JP3617524B2 - 液晶駆動用画像処理回路、およびこれを用いた液晶ディスプレイ装置、ならびに画像処理方法 - Google Patents

液晶駆動用画像処理回路、およびこれを用いた液晶ディスプレイ装置、ならびに画像処理方法 Download PDF

Info

Publication number
JP3617524B2
JP3617524B2 JP2003367011A JP2003367011A JP3617524B2 JP 3617524 B2 JP3617524 B2 JP 3617524B2 JP 2003367011 A JP2003367011 A JP 2003367011A JP 2003367011 A JP2003367011 A JP 2003367011A JP 3617524 B2 JP3617524 B2 JP 3617524B2
Authority
JP
Japan
Prior art keywords
image data
data
correction
liquid crystal
current frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003367011A
Other languages
English (en)
Other versions
JP2004139096A (ja
JP2004139096A5 (ja
Inventor
潤 染谷
正樹 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003367011A priority Critical patent/JP3617524B2/ja
Publication of JP2004139096A publication Critical patent/JP2004139096A/ja
Application granted granted Critical
Publication of JP3617524B2 publication Critical patent/JP3617524B2/ja
Publication of JP2004139096A5 publication Critical patent/JP2004139096A5/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Description

この発明は、液晶ディスプレイ装置に関するものであり、特に、液晶の応答速度を改善するための画像処理回路、および画像処理方法に関する。
液晶は累積応答効果により透過率が変化するため、変化の速い動画に対応できないという欠点がある。こうした問題を解決するために、階調変化時の液晶駆動電圧を通常の駆動電圧よりも大きくすることにより、液晶の応答速度を改善する方法がある。
図72は、上記の方法により液晶を駆動する液晶駆動装置の一例を示す図であり、その詳細は、例えば特開平6−189232号公報に記載されている。図72において100はA/D変換回路、101は映像信号の1フレーム分のデータを保持する画像メモリ、102は現在の画像データと1フレーム前の画像データとを比較して階調変化信号を出力する比較回路、103は液晶パネルの駆動回路、104は液晶パネルである。
次に動作について説明する。A/D変換回路100は所定の周波数のクロックで映像信号をサンプリングし、デジタル形式の画像データに変換し、画像メモリ101、および比較回路102に出力する。画像メモリ101は、入力された画像データを映像信号の1フレームに相当する期間遅延して、比較回路102に出力する。比較回路102は、A/D変換回路100が出力する現在の画像データと、画像メモリ102が出力する1フレーム前の画像データとを比較し、両者の画像の階調変化を表す階調変化信号を、現在の画像データとともに駆動回路103に出力する。駆動回路103は、階調変化信号に基づいて、階調値が増加した画素については通常の液晶駆動電圧より高い駆動電圧を与えて液晶パネル104の表示画素を駆動し、減少した画素については低い電圧を与えて駆動する。
図72に示す画像表示装置において、液晶パネル104の表示画素数が多くなると、画像メモリ101に書き込まれる1フレーム分の画像データが増加するため、必要なメモリ容量が大きくなるという問題がある。特開平4−204593号公報に記載の画像表示装置においては、画像メモリ101の容量を削減するために、図73に示すように、4つの画素に画像メモリの1アドレスを割り当てている。つまり、縦横1画素おきに画素データを間引いて画像メモリに記憶し、画像メモリを読み出す際、間引いた画素については記憶した画素と同じ画像データを複数回読み出すことで、画像メモリの容量を削減している。例えば、(a,B),(b,A),(b,B)の画素については、アドレス0のデータが読み出される。
上記のように、1フレーム前とで階調値が変化する場合、液晶駆動電圧を通常の液晶駆動電圧よりも大きくすることにより、液晶の応答速度を改善することができる。しかし、階調値の大小関係の変化のみに基づいて液晶駆動電圧を増減させるため、1フレーム前とで階調値が増加した場合、その増加量に係わらず通常よりも高い駆動電圧が一律に印加される。このため、階調値の変化が僅かな場合は、液晶に過電圧が印加されることにより画質の劣化が生じる。
また、図73に示すように、画像メモリ101の画像データを間引いて画像メモリ101の容量を削減した場合、以下に示す問題が生じる。図74は、間引き処理により生じる問題点を説明するための説明図である。図74において、(a)はn+1フレームにおける画像データ、(b)は(a)に示すn+1フレームの画像に間引き処理を行った画像データ、(c)は間引き処理を行った画素データを補間して読み出した画像データ、(d)は1フレーム前のnフレームの画像データを表している。図74(a),(d)に示すように、nフレームの画像と、n+1フレームの画像は同じである。
間引き処理を行った場合、図74(c)に示すように、(B,a)、(B,b)の画素データとして(A,a)の画素データが読み出され、(B,c)、(B,d)の画素データとして(A,c)の画素データが読み出される。つまり、実際は階調値150の画素データが、階調値50の画素データとして読み出される。このため、1フレーム前とで画像が変化していないにも係わらず、n+1フレームの(B,a)、(B,b)、(B,c)、(B,d)における画素は通常よりも高い駆動電圧で駆動される。
このように、間引き処理を行った場合、画素データが間引かれた部分では電圧の制御が正しく行われず、不要な電圧が印加されることによる画質劣化が生じる。
本発明は上記の問題に鑑みてなされたものであり、液晶ディスプレイ装置において、液晶に印加される電圧が適切に制御されるよう前記液晶ディスプレイ装置に出力される画像データを補正する液晶駆動用画像処理回路、および画像処理方法を提供することを目的とする。
また、1フレーム前の画像を読み出すためのフレームメモリの容量を削減した場合においても、正確に液晶に印加する電圧を制御することが可能な液晶駆動用画像処理回路、および画像処理方法を提供することを目的とする。
本発明に係る液晶駆動用画像処理回路は、液晶に印加される電圧に対応する画像の各画素の階調値を表す画像データを、前記各画素における階調値の変化に基づいて補正して出力する液晶駆動用画像処理回路であって、
現フレームの画像データを符号化することにより当該現フレームの画像データに対応する符号化画像データを出力する符号化手段と、
前記符号化手段により出力された前記符号化画像データを1フレームに相当する期間遅延する遅延手段と、
前記遅延手段により出力される前記符号化画像データを復号化することにより前記現フレームの1フレーム前の画像データに対応する復号化画像データを出力する復号化手段と、
前記現フレームの画像データ、および前記復号化画像データに基づいて、前記現フレームの画像データの階調値を補正するための補正データを出力する補正データ発生手段と、
前記補正データに基づいて前記現フレームの画像データを補正する補正手段とを備えたものである。
本発明に係る画像処理方法は、液晶に印加される電圧に対応する画像の各画素の階調値を表す画像データを、前記各画素における階調値の変化に基づいて補正する画像処理方法であって、
現フレームの画像データを符号化することにより当該現フレームの画像データに対応する符号化画像データを生成し、
前記符号化画像データを1フレームに相当する期間遅延して復号化することにより得られる前記現フレームの1フレーム前の画像データに対応する復号化画像データ、および前記現フレームの画像データに基づいて前記現フレームの画像データを補正するものである。
本発明に係る液晶駆動用画像処理回路、および画像処理方法によれば、現フレームの画像データを符号化した符号化画像データを1フレームに相当する期間遅延して復号化することにより、現フレームの補正に必要とされる1フレーム前の画像データを得るので、遅延手段のメモリ容量を削減することができる。
また、現フレームの画像に対応する符号化画像データと、現フレームの1フレーム前の画像データに対応する符号化画像データとを比較し、両者が等しい場合に、現フレームの画像データの補正量を0とするので、動画像が入力された場合は表示手段の応答を改善し、静止画像が入力された場合は符号化による誤差に伴う不要な補正を生じることなく、表示手段において正確に静止画像を表示することができる。
実施の形態1.
図2は、本発明の実施の形態1による液晶駆動回路の構成を示すブロック図である。受信手段2は、入力端子1を介して画像信号を受信し、1フレーム分の画像(以下、現画像と称す)を表す現画像データDi1を順次出力する。画像データ処理部3は、符号化手段4、遅延手段5、復号化手段6,7、補正データ生成器8、および補正手段9からなり、現画像データDi1に対応する新たな画像データDj1を生成する。表示手段10は、一般的な液晶表示パネルにより構成され、画像の階調値に対応する電圧を液晶に印加することにより表示動作を行う。
符号化手段4は、現画像データDi1を符号化した符号化データDa1を出力する。現画像データDi1の符号化は、FBTCやGBTCなどのブロック符号化を用いることができる。また、JPEGといった2次元離散コサイン変換符号化、JPEG−LSといった予測符号化、JPEG2000といったウェーブレット変換など、静止画用の符号化方式であれば任意のものを用いることができる。尚、こうした静止画用の符号化方法は、符号化前の画像データと復号化された画像データが完全に一致しない非可逆符号化であっても適用することが可能である。
遅延手段5は、符号化データDa1を1フレームに相当する期間遅延することにより現画像データDi1の1フレーム前の画像データを符号化した符号化データDa0を出力する。遅延手段5は、符号化データDa1を1フレーム期間記憶するメモリにより構成される。よって、現画像データDi1の符号化率(データ圧縮率)を高くするほど、符号化データDa1を遅延するために必要な遅延手段5のメモリの容量を少なくすることができる。
復号化手段6は、符号化データDa1を復号化することにより、現画像データDi1により表される現画像に対応する復号化画像データDb1を出力する。同時に、復号化手段7は、遅延手段5により遅延された符号化データDa0を復号化することにより、現画像の1フレーム前の画像に対応する復号化画像データDb0を出力する。
補正データ生成器8は、復号化画像データDb1、および復号化画像データDb0に基づいて、現画像の階調値が1フレーム前とで変化する場合、液晶が1フレーム期間内に当該現画像の階調値に対応する透過率となるよう現画像データDi1を補正する補正データDcを出力する。
補正手段9は、補正データDcを現画像データDi1に加算(あるいは乗算)することにより、画像データDi1に対応する新たな画像データDj1を生成する。
表示手段10は、画像データDj1に基づいて、所定の電圧を液晶に印加することにより表示動作を行う。
図1は、図2に示す液晶駆動回路の動作を示すフローチャートである。
画像データ符号化工程(St1)においては、符号化手段4により現画像データDi1が符号化され、符号化データDa1が出力される。符号化データ遅延工程(St2)においては、遅延手段5により符号化データDa1が1フレームに相当する期間遅延され、現画像データDi1の1フレーム前の画像データを符号化した符号化データDa0が出力される。画像データ復号化工程(St3)においては、復号化手段6,7により符号化データDa1,Da0が復号化され、復号化画像データDb1,Db0が出力される。補正データ発生工程(St4)においては、補正データ生成器8により復号化画像データDb1,Db0に基づいて補正データDcが出力される。画像データ補正工程(St5)においては、補正手段9により補正データDcに基づいて現画像データDi1に対応する補正データDcが出力される。以上、S1〜St5の各工程の動作が、現画像データDi1に対し1フレーム毎に行われる。
図3は、補正データ生成器8の内部構成の一例を示す図である。ルックアップテーブル(LUT)11は、復号化画像データDb0,Db1に基づいて決定される補正データDcの各値を表すデータDc1を格納したルックアップテーブル11により構成される。ルックアップテーブル11の出力Dc1は、補正データDcとして用いられる。
図4は、ルックアップテーブル11の構成を模式的に示す図である。ここで、復号化画像データDb0,Db1はそれぞれ8ビット(256階調)の画像データであり、0〜255の値をとる。図4に示すように、ルックアップテーブル11は、2次元に配列される256×256個のデータを有し、復号化画像データDb0,Db1の両値に対応する補正データDc1=dt(Db1,Db0)を出力する。
以下、補正データDcについて詳細に説明する。現画像の階調を8ビット(0〜255階調)とすると、現画像データDi1=127の場合、液晶には透過率50%となるような電圧V50が印加される。同様に、現画像データDi1=191の場合は、透過率75%となるような電圧V75が印加される。図5は、透過率0%の液晶に上記電圧V50,V75を印加した場合の応答速度を示す図である。図5に示すように、液晶が所定の透過率に到達するには1フレーム期間よりも長い応答時間を要する。よって、現画像の階調値が変化する場合、1フレーム期間経過時の透過率が所望の透過率となるような電圧を印加することにより液晶の応答速度を向上させることができる。
図5に示すように、電圧V75を印加した場合、1フレーム期間経過時の液晶の透過率は50%となる。よって、目標とする透過率が50%の場合、液晶の電圧をV75とすることにより1フレーム期間内に液晶を所望の透過率とすることができる。つまり、現画像データDi1が0から127に変化する場合、当該現画像データをDj1=191として表示手段10に出力することにより、1フレーム期間内に所望の透過率となるような電圧が液晶に印加される。
図6は、液晶の応答速度の一例を示す図であり、x軸は現画像データDi1の値(現画像における階調値)、y軸は1フレーム前の画像データDj0の値(1フレーム前の画像における階調値)であり、z軸は液晶が1フレーム前の階調値に対応する透過率から現画像データDi1の階調値に対応する透過率となるまでに要する応答時間を示している。ここで、現画像の階調値が8ビットの場合、現画像、および1フレーム前の画像における階調値の組合わせは256×256通り存在するので、応答速度も256×256通り存在する。図6では階調値の組合わせに対応する応答速度を8×8通りに簡略化して示している。
図7は、液晶が1フレーム期間経過時に現画像データDi1の値に対応する透過率となるよう現画像データDi1に加算される補正データDcの値を示している。現画像の階調値が8ビットの場合、補正データDcは現画像、および1フレーム前の画像における階調値の組合わせに対応して256×256通り存在する。図7では階調値の組合わせに対応する補正データを8×8通りに簡略化して示している。
図6に示すように、液晶の応答速度は現画像および1フレーム前の画像における階調値毎に異なり、補正データDcの値は簡単な計算式によって求めることができないので、ルックアップテーブル11には、現画像および1フレーム前の画像の両階調値に対応する256×256通りの補正データが格納される。
図8は、液晶の応答速度の他の例を示す図である。図9は、図8に示す応答特性を有する液晶が1フレーム期間経過時に現画像データDi1の値に対応する透過率となるよう現画像データDi1に加算される補正データDcの値を示している。図6,8に示すように、液晶の応答特性は液晶の材料、電極形状、温度などによって変化するので、こうした使用条件に対応する補正データDcを備えたルックアップテーブル11を用いることにより、液晶の特性に応じて応答速度を制御することができる。
補正データDc=dt(Db1,Db0)は、液晶の応答速度が遅い階調値の組合わせに対する補正量が大となるよう設定される。液晶は特に、中間階調(グレー)から高階調(白)に変化する際の応答速度が遅い。従って、中間階調を表す復号化画像データDb0と、高階調を表す復号化画像データDb1に対応する補正データdt(Db1,Db0)の値を大きく設定することにより、応答速度を効果的に向上させることができる。
補正データ生成器8は、ルックアップテーブル11により出力されたデータDc1を補正データDcとして出力する。補正手段9は、補正データDcを現画像データDi1に加算することにより、現画像に対応する新たな画像データDj1を出力する。表示手段10は、画像データDj1の階調値に対応する電圧を液晶に印加することにより表示動作を行う。
図10は、本実施の形態による液晶駆動回路の動作について説明するための説明図である。図10において(a)は現画像データDi1、(b)は補正データDcに基づいて補正された画像データDj1の値を示し、(c)は画像データDj1に基づく電圧を印加したときの液晶の応答特性を示している。図10(c)において、破線により示す特性は現画像データDi1に基づく電圧を印加したときの液晶の応答特性である。図10(b)に示すように階調値が増加・減少する場合、補正データDcに基づく補正値V1,V2を現画像データDi1に加算・減算することにより、現画像に対応する新たな画像を表す画像データDj1が生成される。表示手段10において、画像データDj1に基づく電圧を液晶に印加することにより図10(c)に示すように、略1フレーム期間内に所定の透過率となるよう液晶を駆動することができる。
本実施の形態による液晶駆動回路は、補正データDcを発生する際、符号化手段4により現画像データDi1を符号化し、データ容量を圧縮して遅延するので、現画像データDi1を1フレーム期間遅延するために必要なメモリの容量を削減することができる。また、現画像データDi1の画素情報を間引かずに符号化・復号化するので、適切な値の補正データDcを発生し、液晶の応答速度を正確に制御することができる。
また、符号化手段4、および復号化手段6,7により符号化・復号化された復号化画像データDb0,Db1に基づいて補正データDcを生成するので、画像データDj1は、以下に述べるように符号化・復号化の誤差の影響を受けない。
図11は符号化・復号化の誤差が画像データDj1に与える影響について説明するための説明図である。図11(d)は現画像を表す現画像データDi1、図11(a)は現画像の1フレーム前の画像を表す画像データDi0の値を模式的に示す図である。図11(d),(a)に示すように、現画像データDi1は、1フレーム前とで変化していない。図11(b),(e)は、図11(d),(a)に示す現画像データDi1、および1フレーム前の画像データDi0に対応する符号化データを模式的に示す図である。ここで、図11(b),(e)は、FTBC符号化によって得られる符号化データを示しており、代表値(La,Lb)を8ビットとし、各画素に1ビットを割り当てている。図11(c),(f)は、図11(e),(b)に示す符号化データを復号化した復号化画像データDb0,Db1を示している。図11(g)は、図11(c),(f)に示す復号化画像データDb0,Db1に基づいて生成される補正データDcの値を示し、図11(h)は、このとき補正手段9から表示手段10に出力される画像データDj1の値を示している。
図11(d),(f)に示すように、現画像データDi1の符号化・復号化に伴う誤差が生じた場合においても、図11(c),(f)に示す復号化画像データDb0,Db1に基づいて補正データDcを発生することにより、図11(g)に示すように補正データDcの値は0となる。これにより、図11(h)に示すように、画像データDj1は符号化・復号化により生じる誤差の影響を受けることなく表示手段10に出力される。
上記の説明ではルックアップテーブル11に入力されるデータが8ビットの場合について示したが、これに限るものではなく、補間処理等により、実質的に補正データを生成することが可能なビット数であれば、任意のビット数としてよい。
また、補正データDcの値は現画像データDi1に乗じる乗算値としてもよい。この場合、補正データDcは1.0倍を中心とし、補正量に対応して倍率が変化する係数として表される。この場合、補正手段9は乗算器を含んで構成される。尚、補正データDcは、画像データDj1が表示手段10の表示可能な階調の範囲を超えないよう設定される。
実施の形態2.
図13は、実施の形態2による補正データ生成器8の第1の構成を示す図である。データ変換手段12は、復号化画像データDb1の量子化ビット数を、例えば8ビットから3ビットに削減するビット数変換を行うことにより、復号化画像データDb1に対応する新たな復号化画像データDe1を出力する。ルックアップテーブル13は、ビット数変換された復号化画像データDe1、および復号化画像データDb0に基づいて補正データDc1を出力する。
図12は、図13に示す補正データ生成器8を有する液晶駆動回路の動作を示すフローチャートである。符号化データ変換工程(St6)においては、データ変換器12により、復号化画像データDb1の量子化ビット数が削減される。次の補正データ発生工程(St4)においては、ルックアップテーブル13によりビット数変換された復号化画像データDe1、および復号化画像データDb0に基づいて補正データDc1が出力される。他の各工程における動作は実施の形態1において説明したのと同様である。
図14は、図13に示すルックアップテーブル13の構成を模式的に示す図である。ここで、ビット数変換された復号化画像データDe1は3ビット(8階調)のデータであり0〜7の値をとる。図14に示すように、ルックアップテーブル13は2次元に配列される256×8個のデータを有し、3ビットの復号化画像データDe1、および8ビットの復号化画像データDb0に基づいて、De1,Db0の両値に対応するデータDc1=dt(De1,Db0)を出力する。
データ変換手段12による量子化ビット数の変換方法は、線形量子化、または所定の階調値の量子化密度を変化させる非線形量子化のいずれを用いてもよい。
図15は、復号化画像データDe1を非線形量子化によりビット数変換した場合のルックアップテーブル13の構成を模式的に示す図である。この場合、データ変換手段12は、復号化画像データDb1の階調値を変換ビット数に対応して予め設定される複数の閾値と比較し、最も近い閾値を復号化画像データDe1として出力する。図15において、水平方向に配列する各補正データDc1の間隔は複数の閾値の間隔に対応する。
このように、非線形量子化によりビット数を変換する際、補正量の変化が大きい領域で量子化密度を高く設定することにより、ビット数削減に伴う補正データDc1の誤差を低減することができる。
図16は、本実施の形態による補正データ生成器8の第2の構成を示す図である。データ変換手段14は、復号化画像データDb0の量子化ビット数を、例えば8ビットから3ビットに削減するビット数変換処理を行うことにより、復号化画像データDb0に対応する新たな復号化画像データDe0を出力する。ルックアップテーブル15は、ビット数変換された復号化画像データDbe、および復号化画像データDe1に基づいて補正データDc1を出力する。
図17は、図16に示すルックアップテーブル15の構成を模式的に示す図である。ここで、ビット数変換された復号化画像データDe0は3ビット(8階調)のデータであり、0〜7の値をとる。図17に示すように、ルックアップテーブル15は2次元に配列される8×256個のデータを有し、3ビットの復号化画像データDe0、および8ビットの復号化画像データDb1に基づいて、Db1,De0の両値に対応する補正データDc1=dt(Db1,De0)を出力する。
データ変換手段14による量子化ビット数の変換方法は、線形量子化、または所定の階調値の量子化密度を変化させる非線形量子化のいずれを用いてもよい。
図18は、復号化画像データDe1を非線形量子化によりビット数変換した場合のルックアップテーブル15の構成を模式的に示す図である。
図19は、本実施の形態による補正データ生成器8の第3の構成を示す図である。データ変換手段12,14は、復号化画像データDb1,Db0の量子化ビット数を、例えば8ビットから3ビットに削減するビット数変換処理を行うことにより、復号化画像データDb1,Db0に対応する新たな復号化画像データDe1,De0を出力する。ルックアップテーブル16は、ビット数変換された復号化画像データDe0,De1に基づいて補正データDc1を出力する。
図20は、図19に示すルックアップテーブル16の構成を模式的に示す図である。ここで、ビット数変換された復号化画像データDe1,De0は3ビット(8階調)のデータであり、0〜7の値をとる。図20に示すように、補正データ発生手段16は、2次元に配列される8×8個のデータを有し、3ビットの復号化画像データDe1,De0に基づいて、De1,De0の両値に対応する補正データDc1=dt(De1,De0)を出力する。
データ変換手段12,14による量子化ビット数の変換方法は、線形量子化、または所定の階調値の量子化密度を変化させる非線形量子化のいずれを用いてもよい。
図21は、復号化画像データDe1,De0を非線形量子化によりビット数変換した場合のルックアップテーブル16の構成を模式的に示す図である。
以上に説明したように、復号化画像データDb1、および/または復号化画像データDb0の量子化ビット数を削減することにより、ルックアップテーブル13,15,16のデータ量を削減し、補正データ生成器8の構成を簡素化することができる。
なお、上述の説明では、データ変換手段12,14において、量子化ビット数を8ビットから3ビットに変換する場合について示したが、これに限るのもではなく、補間処理等により、実質的に補正データを生成することが可能なビット数であれば、任意のビット数としてよい。
実施の形態3.
図23は、本実施の形態3による補正データ生成器8の第1の構成を示す図である。データ変換手段17は、復号化画像データDb1を線形量子化し、量子化ビット数を、例えば8ビットから3ビットに変換し、ビット数変換された復号化画像データDe1を出力する。同時に、データ変換手段17は、後述する補間係数k1を算出する。ルックアップテーブル18は、ビット数変換された3ビットの復号化画像データDe1、および8ビットの復号化画像データDb0に基づいて、2つの補正データDf1,Df2を出力する。補正データ補間手段19は、2つの補正データDf1,Df2、および補間係数k1に基づいて補正データDc1を生成する。
図22は、図23に示す補正データ生成器8を有する本実施の形態による液晶駆動回路の動作を示すフローチャートである。符号化画像データ変換工程(St6)においては、データ変換手段17により復号化画像データDb1の量子化ビット数を削減するビット数変換が行われるとともに補間係数k1が出力される。補正データ発生工程(St4)においては、ルックアップテーブル18によりビット数変換された復号化画像データDe1、および復号化画像データDb0に基づいて2つの補正データDf1,Df2が出力される。補正データ補間工程(St7)においては、補正データ補間手段19により2つの補正データDf1,Df2、および補間係数k1に基づいて補正データDc1が生成される。他の各工程における動作は実施の形態1において説明したのと同様である。
図24は、ルックアップテーブル18の構成を模式的に示す図である。ここで、ビット数変換された復号化画像データDe1は3ビット(8階調)のデータであり0〜7の値をとる。図24に示すように、ルックアップテーブル18は、2次元に配列される256×9個のデータを有し、3ビットの復号化画像データDe1、および8ビットの復号化画像データDb0の両値に対応する補正データdt(De1,Db0)を補正値Df1として出力し、補正値Df1に隣接する補正データdt(De1+1,Db0)を補正値Df2として出力する。
補正データ補間手段19は、補正データDf1,Df2、および補間係数k1を用い、以下の式(1)により補正データDc1を算出する。
Dc1=(1−k1)×Df1+k1×Df2 (1)
図25は、上記式(1)により表される補正データDc1の算出方法について説明するための説明図である。図25において、s1,s2は、データ変換手段17により復号化画像データDb1のビット数を変換する際に用いられる閾値である。s1は、ビット数変換された復号化画像データDe1に対応する閾値であり、s2は、ビット数変換された復号化画像データDe1よりも1階調分大きい復号化画像データDe1+1に対応する閾値である。
このとき補間係数k1は、以下の式(2)により算出される。
k1=(Db1−s1)/(s2−s1) (2)
ただし、s1<Db1≦s2
補間演算により算出された補正データDc1は、図2に示すように、補正データDcとして補正データ生成器8から補正手段9に出力される。補正手段9は、現画像データDi1を補正データDcに基づいて補正し、補正された画像データDj1を表示手段10に送る。
上記のように、復号化画像データDb1のビット数を変換する際に算出される補間係数k1を用いて復号化画像データ(De1,Db0)、および(De+1,Db0)に対応する2つの補正データDf1,Df2の補間値を算出し、補正データDc1を求めることにより、復号化画像データDe1の量子化誤差が補正データDcに与える影響を低減することができる。
図26は、本実施の形態3による補正データ生成器8の第2の構成を示す図である。データ変換手段20は、復号化画像データDb0を線形量子化し、量子化ビット数を、例えば8ビットから3ビットに変換し、ビット数変換された復号化画像データDe0を出力する。同時に、データ変換手段20は、後述する補間係数k0を算出する。ルックアップテーブル21は、ビット数変換された3ビットの復号化画像データDe0、および8ビットの復号化画像データDb1に基づいて、2つの補正データDf3,Df4を出力する。補正データ補間手段22は、2つの補正データDf3,Df4、および補間係数k0に基づいて補正データDc1を生成する。
図27は、ルックアップテーブル21の構成を模式的に示す図である。ここで、ビット数変換された復号化画像データDe0は3ビット(8階調)のデータであり0〜7の値をとる。図27に示すように、ルックアップテーブル21は、2次元に配列される256×9個のデータを有し、8ビットの復号化画像データDb1、および3ビットの復号化画像データDe0の両値に対応する補正データdt(Db1,De0)を補正値Df3として出力し、補正値Df3に隣接する補正データdt(Db1,De0+1)を補正値Df4として出力する。
補正データ補間手段22は、補正データDf3,Df4、および補間係数k0を用い、以下の式(3)により補正データDc1を算出する。
Dc1=(1−k0)×Df3+k0×Df4 (3)
図28は、上記式(3)により表される補正データDc1の算出方法について説明するための説明図である。図28において、s3,s4は、データ変換手段20により復号化画像データDb0の量子化ビット数を変換する際に用いられる閾値である。s3は、ビット数変換された復号化画像データDe0に対応する閾値であり、s4は、ビット数変換された復号化画像データDe0よりも1階調分大きい復号化画像データDe0+1に対応する閾値である。
このとき補間係数k0は、以下の式(4)により算出される。
k0=(Db0−s3)/(s4−s3) (4)
ただし、s3<Db0≦s4
上記式(3)に示す補間演算により算出された補正データDc1は、補正データDcとして補正データ生成器8から補正手段9に出力される。補正手段9は、現画像データDi1を補正データDcに基づいて補正し、補正された画像データDj1を表示手段10に送る。
上記のように、復号化画像データDb0のビット数を変換する際に算出される補間係数k0を用いて復号化画像データ(Db1,De0)、および(Db1,De0+1)に対応する2つの補正データDf3,Df4の補間値を算出し、補正データDc1を求めることにより、復号化画像データDe0の量子化誤差が補正データDcに与える影響を低減することができる。
図29は、本実施の形態3による補正データ生成器8の第3の構成を示す図である。データ変換手段17,20は、それぞれ、復号化画像データDb1,Db0を線形量子化し、量子化ビット数を、例えば8ビットから3ビットに変換した復号化画像データDe1,De0を出力する。同時に、データ変換手段17,20は、それぞれ、補間係数k0,k1を算出する。ルックアップテーブル23は、3ビットの復号化画像データDe1,De0に基づいて、補正値Df1〜Df4を出力する。補正データ補間手段24は、補正値Df1〜Df4、および補間係数k0,k1に基づいて補正データDc1を生成する。
図30は、ルックアップテーブル23の構成を模式的に示す図である。ここで、ビット数変換された復号化画像データDe1,De0は3ビット(8階調)のデータであり0〜7の値をとる。図30に示すように、ルックアップテーブル23は、2次元に配列される9×9個のデータを有し、3ビットの復号化画像データDe1,De0の両値に対応する補正データdt(De1,De0)を補正値Df1として出力し、補正値Df1に隣接する3つの補正データdt(De1+1,De0),dt(De1,De0+1),dt(De1+1,De0+1)を、それぞれ補正値Df2,Df3,Df4として出力する。
補正データ補間手段24は、補正値Df1〜Df4、および補間係数k1,k0を用い、以下の式(5)により補正データDc1を算出する。
Dc1=(1−k0)×{(1−k1)×Df1+k1×Df2}
+k0×{(1−k1)×Df3+k1×Df4} (5)
図31は、上記式(5)により表される補正データDc1の算出方法について説明するための説明図である。図31においてs1,s2は、データ変換手段17により復号化画像データDb1の量子化ビット数を変換する際に用いられる閾値であり、s3,s4は、データ変換手段20により復号化画像データDb0の量子化ビット数を変換する際に用いられる閾値である。s1は、ビット数変換された復号化画像データDe1に対応する閾値であり、s2は、ビット数変換された復号化画像データDe1よりも1階調分大きい復号化画像データDe1+1に対応する閾値である。また、s3は、ビット数変換された復号化画像データDe0に対応する閾値であり、s4は、ビット数変換された復号化画像データDe0よりも1階調分大きい復号化画像データDe0+1に対応する閾値である。
このとき補間係数k1,k0は、それぞれ以下の式(6)(7)により算出される。
k1=(Db1−s1)/(s2−s1) (6)
ただし、s1<Db1≦s2
k0=(Db0−s3)/(s4−s3) (7)
ただし、s3<Db0≦s4
上記式(5)に示す補間演算により算出された補正データDc1は、図2に示すように、補正データDcとして補正データ生成器8から補正手段9に出力される。補正手段9は、現画像データDi1を補正データDcに基づいて補正し、補正された画像データDj1を表示手段10に出力する。
上記のように、復号化画像データDb0,Db1のビット数を変換する際に算出される補間係数k0,k1を用いて復号化画像データ(De1,De0)、(De1+1,De0)、(De1,De0+1)、および(De1+1,De0+1)に対応する4つの補正データDf1,Df2,Df3,Df4の補間値を算出し、補正データDc1を求めることにより、復号化画像データDe0,De1の量子化誤差が補正データDcに与える影響を低減することができる。
尚、補正データ補間手段19,22,24は、線形補間以外に、高次の関数を用いた補間演算を用いて補正データDc1を算出するよう構成してもよい。
実施の形態4.
図33は、本実施の形態4による液晶駆動回路の構成を示す図である。本実施の形態における画像データ処理部25は、データ変換手段、遅延手段5、補正データ生成器8、および補正手段9により構成される。データ変換手段26は、現画像データDi1の量子化ビット数を、例えば8ビットから3ビットに変換することによりデータ容量を削減する。量子化ビット数の変換は、線形量子化、あるいは非線形量子化のいずれを用いてもよい。データ変換手段26によりビット数変換された画像データDa1は、遅延手段5、および補正データ生成器8に出力される。遅延手段5は、ビット数変換された画像データDa1を1フレームに相当する期間遅延することにより、現画像の1フレーム前の画像に対応する画像データDa0を出力する。
補正データ生成器8は、画像データDa1、および1フレーム前の画像データDa0に基づいて、補正データDcを出力する。補正手段5は、補正データDcに基づいて現画像データDi1を補正し、補正された画像データDj1を表示手段10に出力する。
ここで、データ変換手段26によりビット数変換される画像データDa0の量子化ビット数は、3ビット以外としてもよく、任意に設定することができる。画像データDa0の量子化ビット数を少なく設定するほど、遅延手段5において画像データDa1を1フレーム期間遅延させるために必要なメモリの容量が少なくなる。尚、量子化ビット数の変換には、線形量子化、または非線形量子化のいずれを用いてもよい。
尚、補正データ生成器8は、画像データDa1,Da0のビット数に対応する補正データを保持する。
図32は、本実施の形態による液晶駆動回路の動作を示すフローチャートである。画像データ変換工程(St8)においては、データ変換手段26により現画像データDi1の量子化ビット数を削減するビット数変換が行われ、現画像データDi1に対応する新たな画像データDa1が出力される。次の画像データ遅延工程(St2)においては、遅延手段5により画像データDa1が1フレームに相当する期間遅延される。補正データ発生工程(St4)においては、補正データ生成器8により画像データDa1,Da0に基づいて補正データDcが出力される。画像データ補正工程(St5)においては、補正手段9により、補正データDcに基づいて画像データDj1が生成される。
以上のように、本実施の形態4は、現画像データDi1の量子化ビット数を変換することによりデータ容量を圧縮するので、復号化手段を省略するとともに、補正データ生成器8の構成を簡素化し、回路規模を縮小することができる。
実施の形態5.
図35は、実施の形態5による液晶駆動回路の構成を示す図である。本実施の形態による画像データ処理部27において、補正データ生成器28は、現画像データDi1と、復号化画像データDb1との誤差を検出し、検出された誤差に基づいて補正データDcの補正量を制限する。他の動作は、実施の形態1の動作と同様である。
図36は、本実施の形態による補正データ生成器28の第1の構成を示す図である。ルックアップテーブル11は、復号化画像データDb0,Db1に基づいて補正データDc1を出力する。誤差判定手段29は現画像データDi1と、復号化画像データDb1とを比較することにより、符号化手段4、および復号化手段6における符号化・復号化処理によって復号化画像データDb1に生じた誤差を検出する。誤差判定手段29は、現画像データDi1と、復号化画像データDb1との差が所定値を越えた場合、補正データDc1の補正量を制限するための補正量制限信号j1を制限手段30に出力する。
制限手段30は、誤差判定手段29からの補正量制限信号j1に基づいて、補正データDc1の補正量を制限し、新たな補正データDc2を出力する。制限手段30により出力された補正データDc2は、図35に示すように、補正データDcとして出力される。補正手段9は、補正データDcに基づいて現画像データDi1を補正する。
図34は、図35に示す本実施の形態による液晶駆動回路の動作を示すフローチャートである。St1からSt4までの工程により、実施の形態1と同様の動作により補正データDc1が生成される。続く誤差判定工程(St9)においては、誤差判定手段29により現画像データDi1と、復号化画像データDb1との誤差が画素毎に検出される。補正データ制限工程(St10)においては、誤差判定手段29により検出される誤差が所定値を越えた場合に、制限手段30により補正データDc1の値が制限され、新たな補正データDc2が出力される。画像データ補正工程(St5)においては、補正手段9により補正データDc2に基づいて画像データDj1が補正される。
以上に述べたように、現画像データDi1と、復号化画像データDb1との誤差が大きい場合、補正データDcの値が少なくなるように制御することで、液晶の応答速度を正確に制御し、不要な補正による表示画像の劣化を防ぐことができる。
図37は、図35に示す補正データ生成器28の他の構成を示す図である。図37に示すように、復号化画像データDb1のビット数を変換するデータ変換手段12を設け、ビット数変換された復号化画像データDe1に基づいて補正データDc1を出力するよう構成してもよい。
補正データ生成器28は、図38に示すように、復号化画像データDb0のビット数を変換するデータ変換手段14を設け、ビット数変換された復号化画像データDe0に基づいて補正データDc1を出力するよう構成してもよい。
また、補正データ生成器28は、図39に示すように、復号化画像データDb1,Db0のビット数を変換するデータ変換手段12,14を設け、ビット数変換された復号化画像データDe1,De0に基づいて補正データDc1を出力するよう構成してもよい。
ここで、データ変換手段12,14、およびルックアップテーブル13,15,16の各構成の動作については、実施の形態2において説明したのと同様である。図37〜39に示す構成によれば、ルックアップテーブル13,15,16のデータ容量を削減し、回路規模を縮小することが可能である。
図40は、本実施の形態による補正データ生成器28の第2の構成を示す図である。誤差判定手段31は、現画像データDi1と、復号化画像データDb1との差分を画素毎に検出し、検出された差分を補正信号j2として出力する。データ補正手段32は、誤差判定手段31により出力される補正信号j2に基づいて、復号化画像データDb0,Db1のそれぞれを画素毎に補正し、補正された復号化画像データDg1,Dg0をルックアップテーブル11に出力する。
ここで、復号化画像データDb0,Db1と、補正信号j2により補正された復号化画像データDg0,Dg1との関係は、以下の式(8)〜(10)により表される。
Dg1=Db1+j2 (8)
Dg0=Db0+j2 (9)
j2=Di1−Db1 (10)
上記式(8)、(9)に示すように、復号化画像データDb1,Db0のそれぞれに、補正信号j2(=Di1−Db1)を加算することにより、符号化・復号化処理に伴い復号化画像データDb1,Db0に生じた誤差成分j2を打消すことができる。
ルックアップテーブル11は、補正された復号化画像データDg1,Dg0に基づいて、補正データDc1を出力する。補正データ生成器28は、図35に示すように、ルックアップテーブル11により出力された補正データDc1を補正データDcとして補正手段9に出力する。
以上のように、現画像データDi1と、復号化画像データDb1との差分j2を復号化画像データDb1,Db0のそれぞれに加算することにより、符号化・復号化処理によって復号化画像データDb1,Db0に生じた誤差を補正することができる。これにより、液晶の応答速度を正確に制御し、不要な補正に起因する表示画像の劣化を防ぐことができる。
なお、補正された復号化画像データDg1は、以下の式(11)に示すように、復号化画像データDiと等しい。
Dg1=Db1+Di1−Db1=Di1 (11)
従って、図41に示すように、補正された復号化画像データDg1の代わりに現画像データDi1をルックアップテーブル11に入力する構成としてもよい。
図42は、図40に示す補正データ生成器28の他の構成を示す図である。図42に示すように、データ補正手段32により出力される復号化画像データDg1のビット数を削減するデータ変換手段12を設けることにより、ビット数変換された復号化画像データDe1に基づいて補正データDc1を出力するよう構成してもよい。
補正データ生成器28は、図43に示すように、データ補正手段32により出力される復号化画像データDg0のビット数を削減するデータ変換手段14を設けることにより、ビット数変換された復号化画像データDe0に基づいて補正データDc1を出力するよう構成してもよい。
また、補正データ生成器28は、図44に示すように、データ補正手段32により出力される復号化画像データDg1,Dg0のビット数を削減するデータ変換手段12,14を設けることにより、ビット数変換された復号化画像データDg1,Dg0に基づいて補正データDc1を出力するよう構成してもよい。
以上、図42〜44に示す構成によれば、ルックアップテーブル13,15,16のデータ容量を削減し、回路規模を縮小することが可能である。
図45は、本実施の形態による補正データ生成器28の第3の構成を示す図である。誤差判定手段29は、現画像データDi1と、復号化画像データDb1との誤差が所定値を越えた場合、補正データDc1の補正量を制限するための補正量制限信号j1を制限手段30に出力する。一方、誤差判定手段31は、現画像データDi1と、復号化画像データDb1との差分を画素毎に検出し、検出された差分を補正信号j2としてデータ補正手段32に出力する。
データ補正手段32は、誤差判定手段31により出力される補正信号j2に基づいて、復号化画像データDb0,Db1のそれぞれを画素毎に補正し、補正された復号化画像データDg1,Dg0をルックアップテーブル11に出力する。ルックアップテーブル11は、補正された復号化画像データDg1,Dg0に基づいて補正データDc1を出力し、制限手段30に送る。制限手段30は、補正量制限信号j1に基づいて、補正データDc1の補正量を制限し、新たな補正データDc2を出力する。
以上のように、現画像データDi1と、復号化画像データDb1との誤差に基づいて、復号化画像データDg1,Dg0、および補正データDc1を補正することにより、符号化・復号化処理によって生じた復号化画像データDb1,Db0の誤差が大きい場合であっても、液晶の応答速度を正確に制御し、不要な補正による表示画像の劣化を防ぐことができる。
図46は、図45に示す補正データ生成器28の他の構成を示す図である。図46に示すように、データ補正手段32により出力される復号化画像データDg1のビット数を削減するビット数変換手段12を設けることにより、ビット数変換された復号化画像データDe1に基づいて補正データDc1を出力するよう構成してもよい。
補正データ生成器28は、図47に示すように、データ補正手段32により出力される復号化画像データDg0の量子化ビット数を削減するデータ変換手段14を設けることにより、ビット数変換された復号化画像データDe0に基づいて補正データDc1を出力するよう構成してもよい。
また、補正データ生成器28は、図48に示すように、データ補正手段32により出力される復号化画像データDg1,Dg0のそれぞれのビット数を削減するデータ変換手段12,14を設けることにより、ビット数変換された復号化画像データDe1,De0に基づいて補正データDc1を出力するよう構成してもよい。
以上、図46〜48に示す補正データ生成器28の各構成によれば、ルックアップテーブル13,15,16のデータ容量を削減し、回路規模を縮小することが可能である。
実施の形態6.
図49は、本実施の形態6による液晶駆動回路の構成を示す図である。本実施の形態による画像データ処理部34は、符号化手段4、遅延手段5、復号化手段、補正データ生成器35、および補正手段9により構成される。符号化手段4は現画像データDi1を符号化し、符号化データDa1を出力する。遅延手段5は、符号化データDa1を1フレームに相当する期間遅延し、遅延された符号化データDa0を出力する。ここで、遅延手段5により遅延された符号化データDa0は、符号化データDa1の1フレーム前の画像データに対応する。復号化手段7は、符号化データDa0を復号化し、復号化画像データDb0を出力する。補正データ生成器35は、現画像データDi1、および復号化画像データDb0に基づいて補正データDcを生成し、補正手段9に出力する。
図49に示すように、補正データ生成器35により、現画像データDi1、および復号化画像データDb0に基づいて補正データDcを生成するよう構成することにより、現画像データDi1に対応する符号化データDa1を復号化するための復号化手段6を省略し、回路規模を縮小することができる。
実施の形態7.
図51は、本実施の形態7による液晶駆動回路の構成を示す図である。本実施の形態による画像データ処理部36は、符号化手段4、遅延手段5、復号化手段7、および補正データ生成器37、および補正手段9により構成される。符号化手段4は現画像データDi1を符号化し、符号化データDa1を遅延手段5、および補正データ生成器37に出力する。遅延手段5は、符号化データDa1を1フレームに相当する期間遅延し、遅延された符号化データDa0を復号化手段7、および補正データ生成器37に出力する。ここで、遅延手段5により遅延された符号化データDa0は、符号化データDa1の1フレーム前の画像データに対応する。復号化手段7は、符号化データDa0を復号化し、復号化画像データDb0を補正データ生成器37に出力する。
補正データ生成器37は、現画像データDi1、復号化画像データDb0、符号化データDa1、および遅延手段5により出力される符号化データDa0に基づいて補正データDcを生成する。以下、補正データ生成器37の動作について詳細に説明する。
図52は、補正データ生成器37の第1の構成を示す図である。ルックアップテーブル11は、現画像データDi1、および復号化画像データDb0に基づいて補正データDc1を出力する。比較手段38は、符号化データDa0,Da1を比較し、両符号化データが同じ場合は補正を行う必要がないので、補正データDc1の値を0とする補正量制限信号j3を制限手段39に出力する。
制限手段39は、補正量制限信号j3に基づいて、符号化データDa0,Da1が同じ場合、補正データDc1の値を0とし、新たな補正データDc2として出力する。制限手段39により出力される補正データDc2は、図51に示すように、補正データDcとして補正手段9に出力される。補正手段9は、現画像データDi1を補正データDcに基づいて補正し、補正された画像データDj1を表示部10に出力する。
図50は、図51に示す本実施の形態による液晶駆動回路の動作を示すフローチャートである。実施の形態1と同様のSt1からSt4までの工程により、補正データDc1が生成される。続く比較工程(St11)においては、比較手段38により符号化画像データDa1,Da0が比較され、両者が同じデータである場合は補正量制限信号j3が出力される。補正データ制限工程(St12)においては、補正量制限信号j3に基づいて、制限手段39により補正データDc2が出力される。画像データ補正工程(St5)においては、制限手段39により出力される補正データDc2に基づいて現画像データDi1が補正される。
以上に述べたように、本実施の形態による液晶駆動回路は、現画像データDi1、および復号化画像データDb0に基づいて補正データDcを生成する際、符号化データDa0,Da1が同じ場合は補正データDc1の値を0とすることにより液晶の応答速度を正確に制御し、不要な補正による表示画像の劣化を防ぐことができる。
図53は、図52に示す補正データ生成器37の他の構成を示す図である。図53に示すように、復号化画像データDb1のビット数を削減するデータ変換手段12を設けることにより、ビット数変換された復号化画像データDe1に基づいて補正データDc1を出力するよう構成してもよい。
補正データ生成器37は、図54に示すように、復号化画像データDb0のビット数を削減するデータ変換手段14を設けることにより、ビット数変換された復号化画像データDe0に基づいて補正データDc1を出力するよう構成してもよい。
また、補正データ生成器37は、図55に示すように、復号化画像データDb1,Db0のビット数を削減するデータ変換手段12,14を設けることにより、ビット数変換された復号化画像データDe1,De0に基づいて補正データDc1を出力するよう構成してもよい。
図56は、補正データ生成器37の第2の構成を示す図である。データ変換手段17は、復号化画像データDb1の量子化ビット数を削減するとともに、補間係数k1を算出し、算出された補間係数k1を補正データ補間手段19に送る。補正データ発生手段18は、ビット数変換された復号化画像データDe1、および復号化画像データDb0に基づいて、2つの補正データDf1,Df2を出力し、補正データ補間手段19に送る。補正データ補間手段19は、補正データDf1,Df2、および補間係数k1に基づいて補正データDc1を算出し、制限手段39に出力する。制限手段39は、比較手段38により出力される補正量制限信号j3に基づいて補正データDc1の補正量を制限し、新たな補正データDc2を出力する。
尚、図56に示すデータ変換手段17、ルックアップテーブル18、および補正データ補間手段19の各動作は、実施の形態3において説明したのと同様である。
図57は、補正データ生成器37の第3の構成を示す図である。データ変換手段20は、復号化画像データDb0の量子化ビット数を削減するビット数変換処理を行うとともに、補間係数k0を算出し、算出された補正データk0を補正データ補間手段22に送る。ルックアップテーブル21は、ビット数変換された復号化画像データDe0、および復号化画像データDb1に基づいて、2つの補正データDf3,Df4を出力し、補正データ補間手段22に送る。補正データ補間手段22は、補正値Df3,Df4、および補間係数k0に基づいて補正データDc1を算出し、制限手段39に出力する。制限手段39は、比較手段38により出力される補正量制限信号j3に基づいて補正データDc1の補正量を制限し、新たな補正データDc2を出力する。
尚、図57に示すデータ変換手段20、ルックアップテーブル21、および補正データ補間手段22の各動作は、実施の形態3において説明したのと同様である。
図58は、補正データ生成器37の第4の構成を示す図である。データ変換手段17,20は、復号化画像データDb1,Db0のそれぞれの量子化ビット数を削減するとともに、補間係数k1,k0を算出し、算出された補正データk1,k0を補正データ補間手段24に送る。補正データ発生手段23は、ビット数変換された復号化画像データDe1,De0に基づいて、4つの補正データDf1,Df2,Df3、およびDf4を出力し、補正データ補間手段24に送る。補正データ補間手段24は、補正データDf1〜Df4、および補間係数k1,k0に基づいて補間演算を行い、補正データDc1を算出し、制限手段39に出力する。制限手段39は、比較手段38により出力される補正量制限信号j3に基づいて補正データDc1の補正量を制限し、新たな補正データDc2を出力する。
尚、図58に示すデータ変換手段17,20、ルックアップテーブル23、および補正データ補間手段24の各動作は、実施の形態3において説明したのと同様である。
実施の形態8.
図60は、本実施の形態8による液晶駆動回路の構成を示す図である。本実施の形態における画像データ処理部40は、周波数帯域制限手段41を含む。周波数帯域制限手段41は、現画像データDi1の所定の周波数成分を制限した画像データDh1を出力する。周波数帯域制限手段41は、例えば、高周波成分を制限する低域通過フィルタにより構成される。符号化手段4は、周波数帯域制限手段41により帯域制限された画像データDh1を符号化し、符号化データDa1を出力する。遅延手段5は符号化データDa1を1フレームに相当する期間遅延し、符号化データDa0を出力する。同時に、復号化手段6は符号化データDa1を復号化し、復号化画像データDb1を出力する。また、復号化手段7は符号化データDa0を復号化し、復号化画像データDb0を出力する。補正データ生成器8は画像データDb1、Db0に基づいて補正データDcを発生する。ここで、符号化手段4の後段の動作については、実施の形態1と同様である。
図59は、図60に示す本実施の形態による液晶駆動回路の動作を示すフローチャートである。最初の工程である周波数帯域制限工程(St13)においては、周波数帯域制限手段41により現画像データDi1の所定の周波数成分を制限した画像データDh1が出力される。次の画像符号化工程(St1)においては、帯域制限された画像データDh1の符号化が行われる。以降のSt2〜St3の各工程における動作については実施の形態1と同様である。
以上において述べたように、不要な周波数成分を制限してから符号化を行うことにより、現画像データDi1の符号化誤差を抑制することが可能である。これにより、液晶の応答速度を正確に制御することが可能となる。
なお、周波数帯域制限手段41は、所定の高周波成分、および低周波成分を制限するバンドパスフィルターにより構成しても同様の効果が得られる。
実施の形態9.
図62は、本実施の形態9による液晶駆動回路の構成を示す図である。ノイズ除去手段43は、現画像データDi1のノイズ成分を除去し、ノイズ成分を除去した画像データDk1を出力する。ここで、ノイズ成分とは、レベル変化の少ない高周波成分である。符号化手段4は、ノイズ除去手段43により出力される画像データDk1を符号化し、符号化データDa1を出力する。符号化手段4の後段の動作については、実施の形態1と同様である。
図61は、図62に示す本実施の形態による液晶駆動回路の動作を示すフローチャートである。最初の工程であるノイズ除去工程(St14)においては、ノイズ除去手段43により現画像データDi1のノイズ成分を除去した画像データDk1が出力される。2番目の工程である画像データ符号化工程(St1)においては、画像データDk1の符号化が行われる。以降のSt2〜St5の各工程における動作については実施の形態1と同様である。
以上において述べたように、ノイズ成分を除去してから符号化を行うことにより、現画像データDi1の符号化誤差を抑制することが可能である。これにより、液晶の応答速度を正確に制御することが可能となる。
実施の形態10.
図64は、本実施の形態10による液晶駆動回路の構成を示す図である。本実施の形態における画像データ処理部44は、色空間変換手段45,46,47を含む。色空間変換手段45は、現画像データDi1を輝度信号および色信号からなるY−C信号に変換し、Y−C信号の現画像データDm1を出力する。符号化手段4は現画像データDm1を符号化し、現画像データDm1に対応する符号化データDa1を出力する。遅延手段5は、符号化データDa1を1フレームに相当する期間遅延することにより、現画像の1フレーム前の画像に対応する符号化データDa0を出力する。復号化手段6,7は、符号化データDa1,Da0を復号化することにより、現画像に対応する復号化画像データDn1、および現画像の1フレーム前の画像に対応する符号化データDn0をそれぞれ出力する。
色空間変換手段46,47は、輝度信号および色信号からなるY−C信号の復号化画像データDb1,Db0をR,G,Bのデジタル信号に変換し、R,G,Bの画像データDn1,Dn0を出力する。補正データ生成器8は、画像データDn1,Dn0に基づいて補正データDcを出力する。
図63は、図64に示す本実施の形態による液晶駆動回路の動作を示すフローチャートである。最初の工程である第一の色空間変換工程(St15)においては、色空間変換手段45により現画像データDi1を輝度信号および色信号からなるY−C信号に変換した画像データDm1が出力される。次の画像データ符号化工程(St1)においては、符号化手段4により画像データDm1を符号化した符号化データDa1が出力される。符号化データ遅延工程(St2)においては、遅延手段5により符号化データDa1の1フレーム前の符号化データDa0が出力される。次の画像データ符号化工程(St3)においては、復号化手段6,7により符号化データDa1、および1フレーム前の符号化データDa0を復号化した復号化画像データDb1,Db0が出力される。第二の色空間変換工程(St16)においては、色空間変換手段46,47により復号化画像データDb1,Db0を輝度信号および色信号からなるY−C信号からR,G,Bのデジタル信号に変換した画像データDn1,Dn0が出力される。次の補正データ発生工程(St14)においては、画像データDn1,Dn0に基づいて補正データDcが生成される。
以上において述べたように、R,G,B信号を輝度信号および色信号からなるY−C信号の画像データDm1に変換してから符号化を行うことにより、符号化率(データ圧縮率)を高めることができる。これにより、符号化データDa1を遅延させるのに必要な遅延手段5のメモリの容量を削減することが可能となる。
また、輝度信号と色信号とで圧縮率を変えるように構成することも可能である。このとき、輝度信号については情報が損なわれないよう圧縮率を低くし、色信号については圧縮率を高くすることにより、符号化データDa1の容量を削減するとともに補正データの生成に必要な情報を維持することができる。
図65は、本実施の形態による液晶駆動回路の他の構成を示す図である。図65は、受信手段2により、画像信号が輝度信号および色信号からなるY−C信号として受信される場合の構成を示している。色空間変換手段49は、Y−C信号の現画像データDi1を、R,G,Bのデジタル信号に変換した画像データDn2を出力する。色空間手段46,47は、復号化画像データDb1,Db0をR,G,Bのデジタル信号に変換した復号化画像データDn1,Dn0を出力する。
実施の形態11.
図66は、本実施の形態11による液晶駆動回路の第1の構成を示す図である。図66に示すように、本実施の形態による画像データ処理部50において、符号化手段4は、補正手段9により出力される画像データDj1を符号化した符号化データDa1を出力する。遅延手段5は、符号化データDa1を1フレームに相当する期間遅延した符号化データDa0を出力する。復号化手段6,7は、符号化データDa1,Da0をそれぞれ復号化した復号化画像データDb1,Db0を出力する。ここで、復号化画像データDb1は、補正手段9により出力される画像データDj1に対応し、復号化画像データDb0は、画像データDj1の1フレーム前に出力される画像データに対応する。補正データ生成器8は、復号化画像データDb0,Db1に基づいて補正データDcを出力する。補正手段9は、実施の形態1と同様の動作により補正データDcに基づいて画像データDi1の階調値を補正することにより、現画像データDi1に対応する新たな画像データDj1を生成し、表示手段10、および符号化手段4に出力する。
図67は、表示手段10における液晶の応答特性を示す図である。図67において(a)は補正前の現画像データDi1、(b)は補正された画像データDj1の値を示し、(c)は画像データDj1に基づく電圧を印加したときの液晶の応答特性を示している。図67(b)に示すように現画像の階調値が1フレーム前に比して増加する場合、補正データDcに基づく補正値V1を現画像データDi1に加算・減算することにより、現画像に対応する新たな画像を表す画像データDj1が生成される。表示手段10において、画像データDj1に基づく電圧を液晶に印加することにより図67(c)に示すように、略1フレーム期間内に所定の透過率となるよう液晶を駆動することができる。図67(b)に示すように、現画像の階調値が1フレーム前に比して増加する場合、補正された画像データDj1の階調値は、現画像データDi1に対してV1だけ増加し、次のフレームでは、現画像データDi1に対してV3だけ減少する。また、1フレーム前とで階調値が減少する場合、補正された画像データDj1の階調値は、現画像データDi1に対してV2だけ減少し、次のフレームでは、現画像データDi1に対してV4だけ増加する。これにより、図67(c)に示すように、表示階調の変化速度を向上させるとともに、階調の変化を強調することができる。
図68は、本実施の形態による液晶駆動回路の第2の構成を示す図である。図68に示すように、符号化手段4の代わりにデータ変換手段26を設け、補正手段9により出力される画像データDj1の量子化ビット数を、例えば8ビットから3ビットに変換することによりデータ容量を圧縮してもよい。
図69は、本実施の形態による液晶駆動回路の第3の構成を示す図である。図69に示すように、補正データ生成器28において、補正手段9により出力される画像データDj1と、復号化画像データDb1との誤差を検出し、検出された誤差に基づいて補正データDcの補正量を制限するよう構成してもよい。
図70は、本実施の形態11による液晶駆動回路の第4の構成を示す図である。図70に示すように、補正手段9により出力される画像データDj1、および復号化画像データDb0に基づいて補正データDcを生成するよう構成してもよい。
図71は、本実施の形態による液晶駆動回路の第5の構成を示す図である。図71に示すように、符号化データDa1と、遅延手段5により遅延された符号化データDa0とを比較し、両者が同じ場合は補正データDcの補正量を制限するように構成してもよい。
実施の形態1による液晶駆動回路の動作を示すフローチャートである。 実施の形態1による液晶駆動回路の構成を示す図である。 実施の形態1による補正データ発生器の構成を示す図である。 実施の形態1による補正データ発生手段の構成を示す模式図である。 液晶の応答速度の一例を示す図である。 液晶の応答速度の一例を示す図である。 補正データの一例を示す図である。 液晶の応答速度の一例を示す図である。 補正データの一例を示す図である。 実施の形態1による液晶駆動回路の動作について説明するための説明図である。 符号化・復号化の誤差が現画像データに与える影響について説明するための説明図である。 実施の形態2による液晶駆動回路の動作を示すフローチャートである。 実施の形態2による補正データ発生器の第1の構成を示す図である。 図12に示すルックアップテーブルの構成を模式的に示す図である。 図12に示すルックアップテーブルの構成を模式的に示す図である。 実施の形態2による補正データ発生器の第2の構成を示す図である。 図15に示すルックアップテーブルの構成を模式的に示す図である。 図15に示すルックアップテーブルの構成を模式的に示す図である。 実施の形態2による補正データ発生器の第3の構成を示す図である。 図18に示すルックアップテーブルの構成を模式的に示す図である。 図18に示すルックアップテーブルの構成を模式的に示す図である。 実施の形態3による液晶駆動回路の動作を示すフローチャートである。 実施の形態3による補正データ発生器の第1の構成を示す図である。 図22に示すルックアップテーブルの構成を模式的に示す図である。 補正データの算出方法について説明するための説明図である。 実施の形態3による補正データ発生器の第2の構成を示す図である。 図25に示すルックアップテーブルの構成を模式的に示す図である。 補正データの算出方法について説明するための説明図である。 実施の形態3による補正データ発生器の第3の構成を示す図である。 図28に示すルックアップテーブルの構成を模式的に示す図である。 補正データの算出方法について説明するための説明図である。 実施の形態4による液晶駆動回路の動作を示すフローチャートである。 実施の形態4による液晶駆動回路の構成を示す図である。 実施の形態5による液晶駆動回路の動作を示すフローチャートである。 実施の形態5による液晶駆動回路の構成を示す図である。 実施の形態5による補正データ発生器の第1の構成を示す図である。 図35に示す補正データ発生器の他の構成を示す図である。 図35に示す補正データ発生器の他の構成を示す図である。 図35に示す補正データ発生器の他の構成を示す図である。 実施の形態5による補正データ発生器の第2の構成を示す図である。 図39に示す補正データ発生器の他の構成を示す図である。 図39に示す補正データ発生器の他の構成を示す図である。 図39に示す補正データ発生器の他の構成を示す図である。 図39に示す補正データ発生器の他の構成を示す図である。 実施の形態5による補正データ発生器の第3の構成を示す図である。 図44に示す補正データ発生器の他の構成を示す図である。 図44に示す補正データ発生器の他の構成を示す図である。 図44に示す補正データ発生器の他の構成を示す図である。 実施の形態6による液晶駆動回路の構成を示す図である。 実施の形態7による液晶駆動回路の動作を示すフローチャートである。 実施の形態7による液晶駆動回路の構成を示す図である。 実施の形態7による補正データ発生器の第1の構成を示す図である。 図51に示す補正データ発生器の他の構成を示す図である。 図51に示す補正データ発生器の他の構成を示す図である。 図51に示す補正データ発生器の他の構成を示す図である。 実施の形態7による補正データ発生器の第2の構成を示す図である。 実施の形態7による補正データ発生器の第3の構成を示す図である。 実施の形態7による補正データ発生器の第4の構成を示す図である。 実施の形態8による液晶駆動回路の動作を示すフローチャートである。 実施の形態8による液晶駆動回路の構成を示す図である。 実施の形態9による液晶駆動回路の動作を示すフローチャートである。 実施の形態9による液晶駆動回路の構成を示す図である。 実施の形態10による液晶駆動回路の動作を示すフローチャートである。 実施の形態10による液晶駆動回路の構成を示す図である。 実施の形態10による液晶駆動回路の他の構成を示す図である。 実施の形態11による液晶駆動回路の第1の構成を示す図である。 実施の形態11による液晶駆動回路の動作について説明するための説明図である。 実施の形態11による液晶駆動回路の第2の構成を示す図である。 実施の形態11による液晶駆動回路の第3の構成を示す図である。 実施の形態11による液晶駆動回路の第4の構成を示す図である。 実施の形態11による液晶駆動回路の第5の構成を示す図である。 従来の液晶駆動回路の構成を示す図である。 画像メモリの間引き処理について説明するための説明図である。 間引き処理の問題点について説明するための説明図である。
符号の説明
1 入力端子、2 受信手段、3 画像データ処理部、4 符号化手段、5 遅延手段、6 符号化手段、7 符号化手段、8 補正データ生成器、9 補正手段、10 表示手段、11 補正データ発生手段、St1 画像データ符号化工程、St2 符号化データ遅延工程、St3 画像データ符号化工程、St4 補正データ発生工程、St5 画像データ補正工程。

Claims (13)

  1. 液晶に印加される電圧に対応する画像の各画素の階調値を表す画像データを、前記各画素における階調値の変化に基づいて補正して出力する液晶駆動用画像処理回路であって、
    現フレームの画像データを符号化することにより当該現フレームの画像データに対応する符号化画像データを出力する符号化手段と、
    前記符号化手段により出力された前記符号化画像データを1フレームに相当する期間遅延する遅延手段と、
    前記遅延手段により出力される前記符号化画像データを復号化することにより前記現フレームの1フレーム前の画像データに対応する復号化画像データを出力する復号化手段と、
    前記現フレームの画像データ、および前記復号化画像データに基づいて、前記現フレームの画像データの階調値を補正するための補正データを出力する補正データ発生手段と、
    前記補正データに基づいて前記現フレームの画像データを補正する補正手段とを備えたことを特徴とする液晶駆動用画像処理回路。
  2. 符号化手段により出力される現フレームの画像データに対応する符号化画像データと、遅延手段により出力される前記現フレームの1フレーム前の画像データに対応する符号化画像データとを比較し、両者が等しい場合に、補正データの値を0とする制限手段をさらに備えたことを特徴とする請求項1に記載の液晶駆動用画像処理回路。
  3. 現フレームの画像データ、および復号化画像データの量子化ビット数を削減することにより、前記現フレームの画像データに対応するビット数変換画像データ、および前記復号化画像データに対応するビット数変換復号化画像データをそれぞれ出力するデータ変換手段を備え、
    補正データ発生手段は、前記ビット数変換画像データ、および前記ビット数変換復号化画像データに基づいて補正データを出力することを特徴とする請求項1または2に記載の液晶駆動用画像処理回路。
  4. 現フレームの画像データおよびビット数変換画像データ、ならびに復号化画像データおよびビット数変換復号化画像データに基づいて、前記ルックアップテーブルから読み出される前記補正データの補間値を算出する補間回路とを備え、
    補正手段は、前記補正データの補間値に基づいて前記現フレームの画像データを補正することを特徴とする請求項3に記載の液晶駆動用画像処理回路。
  5. 現フレームの画像データ、または復号化画像データの量子化ビット数を削減することにより、前記現フレームの画像データに対応するビット数変換画像データ、または前記復号化画像データに対応するビット数変換復号化画像データを出力するデータ変換手段を備え、
    補正データ発生手段は、前記ビット数変換画像データおよび前記復号化画像データ、または前記現フレームの画像データおよび前記ビット数変換復号化画像データに基づいて補正データを出力することを特徴とする請求項1または2に記載の液晶駆動用画像処理回路。
  6. 現フレームの画像データおよびビット数変換画像データ、または復号化画像データおよびビット数変換復号化画像データに基づいて、前記ルックアップテーブルから読み出される前記補正データの補間値を算出する補間回路とを備え、
    補正手段は、前記補正データの補間値に基づいて前記現フレームの画像データを補正することを特徴とする請求項5に記載の液晶駆動用画像処理回路。
  7. 補正データは、液晶が1フレーム期間以内に画像データにより定められる所定の階調値に対応する透過率となるよう設定されることを特徴とする請求項1〜6のいずれか1項に記載の液晶駆動用画像処理回路。
  8. 液晶に印加される電圧に対応する画像の各画素の階調値を表す画像データを、前記各画素における階調値の変化に基づいて補正する画像処理方法であって、
    現フレームの画像データを符号化することにより当該現フレームの画像データに対応する符号化画像データを生成し、
    前記符号化画像データを1フレームに相当する期間遅延して復号化することにより得られる前記現フレームの1フレーム前の画像データに対応する復号化画像データ、および前記現フレームの画像データに基づいて前記現フレームの画像データを補正することを特徴とする画像処理方法。
  9. 現フレームの画像に対応する符号化画像データと、前記符号化画像データを1フレームに相当する期間遅延して得られる前記現フレームの1フレーム前の画像データに対応する符号化画像データとを比較し、両者が等しい場合に、現フレームの画像データの補正量を0とすることを特徴とする請求項8に記載の画像処理方法。
  10. 現フレームの画像データ、および復号化画像データの量子化ビット数を削減することにより、前記現フレームの画像データに対応するビット数変換画像データ、および前記復号化画像データに対応するビット数変換復号化画像データをそれぞれ出力し、
    前記ビット数変換画像データ、および前記ビット数変換復号化画像データに基づいて前記現フレームの画像データを補正することを特徴とする請求項8または9に記載の画像処理方法。
  11. 現フレームの画像データ、または復号化画像データの量子化ビット数を削減することにより、前記現フレームの画像データに対応するビット数変換画像データ、または前記復号化画像データに対応するビット数変換復号化画像データを出力し、
    前記ビット数変換画像データおよび前記復号化画像データ、または前記現フレームの画像データおよび前記ビット数変換復号化画像データに基づいて前記現フレームの画像データを補正することを特徴とする請求項8または9に記載の画像処理方法。
  12. 現フレームの画像データは、液晶が1フレーム期間以内に前記画像データにより定められる階調値に対応する透過率となるよう補正されることを特徴とする請求項8〜11のいずれか1項に記載の画像処理方法。
  13. 請求項1〜7のいずれか1項に記載の液晶駆動用画像処理回路を備えたことを特徴とする液晶ディスプレイ装置。

JP2003367011A 2001-10-31 2003-10-28 液晶駆動用画像処理回路、およびこれを用いた液晶ディスプレイ装置、ならびに画像処理方法 Expired - Fee Related JP3617524B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003367011A JP3617524B2 (ja) 2001-10-31 2003-10-28 液晶駆動用画像処理回路、およびこれを用いた液晶ディスプレイ装置、ならびに画像処理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001334692 2001-10-31
JP2003367011A JP3617524B2 (ja) 2001-10-31 2003-10-28 液晶駆動用画像処理回路、およびこれを用いた液晶ディスプレイ装置、ならびに画像処理方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002063394A Division JP3617498B2 (ja) 2001-10-31 2002-03-08 液晶駆動用画像処理回路、およびこれを用いた液晶ディスプレイ装置、ならびに画像処理方法

Publications (3)

Publication Number Publication Date
JP2004139096A JP2004139096A (ja) 2004-05-13
JP3617524B2 true JP3617524B2 (ja) 2005-02-09
JP2004139096A5 JP2004139096A5 (ja) 2005-05-26

Family

ID=32472454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003367011A Expired - Fee Related JP3617524B2 (ja) 2001-10-31 2003-10-28 液晶駆動用画像処理回路、およびこれを用いた液晶ディスプレイ装置、ならびに画像処理方法

Country Status (1)

Country Link
JP (1) JP3617524B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100943278B1 (ko) * 2003-06-09 2010-02-23 삼성전자주식회사 액정 표시 장치와 이의 구동 장치 및 방법
JP4523348B2 (ja) * 2004-07-06 2010-08-11 株式会社 日立ディスプレイズ 表示装置及びその駆動方法
JP4371038B2 (ja) * 2004-10-29 2009-11-25 セイコーエプソン株式会社 データドライバ、電気光学装置、電子機器及び駆動方法

Also Published As

Publication number Publication date
JP2004139096A (ja) 2004-05-13

Similar Documents

Publication Publication Date Title
JP3617498B2 (ja) 液晶駆動用画像処理回路、およびこれを用いた液晶ディスプレイ装置、ならびに画像処理方法
US7034788B2 (en) Image data processing device used for improving response speed of liquid crystal display panel
US8237689B2 (en) Image encoding device, image processing device, image display device, image encoding method, and image processing method
US8150203B2 (en) Liquid-crystal-driving image processing circuit, liquid-crystal-driving image processing method, and liquid crystal display apparatus
US20040189565A1 (en) Image data processing method, and image data processing circuit
JP3703806B2 (ja) 画像処理装置、画像処理方法、および画像表示装置
KR20070110331A (ko) 화상 처리 장치, 화상 처리 방법, 및 화상 표시 장치
KR100917530B1 (ko) 화상 처리 장치, 화상 처리 방법, 화상 부호화 장치, 화상부호화 방법, 및 화상 표시 장치
JP4190551B2 (ja) 画像処理装置、画像処理方法、画像符号化装置、および画像符号化方法
JP3617524B2 (ja) 液晶駆動用画像処理回路、およびこれを用いた液晶ディスプレイ装置、ならびに画像処理方法
JP3786110B2 (ja) 液晶駆動用画像処理回路、およびこれを用いた液晶ディスプレイ装置、ならびに画像処理方法
JP3617516B2 (ja) 液晶駆動回路、液晶駆動方法、及び液晶ディスプレイ装置
JP3580312B2 (ja) 液晶駆動用画像処理回路、およびこれを用いた液晶ディスプレイ装置、ならびに画像処理方法
JP4100405B2 (ja) 画像処理装置、画像処理方法、画像表示装置
WO2010125857A1 (ja) データ伝送装置、データ伝送方法
JP3694004B2 (ja) 液晶駆動回路、液晶駆動方法、及び液晶ディスプレイ装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040428

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040428

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041101

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees