JP5215421B2 - Phase shift photomask blank, phase shift photomask, and semiconductor device manufacturing method - Google Patents

Phase shift photomask blank, phase shift photomask, and semiconductor device manufacturing method Download PDF

Info

Publication number
JP5215421B2
JP5215421B2 JP2011033684A JP2011033684A JP5215421B2 JP 5215421 B2 JP5215421 B2 JP 5215421B2 JP 2011033684 A JP2011033684 A JP 2011033684A JP 2011033684 A JP2011033684 A JP 2011033684A JP 5215421 B2 JP5215421 B2 JP 5215421B2
Authority
JP
Japan
Prior art keywords
phase shift
film
shift photomask
wavelength
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2011033684A
Other languages
Japanese (ja)
Other versions
JP2011095787A (en
Inventor
昭彦 悳
前 川田
修一郎 金井
信行 吉岡
和行 前床
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Coating Corp
Renesas Electronics Corp
Original Assignee
Ulvac Coating Corp
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Coating Corp, Renesas Electronics Corp filed Critical Ulvac Coating Corp
Priority to JP2011033684A priority Critical patent/JP5215421B2/en
Publication of JP2011095787A publication Critical patent/JP2011095787A/en
Application granted granted Critical
Publication of JP5215421B2 publication Critical patent/JP5215421B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)

Description

本発明は、多層膜の位相シフト膜からなる位相シフトフォトマスクブランクス及び位相シフトフォトマスク、並びにこのマスクを用いた半導体装置の製造方法に関し、特に減衰型(ハーフトーン)位相シフトフォトマスク及びこのマスクを製作するための位相シフトフォトマスクブランクス、並びにこのマスクを用いた半導体装置の製造方法に関する。   The present invention relates to a phase shift photomask blank and a phase shift photomask made of a multilayer phase shift film, and a method of manufacturing a semiconductor device using the mask, and more particularly to an attenuation type (halftone) phase shift photomask and the mask. The present invention relates to a phase shift photomask blank for manufacturing a semiconductor device and a method for manufacturing a semiconductor device using the mask.

従来、減衰型の位相シフトフォトマスクとして、単層膜からなるもの(特許文献1)及び2層膜からなるもの(特許文献2)が提案されている。単層膜からなるものについてはその膜構成を図1に、2層膜からなるものについてはその膜構成を図2に示す。   Conventionally, attenuating type phase shift photomasks having a single layer film (Patent Document 1) and a double layer film (Patent Document 2) have been proposed. The film structure of a single layer film is shown in FIG. 1, and the film structure of a double layer film is shown in FIG.

特開平7−140635号公報JP-A-7-140635 特開平8−74031号公報JP-A-8-74031

近年の半導体集積回路技術の発展に伴ってパターンの微細化が進むにつれ、露光波長が短波長化し、露光波長の光を減衰させる減衰型の位相シフトフォトマスクに対しては、次のような性能が要求されている。
(1)位相差(PS)は、PS=175〜180°であること。
(2)露光波長(λexp)における透過率(Texp)は、Texp=2〜30%であること。
(3)検査波長(λinsp)における透過率(Tinsp)は、Tinsp<約40〜50%(例えば、λexp=193nmのとき、λinsp=365nm)であること。
(4)露光波長における反射率(Rexp)は、好ましくは、Rexp<約20%であること。
(5)膜厚dは薄い方が好ましいこと。
With the recent development of semiconductor integrated circuit technology, as the miniaturization of patterns progresses, the following performance is achieved for the attenuated phase shift photomask that shortens the exposure wavelength and attenuates the light at the exposure wavelength. Is required.
(1) The phase difference (PS) is PS = 175 to 180 °.
(2) the transmittance at the exposure wavelength (lambda exp) (T exp), it is T exp = 2~30%.
(3) The transmittance (T insp ) at the inspection wavelength (λ insp ) is T insp <about 40 to 50% (for example, λ insp = 365 nm when λ exp = 193 nm).
(4) The reflectance (R exp ) at the exposure wavelength is preferably R exp <about 20%.
(5) A thinner film thickness d is preferable.

上記従来技術の位相シフト膜の場合、露光波長(λexp)を短波長化(例えば、ArFエキシマレーザー露光の場合、λexp=193nm)すると、露光波長における透過率(Texp)が上記要求透過率よりも低くなってしまう。そのため、露光波長における要求透過率を確保しようとして、この透過率(Texp)を高くすると、欠陥検査波長における透過率も高くなり過ぎるという問題が生じる。例えば、図2に示す2層膜においては、上記従来技術の場合、空気(屈折率:n)その他の気体のような周囲環境に接する上層の膜の屈折率(n−ik)が下層の膜の屈折率(n−ik)よりも大きいため、露光波長における透過率が小さくなり、例えばArFエキシマレーザーの波長に対して満足すべき透過率が得られないという問題がある。これに対して、露光波長における透過率を上げると、通常用いられる位相シフトフォトマスクの欠陥検査波長(例えば、λinsp=365nm)における透過率が大きくなり過ぎるため、欠陥検査が不可能となる。このように、上記従来技術では、近年の半導体集積回路技術の発展に対応しきれなくなっている。 In the case of the phase shift film of the above prior art, when the exposure wavelength (λ exp ) is shortened (for example, in the case of ArF excimer laser exposure, λ exp = 193 nm), the transmittance (T exp ) at the exposure wavelength is the required transmission. It will be lower than the rate. Therefore, if the transmittance (T exp ) is increased in order to secure the required transmittance at the exposure wavelength, there is a problem that the transmittance at the defect inspection wavelength becomes too high. For example, in the two-layer film shown in FIG. 2, the refractive index (n 1 -ik 1 ) of the upper film in contact with the surrounding environment such as air (refractive index: n 0 ) or other gas in the case of the above-described prior art. Since it is larger than the refractive index (n 2 -ik 2 ) of the lower layer film, there is a problem that the transmittance at the exposure wavelength becomes small, and for example, a satisfactory transmittance cannot be obtained for the wavelength of ArF excimer laser. On the other hand, when the transmittance at the exposure wavelength is increased, the transmittance at a defect inspection wavelength (for example, λ insp = 365 nm) of a commonly used phase shift photomask becomes too large, so that defect inspection becomes impossible. As described above, the above-described conventional technology cannot cope with the recent development of semiconductor integrated circuit technology.

なお、欠陥検査装置メーカーの努力により、検査波長が短波長化する傾向にある。従って、検査波長(365nm)における透過率の多少の増大は問題とならなくなる可能性があるが、大幅な透過率増大は大分先にならないと解決されないと思われる。
本発明は、上記従来技術のもつ問題点を解決するものであり、短波長の露光波長に対しても十分な透過率が得られ、使用可能であると共に、欠陥検査波長に対しても適切な透過率を有し、満足すべき検査が可能となる位相シフトフォトマスク及びこのマスクを製作するための位相シフトフォトマスクブランクス、並びにこのマスクを用いた半導体装置の製造方法を提供することを課題とする。
The inspection wavelength tends to be shortened by the efforts of the defect inspection apparatus manufacturer. Therefore, although a slight increase in the transmittance at the inspection wavelength (365 nm) may not be a problem, it seems that the substantial increase in the transmittance cannot be solved unless it is far ahead.
The present invention solves the above-mentioned problems of the prior art, and can provide a sufficient transmittance even for an exposure wavelength of a short wavelength and can be used, and is also suitable for a defect inspection wavelength. PROBLEM TO BE SOLVED: To provide a phase shift photomask having transmittance and enabling satisfactory inspection, a phase shift photomask blank for manufacturing the mask, and a method of manufacturing a semiconductor device using the mask. To do.

本発明者らは、上記従来技術の問題点を解決すべく鋭意研究を重ねた結果、膜の屈折率に着目し、多層膜からなる位相シフト膜の構成を最適化することによって、これらの問題の解決を図り、本発明を完成するに至った。   As a result of intensive studies to solve the problems of the above-described conventional techniques, the inventors have paid attention to the refractive index of the film and optimized the configuration of the phase shift film composed of a multilayer film. As a result, the present invention has been completed.

本発明の位相シフトフォトマスクブランクスは、ハーフトーン位相シフト膜がMoSiON膜で2層からなり、波長193nmおよび波長365nmに対する上層の膜の屈折率及び消衰係数が下層の膜の屈折率及び消衰係数よりも小さく、波長365nmに対する透過率を34.36%〜55.17%とし、波長193nmに対する反射率を3.21〜7.40%とすることを特徴とし、これにより、露光波長における透過率が高くかつ反射率が低いものが得られる。 In the phase shift photomask blank of the present invention, the halftone phase shift film is composed of two layers of MoSiON films, and the refractive index and extinction coefficient of the upper film with respect to the wavelength of 193 nm and the wavelength of 365 nm are the refractive index and extinction coefficient of the lower film. The transmittance is 34.36% to 55.17% for the wavelength 365 nm, and the reflectance for the wavelength 193 nm is 3.21 to 7.40%. A high rate and low reflectivity is obtained.

また、本発明の位相シフトフォトマスクブランクスは、ハーフトーン位相シフト膜が3層からなり、中間層の膜の屈折率及び消衰係数が上層及び下層の膜の屈折率及び消衰係数よりも小さいことを特徴とし、これにより、欠陥検査波長における透過率が低くなり、検査が可能となる。3層膜からなる位相シフト膜の場合、基準となる膜構成として、例えば、空気その他の気体/n、k、d/n、k、d/n、k、d/透明基板(ただし、n、n、nはそれぞれ上層、中間層、下層の膜の屈折率であり、k、k、kはそれぞれ、上層、中間層、下層の膜の消衰係数であり、d、d、dはそれぞれ上層、中間層、下層の膜厚である。)のような構成を考えることができる。 In the phase shift photomask blank of the present invention, the halftone phase shift film is composed of three layers, and the refractive index and extinction coefficient of the intermediate layer film are smaller than the refractive index and extinction coefficient of the upper layer and lower layer films. As a result, the transmittance at the defect inspection wavelength is low, and inspection is possible. In the case of a phase shift film composed of a three-layer film, as a reference film configuration, for example, air or other gas / n 1 , k 1 , d 1 / n 2 , k 2 , d 2 / n 3 , k 3 , d 3 / transparent substrate (where n 1 , n 2 , and n 3 are the refractive indexes of the upper layer, intermediate layer, and lower layer, respectively, and k 1 , k 2 , and k 3 are the upper layer, intermediate layer, and lower layer films, respectively. And d 1 , d 2 , and d 3 are the film thicknesses of the upper layer, the intermediate layer, and the lower layer, respectively).

前記ハーフトーン位相シフト膜はMoSiON系の膜である。その他にMoSiN系の膜、MoSiO系の膜等であってもよい。   The halftone phase shift film is a MoSiON film. In addition, a MoSiN film, a MoSiO film, or the like may be used.

本発明の位相シフトフォトマスクは、上記位相シフトフォトマスクブランクスにウエハー基板に転写すべきパターンが形成されたものであり、この位相シフトフォトマスクを用いて露光を行い、微細なパターンを有する半導体装置を製造することができる。   The phase shift photomask of the present invention is a semiconductor device having a fine pattern in which a pattern to be transferred to a wafer substrate is formed on the above phase shift photomask blank, and exposure is performed using this phase shift photomask. Can be manufactured.

なお、露光波長として、上記したArFエキシマレーザー露光の場合(λexp=193nm)の他に、Fレーザー露光の場合、λexp=157nm、KrFエキシマレーザー露光の場合、λexp=248nm等が用いられ得る。 In addition to the ArF excimer laser exposure (λ exp = 193 nm), λ exp = 157 nm is used for the F 2 laser exposure, and λ exp = 248 nm is used for the KrF excimer laser exposure. Can be.

本発明によれば、減衰型(ハーフトーン)の位相シフト膜を2層構成とし、上層の膜の屈折率及び消衰係数を下層の膜の屈折率及び消衰係数よりも小さくしたので、露光波長における透過率が高くかつ反射率が低いものが得られる。
また、本発明によれば、減衰型の位相シフト膜を3層構成とし、中間層の膜の屈折率及び消衰係数を上層及び下層の膜の屈折率及び消衰係数よりも小さくしたので、欠陥検査波長における透過率が低くなり、欠陥検査が可能になる。
さらに、本発明によれば、減衰型の位相シフト膜を3層以上の構成とし、最上層の膜の屈折率及び消衰係数をその直ぐ下の層の膜の屈折率及び消衰係数よりも小さくしたので、露光波長における透過率が高くかつ反射率が低いものが得られる。
さらにまた、本発明の位相シフトフォトマスクブランクスは、ArFエキシマレーザー露光用位相シフトフォトマスクを得るのに大変有効であり、このフォトマスクを用いて微細なパターンを有する半導体装置の製造が可能になる。
According to the present invention, the attenuation type (halftone) phase shift film has a two-layer structure, and the refractive index and extinction coefficient of the upper film are made smaller than the refractive index and extinction coefficient of the lower film. A high transmittance at a wavelength and a low reflectance can be obtained.
Further, according to the present invention, the attenuation type phase shift film has a three-layer configuration, and the refractive index and extinction coefficient of the intermediate layer film are made smaller than the refractive index and extinction coefficient of the upper layer and lower layer films. The transmittance at the defect inspection wavelength is lowered, and defect inspection becomes possible.
Further, according to the present invention, the attenuation type phase shift film has three or more layers, and the refractive index and extinction coefficient of the uppermost layer film are set to be higher than the refractive index and extinction coefficient of the film immediately below. Since the size is reduced, a high transmittance and low reflectance at the exposure wavelength can be obtained.
Furthermore, the phase shift photomask blank of the present invention is very effective for obtaining a phase shift photomask for ArF excimer laser exposure, and a semiconductor device having a fine pattern can be manufactured using this photomask. .

単層からなる位相シフト膜を有する従来の減衰型の位相シフトフォトマスクの断面図。Sectional drawing of the conventional attenuation | damping type phase shift photomask which has the phase shift film which consists of a single layer. 2層からなる位相シフト膜を有する減衰型の位相シフトフォトマスクの断面図。Sectional drawing of the attenuation | damping type phase shift photomask which has a phase shift film which consists of two layers. 3層からなる位相シフト膜有する減衰型の位相シフトフォトマスクの断面図。Sectional drawing of the attenuation | damping type phase shift photomask which has a phase shift film which consists of three layers. 2層からなる位相シフト膜の各層の膜厚(d、d)の間の関係を示すグラフ。Graph showing the relationship between the film thickness of each layer of phase shift film consisting of two layers (d 1, d 2). 3層からなる位相シフト膜の各層の膜厚(d、d、d)の間の関係を示すグラフ。Graph showing the relationship between the film thickness of each layer of phase shift film consisting of three layers (d 1, d 2, d 3). 反応性スパッタリング工程で用いる反応ガス流量比(NO/Ar+NO、vol%)と光学定数(屈折率n及び消衰係数k)との関係を示すグラフ。Graph showing the relationship between the reaction gas flow rate ratio (N 2 O / Ar + N 2 O, vol%) and optical constants (refractive index n and extinction coefficient k) used in the reactive sputtering process.

以下、本発明の実施例及び比較例を図面を参照して説明する。雰囲気ガスは空気とした(n=1)。
(実施例1)
本実施例では、図1〜5に基づき、本発明の2層膜及び3層膜の膜構成の最適化について従来技術と比較して説明する。
図1に示すような単層膜の場合、位相シフト膜fを透過する光Fと位相シフト膜の開口部qを透過する光Qとの位相差(PS)は次式で与えられる。
PS = 2π(n−n)d /λ (1)
PS=180°(π)になる膜厚d は次式で与えられる。
= λexp/2(n−n) (2)
上式中、nは位相シフト膜の屈折率であり、nは空気の屈折率(n=1)であり、dは位相シフト膜の膜厚であり、λexpは露光波長である。
図2に示すような2層膜の場合、位相シフト膜を透過する光Fと位相シフト膜の開口部を透過する光Qとの位相差(PS)は次式で与えられる。
PS = PS+PS (3)
ここに、PS及びPSは次式で与えられる。
PS = 2π(n−n)d /λexp (4)
PS = 2π(n−n)d /λexp (5)
上式(3)、(4)、(5)からPS=πとなる条件は、次式である。
/d +d/d = 1 (6)
ここに、d 及びd は次式で与えられる。
= λexp /2(n−n) (7)
= λexp /2(n−n) (8)
上式中、PS及びPSはそれぞれ上層及び下層の膜の位相差であり、n及びnはそれぞれ上層及び下層の膜の屈折率であり、d及びdはそれぞれ上層及び下層の膜の膜厚であり、d 及びd はそれぞれ上層及び下層の膜の位相差が180°になる膜厚であり、λexpは露光波長である。
図3に示すような3層膜の場合、位相シフト膜を透過する光Fと位相シフト膜の開口部を透過する光Qとの位相差(PS)は次式で与えられる。
PS = PS+PS+PS (9)
ここに、PS、PS及びPSは次式で与えられる。
PS = 2π(n−n)d /λexp (10)
PS = 2π(n−n)d /λexp (11)
PS = 2π(n−n)d /λexp (12)
上式(9)〜(12)からPS=πとなる条件は、次式である。
/d +d/d +d/d = 1 (13)
ここに、d 、d 及びd は次式で与えられる。
= λexp /2(n−n) (14)
= λexp /2(n−n) (15)
= λexp /2(n−n) (16)
上式中、PS、PS及びPSはそれぞれ上層、中間層及び下層の膜の位相差であり、n、n及びnはそれぞれ上層、中間層及び下層の膜の屈折率であり、nは空気の屈折率(n=1)であり、d、d及びdはそれぞれ上層、中間層及び下層の膜の膜厚であり、d 、d 及びd はそれぞれ上層、中間層及び下層の膜の位相差が180°になる膜厚であり、λexpは露光波長である。
Examples of the present invention and comparative examples will be described below with reference to the drawings. The atmosphere gas was air (n 0 = 1).
Example 1
In the present embodiment, the optimization of the film configuration of the two-layer film and the three-layer film of the present invention will be described based on FIGS.
In the case of a single layer film as shown in FIG. 1, the phase difference (PS) between the light F transmitted through the phase shift film f and the light Q transmitted through the opening q of the phase shift film is given by the following equation.
PS = 2π (n 1 −n 0 ) d 1 / λ (1)
Thickness d 1 0 to be PS = 180 ° (π) is given by the following equation.
d 1 0 = λ exp / 2 (n 1 −n 0 ) (2)
In the above formula, n 1 is the refractive index of the phase shift film, n 0 is the refractive index of air (n 0 = 1), d 1 is the film thickness of the phase shift film, and λ exp is the exposure wavelength. is there.
In the case of a two-layer film as shown in FIG. 2, the phase difference (PS) between the light F transmitted through the phase shift film and the light Q transmitted through the opening of the phase shift film is given by the following equation.
PS = PS 1 + PS 2 (3)
Here, PS 1 and PS 2 are given by the following equations.
PS 1 = 2π (n 1 −n 0 ) d 1 / λ exp (4)
PS 2 = 2π (n 2 −n 0 ) d 2 / λ exp (5)
From the above equations (3), (4), and (5), the condition that PS = π is the following equation.
d 1 / d 1 0 + d 2 / d 2 0 = 1 (6)
Here, d 1 0 and d 2 0 are given by the following equations.
d 1 0 = λ exp / 2 (n 1 −n 0 ) (7)
d 2 0 = λ exp / 2 (n 2 −n 0 ) (8)
In the above formula, PS 1 and PS 2 are the phase differences of the upper and lower layers, n 1 and n 2 are the refractive indices of the upper and lower layers, respectively, and d 1 and d 2 are the upper and lower layers, respectively. D 1 0 and d 2 0 are film thicknesses where the phase difference between the upper and lower films is 180 °, respectively, and λ exp is the exposure wavelength.
In the case of a three-layer film as shown in FIG. 3, the phase difference (PS) between the light F transmitted through the phase shift film and the light Q transmitted through the opening of the phase shift film is given by the following equation.
PS = PS 1 + PS 2 + PS 3 (9)
Here, PS 1 , PS 2 and PS 3 are given by the following equations.
PS 1 = 2π (n 1 −n 0 ) d 1 / λ exp (10)
PS 2 = 2π (n 2 −n 0 ) d 2 / λ exp (11)
PS 3 = 2π (n 3 −n 0 ) d 3 / λ exp (12)
From the above formulas (9) to (12), the condition that PS = π is the following formula.
d 1 / d 1 0 + d 2 / d 2 0 + d 3 / d 3 0 = 1 (13)
Here, d 1 0 , d 2 0 and d 3 0 are given by the following equations.
d 1 0 = λ exp / 2 (n 1 −n 0 ) (14)
d 2 0 = λ exp / 2 (n 2 −n 0 ) (15)
d 3 0 = λ exp / 2 (n 3 −n 0 ) (16)
In the above formula, PS 1 , PS 2 and PS 3 are the phase differences of the upper layer, intermediate layer and lower layer film, respectively, and n 1 , n 2 and n 3 are the refractive indices of the upper layer, intermediate layer and lower layer film, respectively. N 0 is the refractive index of air (n 0 = 1), d 1 , d 2 and d 3 are the film thicknesses of the upper layer, intermediate layer and lower layer, respectively, d 1 0 , d 2 0 and d 3 0 is the thickness of the upper layer, the phase difference between the intermediate layer and the lower layer of the film is 180 ° respectively, the lambda exp is the exposure wavelength.

図1、2及び3中のnは基板の屈折率であり、図1中のkは位相シフト膜の上層の膜の消衰係数であり、図2中のk及びkはそれぞれ上層及び下層の膜の消衰係数であり、また、図3中のk、k及びkはそれぞれ上層、中間層及び下層の膜の消衰係数である。 N s in Figures 1, 2 and 3 is the refractive index of the substrate, k 1 in FIG. 1 is a extinction coefficient of the upper layer of the film of the phase shift film, k 1 and k 2 in Fig. 2, respectively The extinction coefficients of the upper layer and lower layer films, and k 1 , k 2 and k 3 in FIG. 3 are the extinction coefficients of the upper layer, intermediate layer and lower layer film, respectively.

以下に示す表1、表2において、RRはアルミニウム真空蒸着膜に対する反射率(相対反射率)、PS0は膜の吸収を無視したときの位相差、PSは膜の吸収を考慮したときの位相差を表す。
上記したように、単層膜、2層膜、3層膜の場合について、位相差πを与える条件について説明したが、以下、2層膜及び3層膜の最適化について説明する。
In Tables 1 and 2 below, RR is the reflectance (relative reflectance) with respect to the aluminum vacuum deposited film, PS0 is the phase difference when the film absorption is ignored, and PS is the phase difference when the film absorption is considered. Represents.
As described above, the conditions for giving the phase difference π have been described in the case of a single layer film, a two layer film, and a three layer film. Hereinafter, optimization of the two layer film and the three layer film will be described.

先ず、2層膜の最適化について説明する。上式(6)から、位相差πを与える位相シフト膜の各層の膜厚(オングストローム)dとdとの間には、図4に示すような直線関係がある。この直線に沿った各点F11、F12、F21〜F27について、光学特性を計算した結果を表1に示した。その際、位相シフト膜の光学定数は、表4に示すMoSiONスパッター膜(350℃、3時間焼鈍品)のQ:11、Q:13についての値を用いた。表1において、fは上層の膜の屈折率が下層の膜の屈折率より高い構成のもの(従来膜)、fはその逆の構成のもの(本発明膜)を表す。表1より、露光波長193nmにおける透過率T193については、fの方がfよりも高くなることがわかる。また、露光波長193nmにおける反射率RR193については、fの方がfよりも低くなって、好ましい方向へ行くことがわかる。 First, the optimization of the two-layer film will be described. From the above equation (6), there is a linear relationship as shown in FIG. 4 between the film thicknesses (angstroms) d 1 and d 2 of each layer of the phase shift film giving the phase difference π. Table 1 shows the result of calculating the optical characteristics of the points F 11 , F 12 , and F 21 to F 27 along the straight line. At that time, as the optical constant of the phase shift film, values for Q: 11 and Q: 13 of the MoSiON sputtered film (350 ° C., 3 hour annealed product) shown in Table 4 were used. In Table 1, f 1 represents a structure in which the refractive index of the upper film is higher than the refractive index of the lower film (conventional film), and f 2 represents the reverse structure (invention film). From Table 1, it can be seen that f 2 is higher than f 1 for transmittance T 193 at an exposure wavelength of 193 nm. In addition, with respect to the reflectance RR 193 at the exposure wavelength of 193 nm, it can be seen that f 2 is lower than f 1 and goes in a preferred direction.

従って、f(従来膜)のように、上層の膜の屈折率が下層の膜の屈折率よりも高い位相シフト膜よりも、上層の膜の屈折率が下層の膜の屈折率よりも低い位相シフト膜の方が好ましい。 Therefore, the refractive index of the upper film is lower than the refractive index of the lower film than the phase shift film in which the refractive index of the upper film is higher than the refractive index of the lower film as in f 1 (conventional film). A phase shift film is preferred.

次に、3層膜の最適化について説明する。上式(13)から、位相差πを与える位相シフト膜の各層の膜厚(オングストローム)d、d及びdは、図5に示すように、平面F11−F12−F13を3辺とする平面上の点で与えられる。この平面上の点F31、F32、F33、F34についての光学特性の計算結果を表2に示した。表2には、単層膜F11、F12、F13、及び2層膜F21、F22、F23についての計算結果を比較のために示した。表2における膜の基本構成F3j(j=1〜4)及び膜f〜fの詳細は表3に示す通りである。また、位相シフト膜の光学定数は、表4に示すMoSiONスパッター膜のQ:11、Q:25、Q:13についての値を用いた。 Next, optimization of the three-layer film will be described. From the above equation (13), the film thicknesses (angstroms) d 1 , d 2, and d 3 of the phase shift film that give the phase difference π are expressed by the planes F 11 -F 12 -F 13 as shown in FIG. It is given as a point on a plane with three sides. Table 2 shows the calculation results of the optical characteristics for the points F 31 , F 32 , F 33 , and F 34 on this plane. Table 2 shows the calculation results for the single-layer films F 11 , F 12 , F 13 and the two-layer films F 21 , F 22 , F 23 for comparison. Details of the basic structure F 3j (j = 1 to 4) and the films f 1 to f 6 in Table 2 are as shown in Table 3. As the optical constant of the phase shift film, the values for Q: 11, Q: 25, and Q: 13 of the MoSiON sputtered film shown in Table 4 were used.

表2から、次のことがわかる。膜f〜fのうち、露光波長193nmにおける透過率T193はf、f、fの膜が高く、欠陥検査波長365nmにおける透過率T365はf、fの膜が低い。また、露光波長193nmにおける反射率RR193はf、f膜よりもf、f、f、f膜の方が低い。 Table 2 shows the following. Among the films f 1 to f 6 , the transmittance T 193 at the exposure wavelength 193 nm is high for the films f 2 , f 4 and f 6 , and the transmittance T 365 at the defect inspection wavelength 365 nm is low for the films f 3 and f 5. . Further, the reflectance RR 193 at the exposure wavelength of 193 nm is lower in the f 2 , f 4 , f 5 , and f 6 films than in the f 1 and f 3 films.

従って、193nm露光用位相シフト膜としては、露光波長における透過率を高くするには、f、f、fの膜、すなわち上層の膜が中間層の膜よりも低い屈折率をもつことが好ましく、また、欠陥検査波長における透過率を低くするには、f、fの膜、すなわち中間層の膜の屈折率が上層及び下層の膜の両方よりも低いことが好ましい。 Therefore, as a phase shift film for 193 nm exposure, in order to increase the transmittance at the exposure wavelength, the films of f 2 , f 4 , and f 6 , that is, the upper film has a lower refractive index than the film of the intermediate layer. In order to reduce the transmittance at the defect inspection wavelength, it is preferable that the refractive indexes of the films of f 3 and f 5 , that is, the film of the intermediate layer are lower than both the upper layer and the lower layer.

以上の実施例においては、2層膜及び3層膜の最適化について説明したが、4層以上のハーフトーン位相シフト膜の場合についても、最上層の膜の屈折率がその直下層の膜の屈折率よりも小さいものからなる位相シフト膜であれば、最適化され、上記で説明したのと同じように露光波長における透過率が高いものが得られる。   In the above embodiment, the optimization of the two-layer film and the three-layer film has been described, but the refractive index of the uppermost film is the same as that of the film immediately below it even in the case of four or more halftone phase shift films. A phase shift film made of a material having a refractive index smaller than that of the refractive index is optimized, and a film having a high transmittance at the exposure wavelength is obtained in the same manner as described above.

Figure 0005215421
Figure 0005215421

Figure 0005215421
Figure 0005215421

Figure 0005215421
Figure 0005215421

Figure 0005215421
Figure 0005215421

実施例2(位相シフトフォトマスクブランクスの製作)
平板型直流マグネトロン装置を用いて、特開平6−220627号公報、特開平8−127870号公報、及びN.Motegi, Y.Kashimoto, K.Nagatani et al., J. Vacuum Sci. Technol., Vol. B13(4),1995,pp.1906-1909 等に記載され、示されたいわゆるLTS(ロングスロースパッタリング)法に従って透明基板上にモリブデンシリサイド酸化窒化膜を形成した。すなわち、この装置内にMoSiターゲットを設置し、圧力0.0533〜0.107Pa(4〜8×10−4Torr)の下、ArガスとNOガスとを表4に示す流量及び流量比で用いる反応性スパッタリングによって、6インチ(152.4mm)角の厚さ0.25インチ(6.35mm)の6025石英基板の上にMoSiON膜を形成した。成膜後、350℃で3時間の熱処理を施して2層膜及び3層膜のMoSiON膜を位相シフト膜とする位相シフトフォトマスクブランクスを製作した。この膜構成は表1及び表2に記載された本発明の膜構成とした。製作されたMoSiON系スパッター膜に関し、反応ガス流量比(NO/Ar+NO、vol%)と光学定数との間の関係は図6及び表4に示す通りであった。図6及び表4から明らかなように、反応ガス流量比が大きい程、屈折率nと消衰係数kは小さくなることがわかる。すなわち、MoSiON膜の酸窒化度が高い程、屈折率n及び消衰係数kは小さくなる。
Example 2 (Production of phase shift photomask blanks)
By using a flat plate type DC magnetron apparatus, Japanese Patent Application Laid-Open Nos. 6-262027, 8-127870, and N. Motegi, Y. Kashimoto, K. Nagatani et al., J. Vacuum Sci. Technol., Vol. A molybdenum silicide oxynitride film was formed on a transparent substrate according to the so-called LTS (long throw sputtering) method described and shown in B13 (4), 1995, pp. 1906-1909. That is, a MoSi 2 target is installed in this apparatus, and Ar gas and N 2 O gas are flow rates and flow rates shown in Table 4 under a pressure of 0.0533 to 0.107 Pa (4 to 8 × 10 −4 Torr). A MoSiON film was formed on a 625 (152.4 mm) square 0.25 inch (6.35 mm) 6025 quartz substrate by reactive sputtering used in the ratio. After the film formation, a heat treatment was performed at 350 ° C. for 3 hours to manufacture a phase shift photomask blank using a two-layer film and a three-layer MoSiON film as a phase shift film. This film structure was the film structure of the present invention described in Tables 1 and 2. Regarding the manufactured MoSiON-based sputtered film, the relationship between the reaction gas flow rate ratio (N 2 O / Ar + N 2 O, vol%) and the optical constant was as shown in FIG. As apparent from FIG. 6 and Table 4, it can be seen that the larger the reaction gas flow rate ratio, the smaller the refractive index n and the extinction coefficient k. That is, the higher the oxynitridation degree of the MoSiON film, the smaller the refractive index n and the extinction coefficient k.

また、位相シフト膜としてMoSiON系スパッター膜の代わりに、MoSiN系スパッター膜、MoSiO系スパッター膜を用いた場合も同じような傾向が見られる。   The same tendency is observed when a MoSiN-based sputtered film or a MoSiO-based sputtered film is used as the phase shift film instead of the MoSiON-based sputtered film.

実施例3(位相シフトフォトマスクの製作)
実施例2で得た位相シフトフォトマスクブランクス上に電子ビーム用レジスト(例えば、日本ゼオン株式会社製のZEP−810S等)を塗布し、約5000オングストローム厚さのレジスト膜を形成した。次いで、パターン露光、現像、ドライエッチング、洗浄等の一連の周知のパターン形成処理を施して、位相シフト膜の一部をエッチング除去し、開口部と位相シフト膜とで、ホール或いはドット等のパターンの形成された位相シフトフォトマスクを製作した。この際のドライエッチングは、平行平板型のRFイオンエッチング装置を用い、電極間距離60mm、作動圧力40Pa(0.3Torr)で、CF+O混合ガスを用いて、それぞれの流量比を約95容量%及び5容量%で実施した。このようにして微細なパターンを有するフォトマスクの製作が可能であった。
Example 3 (Production of phase shift photomask)
An electron beam resist (for example, ZEP-810S manufactured by Nippon Zeon Co., Ltd.) was applied on the phase shift photomask blank obtained in Example 2 to form a resist film having a thickness of about 5000 angstroms. Next, a series of well-known pattern forming processes such as pattern exposure, development, dry etching, and cleaning are performed to remove a part of the phase shift film, and a pattern such as a hole or a dot is formed between the opening and the phase shift film. A phase shift photomask with the above structure was manufactured. In this dry etching, a parallel plate type RF ion etching apparatus is used, the distance between the electrodes is 60 mm, the working pressure is 40 Pa (0.3 Torr), and a CF 4 + O 2 mixed gas is used. Performed in volume% and 5 volume%. In this way, it was possible to produce a photomask having a fine pattern.

実施例4(半導体装置の製造)
実施例3で得られた位相シフトフォトマスクを用いて、露光光としてArFエキシマレーザー光を使用した露光を行い、感光材の塗布されたウェハー基板上にフォトマスクの所定のパターンを転写し、次いで現像してこの所定のパターンをウェハー上に形成した。以下、公知の製造工程に従って半導体装置を製造した。かくして得られた半導体装置は微細なパターンを有していた。
Example 4 (Manufacture of semiconductor devices)
Using the phase shift photomask obtained in Example 3, exposure is performed using ArF excimer laser light as exposure light, a predetermined pattern of the photomask is transferred onto the wafer substrate coated with the photosensitive material, and then Development was performed to form this predetermined pattern on the wafer. Hereinafter, a semiconductor device was manufactured according to a known manufacturing process. The semiconductor device thus obtained had a fine pattern.

f 位相シフト膜
F 位相シフト膜を通過する光
q 位相シフト膜の開口部
Q 位相シフト膜の開口部を透過する光
空気の屈折率
、d、d 位相シフト膜の各層の膜厚
−ik、n−ik、n−ik位相シフト膜の各層の膜の複素屈折率
基板の屈折率
、k、k位相シフト膜の各層の膜の消衰係数
f Phase shift film F Light passing through phase shift film q Phase shift film opening Q Light passing through phase shift film opening n 0 Refractive index of air d 1 , d 2 , d 3 Phase shift film Film thickness n 1 -ik 1 , n 2 -ik 2 , n 3 -ik 3 Phase shift film complex refractive index n s substrate refractive index k 1 , k 2 , k 3 phase shift film of each layer Membrane extinction coefficient

Claims (9)

ハーフトーン位相シフト膜がMoSiON膜で2層からなり、波長193nmおよび波長365nmに対する上層の膜の屈折率及び消衰係数が下層の膜の屈折率及び消衰係数よりも小さく、
波長365nmに対する透過率を34.36%〜55.17%とし、
波長193nmに対する反射率を3.21〜7.40%とすることを特徴とする位相シフトフォトマスクブランクス。
The halftone phase shift film consists of two layers of MoSiON films, and the refractive index and extinction coefficient of the upper layer with respect to the wavelength of 193 nm and the wavelength of 365 nm are smaller than the refractive index and extinction coefficient of the lower layer film,
The transmittance for a wavelength of 365 nm is 34.36% to 55.17% ,
A phase shift photomask blank characterized in that the reflectance for a wavelength of 193 nm is 3.21 to 7.40% .
上層及び下層の合計膜厚を834〜1321Åとすることを特徴とする請求項1に記載の位相シフトフォトマスクブランクス。   2. The phase shift photomask blank according to claim 1, wherein the total film thickness of the upper layer and the lower layer is 834 to 1321 mm. ハーフトーン位相シフト膜が3層からなり、波長193nmに対する中間層の膜の屈折率及び消衰係数が上層及び下層の膜の屈折率及び消衰係数よりも小さいことを特徴とする位相シフトフォトマスクブランクス。   A phase shift photomask characterized in that the halftone phase shift film is composed of three layers, and the refractive index and extinction coefficient of the intermediate layer film with respect to the wavelength of 193 nm are smaller than the refractive index and extinction coefficient of the upper layer and lower layer films. Blanks. 各層の合計膜厚を1095〜1258Åとすることを特徴とする請求項3に記載の位相シフトフォトマスクブランクス。 4. The phase shift photomask blank according to claim 3 , wherein the total film thickness of each layer is 1095 to 1258 mm. 前記ハーフトーン位相シフト膜がMoSiON膜であることを特徴とする請求項3または4に記載の位相シフトフォトマスクブランクス。 5. The phase shift photomask blank according to claim 3, wherein the halftone phase shift film is a MoSiON film. 請求項1〜5のいずれかに記載の位相シフトフォトマスクブランクスにウエハー基板に転写すべきパターンが形成されてなることを特徴とする位相シフトフォトマスク。 A phase shift photomask comprising the phase shift photomask blank according to claim 1 and a pattern to be transferred to a wafer substrate. 請求項6に記載の位相シフトフォトマスクを用いて露光を行い、微細なパターンを有する半導体装置を製造することを特徴とする半導体装置の製造方法。 A method for manufacturing a semiconductor device, comprising: performing exposure using the phase shift photomask according to claim 6 to manufacture a semiconductor device having a fine pattern. 露光光としてArFエキシマレーザー光を使用することを特徴とする請求項7に記載の半導体装置の製造方法。 8. The method of manufacturing a semiconductor device according to claim 7 , wherein ArF excimer laser light is used as exposure light. MoSiON膜で2層からなり、波長193nmおよび波長365nmに対する上層の膜の屈折率及び消衰係数が下層の膜の屈折率及び消衰係数よりも小さく、波長193nmに対する位相差が175.0〜178.5°となるように構成されたハーフトーン位相シフト膜からなる位相シフトフォトマスクブランクスに、ウェハー基板に転写すべきパターンが形成された位相シフトフォトマスクを用いて、ArFエキシマレーザーによる露光を行い、微細なパターンを有する半導体装置を製造することを特徴とする半導体装置の製造方法。 MoSiON film consists of two layers, the refractive index of the upper layer with respect to a wavelength 193nm and a wavelength 365nm and extinction coefficient of rather smaller than the refractive index and the extinction coefficient of the underlying film, the phase difference with respect to the wavelength 193nm is 175.0~ Exposure using an ArF excimer laser is performed using a phase shift photomask blank in which a pattern to be transferred to a wafer substrate is formed on a phase shift photomask blank composed of a halftone phase shift film configured to be 178.5 °. And producing a semiconductor device having a fine pattern.
JP2011033684A 1999-11-09 2011-02-18 Phase shift photomask blank, phase shift photomask, and semiconductor device manufacturing method Expired - Lifetime JP5215421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011033684A JP5215421B2 (en) 1999-11-09 2011-02-18 Phase shift photomask blank, phase shift photomask, and semiconductor device manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP31817799 1999-11-09
JP1999318177 1999-11-09
JP2011033684A JP5215421B2 (en) 1999-11-09 2011-02-18 Phase shift photomask blank, phase shift photomask, and semiconductor device manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000243103A Division JP2001201842A (en) 1999-11-09 2000-08-10 Phase shift photomask blank, phase shift photomask, and manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2011095787A JP2011095787A (en) 2011-05-12
JP5215421B2 true JP5215421B2 (en) 2013-06-19

Family

ID=44112655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011033684A Expired - Lifetime JP5215421B2 (en) 1999-11-09 2011-02-18 Phase shift photomask blank, phase shift photomask, and semiconductor device manufacturing method

Country Status (1)

Country Link
JP (1) JP5215421B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6185721B2 (en) * 2013-01-29 2017-08-23 Hoya株式会社 Mask blank, mask blank manufacturing method, transfer mask manufacturing method, and semiconductor device manufacturing method
JP2015219324A (en) * 2014-05-15 2015-12-07 大日本印刷株式会社 Defect inspection method of photomask
KR101810805B1 (en) * 2014-12-26 2017-12-19 호야 가부시키가이샤 Mask blank, phase-shift mask, method for manufacturing phase-shift mask and method for manufacturing semiconductor device
KR102427106B1 (en) * 2017-11-24 2022-08-01 호야 가부시키가이샤 Mask blank, phase shift mask, phase shift mask manufacturing method, and semiconductor device manufacturing method
KR102273211B1 (en) * 2020-08-25 2021-07-05 에스케이씨솔믹스 주식회사 Blankmask and photomask using the same
KR102368448B1 (en) * 2021-02-10 2022-02-25 에스케이씨솔믹스 주식회사 Appratus for fabricating semiconductor device
KR102349367B1 (en) * 2020-12-31 2022-01-07 에스케이씨솔믹스 주식회사 Apparatus for manufacturing semiconductor device
KR102349368B1 (en) * 2021-02-25 2022-01-07 에스케이씨솔믹스 주식회사 Apparatus for manufacturing semiconductor device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3231900B2 (en) * 1992-10-28 2001-11-26 株式会社アルバック Film forming equipment
JP3064769B2 (en) * 1992-11-21 2000-07-12 アルバック成膜株式会社 PHASE SHIFT MASK, ITS MANUFACTURING METHOD, AND EXPOSURE METHOD USING THE PHASE SHIFT MASK
JP3262302B2 (en) * 1993-04-09 2002-03-04 大日本印刷株式会社 Phase shift photomask, blank for phase shift photomask, and method of manufacturing the same
JP3115185B2 (en) * 1993-05-25 2000-12-04 株式会社東芝 Exposure mask and pattern forming method
JPH07253655A (en) * 1994-03-15 1995-10-03 Fujitsu Ltd Exposure mask
JP3594659B2 (en) * 1994-09-08 2004-12-02 アルバック成膜株式会社 Phase shift photomask blank manufacturing method, phase shift photomask blank, and phase shift photomask
JP3615801B2 (en) * 1994-11-01 2005-02-02 株式会社アルバック Titanium nitride thin film deposition method
JP3397933B2 (en) * 1995-03-24 2003-04-21 アルバック成膜株式会社 Phase shift photomask blanks, phase shift photomasks, and manufacturing methods thereof.
JPH1116802A (en) * 1997-06-19 1999-01-22 Toshiba Corp Method for exposure and aligner
JP3478067B2 (en) * 1997-06-25 2003-12-10 凸版印刷株式会社 Halftone phase shift mask and blank for halftone phase shift mask

Also Published As

Publication number Publication date
JP2011095787A (en) 2011-05-12

Similar Documents

Publication Publication Date Title
KR100669871B1 (en) Phase-shift photo mask blank, phase-shift photo mask and method for fabricating semiconductor devices
JP5215421B2 (en) Phase shift photomask blank, phase shift photomask, and semiconductor device manufacturing method
KR101724046B1 (en) Method of manufacturing photomask blank and method of manufacturing photomask
JP3722029B2 (en) Phase shift mask blank manufacturing method and phase shift mask manufacturing method
JP5455147B2 (en) Photomask blank manufacturing method, photomask manufacturing method, and semiconductor device manufacturing method
JP5497288B2 (en) Photomask blank manufacturing method and photomask manufacturing method
TWI467316B (en) Method of manufacturing a photomask
WO2007074806A1 (en) Photomask blank, photomask manufacturing method and semiconductor device manufacturing method
KR20050039663A (en) Phase shift mask blank, phase shift mask, and pattern transfer method
JP2911610B2 (en) Pattern transfer method
JP3993005B2 (en) Halftone phase shift mask blank, halftone phase shift mask, method of manufacturing the same, and pattern transfer method
JP2018116269A (en) Phase shift mask blank for manufacturing display device, method for manufacturing phase shift mask for manufacturing display device, and method for manufacturing display device
JP6983641B2 (en) A phase shift mask blank for manufacturing a display device, a method for manufacturing a phase shift mask for manufacturing a display device, and a method for manufacturing a display device.
JPH06332152A (en) Phase shift mask and phase shift mask blank
CN111742259B (en) Mask blank, phase shift mask, and method for manufacturing semiconductor device
JP7255512B2 (en) Phase shift mask blank and phase shift mask
JPH1124231A (en) Halftone phase shift mask and its manufacture
JP4322848B2 (en) Phase shift mask blank manufacturing method, phase shift mask manufacturing method, and pattern transfer method
JP2012003152A (en) Multi-tone photomask, blank for multi-tone photomask, and pattern transfer method
JP7059679B2 (en) Reflective photomask blank and reflective photomask
JP2004085760A (en) Blank for halftone type phase shift mask and halftone type phase shift mask, and pattern transfer method by using same
JP4529359B2 (en) Ultraviolet exposure mask, blank and pattern transfer method
JP7264083B2 (en) PHASE SHIFT MASK BLANKS, MANUFACTURING METHOD THEREOF AND PHASE SHIFT MASK
JP4014922B2 (en) Halftone phase shift mask blank and halftone phase shift mask
TWI686663B (en) Phase shift blankmask

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110302

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130228

R150 Certificate of patent or registration of utility model

Ref document number: 5215421

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term