JP3615801B2 - Titanium nitride thin film deposition method - Google Patents

Titanium nitride thin film deposition method Download PDF

Info

Publication number
JP3615801B2
JP3615801B2 JP26887394A JP26887394A JP3615801B2 JP 3615801 B2 JP3615801 B2 JP 3615801B2 JP 26887394 A JP26887394 A JP 26887394A JP 26887394 A JP26887394 A JP 26887394A JP 3615801 B2 JP3615801 B2 JP 3615801B2
Authority
JP
Japan
Prior art keywords
substrate
thin film
titanium nitride
nitride thin
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26887394A
Other languages
Japanese (ja)
Other versions
JPH08127870A (en
Inventor
浩治 永谷
誠一 高橋
雄三 樫本
智保 近藤
水沢  寧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP26887394A priority Critical patent/JP3615801B2/en
Publication of JPH08127870A publication Critical patent/JPH08127870A/en
Application granted granted Critical
Publication of JP3615801B2 publication Critical patent/JP3615801B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、窒化チタン薄膜の成膜方法にかかり、特に半導体及び電子機器の製造工程で基板上に設けられた微細孔を窒化チタン薄膜で埋め込む窒化チタン薄膜成膜方法に関する。
【0002】
【従来の技術】
近年のデバイスの高集積化に伴って、半導体や電子機器等の製造工程ではデザインルールの微細化や多層配線化が進んできた。このような微細化技術の進展に伴って、高アスペクト比を持つコンタクトホールやスルーホール等に対して金属薄膜等の導電性薄膜を埋め込む技術は重要度を増している。
【0003】
この埋込技術に関しては、従来から、スパッタリング法やCVD法が用いられているが、CVD法では使用ガスが人間に有害なものが多いため高価なガス設備や除害設備が必要となり、また成膜可能な薄膜の種類も限られているという問題があり、スパッタリング法を改善することで、高アスペクト比の微細孔の埋込みを行おうという考え方が優勢となってきた。
【0004】
ところで、スパッタリング法による成膜は、真空槽内ターゲットと基板とを対向配置させ、真空状態にした後、スパッタリングガスを導入し、所定圧力下で前記ターゲット側に負電圧を印加して放電を生じさせ、電離されたスパッタガス分子(イオン)をターゲットに入射させ、叩き出されたターゲット表面の粒子を前記基板に堆積させて薄膜を形成する技術である。
【0005】
しかしながら従来技術のスパッタリング方法では、図4(a)に示すように、基板101に設けられた微細孔102には、ターゲットから叩き出された粒子103が種々の方向から入射してしまう。
【0006】
その結果、図4(b)に示すように、基板に対して斜め方向から入射してきた粒子103’が微細孔102の開口部付近に堆積してオーバーハング104を発生させてしまい、微細孔底部105にはほどんど堆積しないシャドウィング効果が起こってしまう。その結果、微細孔底部付近で断線や接続不良が発生し易くなってしまうという問題がある。
【0007】
このような問題に対して、ターゲットと基板との間に細長い穴を多数設けたフィルタを配置し、基板上に設けられた微細孔に対して垂直に入射する粒子だけが基板に到達するようにしたスパッタ成膜方法(コリメートスパッタ法)が提案されているが、このような方法では、ターゲットから飛出した粒子の大部分がフィルタに付着してしまい、成膜効率が低下する。しかも、フィルタに付着した粒子は薄膜化し、この薄膜が剥がれるとダストとなり、基板上に落ちた場合には歩留が低下するという問題があり、根本的な解決には至っていなかった。
【0008】
そこで出願人は、基板とターゲットの間の距離を、通常のスパッタリング方法における場合と比較して大きくし、且つ成膜中の雰囲気圧力を1×10-1Pa以下に保つことでスパッタ粒子の直進性を向上させる、いわゆる低圧スパッタ成膜方法を提案した。この技術によれば、従来のスパッタリング法による微細孔の埋込みに伴う上記の問題を解決し、しかもダストの発生等の問題なしに基板上の微細な穴埋めを有効に実施できるものである。
【0009】
ところが、基板上に窒化チタン(TiN)薄膜を成膜させるために、チタン(Ti)をターゲットに用い、窒素ガスを反応性ガスとして使用して、前記低圧スパッタ成膜方法により反応性スパッタリングを行なうと、微細孔内の埋込特性(カバレッジ)は良好であるが、微細孔が設けられていない基板表面上の窒化チタン薄膜の膜厚分布が均一とならなかった。この基板表面の窒化チタン薄膜は微細孔内部の窒化チタンと異なり不要であるため、エッチング等により除去する必要があるが、基板表面の膜厚分布の不均一はエッチングむらを引き起こすのでジャストエッチが難しく、オーバーエッチングさせると微細孔内部の窒化チタンもエッチングされてしまう等、不都合が多かった。
【0010】
【発明が解決しようとする課題】
本発明は上記従来技術の不都合を改善するために創作されたもので、微細孔内部の良好な埋込特性を維持したまま、基板表面上の薄膜の膜厚分布が均一である窒化チタン薄膜成膜方法を提供することにある。
【0011】
【課題を解決するための手段】
上記課題を解決するために、請求項1の発明は、表面に微細孔が形成された基板とチタンターゲットとを真空雰囲気中で、略並行に対向配置させ、前記真空雰囲気内に反応性ガスとして窒素ガスを導入し、前記チタンターゲットをスパッタして前記基板に窒化チタンの薄膜を成膜する窒化チタン薄膜成膜方法であって、前記窒素ガスに流量比で、
1/8≦アルゴンガス/窒素ガス≦1/3
の範囲でアルゴンガスを添加し、成膜中の雰囲気を1×10-1Pa以下の圧力に保つことを特徴とする。
【0012
この場合に、請求項2の発明は、前記基板と前記チタンターゲットの距離が100mm以上300mm以下、好ましくは140mm以上200mm以下であることを特徴とする
【0013
請求項3の発明は、表面に微細孔が形成された基板とチタンターゲットとを真空雰囲気中で、前記微細孔の平均埋込率が35%以上となるように前記基板と前記チタンターゲットの距離を設定して対向配置させ、前記真空雰囲気内に反応性ガスとして窒素ガスを導入し、前記チタンターゲットをスパッタして前記基板に窒化チタンの薄膜を成膜する窒化チタン薄膜成膜方法であって、前記窒素ガスに流量比で、1/8≦アルゴンガス/窒素ガス≦1/3の範囲でアルゴンガスを添加し、成膜中の雰囲気を1×10 -1 Pa以下の圧力に保つことを特徴とする。
【0014
請求項4の発明は、表面に微細孔が形成された基板とチタンターゲットとを真空雰囲気中で、基板表面での成膜速度が36nm/min以上で、且つ、前記微細孔底部での平均埋込率が35%以上となるように前記基板と前記チタンターゲットの距離を設定して対向配置させ、前記真空雰囲気内に反応性ガスとして窒素ガスを導入し、前記チタンターゲットをスパッタし、前記基板に窒化チタンの薄膜を成膜する窒化チタン薄膜成膜方法であって、前記窒素ガスに流量比で、1/8≦アルゴンガス/窒素ガス≦1/3の範囲でアルゴンガスを添加し、成膜中の雰囲気を1×10 -1 Pa以下の圧力に保つことを特徴とする
【0015
そして、請求項5の発明は、これらの発明に共通して、前記チタンターゲットの裏面に磁石を備えたことを特徴とする
【0016
【作用】
請求項1の発明によれば、表面に微細孔が形成された基板とチタンターゲットとを略並行に対向配置させて真空雰囲気におき、前記真空雰囲気内に反応性ガスとして窒素ガスを導入して前記チタンターゲットをスパッタすると、前記基板に窒化チタンの薄膜が成膜される。
【0017
そして、請求項2の発明によれば、基板とチタンターゲットの距離が100mm以上300mm以下、好ましくは140mm以上200mm以下に設定すると、下記 [ 表1 ] より、その距離をパラメータとして微細孔底部の平均埋込率及び成膜速度を表すことができる。
【0018
したがって、請求項3の発明によれば、表面に微細孔が形成された基板とチタンターゲットとを真空雰囲気中で、前記微細孔の平均埋込率が35%以上となるように前記基板と前記チタンターゲットの距離を設定することで、あるいは、請求項4の発明によれば、表面に微細孔が形成された基板とチタンターゲットとを真空雰囲気中で、基板表面での成膜速度が36nm/min以上で、且つ、前記微細孔底部での平均埋込率が35%以上となるように前記基板と前記チタンターゲットの距離を設定することで、これらの対向配置を整備し、前記真空雰囲気内に反応性ガスとして窒素ガスを導入し、前記チタンターゲットをスパッタすると、前記基板に窒化チタンの薄膜が成膜される。
【0019
この成膜の際の圧力を1×10-1Pa以下の圧力にしておき、前記窒素ガスにアルゴンガスを、流量比で、
1/8≦アルゴンガス/窒素ガス≦1/3
の範囲で添加すれば、良好な埋込特性を維持したまま均一な膜厚分布を有する窒化チタン薄膜(TiN)を成膜することができる。
【0020
アルゴンガスと窒素ガスの流量比が1/8未満の値では膜厚分布はよくならない。一方、1/3を超える値になるまでアルゴンガスを添加した場合には、膜厚分布は均一であるが、窒化チタン薄膜特有のゴールド色を示さなくなり、窒素の不足から、チタン薄膜と窒化チタン薄膜の中間的色調(黄味がかかった金属色)となり、チタンの多いTi1-xNx膜が成膜されたことが分かる。このTi1-xNx膜は、特性が悪く、バリアー膜として使用するには不都合である。
【0021
さらに、請求項5の発明によれば、チタンターゲットの裏面に磁石を備えるので、スパッタ時のグロー放電によて発生した電子の移動距離が磁界の無い場合に比べて長くなり、電子がガス分子と衝突する機会が多くなる。このため、雰囲気の電離が促進され、低圧雰囲気での放電が容易となる。これにより、安定的なスパッタ成膜が行われる。
【0022
【実施例】
本発明の実施例を図面に基づいて説明する。
【0023
図1を参照し、2は本発明に用いた低圧スパッタ装置であり、真空槽3を備えている。該真空槽3は、ガス導入口4と真空排気口3と、ターゲット電極5と基板ホルダー7とを備えている。前記真空排気口3には図示しない真空ポンプが接続されており、前記ターゲット電極5の裏面には、二重の同心円上に配置された磁石10を有する直径320mmのマグネットプレート9が設けられ、前記基板ホルダー7の裏面にはヒータ11が設けられている。
【0024
前記ターゲット電極5には直径300mmのチタンターゲット4が装着され、前記基板ホルダー7は、直径6インチの基板6を前記チタンターゲット4と対向して装着ができるように構成されており、該基板ホルダー7に基板を装着した場合、該基板と前記チタンターゲット4との距離が140mmになるように構成されている。
【0025
前記基板6には、深さをa、底面の径をeとしたときに、
A/R = a/e
で定義されるアスペクト比A/R が2の微細孔が設けられており、前記図示しない真空ポンプを起動させ、前記真空槽3を高真空状態にした後、前記ヒータ11で前記基板6を加熱し、前記ガス導入口4から流量26sccmの窒素ガスに、アルゴンガスを流量4sccmの割合で添加したスパッタリングガスを導入し(全体の流量は30sccm)、排気速度を調節して圧力が5.7×10-2Paの値で安定するまで待った後、前記ターゲット電極5に接続された直流電源12により10kWの電力を投入し、スパッタリングを行ったところ、前記基板6に窒化チタン薄膜が成膜された。
【0026
この窒化チタン薄膜の膜厚を、図2に示す基板6の、微細孔が設けられていない表面の9点で測定した。この9点は、基板中心の点P1の位置を(0,0)とすると、残りの8点は、座標の単位をmmとして、P2(35.00,0)、P3(70.00,0)、P4(-35.00,0)、P5(-70.00,0)、P6(0,35.00)、P7(0,70.00)、P8(0,-35.00)、P9(0,-70.00)で表わされる。
【0027
一つの基板内における前記P1〜P9の膜厚を測定し、最大膜厚と最小膜厚を求め、次式、
(膜厚ハ゛ラツキ) = ±(最大膜厚−最小膜厚)/(最大膜厚+最小膜厚)
から膜厚分布を算出したところ±6.8%であった。この値が小さい方が膜厚分布は良好である。
【0028
また、前記膜厚分布を測定した基板を截断し、断面を研磨して前記微細孔15に埋め込まれた窒化チタン薄膜を観察した。ここで、図3に示すように、前記基板6の表面の窒化チタン薄膜の膜厚dと、前記微細孔15の底面中心付近の膜厚c2と、底面両端付近の膜厚c1、 3とを測定し、次式、
(平均埋込率) = (c1/d+c2/d+c3/d)/3
で定義される平均埋込率を、前記点P1、P2、P3の3点における測定値から求めたところ、37%であった。
【0029
次に、アスペクト比2の微細孔が設けられており、窒化チタン薄膜が成膜されていない基板を前記基板ホルダー7に装着し、チタンターゲットとの間隔を140mmに保ったまま、窒素ガスの流量を25sccm、アルゴンガスの流量を8sccm、成膜圧力を6.5×10-2Paとして、窒化チタン薄膜を成膜し、同様に膜厚を測定し、膜厚分布と平均埋込率とを求めた。比較例として、アルゴンガスを添加せず、窒素ガスだけでスパッタリングして成膜した窒化チタン薄膜の膜厚を測定し、膜厚分布と平均埋込率とを求めた。
【0030
また、基板とチタンターゲットとの距離を170mm、及び200mmに変え、更にアルゴンガス流量、窒素ガス流量、及び成膜圧力を変え、アスペクト比が2の微細孔を有する別の基板上に窒化チタン薄膜を成膜し、膜厚を測定した。比較例として窒素ガスだけで成膜した窒化チタン薄膜の膜厚も測定した。
【0031
これらの成膜条件と、各条件下で成膜した窒化チタン薄膜の基板表面上の膜厚分布と微細孔の平均埋込率とを表1にまとめて記載する。
【0032
【表1】

Figure 0003615801
【0033
前記表1からわかるように、基板とチタンターゲットとの距離が140〜200mmの範囲で大きいほど膜厚分布は小さく、平均埋込率は大きくなることがわかる。
【0034
この場合、従来の反応性スパッタリング方法によるのと同程度の平均埋込率(35%)を得るためには、表1の実験結果から、基板とチタンターゲットの間の距離が、140mm以上200mm以下に設定されることが望ましいことが分かる。
【0035
この場合、表1の実験結果から、基板とターゲットとの距離が140mm以上200mm以下に設定されることが望ましいことが分かる。
【0036
しかしながら基板とチタンターゲット間の距離に着目すると、この距離を大きくすると微細孔底部の成膜速度が低下してしまい、一方、短くした場合でも、実験によると、必ずしも微細孔底部の成膜速度が大きくなるとは限らなかった。従って、距離をパラメーターとして微細孔底部の成膜速度を表した場合、一定の範囲の距離内で、ある極大値が存在する。この極大値と、極大値を与える距離とは、アスペクト比やスパッタ圧力等に影響される。
【0037
但し、必ずしも極大値を与える距離でスパッタを行う必要はない。従来のスパッタリング方法によるのと同程度の成膜速度(36nm/min)が得るためには、基板とチタンターゲットの間の距離が、約100mmから約300mmの範囲にすればよいことが実験により確認されている。
【0038
この場合、表1の実験結果から、基板とターゲットとの距離が140mm以上200mm以下に設定されることが望ましいことが分かる。
【0039
【発明の効果】
本発明によれば、微細孔内の埋込特性が良好で、基板表面の膜厚分布が良好な窒化チタン薄膜を得ることができ、高アスペクト比の微細孔を効率よく埋め込めるので、歩留りが向上する。
【図面の簡単な説明】
【図1】本発明に使用した低圧スパッタ装置の一例
【図2】窒化チタン薄膜の膜厚の測定点
【図3】微細孔の断面図
【図4】(a)従来のスパッタリング方法により薄膜が成膜される状態を示した図 (b)シャドウィング効果を示す図
【符号の説明】
4……チタンターゲット 6……基板[0001]
[Industrial application fields]
The present invention relates to a method for forming a titanium nitride thin film, and more particularly to a method for forming a titanium nitride thin film in which fine holes provided on a substrate in a manufacturing process of a semiconductor and an electronic device are embedded with the titanium nitride thin film.
[0002]
[Prior art]
With the recent high integration of devices, the miniaturization of design rules and the formation of multilayer wiring have been advanced in the manufacturing process of semiconductors and electronic devices. Along with the progress of such miniaturization technology, a technology of embedding a conductive thin film such as a metal thin film in a contact hole or a through hole having a high aspect ratio has been gaining importance.
[0003]
Conventionally, sputtering and CVD methods have been used for this embedding technique. However, since many gases are harmful to human beings, the CVD method requires expensive gas equipment and abatement equipment. There is a problem that the types of thin films that can be formed are limited, and the idea of embedding high-aspect-ratio fine holes by improving the sputtering method has become dominant.
[0004]
By the way, in the film formation by the sputtering method, the target in the vacuum chamber and the substrate are arranged to face each other, and after making a vacuum state, a sputtering gas is introduced, and a negative voltage is applied to the target side under a predetermined pressure to generate a discharge. In this technique, ionized sputtering gas molecules (ions) are made incident on a target, and the particles of the knocked target surface are deposited on the substrate to form a thin film.
[0005]
However, in the conventional sputtering method, as shown in FIG. 4A, the particles 103 knocked out of the target enter the micro holes 102 provided in the substrate 101 from various directions.
[0006]
As a result, as shown in FIG. 4B, the particles 103 ′ incident from the oblique direction with respect to the substrate are deposited in the vicinity of the opening of the fine hole 102, and an overhang 104 is generated. 105 has a shadowing effect that hardly accumulates. As a result, there is a problem that disconnection and poor connection are likely to occur near the bottom of the microhole.
[0007]
To solve this problem, a filter having a large number of elongated holes is arranged between the target and the substrate so that only particles that enter perpendicularly to the micropores formed on the substrate reach the substrate. The sputter deposition method (collimated sputtering method) has been proposed, but in such a method, most of the particles flying out from the target adhere to the filter, and the deposition efficiency is lowered. Moreover, the particles adhering to the filter are made into a thin film, and when the thin film is peeled off, it becomes dust, and when it falls on the substrate, there is a problem that the yield is lowered, and the fundamental solution has not been achieved.
[0008]
Therefore, the applicant increases the distance between the substrate and the target as compared with the case of the normal sputtering method, and keeps the atmospheric pressure during film formation at 1 × 10 −1 Pa or less so that the rectilinearity of the sputtered particles. A so-called low-pressure sputter film forming method has been proposed. According to this technique, it is possible to solve the above-mentioned problems associated with embedding fine holes by a conventional sputtering method and to effectively carry out fine hole filling on a substrate without problems such as dust generation.
[0009]
However, in order to form a titanium nitride (TiN) thin film on the substrate, reactive sputtering is performed by the low-pressure sputter deposition method using titanium (Ti) as a target and nitrogen gas as a reactive gas. However, although the embedding property (coverage) in the fine holes is good, the film thickness distribution of the titanium nitride thin film on the substrate surface where the fine holes are not provided is not uniform. This titanium nitride thin film on the surface of the substrate is unnecessary unlike titanium nitride inside the micropores, so it must be removed by etching or the like. However, uneven etching of the film thickness on the surface of the substrate causes uneven etching, so that just etching is difficult. When over-etched, there were many inconveniences such as etching of titanium nitride inside the fine holes.
[0010]
[Problems to be solved by the invention]
The present invention was created to remedy the disadvantages of the prior art described above. A titanium nitride thin film composition in which the film thickness distribution on the substrate surface is uniform while maintaining good embedding characteristics inside the micropores. It is to provide a membrane method.
[0011]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the invention of claim 1 is characterized in that a substrate having a fine hole formed on a surface thereof and a titanium target are arranged to face each other substantially in parallel in a vacuum atmosphere, and as a reactive gas in the vacuum atmosphere. A method of forming a titanium nitride thin film by introducing nitrogen gas and sputtering the titanium target to form a titanium nitride thin film on the substrate, the flow rate ratio of the nitrogen gas being
1/8 ≦ Argon gas / Nitrogen gas ≦ 1/3
In this range, argon gas is added, and the atmosphere during film formation is maintained at a pressure of 1 × 10 −1 Pa or less.
[00 12 ]
In this case, the invention of claim 2 is characterized in that a distance between the substrate and the titanium target is 100 mm or more and 300 mm or less, preferably 140 mm or more and 200 mm or less .
[00 13 ]
According to a third aspect of the present invention, there is provided a distance between the substrate and the titanium target so that an average embedding ratio of the micropores is 35% or more in a vacuum atmosphere between the substrate having a micropore formed on the surface and the titanium target. A titanium nitride thin film forming method in which nitrogen gas is introduced as a reactive gas into the vacuum atmosphere, and the titanium target is sputtered to form a titanium nitride thin film on the substrate. The argon gas is added to the nitrogen gas in a flow ratio of 1/8 ≦ argon gas / nitrogen gas ≦ 1/3, and the atmosphere during film formation is maintained at a pressure of 1 × 10 −1 Pa or less. Features.
[00 14 ]
According to the invention of claim 4, the substrate having a fine hole formed on the surface and the titanium target are in a vacuum atmosphere, the film formation rate on the substrate surface is 36 nm / min or more, and the average filling at the bottom of the fine hole is performed. A distance between the substrate and the titanium target is set so as to be 35% or higher, a nitrogen gas is introduced as a reactive gas into the vacuum atmosphere, the titanium target is sputtered, and the substrate A titanium nitride thin film forming method for forming a titanium nitride thin film in which argon gas is added to the nitrogen gas in a flow ratio of 1/8 ≦ argon gas / nitrogen gas ≦ 1/3. The atmosphere in the film is maintained at a pressure of 1 × 10 −1 Pa or less .
[00 15 ]
The invention of claim 5 is characterized in that, in common with these inventions, a magnet is provided on the back surface of the titanium target .
[00 16 ]
[Action]
According to the first aspect of the present invention, a substrate having a fine hole formed on the surface and a titanium target are arranged to face each other substantially in parallel and placed in a vacuum atmosphere, and nitrogen gas is introduced into the vacuum atmosphere as a reactive gas. When the titanium target is sputtered, a titanium nitride thin film is formed on the substrate.
[00 17 ]
According to the invention of claim 2, when the distance between the substrate and the titanium target is set to 100 mm or more and 300 mm or less, preferably 140 mm or more and 200 mm or less, from the following [ Table 1 ] , the average of the fine hole bottoms using the distance as a parameter. The embedding rate and the deposition rate can be expressed.
[00 18 ]
Therefore, according to the invention of claim 3, the substrate and the titanium target formed on the surface and the titanium target are placed in a vacuum atmosphere so that the average embedding rate of the micropores is 35% or more. By setting the distance of the titanium target, or according to the invention of claim 4, the deposition rate on the surface of the substrate is 36 nm / min in a vacuum atmosphere between the substrate having a fine hole formed on the surface and the titanium target. By setting the distance between the substrate and the titanium target so that the average embedding rate at the bottom of the fine hole is 35% or more at a minimum of min or more, these opposing arrangements are maintained, and the inside of the vacuum atmosphere is maintained. When nitrogen gas is introduced as a reactive gas and the titanium target is sputtered, a thin film of titanium nitride is formed on the substrate.
[00 19 ]
The pressure at the time of this film formation is set to a pressure of 1 × 10 −1 Pa or less, argon gas is added to the nitrogen gas at a flow rate ratio,
1/8 ≦ Argon gas / Nitrogen gas ≦ 1/3
If added in this range, a titanium nitride thin film (TiN) having a uniform film thickness distribution can be formed while maintaining good embedding characteristics.
[00 20 ]
If the flow ratio of argon gas to nitrogen gas is less than 1/8, the film thickness distribution will not be improved. On the other hand, when argon gas is added until the value exceeds 1/3, the film thickness distribution is uniform, but the gold color peculiar to the titanium nitride thin film is not exhibited, and the titanium thin film and the titanium nitride are lost due to the lack of nitrogen. It can be seen that a Ti1-xNx film rich in titanium was formed with an intermediate color tone (yellowish metallic color) of the thin film. This Ti1-xNx film has poor characteristics and is inconvenient for use as a barrier film.
[00 21 ]
Further, according to the invention of claim 5, since the magnet is provided on the back surface of the titanium target, the moving distance of the electrons generated by the glow discharge at the time of sputtering becomes longer than that without a magnetic field, and the electrons are gas molecules. There are many opportunities to collide with. For this reason, the ionization of the atmosphere is promoted, and the discharge in the low pressure atmosphere becomes easy. Thereby, stable sputter film formation is performed.
[00 22 ]
【Example】
Embodiments of the present invention will be described with reference to the drawings.
[00 23 ]
Referring to FIG. 1, reference numeral 2 denotes a low-pressure sputtering apparatus used in the present invention, which includes a vacuum chamber 3. The vacuum chamber 3 includes a gas introduction port 4, a vacuum exhaust port 3, a target electrode 5, and a substrate holder 7. A vacuum pump (not shown) is connected to the vacuum exhaust port 3, and a magnet plate 9 having a diameter of 320 mm having magnets 10 arranged on a double concentric circle is provided on the back surface of the target electrode 5. A heater 11 is provided on the back surface of the substrate holder 7.
[00 24 ]
A titanium target 4 having a diameter of 300 mm is mounted on the target electrode 5, and the substrate holder 7 is configured so that a substrate 6 having a diameter of 6 inches can be mounted facing the titanium target 4. When a substrate is mounted on 7, the distance between the substrate and the titanium target 4 is 140 mm.
[00 25 ]
The substrate 6 has a depth a and a bottom diameter e,
A / R = a / e
Are provided with fine holes having an aspect ratio A / R of 2 and the vacuum pump (not shown) is activated to bring the vacuum chamber 3 into a high vacuum state, and then the substrate 6 is heated by the heater 11. Then, a sputtering gas in which argon gas is added at a rate of 4 sccm is introduced into the nitrogen gas at a flow rate of 26 sccm from the gas inlet 4 (the overall flow rate is 30 sccm), and the pressure is 5.7 × by adjusting the exhaust speed. After waiting until it became stable at a value of 10 −2 Pa, 10 kW of power was supplied from the DC power source 12 connected to the target electrode 5 and sputtering was performed. As a result, a titanium nitride thin film was formed on the substrate 6.
[00 26 ]
The film thickness of the titanium nitride thin film was measured at nine points on the surface of the substrate 6 shown in FIG. These nine points are P2 (35.00,0), P3 (70.00,0), P4 (where the coordinate unit is mm, assuming that the position of the center point P1 of the substrate is (0,0). -35.00,0), P5 (-70.00,0), P6 (0,35.00), P7 (0,70.00), P8 (0, -35.00), P9 (0, -70.00).
[00 27 ]
The film thicknesses of P1 to P9 in one substrate are measured, and the maximum film thickness and the minimum film thickness are obtained.
(Thickness variation) = ± (maximum film thickness-minimum film thickness) / (maximum film thickness + minimum film thickness)
The film thickness distribution was calculated from 6.8%. The smaller this value, the better the film thickness distribution.
[00 28 ]
Further, the substrate on which the film thickness distribution was measured was cut, the cross section was polished, and the titanium nitride thin film embedded in the fine holes 15 was observed. Here, as shown in FIG. 3, and the thickness d of the titanium nitride thin film on the surface of the substrate 6, and the thickness c2 of the vicinity of the bottom surface center of the fine holes 15, the thickness c1, c 3 in the vicinity of the bottom ends Measure the following formula,
(Average embedding rate) = (c1 / d + c2 / d + c3 / d) / 3
The average embedding rate defined by the above was 37% when determined from the measured values at the three points P1, P2 and P3.
[00 29 ]
Next, a substrate having a fine hole with an aspect ratio of 2 and having no titanium nitride thin film formed thereon is mounted on the substrate holder 7 and the flow rate of nitrogen gas is kept at 140 mm with the titanium target. 25 sccm, the flow rate of argon gas is 8 sccm, the deposition pressure is 6.5 × 10 −2 Pa, a titanium nitride thin film is formed, the thickness is measured in the same manner, and the thickness distribution and average filling rate are obtained. It was. As a comparative example, the film thickness of a titanium nitride thin film formed by sputtering only with nitrogen gas without adding argon gas was measured, and the film thickness distribution and the average filling rate were obtained.
[00 30 ]
Further, the distance between the substrate and the titanium target is changed to 170 mm and 200 mm, and the argon gas flow rate, the nitrogen gas flow rate, and the film forming pressure are changed, and the titanium nitride thin film is formed on another substrate having micropores with an aspect ratio of 2. The film thickness was measured. As a comparative example, the thickness of a titanium nitride thin film formed only with nitrogen gas was also measured.
[00 31 ]
Table 1 summarizes these film formation conditions, the film thickness distribution on the substrate surface of the titanium nitride thin film formed under each condition, and the average embedding rate of the fine holes.
[00 32 ]
[Table 1]
Figure 0003615801
[00 33 ]
As can be seen from Table 1, it can be seen that the larger the distance between the substrate and the titanium target is in the range of 140 to 200 mm, the smaller the film thickness distribution and the higher the average embedding rate.
[00 34 ]
In this case, in order to obtain an average filling ratio (35%) similar to that obtained by the conventional reactive sputtering method, the distance between the substrate and the titanium target is 140 mm or more and 200 mm or less from the experimental results shown in Table 1. It can be seen that it is desirable to set to.
[00 35 ]
In this case, it can be seen from the experimental results in Table 1 that the distance between the substrate and the target is preferably set to 140 mm or more and 200 mm or less .
[00 36 ]
However, paying attention to the distance between the substrate and the titanium target, if this distance is increased, the film formation speed at the bottom of the fine hole is reduced. It did not always grow. Therefore, when the film formation speed at the bottom of the fine hole is expressed using the distance as a parameter, a certain maximum value exists within a certain range of distance. The maximum value and the distance giving the maximum value are affected by the aspect ratio, the sputtering pressure, and the like.
[00 37 ]
However, it is not always necessary to perform sputtering at a distance giving a maximum value. Experiments have confirmed that the distance between the substrate and the titanium target should be in the range of about 100 mm to about 300 mm in order to obtain a film formation rate (36 nm / min) comparable to that of the conventional sputtering method. Has been.
[00 38 ]
In this case, it can be seen from the experimental results in Table 1 that the distance between the substrate and the target is preferably set to 140 mm or more and 200 mm or less .
[00 39 ]
【The invention's effect】
According to the present invention, it is possible to obtain a titanium nitride thin film with good embedding characteristics in the micropores and with a good film thickness distribution on the substrate surface, and it is possible to efficiently embed micropores with a high aspect ratio. improves.
[Brief description of the drawings]
1 is an example of a low-pressure sputtering apparatus used in the present invention. FIG. 2 is a measurement point of the thickness of a titanium nitride thin film. FIG. 3 is a cross-sectional view of a microhole. Figure showing the state of film formation (b) Figure showing the shadowing effect
4 ... Titanium target 6 ... Substrate

Claims (5)

表面に微細孔が形成された基板とチタンターゲットとを真空雰囲気中で、略並行に対向配置させ、前記真空雰囲気内に反応性ガスとして窒素ガスを導入し、前記チタンターゲットをスパッタして前記基板に窒化チタンの薄膜を成膜する窒化チタン薄膜成膜方法であって、前記窒素ガスに流量比で、1/8≦アルゴンガス/窒素ガス≦1/3の範囲でアルゴンガスを添加し、成膜中の雰囲気を1×10-1Pa以下の圧力に保つことを特徴とする窒化チタン薄膜成膜方法。 A substrate having a fine hole formed on the surface and a titanium target are arranged to face each other substantially in parallel in a vacuum atmosphere, nitrogen gas is introduced into the vacuum atmosphere as a reactive gas, and the titanium target is sputtered to form the substrate. A titanium nitride thin film forming method for forming a titanium nitride thin film in which argon gas is added to the nitrogen gas in a flow ratio of 1/8 ≦ argon gas / nitrogen gas ≦ 1/3. A method for forming a titanium nitride thin film, wherein the atmosphere in the film is maintained at a pressure of 1 × 10 −1 Pa or less. 前記基板と前記チタンターゲットの距離が100mm以上300mm以下、好ましくは140mm以上200mm以下であることを特徴とする請求項1記載の窒化チタン薄膜成膜方法。2. The titanium nitride thin film forming method according to claim 1, wherein a distance between the substrate and the titanium target is 100 mm to 300 mm, preferably 140 mm to 200 mm. 表面に微細孔が形成された基板とチタンターゲットとを真空雰囲気中で、前記微細孔の平均埋込率が35%以上となるように前記基板と前記チタンターゲットの距離を設定して対向配置させ、前記真空雰囲気内に反応性ガスとして窒素ガスを導入し、前記チタンターゲットをスパッタして前記基板に窒化チタンの薄膜を成膜する窒化チタン薄膜成膜方法であって、前記窒素ガスに流量比で、1/8≦アルゴンガス/窒素ガス≦1/3の範囲でアルゴンガスを添加し、成膜中の雰囲気を1×10A substrate having a fine hole formed on the surface thereof and a titanium target are placed in a vacuum atmosphere so as to face each other by setting a distance between the substrate and the titanium target so that an average filling rate of the fine holes is 35% or more. A method of forming a titanium nitride thin film by introducing nitrogen gas as a reactive gas into the vacuum atmosphere and sputtering the titanium target to form a titanium nitride thin film on the substrate, wherein the flow rate ratio to the nitrogen gas is Then, argon gas was added in the range of 1/8 ≦ argon gas / nitrogen gas ≦ 1/3, and the atmosphere during film formation was 1 × 10. -1-1 Pa以下の圧力に保つことを特徴とする窒化チタン薄膜成膜方法。A titanium nitride thin film forming method, characterized by maintaining a pressure of Pa or lower. 表面に微細孔が形成された基板とチタンターゲットとを真空雰囲気中で、基板表面での成膜速度が36nm/min以上で、且つ、前記微細孔底部での平均埋込率が35%以上となるように前記基板と前記チタンターゲットの距離を設定して対向配置させ、前記真空雰囲気内に反応性ガスとして窒素ガスを導入し、前記チタンターゲットをスパッタし、前記基板に窒化チタンの薄膜を成膜する窒化チタン薄膜成膜方法であって、前記窒素ガスに流量比で、1/8≦アルゴンガス/窒素ガス≦1/3の範囲でアルゴンガスを添加し、成膜中の雰囲気を1×10A substrate having a fine hole formed on the surface and a titanium target in a vacuum atmosphere have a film formation rate of 36 nm / min or more on the substrate surface, and an average filling rate of 35% or more at the bottom of the fine hole. A distance between the substrate and the titanium target is set so as to face each other, nitrogen gas is introduced as a reactive gas in the vacuum atmosphere, the titanium target is sputtered, and a titanium nitride thin film is formed on the substrate. A titanium nitride thin film forming method for forming a film, wherein argon gas is added to the nitrogen gas in a flow ratio of 1/8 ≦ argon gas / nitrogen gas ≦ 1/3, and the atmosphere during film formation is 1 × 10 -1-1 Pa以下の圧力に保つことを特徴とする窒化チタン薄膜成膜方法。A titanium nitride thin film forming method, characterized by maintaining a pressure of Pa or lower. 前記チタンターゲットの裏面に磁石を備えたことを特徴とする請求項1乃至4のいずれか1項記載の窒化チタン薄膜成膜方法。The titanium nitride thin film forming method according to any one of claims 1 to 4, wherein a magnet is provided on a back surface of the titanium target.
JP26887394A 1994-11-01 1994-11-01 Titanium nitride thin film deposition method Expired - Lifetime JP3615801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26887394A JP3615801B2 (en) 1994-11-01 1994-11-01 Titanium nitride thin film deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26887394A JP3615801B2 (en) 1994-11-01 1994-11-01 Titanium nitride thin film deposition method

Publications (2)

Publication Number Publication Date
JPH08127870A JPH08127870A (en) 1996-05-21
JP3615801B2 true JP3615801B2 (en) 2005-02-02

Family

ID=17464452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26887394A Expired - Lifetime JP3615801B2 (en) 1994-11-01 1994-11-01 Titanium nitride thin film deposition method

Country Status (1)

Country Link
JP (1) JP3615801B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000054123A (en) 1998-08-07 2000-02-22 Mitsubishi Electric Corp Production of semiconductor device and production device therefor
JP4163331B2 (en) 1999-07-14 2008-10-08 アルバック成膜株式会社 Phase shifter film manufacturing method, phase shift mask blank manufacturing method, and phase shift mask manufacturing method
JP5215421B2 (en) * 1999-11-09 2013-06-19 アルバック成膜株式会社 Phase shift photomask blank, phase shift photomask, and semiconductor device manufacturing method
JP2001201842A (en) 1999-11-09 2001-07-27 Ulvac Seimaku Kk Phase shift photomask blank, phase shift photomask, and manufacturing method of semiconductor device
US7311946B2 (en) 2003-05-02 2007-12-25 Air Products And Chemicals, Inc. Methods for depositing metal films on diffusion barrier layers by CVD or ALD processes

Also Published As

Publication number Publication date
JPH08127870A (en) 1996-05-21

Similar Documents

Publication Publication Date Title
JP5373905B2 (en) Film forming apparatus and film forming method
JP5581366B2 (en) Plasma processing equipment
JP3429391B2 (en) Plasma processing method and apparatus
JPH06220627A (en) Film forming device
JP5551078B2 (en) Reactive sputtering by HIPIMS
KR20010089783A (en) Method of depositing a copper seed layer which promotes improved feature surface coverage
EP0732732A2 (en) Method of removing native silicon oxide by sputtering
CN112376024B (en) Preparation method of oxide film
JP5550565B2 (en) Sputtering apparatus and sputtering method
WO2009157439A1 (en) Sputtering apparatus and sputtering method
JP5373904B2 (en) Deposition equipment
JP3615801B2 (en) Titanium nitride thin film deposition method
JPH08293483A (en) Flattening method for solid surface with gas cluster ion beam
EP0818556A1 (en) A method for providing full-face high density plasma deposition
JPWO2008032627A1 (en) Dry etching method
JP5335916B2 (en) Coating surface treatment method
JPS63145771A (en) Sputtering target
JP5265309B2 (en) Sputtering method
KR101045364B1 (en) PCB manufacturing method using high radiation metal plate
JP3111883B2 (en) Plasma processing method and apparatus
JP3327618B2 (en) Plasma processing equipment
JP3220631B2 (en) Plasma processing method and apparatus
JP3553692B2 (en) Plasma vapor deposition apparatus and method for removing thin film of deposition shield in plasma vapor deposition apparatus
JP2009114510A (en) Sputtering method
JP3123423B2 (en) Plasma processing apparatus and plasma processing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term