JP2003070158A - Method for discriminating dc voltage applied to ac electric line, method for eliminating the dc voltage, and apparatus for preventing potential rise on ac electric line during line-to-ground fault - Google Patents

Method for discriminating dc voltage applied to ac electric line, method for eliminating the dc voltage, and apparatus for preventing potential rise on ac electric line during line-to-ground fault

Info

Publication number
JP2003070158A
JP2003070158A JP2001256710A JP2001256710A JP2003070158A JP 2003070158 A JP2003070158 A JP 2003070158A JP 2001256710 A JP2001256710 A JP 2001256710A JP 2001256710 A JP2001256710 A JP 2001256710A JP 2003070158 A JP2003070158 A JP 2003070158A
Authority
JP
Japan
Prior art keywords
voltage
phase
distribution line
capacitor
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001256710A
Other languages
Japanese (ja)
Other versions
JP3615170B2 (en
Inventor
Kazuhiko Furuya
一彦 古屋
Shigeyoshi Sakai
重嘉 酒井
Hisao Noguchi
久雄 野口
Hironobu Nakano
弘伸 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kandenko Co Ltd
Hikari Trading Co Ltd
Original Assignee
Kandenko Co Ltd
Hikari Trading Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kandenko Co Ltd, Hikari Trading Co Ltd filed Critical Kandenko Co Ltd
Priority to JP2001256710A priority Critical patent/JP3615170B2/en
Publication of JP2003070158A publication Critical patent/JP2003070158A/en
Application granted granted Critical
Publication of JP3615170B2 publication Critical patent/JP3615170B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To allow easily determine whether a DC voltage is applied onto an AC distribution line so as to quickly restore a DC device which does not operate although not abnormal after a line-to-ground fault. SOLUTION: Each phase on the secondary side of a transformer of the high voltage three-phase AC distribution line 1 is grounded through a capacitor 2. When the DC device is used on the load side of the line 1 and electrical problems occur on the load side and the DC device is not abnormal but does not operate, a DC voltage meter or a half-wave rectifying voltage meter 4 is connected to the AC distribution line 1. When a rated voltage or more is measured and the measured voltage is attenuated with time, it is determined that the DC voltage is applied to the AC distribution line 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、高圧三相交流配
電線路のトランスの二次側の各相をコンデンサを介して
接地し、当該電線路の負荷側で直流機器を使用している
配電線路において、何らかの電気的不具合の際に生じた
三相交流配電線路における直流電圧の課電状況の判別方
法、その直流電圧の除去方法、及び、地絡事故により生
じる対地電位上昇防止装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a distribution line in which each phase on the secondary side of a transformer of a high-voltage three-phase AC distribution line is grounded via a capacitor, and a DC device is used on the load side of the distribution line. In the above, the present invention relates to a method for determining the state of DC voltage application in a three-phase AC distribution line caused by some electrical failure, a method for removing the DC voltage, and a ground potential rise prevention device caused by a ground fault. .

【0002】[0002]

【従来の技術】従来、図5に示すように、工場では、高
圧三相交流配電線路のトランスの2次側の各相を、屋内
で地絡時等の異常電圧上昇を抑える目的と地絡事故電流
を制限する目的でコンデンサ2を介して接地する場合が
ある。特に、電子機器や精密機械の工場では、電線路1
の負荷側に電子機器等の直流機器(図示省略)を接続し
て使用しているだけでなく、帯電を除去するためにイオ
ナイザ等を設置している。このような直流機器を接続し
た負荷側で何らかの電気的不具合が生じた際において、
イオナイザや直流機器等には異常が発見されないが、当
該直流機器等が実際作動しないことがある。これは工場
の生産設備に障害を与えることになるため、原因究明が
行われるが、簡単にその原因を突き止めることはできな
かった。
2. Description of the Related Art Conventionally, as shown in FIG. 5, in a factory, each phase on the secondary side of a transformer of a high-voltage three-phase AC distribution line has the purpose of suppressing an abnormal voltage rise when a ground fault occurs indoors. It may be grounded via the capacitor 2 for the purpose of limiting the accident current. Especially in electronic equipment and precision machinery factories,
Not only is a DC device (not shown) such as an electronic device connected to the load side of the device, but an ionizer or the like is installed to remove the charge. When some electrical trouble occurs on the load side connected to such DC equipment,
Although no abnormality is found in the ionizer or DC equipment, the DC equipment may not actually operate. Since this would impede the production facilities of the factory, the cause was investigated, but the cause could not be easily identified.

【0003】また、従来、ビル等の屋内では、図7に示
すように、高圧三相交流配電線路1のトランスの二次側
のうち、たとえばS相を接地箇所3で接地し、このS相
の接地線7を単相3線式等の交流低圧配電線路6のN相
に接続して配線している場合が多い。この場合、三相交
流配電線路1と交流低圧配電線路6とは接地が同一系統
となっている。この方式の配電線において、接地してい
ないR相やT相に地絡事故が発生した場合、中性点が接
地された対地間電圧が100Vの単相3線式の交流低圧
配電線路6には、300V以上の電圧がかかる。負荷側
の接続機器には、通常、異常電圧がかからないように設
けられたバリスタ(図示省略)が働き、バリスタを通し
て流れる地絡電流を交流低圧配電線路6に設置された漏
電ブレーカ(図示省略)が検知して動作すると、負荷側
への電源供給が遮断されるが、通常このバリスタは、3
00V以下の電圧に対応するものが多いため、地絡事故
には対応できない。
Further, conventionally, indoors such as in a building, for example, as shown in FIG. 7, of the secondary side of the transformer of the high-voltage three-phase AC distribution line 1, for example, the S phase is grounded at the grounding point 3, and this S phase is grounded. In many cases, the grounding wire 7 is connected to the N-phase of the AC low-voltage power distribution line 6 such as a single-phase three-wire system. In this case, the three-phase AC distribution line 1 and the AC low-voltage distribution line 6 are grounded in the same system. When a ground fault occurs in the R and T phases that are not grounded in the distribution line of this system, the AC low-voltage distribution line 6 of the single-phase three-wire system whose ground point is 100V and whose ground point is grounded is 100V. Is applied with a voltage of 300 V or more. Normally, a varistor (not shown) provided so that an abnormal voltage is not applied acts on the connected device on the load side, and a ground fault current flowing through the varistor is connected to an earth leakage breaker (not shown) installed in the AC low-voltage distribution line 6. When it detects and operates, the power supply to the load side is cut off.
Since many of them support voltages below 00V, they cannot handle ground faults.

【0004】また、漏電ブレーカが設置されていない場
合には、上記バリスタに過電流が流れて、上記バリスタ
が焼損し、配電用遮断器が動作することがある。その結
果、工場の生産機器や、銀行のATMなど重要な装置が
停止することがあり、大きな損害をもたらすことにな
る。そこで図8に示すように、上記三相交流配電線路1
のトランスの二次側の各相をコンデンサ2を介して接地
箇所3で接地し、この接地線7を単相3線式等の交流低
圧配電線路6のN相にコンデンサを介して接続してい
る。これにより上記のような各相での地絡事故に対して
すべて接地されているため、地絡時でも単相3線式等の
交流低圧配電線路6には異常に高い電圧はかからないよ
うにしている。
If no earth leakage breaker is installed, an overcurrent may flow through the varistor, causing the varistor to burn out and the distribution breaker to operate. As a result, the production equipment of the factory and important equipment such as the ATM of the bank may be stopped, resulting in great damage. Therefore, as shown in FIG. 8, the three-phase AC distribution line 1
Each phase on the secondary side of the transformer is grounded at the grounding point 3 via the capacitor 2, and this grounding wire 7 is connected to the N phase of the AC low voltage power distribution line 6 such as a single-phase three-wire system via the capacitor. There is. As a result, all of the ground faults in each phase as described above are grounded, so that an abnormally high voltage should not be applied to the AC low-voltage power distribution line 6 such as the single-phase three-wire system even during a ground fault. There is.

【0005】[0005]

【発明が解決しようとする課題】電子機器や精密機械等
の工場において、直流機器の機器自体に異常が見つかっ
た場合には、直ちに現場で原因を追求していたが、上述
したような、直流機器に異常は見られないが、直流機器
が作動しない場合には、配電系統に不具合が生じている
のではないかとして、その工場の電気配線の布設を担当
した電気工事会社に配線系統の原因の調査を依頼し、合
わせて対応策も任せていた。また、このような事態は、
めったに生じないため、工場内部で原因を追求すること
がほとんどなく、次に、同じようなことが発生しても、
現場にはその理由を理解して対応できる技術者が、ほと
んどいなかったからである。また、このような事態に対
処するため、通常は、クランプ型のミリアンペア計等の
計測機器を使用するが、なかなかその原因を突き止める
ことも、困難であった。
When an abnormality is found in a DC device itself in a factory for electronic equipment or precision machinery, the cause was immediately sought in the field. If no abnormality is found in the equipment, but if the DC equipment does not work, it is suspected that there is a problem in the distribution system, and the cause of the wiring system was determined by the electrician who was in charge of laying the electric wiring at the factory. I was asked to investigate, and I was also entrusted with countermeasures. In addition, such a situation,
Since it rarely happens, we rarely pursue the cause inside the factory, and even if something similar happens next time,
This is because there were few engineers on site who could understand the reason and deal with it. Further, in order to deal with such a situation, a measuring device such as a clamp type milliampere meter is usually used, but it is difficult to find out the cause.

【0006】本発明者も、通常の測定機器を使用して、
原因を突き止めようとしたが、現場には、整流方式電圧
計が常設されていたため、これを測定機器として使用
し、電線路1の対地電圧の測定を試みた。すると、当
初、高い値を示していた対地電圧が、やがて徐々に減少
して行くことに気が付いた。この減少に、本発明者は、
各相に接続されているコンデンサが、直流機器から流れ
てきた直流電流を塞ぎ止めて、交流配電線路に直流電圧
がかかったままになっていることによるのではないかと
気付き、この発明を完成したのである。つまり、直流の
漏電、直流電荷放電等の発生の際、上記直流機器から微
量の直流電流が上記交流配電線路1に流れるが、上記交
流配電線路1の接地箇所3には各相にコンデンサ2が接
続されているため、これらの各コンデンサ2には直流電
流は流れず、当該交流配電線路1には直流電圧がかかっ
たままとなっている状態を思い出したのである。コンデ
ンサ2を介して接地しているため、地絡事故の場合には
交流電流は流れるが、直流に対しては絶縁の状態であ
る。それ故、これまでは負荷側の交流配電線路1に異常
な直流電圧がかかっているかどうかが発見しにくかった
のである。従って、負荷側の直流機器を迅速に復帰させ
ることができなかった。
The present inventor has also used the usual measuring equipment to
Although I tried to find out the cause, since a rectification type voltmeter was permanently installed at the site, I tried to measure the ground voltage of the electric line 1 by using this as a measuring instrument. Then, I noticed that the ground voltage, which initially showed a high value, gradually decreased. In this reduction, the inventor
I realized that the capacitors connected to each phase blocked the direct current flowing from the direct current equipment, and the direct current voltage remained on the alternating current distribution line, and I completed this invention. Of. That is, when a DC leak, a DC charge discharge or the like occurs, a small amount of DC current flows from the DC device to the AC distribution line 1, but at the grounding point 3 of the AC distribution line 1 there is a capacitor 2 for each phase. Since they are connected, no DC current flows through each of these capacitors 2, and I remembered the state in which a DC voltage was still applied to the AC distribution line 1. Since it is grounded via the capacitor 2, an AC current flows in the case of a ground fault, but is insulated from DC. Therefore, it has been difficult to find out whether or not an abnormal DC voltage is applied to the AC distribution line 1 on the load side. Therefore, the DC device on the load side cannot be quickly restored.

【0007】また、図8の配線では、交流に対しては接
地されているが、コンデンサ2を設けているため、直流
に対しては絶縁状態となっている。そしてこの三相交流
配電線路1にはインバータ等からの高周波電流によるノ
イズ電圧やその他の直流電圧が乗ることが多い。このよ
うな状況において、さらに、直流の漏れ電流やイオナイ
ザの直流電荷放電が発生すると、接地線7に接続してい
る単相の交流低圧配電線路6の負荷側の機器にその直流
電圧が異常な高電圧としてかかり、これらの機器のトラ
ブルが発生することがあった。
In the wiring shown in FIG. 8, the AC is grounded, but since the capacitor 2 is provided, it is insulated from the DC. The three-phase AC distribution line 1 is often loaded with noise voltage due to high-frequency current from an inverter or the like and other DC voltage. In such a situation, when a DC leakage current or a DC charge discharge of the ionizer occurs, the DC voltage becomes abnormal in the load side device of the single-phase AC low-voltage distribution line 6 connected to the ground line 7. As a high voltage is applied, troubles with these devices may occur.

【0008】そこでこの発明は、何らかの電気的不具合
が発生し、異常は発見されないが作動しない直流機器が
生じた場合、それを早急に復帰させるために、交流配電
線路に直流電圧がのっているか否かを極めて容易に判定
できる方法を提供するとともに、その場合の直流電圧の
除去方法を提供するものである。また、三相交流配電線
路に地絡事故が発生した場合においても、地絡電流は支
障なく流れるが、三相交流配電線路にのった直流電圧を
常時接地させておくことにより、単相の交流低圧配電線
路にも異常な高電圧が発生しない電位上昇防止装置を提
供し、上記課題を解決するものである。
Therefore, according to the present invention, in the case where some kind of electrical failure occurs and a DC device which is not found to be operating abnormally but does not work is generated, is there a DC voltage on the AC distribution line in order to quickly restore it? The present invention provides a method for determining whether or not it is extremely easy, and a method for removing a DC voltage in that case. In addition, even if a ground fault occurs in the three-phase AC distribution line, the ground fault current will flow without any problem, but by always grounding the DC voltage on the three-phase AC distribution line, An object of the present invention is to provide a potential rise prevention device that does not generate an abnormally high voltage in an AC low-voltage power distribution line and solve the above-mentioned problems.

【0009】[0009]

【課題を解決するための手段】請求項1項の発明は、高
圧三相交流配電線路のトランスの二次側の各相をコンデ
ンサを介して接地し、当該電線路の負荷側で直流機器を
使用していて、この負荷側に何らかの電気的不具合が生
じて、当該直流機器に異常はないが作動しなくなった場
合において、この交流配電線路に直流電圧計又は半波整
流型電圧計を接続した際、定格以上の電圧が測定され、
かつ時間がたつに連れてこの測定電圧が減衰する場合に
当該交流配電線路に直流電圧がかかっていると判定す
る、直流電圧の課電状況の判別方法とした。
According to a first aspect of the present invention, each phase on the secondary side of a transformer of a high-voltage three-phase AC distribution line is grounded via a capacitor, and a DC device is connected on the load side of the line. When a DC voltmeter or a half-wave rectifier voltmeter is connected to this AC distribution line when it is in use and some electrical trouble occurs on this load side, and the DC equipment is not abnormal but stops working. , The voltage above the rated value is measured,
Moreover, when the measured voltage is attenuated with time, it is determined that the DC voltage is applied to the AC distribution line, and the method for determining the DC voltage application state is used.

【0010】また、請求項2の発明は、請求項1におい
て直流電圧がかかっていると判定された場合、上記接地
箇所の各相のコンデンサに並列に抵抗器をそれぞれ接続
して、課電された直流電圧を除去する、直流電圧の除去
方法とした。また、請求項3項の発明は、高圧三相交流
配電線路のトランスの二次側の各相をコンデンサを介し
て接地し、当該電線路の負荷側で直流機器を使用する場
合において、予め上記接地箇所の各相のコンデンサに並
列に抵抗器を夫れ夫れ接続しておくことにより、何らか
の電気的不具合の発生の際に当該交流配電線路に課電さ
れる直流電圧を除去する、直流電圧の除去方法とした。
Further, according to the invention of claim 2, when it is determined that a DC voltage is applied in claim 1, a resistor is connected in parallel to the capacitor of each phase at the grounding point, and a voltage is applied. The DC voltage is removed by removing the DC voltage. In the invention of claim 3, when each phase on the secondary side of the transformer of the high-voltage three-phase AC distribution line is grounded via a capacitor and a DC device is used on the load side of the electric line, the above-mentioned condition is set in advance. By connecting a resistor in parallel with each phase capacitor at the grounding point, remove the DC voltage applied to the AC distribution line in the event of any electrical failure. Was removed.

【0011】また、請求項4項の発明は、高圧三相交流
配電線路のトランスの二次側の各相をコンデンサを介し
て接地し、当該電線路の負荷側で直流機器を使用する場
合において、上記接地箇所の各相のコンデンサに並列に
抵抗器を夫れ夫れ接続した、地絡時における高圧三相交
流配電線路の電位上昇防止装置とした。また、請求項5
項の発明は、上記請求項4における各相のコンデンサと
抵抗器は、上記のトランスごとに、並列に接続された上
記コンデンサと抵抗器とが箱体に収納されている、地絡
時における高圧三相交流配電線路の電位上昇防止装置と
した。
According to the invention of claim 4, when each phase on the secondary side of the transformer of the high-voltage three-phase AC distribution line is grounded via a capacitor and a DC device is used on the load side of the electric line. A potential rise prevention device for a high-voltage three-phase AC distribution line at the time of a ground fault, in which resistors are connected in parallel to the capacitors of the respective phases at the grounding point. In addition, claim 5
According to the invention of claim 4, in the capacitor and the resistor of each phase in claim 4, the transformer and the capacitor connected in parallel are housed in a box for each of the transformers. It was used as a potential rise prevention device for the three-phase AC distribution line.

【0012】[0012]

【発明の実施の形態】以下この発明の実施の形態例を図
に基づいて説明する。図1乃至図3はこの発明の実施の
形態例を示すものである。図1は、屋外から屋内に導入
した交流配電線路1の、変圧器の二次側の配電線路の各
相をコンデンサ2を介して接地箇所3で接地した状況を
示している。当該電線路1の負荷側では、イオナイザや
電子機器等の直流機器(図示省略)を接続して使用して
いる。この負荷側の配電線路において、直流漏れ電流
や、イオナイザ等による直流電荷放電現象を生じた場
合、上記交流配電線路1に、図1に示すように、半波整
流型電圧計4を接続すると、図3の実線に示すように、
この半波整流型電圧計4により定格(点線で示したも
の)以上の電圧が測定され、かつ時間がたつに連れてこ
の測定電圧が減衰した場合には当該交流配電線路に直流
電圧がかかっていることがわかる。これは、この半波整
流型電圧計4には抵抗器4aが接続されており、この電
圧計4を上記交流配電線路1に接続すると、この電圧計
4の抵抗器4aを伝わって直流電流が流れ、この抵抗器
4aの抵抗によって直流が消耗され、直流電圧が減衰す
ることとなる。このように、負荷側に何らかの電気的不
具合が生じ、当該交流配電線路1に直流電圧計乃至半波
整流型電圧計を接続したとき、当初、測定された定格以
上の電圧が、時間の経過とともに減衰した場合、当該交
流配電線路1には直流電圧がかかっていると判定するの
である。なお、上記半波整流型電圧計4の抵抗が10K
Ωの場合、約10秒で定格電圧に減衰した。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. 1 to 3 show an embodiment of the present invention. FIG. 1 shows a situation in which each phase of a secondary side distribution line of a transformer of an AC distribution line 1 introduced from outdoors to indoors is grounded at a grounding point 3 via a capacitor 2. On the load side of the electric line 1, a DC device (not shown) such as an ionizer or an electronic device is connected and used. When a DC leakage current or a DC charge discharge phenomenon due to an ionizer or the like occurs in the load side distribution line, if a half-wave rectification type voltmeter 4 is connected to the AC distribution line 1 as shown in FIG. As shown by the solid line in FIG.
If a voltage higher than the rated value (shown by the dotted line) is measured by the half-wave rectification type voltmeter 4 and this measured voltage is attenuated over time, a DC voltage is applied to the AC distribution line. You can see that This is because a resistor 4a is connected to the half-wave rectification type voltmeter 4, and when the voltmeter 4 is connected to the AC distribution line 1, a DC current is transmitted through the resistor 4a of the voltmeter 4. As a result, the direct current is consumed by the resistance of the resistor 4a, and the direct current voltage is attenuated. In this way, when some electrical trouble occurs on the load side and a DC voltmeter or a half-wave rectifier voltmeter is connected to the AC distribution line 1, initially, a voltage above the rated value is attenuated over time. In that case, it is determined that a DC voltage is applied to the AC distribution line 1. The resistance of the half-wave rectifier type voltmeter 4 is 10K.
In the case of Ω, the voltage decreased to the rated voltage in about 10 seconds.

【0013】従って、上記のような状況の配線において
は、予め、図2に示したように上記交流配電線路1の接
地箇所3の各相のコンデンサ2に並列に抵抗器5を夫れ
夫れ接続しておけば、交流配電線路1に流れる直流電流
は接地箇所3の抵抗器5を通して、地中に流れ、当該交
流電線路1に直流電圧がかかったままとはならない。ま
た、地絡事故が発生しても、抵抗器5は地絡電流に支障
をきたすことはない。つまり、課電される直流電圧を除
去するには、上記のように、接地箇所の各相のコンデン
サに並列に、予め、抵抗器をそれぞれ接続しておけば良
いのである。また、予め接続しておく抵抗器の具体的な
値については、1〜20KΩ程度で良い。
Therefore, in the wiring in the above situation, as shown in FIG. 2, the resistor 5 is provided in parallel with the capacitor 2 of each phase of the grounding point 3 of the AC distribution line 1 in advance. If connected, the DC current flowing through the AC distribution line 1 will flow into the ground through the resistor 5 at the grounding point 3 and the DC voltage will not remain applied to the AC distribution line 1. Further, even if a ground fault occurs, the resistor 5 does not interfere with the ground fault current. That is, in order to remove the DC voltage to be applied, as described above, it suffices to connect the resistors in advance in parallel with the capacitors of the respective phases at the grounding point. The specific value of the resistor connected in advance may be about 1 to 20 KΩ.

【0014】次に図6は、図8のように、接地線7を、
単相3線式の交流低圧配電線路6に接続している場合に
ついて説明したもので、屋外から屋内に導入した三相交
流配電線路1のトランスの二次側の各相をコンデンサ2
を介して接地箇所3で接地するが、この接地線7へは単
相3線式の交流低圧配電線路6をコンデンサや抵抗器を
介することなく接続したものである。
Next, FIG. 6 shows the ground wire 7 as shown in FIG.
The description has been given for the case where the AC line is connected to the single-phase three-wire AC low-voltage power distribution line 6, and each phase on the secondary side of the transformer of the three-phase AC power distribution line 1 introduced indoors from the outdoors is connected to the capacitor 2
It is grounded at a grounding point 3 via an AC line, and a single-phase three-wire AC low-voltage distribution line 6 is connected to the grounding line 7 without a capacitor or a resistor.

【0015】上記のような状況の配線においては、上記
三相交流配電線路1の各相のコンデンサ2に並列に抵抗
器5を夫れ夫れ接続しているため、上記三相交流配電線
路1に流れる直流電流は抵抗器5を通って接地箇所3の
地中に流れ、当該三相交流配電線路1に直流電圧がかか
ったままとはならない。それ故、上記三相交流配電線路
1に、直流機器からの漏れ電流やイオナイザなどの直流
電荷放電があっても、交流低圧配電線路6に異常な高電
圧は発生しない。また、三相交流配電線路1に地絡事故
が発生しても、地絡電流は接地箇所3から地中に流れる
ため、交流低圧配電線路6に異常な高電圧が発生せず、
この交流低圧配電線路6の負荷側に接続された機器のト
ラブルが生じない。この場合も、上記コンデンサ2に並
列に接続する抵抗器5の具体的な値については、1〜2
0KΩ程度で良い。
In the wiring in the above situation, since the resistors 5 are connected in parallel to the capacitors 2 of each phase of the three-phase AC distribution line 1, the three-phase AC distribution line 1 is connected. The DC current flowing through the resistor 3 flows through the resistor 5 into the ground at the grounding point 3, and the DC voltage does not remain applied to the three-phase AC distribution line 1. Therefore, even if there is a leakage current from a DC device or a DC charge discharge such as an ionizer in the three-phase AC distribution line 1, an abnormally high voltage is not generated in the AC low-voltage distribution line 6. In addition, even if a ground fault occurs in the three-phase AC distribution line 1, the ground fault current flows from the grounding point 3 into the ground, so that no abnormally high voltage is generated in the AC low-voltage distribution line 6,
No trouble occurs in the equipment connected to the load side of the AC low-voltage distribution line 6. Also in this case, the specific value of the resistor 5 connected in parallel to the capacitor 2 is 1 to 2
It may be about 0 KΩ.

【0016】また、コンデンサ2と抵抗器5との並列接
続については、どのような方法で接続しても良いが、図
6の点線8が示しているように、予め、並列接続した状
態のコンデンサ2と抵抗器5とを鉄製の箱体等に収納し
ておけば、現場でいちいち接続する際の煩わしさから開
放され、布設時間も短縮される。また、この並列接続し
た状態のコンデンサ2と抵抗器5の箱体等への収納にあ
たっては、箱体の形状を小さくするように設計すること
により、スペースをとることはない。このため、新設の
工場に対してだけでなく、工場のリニューアル時におけ
るコンデンサ2と抵抗器5の布設においても、簡単に適
用することができる。
The capacitor 2 and the resistor 5 may be connected in parallel by any method, but as shown by the dotted line 8 in FIG. 6, the capacitors are connected in parallel in advance. By storing 2 and the resistor 5 in an iron box or the like, the troublesomeness of connecting them one by one on the site is released and the installation time is shortened. Further, when the capacitors 2 and the resistors 5 connected in parallel are housed in a box body or the like, space is not taken by designing the box body to have a small shape. Therefore, the present invention can be easily applied not only to a new factory, but also to the laying of the capacitor 2 and the resistor 5 when the factory is renewed.

【0017】なお、上記実施の形態例では、交流配電線
路1に直流電圧がのっているか否かは、半波整流型電圧
計4を接続して判定したが、これに限らず直流電圧計を
用いても同様の結果が得られる。また、上記の実施の形
態例では、この発明をデルタ結線型の変圧器の二次側の
交流配電線路で説明したが、これらに限らず、スター結
線型の変圧器の二次側の交流配電線路においても同様で
ある。
In the above embodiment, whether the DC voltage is present on the AC distribution line 1 is determined by connecting the half-wave rectification type voltmeter 4. However, the present invention is not limited to this. Similar results are obtained when used. Further, in the above-described embodiments, the present invention has been described with respect to the secondary side AC distribution line of the delta connection type transformer, but the present invention is not limited to these, and the secondary side AC distribution line of the star connection type transformer is not limited thereto. The same applies to railroad tracks.

【0018】[0018]

【発明の効果】請求項1の発明では、何らかの電気的不
具合により、異常ではないが動作しない直流機器が生じ
た場合、交流配電線路に直流電圧がのっているか否かを
極めて容易に判定できる。請求項2の発明では、直流電
圧がかかっていると判定した場合、上記のように接地箇
所の各相のコンデンサに並列に抵抗器をそれぞれ接続す
ることにより、課電された直流電圧を、簡単に除去する
ことが。このため、直流機器の運転を迅速に復帰させる
ことができる。請求項3の発明では、予め、接地箇所の
各相のコンデンサに並列に抵抗器を接続しておくので、
交流配電線路の直流電圧は、常時除去されていて、直流
機器の運転に支障を来すことはない。とくに、最近は、
半導体工場のみでなく、病院、銀行、オフィス等、計測
機器、コンピュータ等直流の電子機器を設置している企
業が多くなっているが、何らかの電気的不具合が生じた
場合の対策は万全ではない。この発明は、このような多
くの直流の電子機器が設置されている箇所において、上
記したような効果を奏するものである。
According to the first aspect of the present invention, when a DC device which is not abnormal but does not operate due to some electrical defect, it can be very easily determined whether or not a DC voltage is present on the AC distribution line. . According to the invention of claim 2, when it is determined that a DC voltage is applied, the DC voltage applied can be easily reduced by connecting the resistors in parallel to the capacitors of each phase at the grounding point as described above. Can be removed. Therefore, the operation of the DC device can be quickly restored. In the invention of claim 3, since the resistor is connected in parallel to the capacitor of each phase at the grounding point in advance,
The DC voltage on the AC distribution line is always removed, and it does not hinder the operation of DC equipment. Especially recently
Many companies are installing not only semiconductor factories, but also hospitals, banks, offices, etc., measuring instruments, and DC electronic devices such as computers, but it is not possible to take countermeasures when some kind of electrical failure occurs. The present invention has the above-described effects in a place where many such DC electronic devices are installed.

【0019】また、請求項4の発明では、三相交流配電
線路に流れる直流電流は接地箇所の抵抗器を通して、地
中に流れ、当該交流電線路や単相の交流低圧配電線路に
直流電圧がかかったままとはならない。それ故、上記三
相交流配電線路に地絡事故が発生しても、地絡電流は接
地箇所から地中に流れ、単相の交流低圧配電線路に異常
な高電圧が発生せず、この単相の交流低圧配電線路の負
荷側に接続された機器のトラブルが生じない。従って、
現在の建家が三相交流配電線路の接地と交流低圧配電線
路とが同一系統となっている場合においても、当該接地
箇所の各コンデンサに抵抗器を接続するだけで容易に地
絡時の電位の上昇を防止でき、極めて便利である。ま
た、請求項5の発明では、コンデンサと抵抗器との並列
接続を、現場で行うのではなく、工場等で、予め、並列
接続したコンデンサと抵抗器を箱体に収納しておくこと
により、現場では、箱体を接続すればよいので、施工時
間を大幅に短縮できる。
Further, in the invention of claim 4, the DC current flowing through the three-phase AC distribution line flows into the ground through the resistor at the grounding point, and the DC voltage is applied to the AC line or the single-phase AC low-voltage distribution line. It does not stay on. Therefore, even if a ground fault occurs in the above three-phase AC distribution line, the ground fault current will flow from the grounding point to the ground, and no abnormally high voltage will be generated in the single-phase AC low-voltage distribution line. There is no trouble with the equipment connected to the load side of the AC low-voltage power distribution line. Therefore,
Even if the current building has the same system for grounding the three-phase AC distribution line and the AC low-voltage distribution line, it is easy to connect the resistor to each capacitor at the grounding point to easily establish the potential at ground fault. It is very convenient because it can be prevented from rising. Further, in the invention of claim 5, the parallel connection of the capacitor and the resistor is not performed in the field, but by storing the parallel-connected capacitor and the resistor in a box in advance in a factory or the like, Since it is sufficient to connect the boxes at the site, the construction time can be greatly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の交流電線路における直流電圧の課電
判別方法の実施の形態例を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing an example of an embodiment of a method for discriminating charging of a DC voltage in an AC power line of the present invention.

【図2】この発明の交流電線路における直流電流除去方
法の実施の形態例を示す概略構成図である。
FIG. 2 is a schematic configuration diagram showing an example of an embodiment of a DC current removing method in an AC electric line according to the present invention.

【図3】この発明の交流電線路における直流電圧の課電
判別方法の実施の形態例の課電判定時の電圧波形を示す
グラフ図である。
FIG. 3 is a graph diagram showing a voltage waveform at the time of the voltage application determination of the embodiment of the method for determining the voltage application of the DC voltage in the AC power line of the present invention.

【図4】この発明の交流電線路における直流電圧の課電
判別方法の他の実施の形態例を示す概略構成図である。
FIG. 4 is a schematic configuration diagram showing another embodiment of the method for discriminating charging of a DC voltage in an AC power line of the present invention.

【図5】この発明の交流電線路における直流電圧の課電
判別方法を使用する箇所の概略構成図である。
FIG. 5 is a schematic configuration diagram of a portion in which the method for discriminating charging of a DC voltage in an AC power line of the present invention is used.

【図6】この発明の地絡時の異常電位上昇防止装置の実
施の形態例の概略構成図である。
FIG. 6 is a schematic configuration diagram of an embodiment of an abnormal potential rise prevention device during a ground fault according to the present invention.

【図7】従来の地絡時の異常電位上昇防止装置の概略構
成図である。
FIG. 7 is a schematic configuration diagram of a conventional abnormal potential rise prevention device during a ground fault.

【図8】従来の地絡時の改良型の異常電位上昇防止装置
の概略構成図である。
FIG. 8 is a schematic configuration diagram of a conventional abnormal potential rise prevention device during a ground fault.

【符号の説明】[Explanation of symbols]

1 交流配電線路 2 コンデンサ 3 接地箇所 4 半波整流型
電圧計 5 抵抗器 6 交流低圧配
電線路 7 接地線 EB 漏電ブレ−
カ 8 箱体
1 AC distribution line 2 Capacitor 3 Grounding point 4 Half-wave rectification type voltmeter 5 Resistor 6 AC low-voltage distribution line 7 Grounding wire EB Leakage breaker
Mosquito box

───────────────────────────────────────────────────── フロントページの続き (72)発明者 酒井 重嘉 東京都港区芝浦4丁目8番33号 株式会社 関電工内 (72)発明者 野口 久雄 東京都中央区銀座7丁目4番14号 光商工 株式会社内 (72)発明者 中野 弘伸 千葉県習志野市本大久保1丁目4番19号 Fターム(参考) 2G035 AA15 AB01 AB08 AC01 AC13   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Shigeyoshi Sakai             4-833 Shibaura, Minato-ku, Tokyo Co., Ltd.             KANDENKO (72) Inventor Hisao Noguchi             7-4-14 Ginza, Chuo-ku, Tokyo             Within the corporation (72) Inventor Hironobu Nakano             1-4-19 Moto-Okubo, Narashino City, Chiba Prefecture F term (reference) 2G035 AA15 AB01 AB08 AC01 AC13

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 高圧三相交流配電線路のトランスの二次
側の各相をコンデンサを介して接地し、当該電線路の負
荷側で直流機器を使用していて、この負荷側に何らかの
電気的不具合が生じて、当該直流機器に異常はないが作
動しなくなった場合において、この交流配電線路に直流
電圧計又は半波整流型電圧計を接続した際、定格以上の
電圧が測定され、かつ時間がたつに連れてこの測定電圧
が減衰する場合に当該交流配電線路に直流電圧がかかっ
ていると判定することを特徴とする、直流電圧の課電判
別方法。
1. A high-voltage three-phase AC distribution line, wherein each phase on the secondary side of a transformer is grounded via a capacitor, and a DC device is used on the load side of the power line, and some electrical power is applied to this load side. In the event that a malfunction occurs and the DC equipment does not malfunction but ceases to operate, when a DC voltmeter or a half-wave rectifier voltmeter is connected to this AC distribution line, a voltage above the rated value is measured and time is exceeded. A DC voltage charging determination method, which is characterized in that when the measured voltage is gradually attenuated, it is determined that a DC voltage is applied to the AC distribution line.
【請求項2】請求項1において直流電圧がかかっている
と判定された場合、上記接地箇所の各相のコンデンサに
並列に抵抗器をそれぞれ接続して、課電された直流電圧
を除去することを特徴とする、直流電圧の除去方法。
2. When it is determined that a direct current voltage is applied in claim 1, a resistor is connected in parallel to each phase capacitor at the grounding point to remove the applied direct current voltage. A method of removing a DC voltage, characterized by:
【請求項3】 高圧三相交流配電線路のトランスの二次
側の各相をコンデンサを介して接地し、当該電線路の負
荷側で直流機器を使用する場合において、予め上記接地
箇所の各相のコンデンサに並列に抵抗器を夫れ夫れ接続
しておくことにより、何らかの電気的不具合の発生の際
に当該交流配電線路に課電される直流電圧を除去するこ
とを特徴とする、直流電圧の除去方法。
3. When each phase on the secondary side of the transformer of the high-voltage three-phase AC distribution line is grounded via a capacitor and a DC device is used on the load side of the line, each phase at the grounding point is preset. DC voltage applied to the AC distribution line in the event of any electrical failure is eliminated by connecting a resistor in parallel with the capacitor of the DC voltage. Removal method.
【請求項4】 高圧三相交流配電線路のトランスの二次
側の各相をコンデンサを介して接地し、当該電線路の負
荷側で直流機器を使用する場合において、上記接地箇所
の各相のコンデンサに並列に抵抗器を夫れ夫れ接続した
ことを特徴とする、地絡時における高圧三相交流配電線
路の電位上昇防止装置。
4. When each phase on the secondary side of the transformer of the high-voltage three-phase AC distribution line is grounded via a capacitor and DC equipment is used on the load side of the power line, each phase at the grounding point A potential rise prevention device for a high-voltage three-phase AC distribution line at the time of a ground fault, characterized in that resistors are connected in parallel to the capacitor.
【請求項5】請求項4における各相のコンデンサと抵抗
器は、上記のトランスごとに、並列に接続された上記コ
ンデンサと抵抗器とが箱体に収納されていることを特徴
とする、請求項4に記載の地絡時における高圧三相交流
配電線路の電位上昇防止装置。
5. The capacitor and resistor of each phase according to claim 4, characterized in that, for each of the transformers, the capacitor and the resistor connected in parallel are housed in a box. Item 4. A potential rise prevention device for a high-voltage three-phase AC distribution line in the event of a ground fault.
JP2001256710A 2001-08-27 2001-08-27 Method for determining the application of DC voltage in an AC cable line, a method for removing the DC voltage, and a device for preventing an increase in potential of the AC cable line during a ground fault Expired - Fee Related JP3615170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001256710A JP3615170B2 (en) 2001-08-27 2001-08-27 Method for determining the application of DC voltage in an AC cable line, a method for removing the DC voltage, and a device for preventing an increase in potential of the AC cable line during a ground fault

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001256710A JP3615170B2 (en) 2001-08-27 2001-08-27 Method for determining the application of DC voltage in an AC cable line, a method for removing the DC voltage, and a device for preventing an increase in potential of the AC cable line during a ground fault

Publications (2)

Publication Number Publication Date
JP2003070158A true JP2003070158A (en) 2003-03-07
JP3615170B2 JP3615170B2 (en) 2005-01-26

Family

ID=19084491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001256710A Expired - Fee Related JP3615170B2 (en) 2001-08-27 2001-08-27 Method for determining the application of DC voltage in an AC cable line, a method for removing the DC voltage, and a device for preventing an increase in potential of the AC cable line during a ground fault

Country Status (1)

Country Link
JP (1) JP3615170B2 (en)

Also Published As

Publication number Publication date
JP3615170B2 (en) 2005-01-26

Similar Documents

Publication Publication Date Title
US7050279B2 (en) Method and apparatus for high impedance grounding of medium voltage AC drives
FI115488B (en) Method and apparatus for detecting a breaking earth fault in a power distribution network
Jacobson Examples of ferroresonance in a high voltage power system
JP5544517B2 (en) Leakage current measuring device and measuring method in electrical equipment
US20150124358A1 (en) Feeder power source providing open feeder detection for a network protector by shifted neutral
Nelson System grounding and ground fault protection in the petrochemical industry: A need for a better understanding
Baldwin et al. Analysis of fault locating signals for high-impedance grounded systems
KR101490770B1 (en) Ground fault detecting apparatus
JP5477020B2 (en) Leakage current measuring device and measuring method in electrical equipment
EP2196812A1 (en) Monitoring device for detecting earth faults
Gulachenski et al. New England electric's 39 years of experience with resonant neutral grounding of unit-connected generators
Lubich High resistance grounding and fault finding on three phase three wire (delta) power systems
JP2003070158A (en) Method for discriminating dc voltage applied to ac electric line, method for eliminating the dc voltage, and apparatus for preventing potential rise on ac electric line during line-to-ground fault
Skibinski et al. Effect of adjustable speed drives on the operation of low voltage ground fault indicators
JPS63265516A (en) Ground-fault detector for three-phase ac circuit
Rifaat Utilizing third harmonic 100% stator ground fault protection, a cogeneration experience
Shafie et al. Harmonic and neutral to ground voltage reduction using isolation transformer
US8446701B2 (en) Single-phase transient voltage suppression circuit
De Ronde et al. Loss of effective system grounding–best practices protection challenges and solutions
Kamble et al. Classification of voltage sags in distribution systems due to short circuit faults
JP6736454B2 (en) Ground voltage detector
KR100585378B1 (en) Leakage Current Detect Interrupter
RU2145131C1 (en) Nonresonating potential transformer
Sattari et al. High-Resistance Grounding Design for Industrial Facilities: Providing Continuity of Service in Complex Distribution Systems
Johnson et al. A review of system grounding methods and zero sequence current sources

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041028

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees