JP3615170B2 - Method for determining the application of DC voltage in an AC cable line, a method for removing the DC voltage, and a device for preventing an increase in potential of the AC cable line during a ground fault - Google Patents

Method for determining the application of DC voltage in an AC cable line, a method for removing the DC voltage, and a device for preventing an increase in potential of the AC cable line during a ground fault Download PDF

Info

Publication number
JP3615170B2
JP3615170B2 JP2001256710A JP2001256710A JP3615170B2 JP 3615170 B2 JP3615170 B2 JP 3615170B2 JP 2001256710 A JP2001256710 A JP 2001256710A JP 2001256710 A JP2001256710 A JP 2001256710A JP 3615170 B2 JP3615170 B2 JP 3615170B2
Authority
JP
Japan
Prior art keywords
voltage
phase
distribution line
capacitor
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001256710A
Other languages
Japanese (ja)
Other versions
JP2003070158A (en
Inventor
一彦 古屋
重嘉 酒井
久雄 野口
弘伸 中野
Original Assignee
株式会社関電工
光商工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社関電工, 光商工株式会社 filed Critical 株式会社関電工
Priority to JP2001256710A priority Critical patent/JP3615170B2/en
Publication of JP2003070158A publication Critical patent/JP2003070158A/en
Application granted granted Critical
Publication of JP3615170B2 publication Critical patent/JP3615170B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、高圧三相交流配電線路のトランスの二次側の各相をコンデンサを介して接地し、当該電線路の負荷側で直流機器を使用している配電線路において、何らかの電気的不具合の際に生じた三相交流配電線路における直流電圧の課電状況の判別方法、その直流電圧の除去方法、及び、地絡事故により生じる対地電位上昇防止装置に関するものである。
【0002】
【従来の技術】
従来、図5に示すように、工場では、高圧三相交流配電線路のトランスの2次側の各相を、屋内で地絡時等の異常電圧上昇を抑える目的と地絡事故電流を制限する目的でコンデンサ2を介して接地する場合がある。特に、電子機器や精密機械の工場では、電線路1の負荷側に電子機器等の直流機器(図示省略)を接続して使用しているだけでなく、帯電を除去するためにイオナイザ等を設置している。このような直流機器を接続した負荷側で何らかの電気的不具合が生じた際において、イオナイザや直流機器等には異常が発見されないが、当該直流機器等が実際作動しないことがある。これは工場の生産設備に障害を与えることになるため、原因究明が行われるが、簡単にその原因を突き止めることはできなかった。
【0003】
また、従来、ビル等の屋内では、図7に示すように、高圧三相交流配電線路1のトランスの二次側のうち、たとえばS相を接地箇所3で接地し、このS相の接地線7を単相3線式等の交流低圧配電線路6のN相に接続して配線している場合が多い。この場合、三相交流配電線路1と交流低圧配電線路6とは接地が同一系統となっている。この方式の配電線において、接地していないR相やT相に地絡事故が発生した場合、中性点が接地された対地間電圧が100Vの単相3線式の交流低圧配電線路6には、300V以上の電圧がかかる。負荷側の接続機器には、通常、異常電圧がかからないように設けられたバリスタ(図示省略)が働き、バリスタを通して流れる地絡電流を交流低圧配電線路6に設置された漏電ブレーカ(図示省略)が検知して動作すると、負荷側への電源供給が遮断されるが、通常このバリスタは、300V以下の電圧に対応するものが多いため、地絡事故には対応できない。
【0004】
また、漏電ブレーカが設置されていない場合には、上記バリスタに過電流が流れて、上記バリスタが焼損し、配電用遮断器が動作することがある。その結果、工場の生産機器や、銀行のATMなど重要な装置が停止することがあり、大きな損害をもたらすことになる。
そこで図8に示すように、上記三相交流配電線路1のトランスの二次側の各相をコンデンサ2を介して接地箇所3で接地し、この接地線7を単相3線式等の交流低圧配電線路6のN相にコンデンサを介して接続している。これにより上記のような各相での地絡事故に対してすべて接地されているため、地絡時でも単相3線式等の交流低圧配電線路6には異常に高い電圧はかからないようにしている。
【0005】
【発明が解決しようとする課題】
電子機器や精密機械等の工場において、直流機器の機器自体に異常が見つかった場合には、直ちに現場で原因を追求していたが、上述したような、直流機器に異常は見られないが、直流機器が作動しない場合には、配電系統に不具合が生じているのではないかとして、その工場の電気配線の布設を担当した電気工事会社に配線系統の原因の調査を依頼し、合わせて対応策も任せていた。また、このような事態は、めったに生じないため、工場内部で原因を追求することがほとんどなく、次に、同じようなことが発生しても、現場にはその理由を理解して対応できる技術者が、ほとんどいなかったからである。
また、このような事態に対処するため、通常は、クランプ型のミリアンペア計等の計測機器を使用するが、なかなかその原因を突き止めることも、困難であった。
【0006】
本発明者も、通常の測定機器を使用して、原因を突き止めようとしたが、現場には、整流方式電圧計が常設されていたため、これを測定機器として使用し、電線路1の対地電圧の測定を試みた。
すると、当初、高い値を示していた対地電圧が、やがて徐々に減少して行くことに気が付いた。この減少に、本発明者は、各相に接続されているコンデンサが、直流機器から流れてきた直流電流を塞ぎ止めて、交流配電線路に直流電圧がかかったままになっていることによるのではないかと気付き、この発明を完成したのである。つまり、直流の漏電、直流電荷放電等の発生の際、上記直流機器から微量の直流電流が上記交流配電線路1に流れるが、上記交流配電線路1の接地箇所3には各相にコンデンサ2が接続されているため、これらの各コンデンサ2には直流電流は流れず、当該交流配電線路1には直流電圧がかかったままとなっている状態を思い出したのである。コンデンサ2を介して接地しているため、地絡事故の場合には交流電流は流れるが、直流に対しては絶縁の状態である。それ故、これまでは負荷側の交流配電線路1に異常な直流電圧がかかっているかどうかが発見しにくかったのである。従って、負荷側の直流機器を迅速に復帰させることができなかった。
【0007】
また、図8の配線では、交流に対しては接地されているが、コンデンサ2を設けているため、直流に対しては絶縁状態となっている。そしてこの三相交流配電線路1にはインバータ等からの高周波電流によるノイズ電圧やその他の直流電圧が乗ることが多い。このような状況において、さらに、直流の漏れ電流やイオナイザの直流電荷放電が発生すると、接地線7に接続している単相の交流低圧配電線路6の負荷側の機器にその直流電圧が異常な高電圧としてかかり、これらの機器のトラブルが発生することがあった。
【0008】
そこでこの発明は、何らかの電気的不具合が発生し、異常は発見されないが作動しない直流機器が生じた場合、それを早急に復帰させるために、交流配電線路に直流電圧がのっているか否かを極めて容易に判定できる方法を提供するとともに、その場合の直流電圧の除去方法を提供するものである。また、三相交流配電線路に地絡事故が発生した場合においても、地絡電流は支障なく流れるが、三相交流配電線路にのった直流電圧を常時接地させておくことにより、単相の交流低圧配電線路にも異常な高電圧が発生しない電位上昇防止装置を提供し、上記課題を解決するものである。
【0009】
【課題を解決するための手段】
請求項1の発明は、高圧三相交流配電線路のトランスの二次側の各相をコンデンサを介して接地し、当該電線路の負荷側で直流機器を接続して使用していて、当該直流機器に異常はないのに当該直流機器が作動しなくなった場合において、この交流配電線路に直流電圧計又は半波整流型電圧計を接続した際、定格以上の電圧が測定され、かつ時間がたつに連れてこの測定電圧が減衰する場合に当該交流配電線路に直流電圧がかかっていると判定する、直流電圧の課電判別方法とした。
【0010】
また、請求項2の発明は、請求項1において直流電圧がかかっていると判定された場合、上記接地箇所の各相のコンデンサに並列に抵抗器をそれぞれ接続して、課電された直流電圧を除去する、直流電圧の除去方法とした。また、請求項3の発明は、高圧三相交流配電線路のトランスの二次側の各相をコンデンサを介して接地し、当該電線路の負荷側で直流機器を接続して使用する場合において、予め上記接地箇所の各相のコンデンサに並列に抵抗器を夫れ夫れ接続しておくことにより、当該直流機器に異常はないのに当該直流機器が作動しなくなった際に当該交流配電線路に課電される直流電圧を除去する、直流電圧の除去方法とした。
【0011】
また、請求項4の発明は、高圧三相交流配電線路のトランスの二次側の各相をコンデンサを介して接地し、当該電線路の負荷側で直流機器を接続して使用する場合において、上記接地箇所の各相のコンデンサに並列に抵抗器を夫れ夫れ接続した、地絡時における高圧三相交流配電線路の電位上昇防止装置とした。また、請求項5の発明は、上記請求項4における各相のコンデンサと抵抗器は、上記のトランスごとに、並列に接続された上記コンデンサと抵抗器とが箱体に収納されている、地絡時における高圧三相交流配電線路の電位上昇防止装置とした。
【0012】
【発明の実施の形態】
以下この発明の実施の形態例を図に基づいて説明する。
図1乃至図3はこの発明の実施の形態例を示すものである。図1は、屋外から屋内に導入した交流配電線路1の、変圧器の二次側の配電線路の各相をコンデンサ2を介して接地箇所3で接地した状況を示している。当該電線路1の負荷側では、イオナイザや電子機器等の直流機器(図示省略)を接続して使用している。この負荷側の配電線路において、直流漏れ電流や、イオナイザ等による直流電荷放電現象を生じた場合、上記交流配電線路1に、図1に示すように、半波整流型電圧計4を接続すると、図3の実線に示すように、この半波整流型電圧計4により定格(点線で示したもの)以上の電圧が測定され、かつ時間がたつに連れてこの測定電圧が減衰した場合には当該交流配電線路に直流電圧がかかっていることがわかる。これは、この半波整流型電圧計4には抵抗器4aが接続されており、この電圧計4を上記交流配電線路1に接続すると、この電圧計4の抵抗器4aを伝わって直流電流が流れ、この抵抗器4aの抵抗によって直流が消耗され、直流電圧が減衰することとなる。
このように、負荷側に何らかの電気的不具合が生じ、当該交流配電線路1に直流電圧計乃至半波整流型電圧計を接続したとき、当初、測定された定格以上の電圧が、時間の経過とともに減衰した場合、当該交流配電線路1には直流電圧がかかっていると判定するのである。
なお、上記半波整流型電圧計4の抵抗が10KΩの場合、約10秒で定格電圧に減衰した。
【0013】
従って、上記のような状況の配線においては、予め、図2に示したように上記交流配電線路1の接地箇所3の各相のコンデンサ2に並列に抵抗器5を夫れ夫れ接続しておけば、交流配電線路1に流れる直流電流は接地箇所3の抵抗器5を通して、地中に流れ、当該交流電線路1に直流電圧がかかったままとはならない。また、地絡事故が発生しても、抵抗器5は地絡電流に支障をきたすことはない。つまり、課電される直流電圧を除去するには、上記のように、接地箇所の各相のコンデンサに並列に、予め、抵抗器をそれぞれ接続しておけば良いのである。また、予め接続しておく抵抗器の具体的な値については、1〜20KΩ程度で良い。
【0014】
次に図6は、図8のように、接地線7を、単相3線式の交流低圧配電線路6に接続している場合について説明したもので、屋外から屋内に導入した三相交流配電線路1のトランスの二次側の各相をコンデンサ2を介して接地箇所3で接地するが、この接地線7へは単相3線式の交流低圧配電線路6をコンデンサや抵抗器を介することなく接続したものである。
【0015】
上記のような状況の配線においては、上記三相交流配電線路1の各相のコンデンサ2に並列に抵抗器5を夫れ夫れ接続しているため、上記三相交流配電線路1に流れる直流電流は抵抗器5を通って接地箇所3の地中に流れ、当該三相交流配電線路1に直流電圧がかかったままとはならない。それ故、上記三相交流配電線路1に、直流機器からの漏れ電流やイオナイザなどの直流電荷放電があっても、交流低圧配電線路6に異常な高電圧は発生しない。また、三相交流配電線路1に地絡事故が発生しても、地絡電流は接地箇所3から地中に流れるため、交流低圧配電線路6に異常な高電圧が発生せず、この交流低圧配電線路6の負荷側に接続された機器のトラブルが生じない。
この場合も、上記コンデンサ2に並列に接続する抵抗器5の具体的な値については、1〜20KΩ程度で良い。
【0016】
また、コンデンサ2と抵抗器5との並列接続については、どのような方法で接続しても良いが、図6の点線8が示しているように、予め、並列接続した状態のコンデンサ2と抵抗器5とを鉄製の箱体等に収納しておけば、現場でいちいち接続する際の煩わしさから開放され、布設時間も短縮される。
また、この並列接続した状態のコンデンサ2と抵抗器5の箱体等への収納にあたっては、箱体の形状を小さくするように設計することにより、スペースをとることはない。このため、新設の工場に対してだけでなく、工場のリニューアル時におけるコンデンサ2と抵抗器5の布設においても、簡単に適用することができる。
【0017】
なお、上記実施の形態例では、交流配電線路1に直流電圧がのっているか否かは、半波整流型電圧計4を接続して判定したが、これに限らず直流電圧計を用いても同様の結果が得られる。また、上記の実施の形態例では、この発明をデルタ結線型の変圧器の二次側の交流配電線路で説明したが、これらに限らず、スター結線型の変圧器の二次側の交流配電線路においても同様である。
【0018】
【発明の効果】
請求項1の発明では、何らかの電気的不具合により、異常ではないが動作しない直流機器が生じた場合、交流配電線路に直流電圧がのっているか否かを極めて容易に判定できる。請求項2の発明では、直流電圧がかかっていると判定した場合、上記のように接地箇所の各相のコンデンサに並列に抵抗器をそれぞれ接続することにより、課電された直流電圧を、簡単に除去することができる。このため、直流機器の運転を迅速に復帰させることができる。
請求項3の発明では、予め、接地箇所の各相のコンデンサに並列に抵抗器を接続しておくので、交流配電線路の直流電圧は、常時除去されていて、直流機器の運転に支障を来すことはない。とくに、最近は、半導体工場のみでなく、病院、銀行、オフィス等、計測機器、コンピュータ等直流の電子機器を設置している企業が多くなっているが、何らかの電気的不具合が生じた場合の対策は万全ではない。この発明は、このような多くの直流の電子機器が設置されている箇所において、上記したような効果を奏するものである。
【0019】
また、請求項4の発明では、三相交流配電線路に流れる直流電流は接地箇所の抵抗器を通して、地中に流れ、当該交流電線路や単相の交流低圧配電線路に直流電圧がかかったままとはならない。それ故、上記三相交流配電線路に地絡事故が発生しても、地絡電流は接地箇所から地中に流れ、単相の交流低圧配電線路に異常な高電圧が発生せず、この単相の交流低圧配電線路の負荷側に接続された機器のトラブルが生じない。従って、現在の建家が三相交流配電線路の接地と交流低圧配電線路とが同一系統となっている場合においても、当該接地箇所の各コンデンサに抵抗器を接続するだけで容易に地絡時の電位の上昇を防止でき、極めて便利である。
また、請求項5の発明では、コンデンサと抵抗器との並列接続を、現場で行うのではなく、工場等で、予め、並列接続したコンデンサと抵抗器を箱体に収納しておくことにより、現場では、箱体を接続すればよいので、施工時間を大幅に短縮できる。
【図面の簡単な説明】
【図1】この発明の交流電線路における直流電圧の課電判別方法の実施の形態例を示す概略構成図である。
【図2】この発明の交流電線路における直流電圧除去方法の実施の形態例を示す概略構成図である。
【図3】この発明の交流電線路における直流電圧の課電判別方法の実施の形態例の課電判定時の電圧波形を示すグラフ図である。
【図4】この発明の交流電線路における直流電圧の課電判別方法の他の実施の形態例を示す概略構成図である。
【図5】この発明の交流電線路における直流電圧の課電判別方法を使用する箇所の概略構成図である。
【図6】この発明の地絡時の異常電位上昇防止装置の実施の形態例の概略構成図である。
【図7】従来の地絡時の異常電位上昇防止装置の概略構成図である。
【図8】従来の地絡時の改良型の異常電位上昇防止装置の概略構成図である。
【符号の説明】
1 交流配電線路 2 コンデンサ
3 接地箇所 4 半波整流型電圧計
5 抵抗器 6 交流低圧配電線路
7 接地線 EB 漏電ブレ−カ
8 箱体
[0001]
BACKGROUND OF THE INVENTION
This invention grounds each phase on the secondary side of the transformer of the high-voltage three-phase AC distribution line via a capacitor, and in the distribution line using the DC device on the load side of the electric line, there is some electrical problem. The present invention relates to a method for discriminating the state of application of direct current voltage in a three-phase alternating current distribution line, a method for removing the direct current voltage, and a ground potential rise prevention device caused by a ground fault.
[0002]
[Prior art]
Conventionally, as shown in FIG. 5, in the factory, each phase on the secondary side of the transformer of the high-voltage three-phase AC distribution line is limited to the purpose of suppressing an abnormal voltage rise indoors during a ground fault and the ground fault current. There is a case where it is grounded via the capacitor 2 for the purpose. In particular, in electronic equipment and precision machinery factories, not only DC devices (not shown) such as electronic devices are connected to the load side of the electrical line 1, but also an ionizer is installed to remove the charge. doing. When any electrical failure occurs on the load side to which such a DC device is connected, no abnormality is found in the ionizer, the DC device, etc., but the DC device may not actually operate. The cause of the problem is an obstacle to the production equipment of the factory, so the cause is investigated, but the cause cannot be easily determined.
[0003]
Conventionally, in a building or the like, as shown in FIG. 7, among the secondary sides of the transformer of the high-voltage three-phase AC distribution line 1, for example, the S phase is grounded at the ground point 3, and this S phase grounding wire 7 is often connected to the N phase of the AC low-voltage distribution line 6 such as a single-phase three-wire type. In this case, the three-phase AC distribution line 1 and the AC low-voltage distribution line 6 are grounded in the same system. In this type of distribution line, if a ground fault occurs in the ungrounded R-phase or T-phase, the ground-to-ground voltage with the neutral point grounded is 100 V and the single-phase three-wire AC low-voltage distribution line 6 Voltage of 300V or more is applied. Normally, a varistor (not shown) provided so that an abnormal voltage is not applied acts on the load-side connected device, and a ground fault breaker (not shown) installed in the AC low-voltage distribution line 6 for the ground fault current flowing through the varistor. When the operation is detected, the power supply to the load side is cut off. However, since many varistors usually correspond to a voltage of 300 V or less, they cannot cope with a ground fault.
[0004]
In addition, when an earth leakage breaker is not installed, an overcurrent may flow through the varistor, the varistor may burn out, and the distribution breaker may operate. As a result, important production equipment such as factory production equipment and bank ATMs may be shut down, causing significant damage.
Therefore, as shown in FIG. 8, each phase on the secondary side of the transformer of the three-phase AC distribution line 1 is grounded at the grounding point 3 through the capacitor 2, and this grounding wire 7 is connected to a single-phase three-wire AC or the like. The low voltage distribution line 6 is connected to the N phase via a capacitor. As a result, ground faults in each phase as described above are all grounded, so that an abnormally high voltage is not applied to the AC low-voltage distribution line 6 such as a single-phase three-wire system even during a ground fault. Yes.
[0005]
[Problems to be solved by the invention]
When an abnormality was found in the DC device itself in a factory such as an electronic device or a precision machine, the cause was immediately pursued in the field, but no abnormality was found in the DC device as described above. If the DC device does not work, ask the electrical construction company in charge of laying the electrical wiring in the factory to investigate the cause of the wiring system and respond accordingly. I also left it to work. In addition, since such a situation rarely occurs, there is almost no pursuit of the cause inside the factory, and next time, even if the same thing happens, technology that can understand the reason and respond to it Because there were few people.
In order to cope with such a situation, a measuring instrument such as a clamp type milliampere meter is usually used, but it is difficult to find the cause.
[0006]
The present inventor also tried to find out the cause by using a normal measuring device, but since a rectification voltmeter was permanently installed in the field, this was used as a measuring device, and the ground voltage of the electric line 1 was I tried to measure.
Then, I noticed that the ground voltage, which was initially high, gradually decreases. In this decrease, the present inventor is that the capacitor connected to each phase blocks the DC current flowing from the DC device, and the DC voltage is still applied to the AC distribution line. He realized that he had completed this invention. That is, when DC leakage, DC charge discharge, or the like occurs, a small amount of DC current flows from the DC device to the AC distribution line 1, but a capacitor 2 is provided in each phase at the grounding point 3 of the AC distribution line 1. As a result of the connection, a direct current did not flow through each of these capacitors 2, and it was recalled that a direct current voltage was still applied to the alternating current distribution line 1. Since it is grounded through the capacitor 2, an alternating current flows in the case of a ground fault, but it is in an insulated state with respect to the direct current. Therefore, until now, it has been difficult to discover whether an abnormal DC voltage is applied to the load-side AC distribution line 1. Therefore, the load-side DC device could not be quickly returned.
[0007]
Further, in the wiring of FIG. 8, the AC is grounded, but since the capacitor 2 is provided, it is insulative with respect to the DC. The three-phase AC distribution line 1 is often loaded with noise voltage or other DC voltage due to high-frequency current from an inverter or the like. In such a situation, if a DC leakage current or a DC charge discharge of the ionizer occurs, the DC voltage is abnormal in the equipment on the load side of the single-phase AC low voltage distribution line 6 connected to the ground line 7. As a high voltage, troubles of these devices may occur.
[0008]
Therefore, according to the present invention, in the case where a DC device that does not operate although some electrical malfunction has occurred and no abnormality is found occurs, whether or not a DC voltage is applied to the AC distribution line in order to quickly recover it. In addition to providing a method that can be determined very easily, a method for removing a DC voltage in that case is provided. In addition, even when a ground fault occurs in the three-phase AC distribution line, the ground fault current flows without any problem, but by always grounding the DC voltage on the three-phase AC distribution line, An object of the present invention is to provide a potential rise prevention device that does not generate an abnormal high voltage even in an AC low-voltage distribution line, and solves the above problems.
[0009]
[Means for Solving the Problems]
According to the first aspect of the present invention, each phase on the secondary side of the transformer of the high-voltage three-phase AC distribution line is grounded via a capacitor, and a DC device is connected and used on the load side of the line. When the DC device stops operating even though there is no abnormality in the device, when a DC voltmeter or a half-wave rectification voltmeter is connected to this AC distribution line, a voltage exceeding the rated value is measured and time passes. Accordingly, a method for discriminating the applied voltage of the DC voltage is determined in which it is determined that a DC voltage is applied to the AC distribution line when the measured voltage is attenuated.
[0010]
Further, in the invention of claim 2, when it is determined in claim 1 that a DC voltage is applied, a resistor is connected in parallel to the capacitor of each phase of the grounding location, and the applied DC voltage The DC voltage removal method was used. Further, the invention of claim 3 is the case where each phase on the secondary side of the transformer of the high-voltage three-phase AC distribution line is grounded via a capacitor, and a DC device is connected and used on the load side of the line. By connecting each resistor in parallel to the capacitor of each phase at the grounding location in advance, when the DC device stops operating even though there is no abnormality in the DC device, A direct voltage removal method was adopted in which the applied direct voltage was removed.
[0011]
Further, the invention of claim 4 is the case where each phase on the secondary side of the transformer of the high-voltage three-phase AC distribution line is grounded via a capacitor, and a DC device is connected and used on the load side of the line. A device for preventing a potential increase in a high-voltage three-phase AC distribution line at the time of a ground fault, in which a resistor is connected in parallel to each phase capacitor at the grounding location. According to a fifth aspect of the present invention, the capacitor and the resistor of each phase in the fourth aspect of the present invention are such that the capacitor and the resistor connected in parallel are housed in a box for each of the transformers. It was set as the electric potential rise prevention apparatus of the high voltage | pressure three-phase alternating current distribution line at the time of a tangle.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
1 to 3 show an embodiment of the present invention. FIG. 1 shows a situation in which each phase of the secondary distribution line of the transformer in the AC distribution line 1 introduced indoors from the outside is grounded at the ground location 3 via the capacitor 2. On the load side of the electric line 1, a DC device (not shown) such as an ionizer or an electronic device is connected and used. In the load side distribution line, when a DC leakage current or a DC charge discharge phenomenon caused by an ionizer or the like occurs, when a half-wave rectification voltmeter 4 is connected to the AC distribution line 1 as shown in FIG. As shown by the solid line in FIG. 3, when the half-wave rectification type voltmeter 4 measures a voltage exceeding the rating (shown by the dotted line) and the measured voltage attenuates over time, It can be seen that a DC voltage is applied to the AC distribution line. This is because a resistor 4a is connected to the half-wave rectification type voltmeter 4, and when the voltmeter 4 is connected to the AC distribution line 1, a direct current is transmitted through the resistor 4a of the voltmeter 4. The direct current is consumed by the resistance of the resistor 4a, and the direct current voltage is attenuated.
In this way, when an electrical failure occurs on the load side and a DC voltmeter or a half-wave rectification voltmeter is connected to the AC distribution line 1, the voltage that is initially measured is attenuated over time. In this case, it is determined that a DC voltage is applied to the AC distribution line 1.
When the resistance of the half-wave rectification voltmeter 4 was 10 KΩ, it attenuated to the rated voltage in about 10 seconds.
[0013]
Therefore, in the wiring in the above situation, as shown in FIG. 2, the resistor 5 is connected in parallel to the capacitor 2 of each phase of the grounding point 3 of the AC distribution line 1 in advance. If this is the case, the direct current flowing through the AC distribution line 1 will flow into the ground through the resistor 5 at the ground point 3, and a DC voltage will not remain on the AC line 1. Further, even if a ground fault occurs, the resistor 5 does not interfere with the ground fault current. In other words, in order to remove the applied DC voltage, it is only necessary to connect resistors in advance in parallel with the capacitors of each phase at the ground as described above. The specific value of the resistor connected in advance may be about 1 to 20 KΩ.
[0014]
Next, FIG. 6 explains the case where the ground wire 7 is connected to the single-phase three-wire AC low voltage distribution line 6 as shown in FIG. Each phase on the secondary side of the transformer of the line 1 is grounded at a grounding point 3 via a capacitor 2, and a single-phase three-wire AC low-voltage distribution line 6 is connected to the ground line 7 via a capacitor and a resistor. It is a connected thing.
[0015]
In the wiring in the above situation, since the resistors 5 are connected in parallel to the capacitors 2 of the respective phases of the three-phase AC distribution line 1, the direct current flowing through the three-phase AC distribution line 1 is connected. The current flows through the resistor 5 into the ground at the grounding point 3, and a DC voltage does not remain on the three-phase AC distribution line 1. Therefore, no abnormal high voltage is generated in the AC low voltage distribution line 6 even if the three-phase AC distribution line 1 has a leakage current from a DC device or a DC charge discharge such as an ionizer. In addition, even if a ground fault occurs in the three-phase AC distribution line 1, the ground fault current flows from the grounding point 3 into the ground, so that no abnormal high voltage is generated in the AC low-voltage distribution line 6, and this AC low voltage Troubles of devices connected to the load side of the distribution line 6 do not occur.
Also in this case, the specific value of the resistor 5 connected in parallel to the capacitor 2 may be about 1 to 20 KΩ.
[0016]
The capacitor 2 and the resistor 5 may be connected in parallel by any method. However, as indicated by the dotted line 8 in FIG. If the container 5 is stored in an iron box or the like, it is freed from the hassle of connecting each time in the field, and the laying time is shortened.
Further, when the capacitor 2 and the resistor 5 in parallel connection are housed in a box or the like, a space is not taken up by designing the box to have a small shape. For this reason, the present invention can be easily applied not only to a new factory but also to the installation of the capacitor 2 and the resistor 5 when the factory is renewed.
[0017]
In the embodiment described above, whether or not a DC voltage is on the AC distribution line 1 is determined by connecting the half-wave rectification voltmeter 4, but the present invention is not limited to this, and a DC voltmeter may be used. Similar results are obtained. In the above embodiment, the present invention has been described with the secondary AC distribution line of the delta connection type transformer. However, the present invention is not limited thereto, and the secondary side AC distribution of the star connection type transformer. The same applies to the track.
[0018]
【The invention's effect】
According to the first aspect of the present invention, when a DC device that does not operate abnormally occurs due to some electrical failure, it can be very easily determined whether or not a DC voltage is applied to the AC distribution line. In the invention of claim 2, when it is determined that a DC voltage is applied, the applied DC voltage can be easily reduced by connecting a resistor in parallel to each phase capacitor at the ground as described above. Can be removed. For this reason, the operation of the DC device can be quickly returned.
In the invention of claim 3, since the resistor is connected in parallel to the capacitor of each phase at the grounding location, the DC voltage of the AC distribution line is always removed, which hinders the operation of the DC device. Never do. Recently, in addition to semiconductor factories, many companies have installed DC electronic devices such as hospitals, banks, offices, measuring instruments, computers, etc., but measures should be taken in the event of any electrical failure. Is not perfect. The present invention achieves the effects as described above at a place where many such DC electronic devices are installed.
[0019]
Further, in the invention of claim 4, the direct current flowing through the three-phase AC distribution line flows into the ground through the resistor at the grounding point, and a DC voltage is applied to the AC line and the single-phase AC low-voltage distribution line. It will not be. Therefore, even if a ground fault occurs in the three-phase AC distribution line, the ground fault current flows from the ground to the ground, and no abnormal high voltage is generated in the single-phase AC low-voltage distribution line. Trouble of the equipment connected to the load side of the AC low-voltage distribution line of the phase does not occur. Therefore, even if the current building has the same system for grounding the three-phase AC distribution line and the AC low-voltage distribution line, simply connecting a resistor to each capacitor at the grounding point makes it easy to This is extremely convenient because it is possible to prevent an increase in potential.
Further, in the invention of claim 5, the parallel connection of the capacitor and the resistor is not performed in the field, but at the factory or the like, by storing the capacitor and the resistor connected in parallel in the box beforehand, Since it is only necessary to connect the box at the site, construction time can be greatly reduced.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an embodiment of a method for determining the application of a DC voltage in an AC electric line according to the present invention.
FIG. 2 is a schematic configuration diagram showing an embodiment of a method for removing a DC voltage in an AC line according to the present invention.
FIG. 3 is a graph showing a voltage waveform at the time of power application determination in the embodiment of the method for determining the application of direct current voltage in the AC power line according to the present invention.
FIG. 4 is a schematic configuration diagram showing another embodiment of the method for determining the DC voltage application in the AC electric line according to the present invention.
FIG. 5 is a schematic configuration diagram of a place where the method for determining the application of direct current voltage in an alternating current electric line according to the present invention is used.
FIG. 6 is a schematic configuration diagram of an embodiment of an apparatus for preventing an abnormal potential increase during a ground fault according to the present invention.
FIG. 7 is a schematic configuration diagram of a conventional abnormal potential rise prevention device during a ground fault.
FIG. 8 is a schematic configuration diagram of a conventional improved abnormal potential rise prevention device during a ground fault.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 AC distribution line 2 Capacitor 3 Ground location 4 Half wave rectification type voltmeter 5 Resistor 6 AC low voltage distribution line 7 Ground line EB Earth leakage breaker 8 Box

Claims (5)

高圧三相交流配電線路のトランスの二次側の各相をコンデンサを介して接地し、当該電線路の負荷側で直流機器を接続して使用していて、当該直流機器に異常はないのに当該直流機器が作動しなくなった場合において、この交流配電線路に直流電圧計又は半波整流型電圧計を接続した際、定格以上の電圧が測定され、かつ時間がたつに連れてこの測定電圧が減衰する場合に当該交流配電線路に直流電圧がかかっていると判定することを特徴とする、直流電圧の課電判別方法。Although each phase on the secondary side of the transformer of the high-voltage three-phase AC distribution line is grounded via a capacitor and a DC device is connected on the load side of the wire line, there is no abnormality in the DC device. When the DC device stops operating, when a DC voltmeter or half-wave rectification voltmeter is connected to this AC distribution line, a voltage exceeding the rated voltage is measured, and the measured voltage decays over time. And determining whether a DC voltage is applied to the AC distribution line. 請求項1において直流電圧がかかっていると判定された場合、上記接地箇所の各相のコンデンサに並列に抵抗器をそれぞれ接続して、課電された直流電圧を除去することを特徴とする、直流電圧の除去方法。When it is determined in claim 1 that a DC voltage is applied, a resistor is connected in parallel to the capacitor of each phase of the grounding location to remove the applied DC voltage, DC voltage removal method. 高圧三相交流配電線路のトランスの二次側の各相をコンデンサを介して接地し、当該電線路の負荷側で直流機器を接続して使用する場合において、予め上記接地箇所の各相のコンデンサに並列に抵抗器を夫れ夫れ接続しておくことにより、当該直流機器に異常はないのに当該直流機器が作動しなくなった際に当該交流配電線路に課電される直流電圧を除去することを特徴とする、直流電圧の除去方法。When grounding each phase on the secondary side of the transformer of the high-voltage three-phase AC distribution line via a capacitor and connecting and using a DC device on the load side of the line, the capacitor for each phase at the grounding location in advance By connecting the resistors in parallel to each other, the DC voltage applied to the AC distribution line is removed when the DC device stops operating even though there is no abnormality in the DC device. A method of removing a DC voltage, characterized in that 高圧三相交流配電線路のトランスの二次側の各相をコンデンサを介して接地し、当該電線路の負荷側で直流機器を接続して使用する場合において、上記接地箇所の各相のコンデンサに並列に抵抗器を夫れ夫れ接続したことを特徴とする、地絡時における高圧三相交流配電線路の電位上昇防止装置。When grounding each phase on the secondary side of the transformer of the high-voltage three-phase AC distribution line via a capacitor and connecting and using DC equipment on the load side of the line, A device for preventing a potential increase in a high-voltage three-phase AC distribution line at the time of a ground fault, wherein resistors are connected in parallel. 請求項4における各相のコンデンサと抵抗器は、上記のトランスごとに、並列に接続された上記コンデンサと抵抗器とが箱体に収納されていることを特徴とする、請求項4に記載の地絡時における高圧三相交流配電線路の電位上昇防止装置。The capacitor and resistor of each phase in claim 4 are characterized in that the capacitor and resistor connected in parallel are housed in a box for each of the transformers. A device for preventing a potential increase in a high-voltage three-phase AC distribution line during a ground fault.
JP2001256710A 2001-08-27 2001-08-27 Method for determining the application of DC voltage in an AC cable line, a method for removing the DC voltage, and a device for preventing an increase in potential of the AC cable line during a ground fault Expired - Fee Related JP3615170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001256710A JP3615170B2 (en) 2001-08-27 2001-08-27 Method for determining the application of DC voltage in an AC cable line, a method for removing the DC voltage, and a device for preventing an increase in potential of the AC cable line during a ground fault

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001256710A JP3615170B2 (en) 2001-08-27 2001-08-27 Method for determining the application of DC voltage in an AC cable line, a method for removing the DC voltage, and a device for preventing an increase in potential of the AC cable line during a ground fault

Publications (2)

Publication Number Publication Date
JP2003070158A JP2003070158A (en) 2003-03-07
JP3615170B2 true JP3615170B2 (en) 2005-01-26

Family

ID=19084491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001256710A Expired - Fee Related JP3615170B2 (en) 2001-08-27 2001-08-27 Method for determining the application of DC voltage in an AC cable line, a method for removing the DC voltage, and a device for preventing an increase in potential of the AC cable line during a ground fault

Country Status (1)

Country Link
JP (1) JP3615170B2 (en)

Also Published As

Publication number Publication date
JP2003070158A (en) 2003-03-07

Similar Documents

Publication Publication Date Title
FI115488B (en) Method and apparatus for detecting a breaking earth fault in a power distribution network
US7050279B2 (en) Method and apparatus for high impedance grounding of medium voltage AC drives
US10522998B2 (en) Method for detecting an open-phase condition of a transformer
Bridger High-resistance grounding
US10985559B2 (en) Method and system for improved operation of power grid components in the presence of direct current (DC)
WO2013004285A1 (en) System for detecting internal winding faults of a synchronous generator, computer program product and method
US20150124358A1 (en) Feeder power source providing open feeder detection for a network protector by shifted neutral
WO2019139973A1 (en) Temporary overvoltage and ground fault overvoltage protection based on arrester current measurement and analysis
Samineni et al. Principles of shunt capacitor bank application and protection
CN110320432B (en) Single-phase line-breaking fault detection and protection method and system
US11364810B2 (en) Monitoring device for leakage currents
Gulachenski et al. New England electric's 39 years of experience with resonant neutral grounding of unit-connected generators
Lubich High resistance grounding and fault finding on three phase three wire (delta) power systems
EP0900464B1 (en) Reduction of harmonics in ac machines
JP3615170B2 (en) Method for determining the application of DC voltage in an AC cable line, a method for removing the DC voltage, and a device for preventing an increase in potential of the AC cable line during a ground fault
WO2004040732A1 (en) Earth fault protection for synchronous machines
Skibinski et al. Effect of adjustable speed drives on the operation of low voltage ground fault indicators
CN110352550A (en) Grounding scheme for the power converter with silicon carbide MOSFET
Shen et al. Grounding transformer application, modeling, and simulation
KR100637619B1 (en) Method and apparatus for protecting shunt capacitor banks based on voltage difference
EP1134865B1 (en) Detecting wire break in electrical network
Sattari et al. High-Resistance Grounding Design for Industrial Facilities: Providing Continuity of Service in Complex Distribution Systems
Shaikh et al. Common Mode Voltage based Stator Insulation Testing for Inverter fed Motors with High Resistance Grounding Systems
Nelson et al. High Resistance Grounding Analysis Using Symmetrical Components
JP2009027802A (en) Surge absorber with measuring function, transformer for instrument, power facility, and protection method for power facility

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041028

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees