, and it aims at providing the thin film manufacturing apparatus which can implement | achieve favorable film thickness distribution, suppressing cost.

本発明では上記問題を解決するために、搬送される可撓性基板の一面上に薄膜を形成する薄膜製造装置において、前記可撓性基板に対向して配置された電圧印加電極と、全周が絶縁体によって覆われた導体からなり、前記電圧印加電極に給電するための給電体と、前記電圧印加電極の背面側に接地電位を保って配置され、前記給電体を前記電圧印加電極の中央部に導くための貫通孔が設けられたシールド体と、を備え、前記給電体を前記貫通孔に貫挿させて前記中央部に給電することを特徴とする薄膜製造装置が提供される。   In the present invention, in order to solve the above problem, in a thin film manufacturing apparatus for forming a thin film on one surface of a flexible substrate to be transported, a voltage application electrode disposed facing the flexible substrate, Is formed of a conductor covered with an insulator, and is arranged with a power supply for supplying power to the voltage application electrode and a ground potential on the back side of the voltage application electrode, and the power supply is arranged at the center of the voltage application electrode. And a shield body provided with a through hole for leading to the portion, and the thin film manufacturing apparatus is characterized in that the power feeding body is inserted into the through hole to feed power to the central portion.

上記の構成によれば、電圧印加電極の中央部まで給電体をシールド状態で導き、上記中央部に給電することが可能となる。
また、本発明では上記課題を解決するために、並行して搬送される2列の可撓性基板の各々の一面上に薄膜を形成する薄膜製造装置において、前記可撓性基板の間に対向配置された電圧印加電極と、全周が絶縁体によって覆われた導体からなり、前記電圧印加電極に給電するための給電体と、前記電圧印加電極の間に接地電位を保って配置され、前記給電体を前記電圧印加電極の中央部に導くための貫通孔がそれぞれ設けられたシールド体と、を備え、前記給電体を各々の前記貫通孔に貫挿させて前記中央部にそれぞれ給電することを特徴とする薄膜製造装置が提供される。
According to said structure, it becomes possible to guide the electric power feeding body to the center part of a voltage application electrode in the shield state, and to supply electric power to the said center part.
Further, in the present invention, in order to solve the above-mentioned problem, in a thin film manufacturing apparatus for forming a thin film on one surface of each of two rows of flexible substrates transported in parallel, the opposing surfaces are arranged between the flexible substrates. The voltage application electrode that is disposed, and a conductor that is entirely covered with an insulator, is disposed with a ground potential between the power supply body that supplies power to the voltage application electrode and the voltage application electrode, A shield body provided with a through hole for guiding the power feeding body to the central portion of the voltage application electrode, and feeding the power feeding body to the central portion by inserting the power feeding body into each of the through holes. Is provided.

上記の構成によれば、電圧印加電極の中央部まで各給電体をシールド状態で導き、上記中央部にそれぞれ給電することが可能となる。   According to said structure, each electric power feeding body can be guide | induced to the center part of a voltage application electrode in the shield state, and it becomes possible to supply electric power to the said center part, respectively.

本発明に係る薄膜製造装置は、シールド体に設けられた電圧印加電極の中央部に導くための貫通孔に給電体を貫挿させて中央部に給電することで、電圧印加電極の中央部までシールドされた給電体によって中央部に給電することが可能となる。従って、電圧印加電極に発生する電位差を抑制することが可能となり、薄膜の膜厚分布を改善できる。また、装置の大型化を伴う必要がないため、コストを抑制することができる。   The thin film manufacturing apparatus according to the present invention feeds power to a central portion by inserting a power feeder into a through-hole for leading to the central portion of the voltage application electrode provided in the shield body, so that the central portion of the voltage application electrode is reached. It becomes possible to feed power to the central portion by the shielded power feeding body. Accordingly, it is possible to suppress a potential difference generated in the voltage application electrode, and to improve the film thickness distribution of the thin film. In addition, since it is not necessary to increase the size of the apparatus, the cost can be suppressed.

本発明に係る別の薄膜製造装置は、シールド体に設けられた各電圧印加電極の中央部に導くための貫通孔に給電体をそれぞれ貫挿させて中央部に給電することで、電圧印加電極の中央部までシールドされた各給電体によって中央部にそれぞれ給電することが可能となる。従って、各電圧印加電極に発生する電位差を抑制することが可能となり、薄膜の膜厚分布を改善できる。また、装置の大型化を伴う必要がないため、コストを抑制することができる。   Another thin film manufacturing apparatus according to the present invention supplies voltage to the central portion by inserting a power supply body through a through hole for leading to the central portion of each voltage applying electrode provided in the shield body. It is possible to feed power to the central portion by the respective power feeding bodies shielded up to the central portion. Therefore, it is possible to suppress the potential difference generated in each voltage application electrode, and the film thickness distribution of the thin film can be improved. In addition, since it is not necessary to increase the size of the apparatus, the cost can be suppressed.

以下、本発明の実施の形態を図面を参照して詳細に説明する。
図1は、本発明の実施の形態の薄膜製造装置の成膜室部分を示す平面断面図である。また、図2は、図1のA−A線での断面図であり、図3は、図1のB−B線での断面図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a plan sectional view showing a film forming chamber portion of a thin film manufacturing apparatus according to an embodiment of the present invention. 2 is a cross-sectional view taken along line AA in FIG. 1, and FIG. 3 is a cross-sectional view taken along line BB in FIG.

本発明の実施の形態の薄膜製造装置10は、ステッピングロール方式で成膜を行うものであり、送り室から引き出された2列の可撓性基板1は並行して搬送され、予備真空室を経て成膜用真空室に入り、図1に示す成膜室8で一旦停止されて各々の一面上にそれぞれ成膜された後、巻き取り室に収納される構造をなしている。なお、成膜室8を除く上記各室の図示は省略している。   A thin film manufacturing apparatus 10 according to an embodiment of the present invention performs film formation by a stepping roll method. Two rows of flexible substrates 1 drawn out from a feeding chamber are transported in parallel, and a preliminary vacuum chamber is formed. After that, the film forming vacuum chamber is entered, temporarily stopped in the film forming chamber 8 shown in FIG. 1, and formed on each surface, and then accommodated in the take-up chamber. In addition, illustration of each said chamber | room except the film-forming chamber 8 is abbreviate | omitted.

このように構成される本実施の形態の薄膜製造装置10は、並行して搬送される2列の可撓性基板1の間にそれぞれ対向配置された電圧印加電極2及び接地電極3、各電圧印加電極2の間に配置されたシールド体4、電圧印加電極2に絶縁してねじ止めされる枠体5、並びにシールド体4に貫挿された給電体6を有している。さらに、電圧印加電極2同士は、排気部材7によって気密に連結されている。   The thin film manufacturing apparatus 10 according to the present embodiment configured as described above includes the voltage application electrode 2 and the ground electrode 3 that are arranged to face each other between two rows of flexible substrates 1 that are transported in parallel, and each voltage. The shield body 4 is disposed between the application electrodes 2, the frame body 5 is insulated and screwed to the voltage application electrodes 2, and the power supply body 6 is inserted into the shield body 4. Further, the voltage application electrodes 2 are connected in an airtight manner by the exhaust member 7.

電圧印加電極2は、可撓性基板1の間に対向配置される。本実施の形態では、電圧印加電極2の中央部2aに凸形状の加工がなされており、シールド体4を貫挿して配された給電体6の一端は、この中央部2aと接続される。接地電極3は、各電圧印加電極2の可撓性基板1と対向する側にそれぞれ対向配置される。接地電極3には、可撓性基板1を加熱するためのヒータ3aが内蔵される。これらの電圧印加電極2及び接地電極3によって、成膜時に気密状態となる成膜室8に電圧が印加され、薄膜を形成するためのプラズマが成膜室8に生成される。   The voltage application electrode 2 is disposed opposite to the flexible substrate 1. In the present embodiment, the central portion 2a of the voltage application electrode 2 is processed to have a convex shape, and one end of a power supply body 6 disposed through the shield body 4 is connected to the central portion 2a. The ground electrode 3 is disposed so as to face the voltage application electrode 2 on the side facing the flexible substrate 1. The ground electrode 3 incorporates a heater 3 a for heating the flexible substrate 1. By the voltage application electrode 2 and the ground electrode 3, a voltage is applied to the film forming chamber 8 that is in an airtight state during film formation, and plasma for forming a thin film is generated in the film forming chamber 8.

シールド体4は、例えばアルミニウムなどの導電性の部材からなり、対向配置された電圧印加電極2の間に配置される。本実施の形態では、本部材は各電圧印加電極2の背面及び側面を覆って配置される。また、成膜用真空室と外界とを区切って配置される壁体9は接地電位にあり、シールド体4はこの壁体9と接続されて接地電位に保たれる。   The shield body 4 is made of, for example, a conductive member such as aluminum, and is disposed between the voltage application electrodes 2 disposed to face each other. In the present embodiment, this member is disposed so as to cover the back surface and the side surface of each voltage application electrode 2. Further, the wall body 9 arranged so as to separate the vacuum chamber for film formation from the outside world is at the ground potential, and the shield body 4 is connected to the wall body 9 and kept at the ground potential.

枠体5は、例えばステンレスなどの導電性の部材からなり、絶縁性及びシール性を兼ね備えた間隔材15を挟んで各電圧印加電極2の外側にそれぞれ配置される。なお、枠体5及び電圧印加電極2の間隔材15との接触面には溝が掘られ、気密を保つためのシール材16が保持される。このように配置された各枠体5は、電圧印加電極2に対して、電気的絶縁を保つための絶縁管17が被せられたねじ18によって、それぞれねじ止めされる。また、シールド体4に対しては、ねじ19によってねじ止めされる。これにより、枠体5は、シールド体4に対して導電的に結合され、シールド体4と同様に接地電位に保たれる。   The frame body 5 is made of, for example, a conductive member such as stainless steel, and is disposed outside each voltage application electrode 2 with a spacing member 15 having both insulating properties and sealing properties interposed therebetween. In addition, a groove is dug in the contact surface of the frame 5 and the voltage applying electrode 2 with the spacing member 15, and a sealing material 16 for keeping airtightness is held. Each frame 5 arranged in this manner is screwed to the voltage application electrode 2 by a screw 18 covered with an insulating tube 17 for maintaining electrical insulation. The shield body 4 is screwed with screws 19. As a result, the frame body 5 is conductively coupled to the shield body 4 and maintained at the ground potential in the same manner as the shield body 4.

給電体6は、電圧印加電極2に対して給電するための部材であり、全周を絶縁体6bによって覆われた導体6aからなる。本実施の形態では、棒形状からなる導体6aを用いた。   The power feeder 6 is a member for feeding power to the voltage application electrode 2 and is composed of a conductor 6a whose entire circumference is covered with an insulator 6b. In the present embodiment, the conductor 6a having a rod shape is used.

排気部材7は、排気のための中空部を有し、成膜時に成膜室8に供給される反応ガスを排気するために用いられる。本実施の形態に用いられる各電圧印加電極2には、図1に示すように、中央部2aに対して図面左右方向対称となる位置に、成膜室8から排気するための排気口2Aがそれぞれ設けられている。そして、各電圧印加電極2の互いに相対する排気口2Aは、それぞれ排気部材7の上記中空部の両側端部と結合されている。これによって、相対する排気口2A同士は、排気部材7に連結される構造をなしている。なお、排気部材7の電圧印加電極2と接触する面には、前述したシール材16が保持される。このように、各電圧印加電極2の互いに相対する位置に設けられた排気口2A同士を排気部材7によって連結することで、各成膜室8から別々に排気する必要がなくなるので、排気構造が簡易化され、コストの低減を図ることが可能となる。   The exhaust member 7 has a hollow portion for exhaust, and is used to exhaust the reaction gas supplied to the film formation chamber 8 during film formation. As shown in FIG. 1, each voltage application electrode 2 used in the present embodiment has an exhaust port 2 </ b> A for exhausting air from the film formation chamber 8 at a position symmetrical to the center portion 2 a in the horizontal direction of the drawing. Each is provided. The exhaust ports 2 </ b> A facing each other of the voltage application electrodes 2 are coupled to both side ends of the hollow portion of the exhaust member 7. Thus, the opposing exhaust ports 2A are connected to the exhaust member 7. In addition, the sealing material 16 mentioned above is hold | maintained on the surface which contacts the voltage application electrode 2 of the exhaust member 7. FIG. In this way, by connecting the exhaust ports 2A provided at positions opposite to each other of the voltage application electrodes 2 by the exhaust member 7, it is not necessary to separately exhaust from each film forming chamber 8, so that the exhaust structure is improved. This simplifies and makes it possible to reduce the cost.

上記の排気部材7には、図3に示すように、その下面側に開口7aが設けられている。そして、シールド体4及び壁体9での上記開口7aと対応する位置には、孔4a,9aがそれぞれ設けられており、これらは排気の際の排気経路として機能する。なお、シールド体4の排気部材7及び壁体9と接触する面には、前述したシール材16がそれぞれ保持される。   As shown in FIG. 3, the exhaust member 7 has an opening 7a on the lower surface side. And the hole 4a and 9a are each provided in the position corresponding to the said opening 7a in the shield body 4 and the wall body 9, and these function as an exhaust_gas | exhaustion path | route in exhaust_gas | exhaustion. In addition, the sealing material 16 mentioned above is hold | maintained at the surface which contacts the exhaust member 7 and the wall body 9 of the shield body 4, respectively.

上記のように構成される薄膜製造装置10では、図2に示すように、電圧印加電極2の中央部2aの直上に対応する場所に、インピーダンス整合器51が壁体9の上部に設置されており、これに対して高周波電源52が接続される。なお、インピーダンス整合器51は、電圧印加電極2からの反射波を最小にする制御を行う。   In the thin film manufacturing apparatus 10 configured as described above, as shown in FIG. 2, the impedance matching device 51 is installed on the upper portion of the wall body 9 at a location corresponding to the position directly above the central portion 2 a of the voltage application electrode 2. On the other hand, a high frequency power supply 52 is connected. The impedance matching unit 51 performs control to minimize the reflected wave from the voltage application electrode 2.

また、本実施の形態に用いるシールド体4には、その上面側のインピーダンス整合器51に対応する位置から鉛直下方向の中央部2aに向かって、その内部を貫通する貫通孔がそれぞれ設けられている。この貫通孔は、貫挿された給電体6を電圧印加電極2の中央部2aまで導く機能を有しており、各給電体6をこの貫通孔にそれぞれ貫挿させることで、電圧印加電極2の中央部2aへ給電を行う。   Further, the shield body 4 used in the present embodiment is provided with a through-hole penetrating through the inside from the position corresponding to the impedance matching device 51 on the upper surface side toward the central portion 2a in the vertically downward direction. Yes. The through-hole has a function of guiding the inserted power supply 6 to the central portion 2a of the voltage application electrode 2, and the voltage application electrode 2 is inserted by inserting each power supply 6 into the through-hole. Power is supplied to the central portion 2a.

本実施の形態の給電体6を構成する導体6aは棒形状をなしており、インピーダンス整合器51に上記導体6aの一端が接続された各給電体6は、その他端が上記貫通孔にそれぞれ貫挿される。その後、接地電位に保たれたシールド体4によってシールドされた状態で直下に配され、中央部2aまでそれぞれ導かれる。そして、上記のようにインピーダンス整合器51の鉛直下方向に配された各導体6aは、その状態を保ったままで、その一端が中央部2aとそれぞれ接続される。このような接続によって、各給電体6を介して各電圧印加電極2の中央部2aへの給電が行われる。   The conductor 6a constituting the power supply body 6 of the present embodiment has a rod shape, and each power supply body 6 having one end of the conductor 6a connected to the impedance matching device 51 passes through the through hole at the other end. Inserted. Thereafter, the shield body 4 is shielded by the shield body 4 maintained at the ground potential, and is arranged immediately below and led to the central portion 2a. As described above, the conductors 6a arranged in the vertically downward direction of the impedance matching unit 51 are connected to the central portion 2a at one end thereof while maintaining the state. With such connection, power is supplied to the central portion 2a of each voltage application electrode 2 via each power supply body 6.

このように、各電圧印加電極2の中央部2aまで給電体6をシールド状態で導き、中央部2aにそれぞれ給電することが可能となるので、電圧印加電極2への印加電圧が最も均等に配される給電状態を実現しつつ、導体6aからの電磁波の伝播及び導体6aと電圧印加電極2との間に生じる浮遊キャパシタンスの影響を抑制し、各電圧印加電極2への高周波電流の流入を抑制することができる。   In this way, since the power feeding body 6 can be guided in a shielded state to the central portion 2a of each voltage applying electrode 2 and fed to the central portion 2a, the applied voltage to the voltage applying electrode 2 is most evenly distributed. While suppressing the influence of the electromagnetic wave propagation from the conductor 6a and the stray capacitance generated between the conductor 6a and the voltage application electrode 2 while realizing the power supply state, the inflow of high-frequency current to each voltage application electrode 2 is suppressed. can do.

また、給電体6を構成する導体6aを棒形状とすることで、インピーダンス整合器51から中央部2aまでの配線距離を最短とすることが可能となり、電圧印加電極2からの反射波抑制を図ることができる。   Further, by forming the conductor 6a constituting the power feeder 6 into a rod shape, the wiring distance from the impedance matching device 51 to the central portion 2a can be minimized, and the reflected wave from the voltage application electrode 2 is suppressed. be able to.

以下、上述してきたような本実施の形態の薄膜製造装置10での成膜時の様子について、その概略を説明する。
成膜時には、図示しないアクチュエータによって、各接地電極3及び停止された各可撓性基板1が枠体5に向かってそれぞれ移動し、枠体5と可撓性基板1とが、枠体5の可撓性基板1と接触する面に保持されたシール材16を介して密着する。これにより、気密状態の成膜室8が電圧印加電極2及び可撓性基板1の間にそれぞれ形成される。
Hereinafter, the outline of the state during film formation in the thin film manufacturing apparatus 10 of the present embodiment as described above will be described.
At the time of film formation, each ground electrode 3 and each stopped flexible substrate 1 are moved toward the frame body 5 by an actuator (not shown), and the frame body 5 and the flexible substrate 1 are attached to the frame body 5. It adheres via the sealing material 16 hold | maintained at the surface which contacts the flexible substrate 1. FIG. As a result, an airtight film formation chamber 8 is formed between the voltage application electrode 2 and the flexible substrate 1.

そして、上記のように接続された各給電体6によって、高周波電源52の出力電圧が各電圧印加電極2の中央部2aに給電され、電圧印加電極2及び接地電極3の間に高周波電圧がそれぞれ印加される。これによって各成膜室8内にプラズマが発生し、図示しない導入管から導入された反応ガスが分解され、接地電極3のヒータ3aによって加熱された可撓性基板1の表面上に薄膜がそれぞれ形成される。   The power supply 6 connected as described above feeds the output voltage of the high-frequency power source 52 to the central portion 2a of each voltage application electrode 2, and a high-frequency voltage is applied between the voltage application electrode 2 and the ground electrode 3, respectively. Applied. As a result, plasma is generated in each film forming chamber 8, the reaction gas introduced from the introduction pipe (not shown) is decomposed, and a thin film is formed on the surface of the flexible substrate 1 heated by the heater 3 a of the ground electrode 3. It is formed.

この時、各成膜室8に供給された反応ガスは、図示しない真空ポンプによって、各電圧印加電極2に設けられた排気口2Aを介して排気部材7に排気されてから、シールド体4及び壁体9に設けられた孔4a,9aを通って外部に排気され、これによって各成膜室8内の圧力が維持される。この際、各電圧印加電極2の中央部2aに対して対称となる位置に排気口2Aをそれぞれ設けたことで、成膜室8内の反応ガスを等分に排気できる領域が広がり、膜厚分布に悪影響を及ぼす成膜室8内での反応ガスの流れの偏りを抑制することが可能となる。なお、さらに排気口2Aを中央部2aに対して対称となるように複数設けることで、上記のような反応ガスの流れの偏りをより抑制できる。   At this time, the reaction gas supplied to each film forming chamber 8 is exhausted to the exhaust member 7 through an exhaust port 2A provided in each voltage application electrode 2 by a vacuum pump (not shown), and then the shield body 4 and The air is exhausted outside through the holes 4a and 9a provided in the wall body 9, whereby the pressure in each film forming chamber 8 is maintained. At this time, by providing the exhaust ports 2A at positions symmetrical with respect to the central portion 2a of each voltage applying electrode 2, the region where the reaction gas in the film forming chamber 8 can be exhausted equally is expanded. It is possible to suppress the uneven flow of the reaction gas in the film forming chamber 8 that adversely affects the distribution. Furthermore, by providing a plurality of exhaust ports 2A so as to be symmetric with respect to the central portion 2a, it is possible to further suppress the deviation in the flow of the reaction gas as described above.

このように、本実施の形態の薄膜製造装置10では、成膜室8内での反応ガスの流れの偏りを広範囲で抑制することが可能となるので、より巾広なサイズの可撓性基板1にも対応することができる。   As described above, in the thin film manufacturing apparatus 10 according to the present embodiment, it is possible to suppress the deviation of the flow of the reaction gas in the film forming chamber 8 in a wide range, so that a flexible substrate having a wider size. 1 can also be handled.

以上説明してきたように、本実施の形態の薄膜製造装置10では、シールド体4に設けられた各貫通孔に給電体6をそれぞれ貫挿させて各電圧印加電極2の中央部2aに給電することで、各電圧印加電極2に対して高周波電圧を最もバランス良く印加しながら、シールド効果によって高周波電流の流入を抑制することができる。従って、各電圧印加電極2内での電位差を抑制することが可能となり、成膜室8内のプラズマ密度をより均一なものとすることができる。これにより、薄膜形成速度の向上などを目的として、例えば20MHz〜100MHz程度の高周波電圧を印加した場合でも、良好な膜厚分布の薄膜を得ることが可能となる。   As described above, in the thin film manufacturing apparatus 10 according to the present embodiment, the power feeding body 6 is inserted into each through hole provided in the shield body 4 to feed power to the central portion 2a of each voltage applying electrode 2. Thus, it is possible to suppress the inflow of the high-frequency current by the shielding effect while applying the high-frequency voltage to each voltage application electrode 2 in the most balanced manner. Therefore, the potential difference in each voltage application electrode 2 can be suppressed, and the plasma density in the film forming chamber 8 can be made more uniform. This makes it possible to obtain a thin film having a good film thickness distribution even when a high frequency voltage of, for example, about 20 MHz to 100 MHz is applied for the purpose of improving the thin film formation speed.

また、各電圧印加電極2の中央部2aに対して対称となる位置に排気口2Aをそれぞれ設けたことで、膜厚分布に悪影響を及ぼす反応ガスの流れの偏りを広範囲で抑制することができる。従って、近年より巾広なサイズが採用される傾向にある可撓性基板1に対しても、良好な品質で薄膜を形成することが可能となり、例えば太陽電池に用いられるa−Siの薄膜を形成する可撓性基板など、最近では1m以上のサイズが中心となってきているものに対しても、良好な膜厚分布の薄膜を形成することができる。   Further, by providing the exhaust ports 2A at positions symmetrical with respect to the central portion 2a of each voltage application electrode 2, it is possible to suppress a wide range of reaction gas flows that adversely affect the film thickness distribution. . Therefore, it is possible to form a thin film with good quality even on the flexible substrate 1 that tends to adopt a wider size in recent years. For example, an a-Si thin film used for a solar cell can be formed. A thin film having a good film thickness distribution can be formed even on a flexible substrate to be formed, such as a substrate that has recently been centered on a size of 1 m or more.

なお、上記の説明では、可撓性基板1を2列並行に搬送して各々の一面上に薄膜を形成する薄膜製造装置10を使用したが、単列の可撓性基板を搬送して薄膜を形成する薄膜製造装置、あるいは3列以上の可撓性基板を搬送して薄膜を形成する薄膜製造装置を使用することもできる。単列の場合は、可撓性基板に対向配置された電圧印加電極の背面側、即ち成膜室とは反対側に、上記と同様の機能を有する貫通孔が設けられたシールド体が接地電位を保って配置される。そして、上記と同様に全周が絶縁体によって覆われた導体を上記貫通孔に貫挿させて中央部に給電する。これにより、電圧印加電極の中央部まで給電体をシールド状態で導いて中央部に給電することが可能となり、上記と同様に、高周波電圧を用いた場合でも良好な膜厚分布の薄膜が得られる。   In the above description, the thin film manufacturing apparatus 10 that transports the flexible substrates 1 in parallel and forms a thin film on each surface is used. It is also possible to use a thin film manufacturing apparatus that forms a thin film by transporting three or more rows of flexible substrates. In the case of a single row, a shield body provided with a through-hole having the same function as described above is provided on the back side of the voltage applying electrode disposed opposite to the flexible substrate, that is, on the side opposite to the film forming chamber. It is arranged to keep. In the same manner as described above, a conductor whose entire circumference is covered with an insulator is inserted into the through hole to feed power to the central portion. As a result, the power feeding body can be guided in a shielded state up to the central portion of the voltage application electrode to supply power to the central portion, and a thin film having a good film thickness distribution can be obtained even when a high-frequency voltage is used, as described above. .

また、上記の説明ではステッピングロール方式としたが、ロールツーロール方式としてもよい。   In the above description, the stepping roll method is used, but a roll-to-roll method may be used.

本発明の薄膜製造装置は、薄膜光電変換素子の形成に好適に用いることができ、一般に可撓性基板上に複数の層が形成される薄膜素子の製造に広く用いることができる。   The thin film manufacturing apparatus of the present invention can be suitably used for forming a thin film photoelectric conversion element, and can be widely used for manufacturing a thin film element in which a plurality of layers are generally formed on a flexible substrate.

本発明の実施の形態の薄膜製造装置の成膜室部分を示す平面断面図である。It is plane sectional drawing which shows the film-forming chamber part of the thin film manufacturing apparatus of embodiment of this invention. 図1のA−A線での断面図である。It is sectional drawing in the AA of FIG. 図1のB−B線での断面図である。It is sectional drawing in the BB line of FIG. 基板面を鉛直にして搬送される2枚の可撓性基板をそれぞれ並行して搬送し、両者の一面上に薄膜を形成する従来の薄膜製造装置の平面断面図である。It is a plane sectional view of the conventional thin film manufacturing apparatus which conveys two flexible substrates conveyed by making a substrate surface perpendicular, respectively, and forms a thin film on one side of both. 図4に示す薄膜製造装置での成膜の詳細を示す図であり、(a)は成膜時、(b)は基板搬送時を示す。It is a figure which shows the detail of the film-forming in the thin film manufacturing apparatus shown in FIG. 4, (a) at the time of film-forming, (b) shows the time of board | substrate conveyance. 隣接して配置された複数の成膜室を有する、従来の薄膜製造装置の平面断面図である。It is a plane sectional view of the conventional thin film manufacturing apparatus which has a plurality of film formation chambers arranged adjacent to each other. 電圧印加電極の背面及び側面をシールド体で覆った、従来の薄膜製造装置の成膜室部分を示す平面断面図である。It is a top sectional view showing the film formation room part of the conventional thin film manufacturing device which covered the back and side of the voltage application electrode with the shield. 図7に示す薄膜製造装置の一般的な給電方式を示す縦断面図である。It is a longitudinal cross-sectional view which shows the general electric power feeding system of the thin film manufacturing apparatus shown in FIG. 電圧印加電極の中央部に給電する方式を用いた、従来の薄膜製造装置の断面図である。It is sectional drawing of the conventional thin film manufacturing apparatus using the system which supplies electric power to the center part of a voltage application electrode.

符号の説明Explanation of symbols

1 可撓性基板
2 電圧印加電極
3 接地電極
4 シールド体
5 枠体
6 給電体
6a 導体
6b 絶縁体
7 排気部材
8 成膜室
10 薄膜製造装置
DESCRIPTION OF SYMBOLS 1 Flexible substrate 2 Voltage application electrode 3 Ground electrode 4 Shield body 5 Frame body 6 Feed body 6a Conductor 6b Insulator 7 Exhaust member 8 Deposition chamber 10 Thin film manufacturing apparatus

Claims (5)

搬送される可撓性基板の一面上に薄膜を形成する薄膜製造装置において、
前記可撓性基板に対向して配置された電圧印加電極と、
全周が絶縁体によって覆われた導体からなり、前記電圧印加電極に給電するための給電体と、
前記電圧印加電極の背面側に接地電位を保って配置され、前記給電体を前記電圧印加電極の中央部に導くための貫通孔が設けられたシールド体と、
を備え、
前記給電体を前記貫通孔に貫挿させて前記中央部に給電することを特徴とする薄膜製造装置。
In a thin film manufacturing apparatus for forming a thin film on one surface of a flexible substrate to be conveyed,
A voltage application electrode disposed opposite the flexible substrate;
A power supply body for supplying power to the voltage application electrode, comprising a conductor whose entire circumference is covered with an insulator;
A shield body disposed on the back side of the voltage application electrode while maintaining a ground potential, and provided with a through hole for guiding the power feeding body to a central portion of the voltage application electrode;
With
A thin film manufacturing apparatus, wherein the power feeding body is inserted into the through hole to feed power to the central portion.
並行して搬送される2列の可撓性基板の各々の一面上に薄膜を形成する薄膜製造装置において、
前記可撓性基板の間に対向配置された電圧印加電極と、
全周が絶縁体によって覆われた導体からなり、前記電圧印加電極に給電するための給電体と、
前記電圧印加電極の間に接地電位を保って配置され、前記給電体を前記電圧印加電極の中央部に導くための貫通孔がそれぞれ設けられたシールド体と、
を備え、
前記給電体を各々の前記貫通孔に貫挿させて前記中央部にそれぞれ給電することを特徴とする薄膜製造装置。
In a thin film manufacturing apparatus for forming a thin film on one surface of each of two rows of flexible substrates conveyed in parallel,
A voltage applying electrode disposed oppositely between the flexible substrates;
A power supply body for supplying power to the voltage application electrode, comprising a conductor whose entire circumference is covered with an insulator;
Shield bodies that are arranged while maintaining a ground potential between the voltage application electrodes, and are each provided with a through hole for guiding the power supply body to the central portion of the voltage application electrodes;
With
A thin film manufacturing apparatus, wherein the power feeding body is inserted into each through hole to feed power to the central portion.
前記導体は棒形状からなることを特徴とする請求項2記載の薄膜製造装置。   The thin film manufacturing apparatus according to claim 2, wherein the conductor has a bar shape. 各々の前記電圧印加電極の前記中央部に対して対称となる位置には、前記電圧印加電極及び前記可撓性基板の間に形成される成膜室から排気するための排気口が設けられていることを特徴とする請求項2記載の薄膜製造装置。   An exhaust port for exhausting air from a film forming chamber formed between the voltage application electrode and the flexible substrate is provided at a position symmetrical to the central portion of each voltage application electrode. The thin film manufacturing apparatus according to claim 2, wherein: 前記排気口は各々の前記電圧印加電極の互いに相対する位置に設けられており、相対する前記排気口同士は中空部を有する排気部材によって連結されていることを特徴とする請求項4記載の薄膜製造装置。
5. The thin film according to claim 4, wherein the exhaust port is provided at a position where each of the voltage application electrodes is opposed to each other, and the opposed exhaust ports are connected by an exhaust member having a hollow portion. Manufacturing equipment.
JP2004070201A 2004-03-12 2004-03-12 Thin film manufacturing equipment Expired - Fee Related JP4158726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004070201A JP4158726B2 (en) 2004-03-12 2004-03-12 Thin film manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004070201A JP4158726B2 (en) 2004-03-12 2004-03-12 Thin film manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2005256100A JP2005256100A (en) 2005-09-22
JP4158726B2 true JP4158726B2 (en) 2008-10-01

Family

ID=35082129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004070201A Expired - Fee Related JP4158726B2 (en) 2004-03-12 2004-03-12 Thin film manufacturing equipment

Country Status (1)

Country Link
JP (1) JP4158726B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5124982B2 (en) * 2006-05-16 2013-01-23 富士電機株式会社 Thin film manufacturing apparatus and thin film manufacturing method
JP4844881B2 (en) * 2006-07-11 2011-12-28 富士電機株式会社 Thin film manufacturing equipment
JP4936129B2 (en) * 2006-07-12 2012-05-23 富士電機株式会社 Plasma processing equipment
JP4817313B2 (en) * 2006-09-01 2011-11-16 株式会社アルバック Winding type plasma CVD equipment
JP4893235B2 (en) * 2006-10-27 2012-03-07 富士電機株式会社 Film forming apparatus and film forming method
JP5292696B2 (en) * 2007-01-11 2013-09-18 Tdk株式会社 Plasma CVD apparatus, thin film manufacturing method, and laminated substrate
JP5217341B2 (en) * 2007-10-02 2013-06-19 富士電機株式会社 Thin film manufacturing equipment
JP5286733B2 (en) * 2007-10-03 2013-09-11 富士電機株式会社 Plasma processing equipment
JP2009270161A (en) * 2008-05-08 2009-11-19 Fuji Electric Advanced Technology Co Ltd Apparatus for producing thin film
JP2010111900A (en) * 2008-11-05 2010-05-20 Fuji Electric Holdings Co Ltd Plasma cvd system
JP5282538B2 (en) * 2008-11-18 2013-09-04 富士電機株式会社 Capacitively coupled plasma CVD equipment
JP5445903B2 (en) * 2009-02-12 2014-03-19 富士電機株式会社 Thin film forming equipment
JP5402502B2 (en) * 2009-10-14 2014-01-29 富士電機株式会社 Plasma processing apparatus and plasma processing method
JP5666888B2 (en) * 2010-11-25 2015-02-12 東京エレクトロン株式会社 Plasma processing apparatus and processing system

Also Published As

Publication number Publication date
JP2005256100A (en) 2005-09-22

Similar Documents

Publication Publication Date Title
JP4158726B2 (en) Thin film manufacturing equipment
US8607733B2 (en) Atomic layer deposition apparatus and atomic layer deposition method
US20110008550A1 (en) Atomic layer growing apparatus and thin film forming method
JP4623422B2 (en) Plasma processing equipment
US20110308735A1 (en) Vacuum processing apparatus
JP5199962B2 (en) Vacuum processing equipment
JP4844881B2 (en) Thin film manufacturing equipment
KR101854738B1 (en) Thin Film Deposition Apparatus, Plasma Generation Apparatus, And Thin Film Deposition Method
US20200035456A1 (en) Magnetically enhanced and symmetrical radio frequency discharge apparatus for material processing
JP4279217B2 (en) Plasma processing apparatus and method for manufacturing solar cell using the same
JP4893235B2 (en) Film forming apparatus and film forming method
JP3089336B2 (en) Manufacturing equipment for thin-film photoelectric conversion elements
KR20120120181A (en) Thin film forming apparatus
JP5124982B2 (en) Thin film manufacturing apparatus and thin film manufacturing method
JP4576190B2 (en) Plasma processing equipment
JP4158729B2 (en) Plasma CVD equipment
JP2010255017A (en) Film deposition apparatus and film deposition method, method for designing film deposition apparatus, and method for manufacturing film deposition apparatus
JP4981387B2 (en) Thin film manufacturing apparatus and solar cell manufacturing method
JP5078656B2 (en) Atomic layer growth equipment
JP2010070816A (en) Substrate treatment device and substrate treatment method
JP5217341B2 (en) Thin film manufacturing equipment
JP2014218716A (en) Thin film deposition system
JP2010138424A (en) Thin film manufacturing apparatus, and solar cell
KR20120097052A (en) Antenna of apparatus for generating inductively coupled plasma and apparatus for generating inductively coupled plasma having the same
JP2011241473A (en) Apparatus for producing thin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080707

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees