JP2009027802A - Surge absorber with measuring function, transformer for instrument, power facility, and protection method for power facility - Google Patents

Surge absorber with measuring function, transformer for instrument, power facility, and protection method for power facility Download PDF

Info

Publication number
JP2009027802A
JP2009027802A JP2007186654A JP2007186654A JP2009027802A JP 2009027802 A JP2009027802 A JP 2009027802A JP 2007186654 A JP2007186654 A JP 2007186654A JP 2007186654 A JP2007186654 A JP 2007186654A JP 2009027802 A JP2009027802 A JP 2009027802A
Authority
JP
Japan
Prior art keywords
voltage
transformer
surge absorber
circuit breaker
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007186654A
Other languages
Japanese (ja)
Other versions
JP5079413B2 (en
Inventor
Koji Yamada
弘司 山田
Toshihiko Nakida
敏彦 名木田
Keizo Iwai
圭三 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Chugoku Electric Manufacturing Co Ltd
Original Assignee
Chugoku Electric Power Co Inc
Chugoku Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc, Chugoku Electric Manufacturing Co Ltd filed Critical Chugoku Electric Power Co Inc
Priority to JP2007186654A priority Critical patent/JP5079413B2/en
Publication of JP2009027802A publication Critical patent/JP2009027802A/en
Application granted granted Critical
Publication of JP5079413B2 publication Critical patent/JP5079413B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surge absorber with a measuring function improved in economic property and space property without installing an independent transformer for instrumentation when a transformer for instrumentation is required for monitoring or protection at a portion equipped with a surge absorber as a countermeasure against lightning discharge for power facilities. <P>SOLUTION: The surge absorber with the measuring function comprises a voltage dividing means 2 for dividing the AC voltage applied to the surge absorber by dividing the capacitance value of the surge absorber, a voltage dividing terminal 2a for taking out the divided voltage divided by the voltage dividing means 2, and a transformer 3 for an instrument connected to the voltage dividing terminal 2a. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、雷サージなどから電力設備を保護するサージアブソーバーの改良技術に係り、特にサージアブソーバーを利用して電力用変圧器二次側の電圧を安価に監視することのできる計測機能付きサージアブソーバー、計器用変圧器、電力設備、および電力設備の保護方法に関する。   The present invention relates to an improved technique for a surge absorber that protects power equipment from lightning surges, and more particularly, a surge absorber with a measurement function that can monitor the voltage on the secondary side of a power transformer at low cost by using the surge absorber. The present invention relates to an instrument transformer, power equipment, and a method for protecting power equipment.

図7に、従来の電力設備9の基本構成を示す。この図において、電源線(母線)10に遮断器30を介して電源20が接続されている。この電源20は、自所が有する場合もあるし他の発・変電所から送電されてくる場合もある。電力設備9は、電源線10、遮断器30、電源20のほか、この電源線10に接続され雷などから設備を保護するためのサージアブソーバー2X、電源線の電圧等の電気データを採取するための計器用変圧器3X、これに接続される電圧計50、および各種の保護継電器41,42などで構成される。電力設備の構成は図7に限定されず、たとえば、電力設備のコンデンサ型のサージアブソーバー2Xや計器用変圧器(以下PTと略す)3Xは別個に必要な箇所に装備されている。   In FIG. 7, the basic composition of the conventional electric power equipment 9 is shown. In this figure, a power supply 20 is connected to a power supply line (bus line) 10 via a circuit breaker 30. The power source 20 may be owned by the site or may be transmitted from another power generation / substation. The power facility 9 collects electrical data such as the power line 10, the circuit breaker 30, and the power source 20, the surge absorber 2X that is connected to the power line 10 and protects the facility from lightning, and the voltage of the power line. Instrument transformer 3X, a voltmeter 50 connected thereto, and various protective relays 41 and 42, and the like. The configuration of the power equipment is not limited to that shown in FIG. 7. For example, a capacitor-type surge absorber 2X and an instrument transformer (hereinafter abbreviated as PT) 3X of the power equipment are separately provided at necessary places.

ここで、PT3Xは、比較的高価でしかもサイズが大きいため装備する箇所が限定されている。このため、図8に示すように配電用変電所における電力用変圧器60の二次側巻線Bと、配電線の母線10間に二次側遮断器32を挿入し、その二次側遮断器32と電力用変圧器60との間には、サージアブソーバー2Xのみを装備して、PTは装備しないことが一般的である。   Here, since PT3X is relatively expensive and has a large size, the places to be equipped are limited. For this reason, as shown in FIG. 8, the secondary side circuit breaker 32 is inserted between the secondary winding B of the power transformer 60 in the distribution substation and the bus 10 of the distribution line, and the secondary side interruption is performed. In general, only the surge absorber 2X is installed between the voltage transformer 32 and the power transformer 60, and no PT is installed.

図8の設備構成において、たとえば、母線10で地絡事故が発生すると、母線10に装備されたPT3Xを介した地絡過電圧保護継電器41,42は、二次側遮断器32を開放すると変圧器60の二次巻線B〜二次側遮断器32間の正常、異常の判定ができないため、二次側遮断器32でなく、一次側遮断器31をトリップさせて事故を回避する。このため、保護継電器41または42は、変圧器60の三次巻線Cの回路まで停電させてしまうことになる。   In the equipment configuration of FIG. 8, for example, when a ground fault occurs in the bus 10, the ground fault overvoltage protection relays 41 and 42 via the PT 3 </ b> X installed in the bus 10 open the secondary circuit breaker 32. Since normality / abnormality cannot be determined between the 60 secondary winding B and the secondary circuit breaker 32, the primary circuit breaker 31 is tripped instead of the secondary circuit breaker 32 to avoid an accident. For this reason, the protective relay 41 or 42 causes a power failure to the circuit of the tertiary winding C of the transformer 60.

また、上記したように母線事故か、二次側遮断器32より上位の事故かが特定できず、復旧作業も複雑になる。   In addition, as described above, it is impossible to identify a bus accident or an accident higher than the secondary circuit breaker 32, and the recovery work becomes complicated.

この他の例として、図9に示すような2式の変圧器60a、60bを備えた2バンク型の一般的な配電用変電所において、片系の変圧器60bを保守点検する作業での問題を以下に説明する。   As another example, in a two-bank type general distribution substation having two transformers 60a and 60b as shown in FIG. 9, there is a problem in the maintenance and inspection of the single transformer 60b. Is described below.

まず、変圧器60bを保守点検する事前作業として、保守点検する系の母線10bは、停電させず運用を継続するため母線10aと連絡遮断器31cを投入することにより接続される。その後、片系の変圧器60bは、一次側、二次側の遮断器31b、32bが開放され、保守点検等が行われる。復旧時の手順としては、まず一次側遮断器31bが投入された後、運用中の配電用母線10a,10bの電圧に保守点検後の変圧器60bの二次側Bの電圧を合わせて二次側の遮断器32bが投入される。このとき、変圧器60bの二次側Bの電圧の測定手段がないため、操作員は、運用系の変圧器60aのタップ値を調べ、それに作業後の変圧器60bのタップをあわせることにより電圧を調整後、遮断器32bを投入している。   First, as a preliminary work for maintaining and inspecting the transformer 60b, the bus 10b of the system to be inspected and connected is connected by turning on the bus 10a and the contact breaker 31c in order to continue operation without causing a power failure. Thereafter, in the one-system transformer 60b, the primary and secondary circuit breakers 31b and 32b are opened, and maintenance and inspection are performed. As a procedure at the time of restoration, first, after the primary side circuit breaker 31b is turned on, the voltage on the secondary side B of the transformer 60b after maintenance and inspection is matched with the voltage of the distribution buses 10a and 10b in operation. The side circuit breaker 32b is turned on. At this time, since there is no means for measuring the voltage on the secondary side B of the transformer 60b, the operator examines the tap value of the operational transformer 60a and adjusts the tap of the transformer 60b after the operation to match the voltage. After adjusting, the circuit breaker 32b is turned on.

このように変圧器60a,または60bと二次側遮断器32a,または32b間に計器用変圧器が装備されないと、直接この箇所の電圧などが測定できないため、その代替手段として電圧を合わせる基準となる変圧器側のタップ値を調べて、その値に保守後の変圧器のタップを合わせるなど面倒な方法を採らなければならないという問題がある。   Thus, unless an instrument transformer is provided between the transformer 60a or 60b and the secondary circuit breaker 32a or 32b, the voltage at this point cannot be measured directly. There is a problem that a troublesome method such as checking the tap value on the transformer side and matching the tap of the transformer after maintenance to that value must be taken.

また、電力設備の大地間の零相電圧を測定する技術が特許文献1に提案されている。この特許文献1には、電力線に巻かれた円筒形のコンデンサ相当と、電圧を取り出す直列に挿入された検出コンデンサと補助トランスにより零相電圧を測定する技術が提案されている。   Patent Document 1 proposes a technique for measuring a zero-phase voltage between the grounds of power facilities. This Patent Document 1 proposes a technique for measuring a zero-phase voltage using a cylindrical capacitor equivalent wound around a power line, a detection capacitor inserted in series for extracting a voltage, and an auxiliary transformer.

しかしながら、この技術は、従来の零相計器用変圧器や零相計器用コンデンサなどの改良技術であり、配電変電所における変圧器の二次側巻線と二次側遮断器間の電圧測定や保護に関する技術ではないため、上記の問題を解消することはできない。
特開2000−77247号公報
However, this technology is an improved technology for conventional zero-phase instrument transformers, zero-phase instrument capacitors, etc., and is used to measure the voltage between the secondary winding of the transformer and the secondary circuit breaker in distribution substations. Since it is not a technology related to protection, the above problem cannot be solved.
JP 2000-77247 A

本発明は上述のかかる事情に鑑みてなされたものであり、電力設備の雷対策としてのサージアブソーバーを装備する箇所に監視や保護のための計器用変圧器を必要とする場合、独立の計器用変圧器を装備せずに、経済性とスペース性を改善した計測機能付きサージアブソーバー、計器用変圧器、電力設備、および電力設備の保護方法を提供することを目的とする。   The present invention has been made in view of the above-mentioned circumstances, and when an instrument transformer for monitoring or protection is required at a place equipped with a surge absorber as a lightning countermeasure for electric power equipment, it is for an independent instrument. An object is to provide a surge absorber with a measuring function, an instrument transformer, electric power equipment, and a protection method for electric power equipment which are improved in economy and space without being equipped with a transformer.

上記目的を達成するため、本発明に係わる計測機能付きサージアブソーバーは、電力設備用のサージアブソーバーであって、サージアブソーバーの有する静電容量を分割することによってサージアブソーバーに印加された交流電圧を分圧する分圧手段と、分圧手段によって分圧された分圧電圧を取り出すための分圧端子と、を備えたことを特徴とする。   In order to achieve the above object, a surge absorber with a measuring function according to the present invention is a surge absorber for electric power equipment, and the AC voltage applied to the surge absorber is divided by dividing the capacitance of the surge absorber. And a voltage dividing terminal for extracting the divided voltage divided by the voltage dividing means.

本発明では、従来のサージアブソーバーの機能に加えて、サージアブソーバーに加圧される交流電圧を計測に適した値に分圧させる分圧手段を設けることにより、サージアブソーバーに印加される電圧を測定する。   In the present invention, in addition to the function of the conventional surge absorber, the voltage applied to the surge absorber is measured by providing voltage dividing means for dividing the AC voltage applied to the surge absorber to a value suitable for measurement. To do.

好ましくは、分圧手段によって分圧された交流電圧を絶縁して出力する絶縁変圧器等の絶縁手段を備えるようにすると良い。この絶縁手段は、分圧電圧に対する定格を有する低圧絶縁変圧器であればよいので、電源線に接続する計器用変圧器に比べて安価に実現することができる。   Preferably, an insulating means such as an insulating transformer that insulates and outputs the AC voltage divided by the voltage dividing means may be provided. Since this insulation means may be a low voltage insulation transformer having a rating for the divided voltage, it can be realized at a lower cost than an instrument transformer connected to a power line.

なお、本発明はその名称に限定されず、たとえば、サージアブソーバーの機能を有する計器用変圧器として捉えることもできる。また、単に絶縁するのみでなく計器用変圧器として出力電圧をさらに調整して適切な電圧範囲で測定可能にすることにより、電圧計や保護継電器などの装置の接続時の設定が容易になる。   In addition, this invention is not limited to the name, For example, it can also be grasped | ascertained as an instrument transformer which has a function of a surge absorber. In addition, the output voltage can be further adjusted as an instrument transformer to enable measurement in an appropriate voltage range as well as the insulation, thereby facilitating setting when connecting a device such as a voltmeter or a protective relay.

また、本発明に係る計測機能付きサージアブソーバーの分圧手段は、電源線の各相に夫々その一端が接続され、他端は共通接続されるコンデンサと、前記他端と対地間に接続される対地用コンデンサとを有し、前記対地用コンデンサの両端の電圧を分圧電圧として取り出すことを特徴とする。   The voltage dividing means of the surge absorber with a measuring function according to the present invention has one end connected to each phase of the power line, the other end connected in common, and the other end connected between the other end and the ground. A grounding capacitor, and the voltage across the grounding capacitor is extracted as a divided voltage.

本発明では、サージアブソーバーの機能を維持しつつ零相電圧の測定を可能にする。   In the present invention, it is possible to measure the zero-phase voltage while maintaining the function of the surge absorber.

また、本発明に係わる計測機能付きサージアブソーバーは、二次および三次巻線を持つ前記計器用変圧器を備えた計測機能付きサージアブソーバーの3式を、計器用変圧手段の一次側と二次側の片端を接続する、いわゆるY結線として正相電圧を出力させる手段と、同じく計器用変圧手段の三次巻線を直列に接続して零相電圧を出力させる手段の両方、もしくは、いずれか一方を備えたことを特徴とする。   Moreover, the surge absorber with a measuring function according to the present invention comprises three types of surge absorbers with a measuring function including the instrument transformer having secondary and tertiary windings, the primary side and the secondary side of the instrument transformer means. Either one of the means for connecting the one end of the power supply and outputting the positive phase voltage as a so-called Y connection and the means for connecting the tertiary winding of the instrument transformer means in series and outputting the zero phase voltage, or either It is characterized by having.

本発明では、三相電力設備においても相ごとに計測機能付きサージアブソーバーを装備することにより、本来のサージアブソーバーの機能と正相電圧や零相電圧を測定できる効果を得ることができる。   In the present invention, even in a three-phase power facility, by providing a surge absorber with a measurement function for each phase, the function of the original surge absorber and the effect of measuring the positive phase voltage and the zero phase voltage can be obtained.

本発明に係る電力設備の保護方法は、電力用変圧器と当該変圧器の一次側を遮断する一次側遮断器と当該変圧器の二次側を遮断する二次側遮断器とを有する変電所の電力設備において、変圧器の二次巻線と二次側遮断器との間に上記の本発明に係る計測機能付きサージアブソーバーもしくは計器用変圧器を接続し、分圧端子に電圧計測手段を接続して二次側の電圧を計測し、当該計測値を地絡過電圧保護継電器に入力し、当該地絡過電圧保護継電器が、二次側の電圧を監視することによって事故を検出したときは、二次側遮断器を遮断することを特徴とする。   A method of protecting a power facility according to the present invention includes a power transformer, a primary circuit breaker that interrupts a primary side of the transformer, and a secondary circuit breaker that interrupts a secondary side of the transformer. In the power facility, the surge absorber with a measuring function or the instrument transformer according to the present invention is connected between the secondary winding of the transformer and the secondary circuit breaker, and the voltage measuring means is connected to the voltage dividing terminal. Connect and measure the voltage on the secondary side, input the measured value to the ground fault overvoltage protection relay, and when the ground fault overvoltage protection relay detects the accident by monitoring the secondary side voltage, The secondary circuit breaker is cut off.

本発明では、経済性やスペース性の問題より一般的に装備しなかった配電用変電所の変圧器の二次側とその遮断器間の電圧の測定や、保護継電器によってその区間の事故を検出して保護できるため事故時の停電時間や作業時間の短縮が可能となる。   In the present invention, the voltage between the secondary side of the transformer of the distribution substation and its circuit breaker, which was not generally equipped due to problems of economy and space, is measured, and the accident in that section is detected by the protective relay Therefore, it is possible to reduce power outage time and work time in the event of an accident.

本発明によれば、雷対策のサージアブソーバーと計器用変圧器を兼ねることにより経済性や設置スペースの問題のある電力設備に容易に設置することが可能となり、電力設備の制御や保護の質を向上させることがでできる。   According to the present invention, it is possible to easily install in a power facility having a problem of economical efficiency and installation space by combining a surge absorber for lightning and a transformer for an instrument, thereby improving the quality of control and protection of the power facility. It can be improved.

以下、本発明の実施の形態を説明する。図1は、本発明の第1の実施の形態による計測機能付きサージアブソーバーの回路図であり、図4は、これを使用する一般的な電力設備の回路図である。   Embodiments of the present invention will be described below. FIG. 1 is a circuit diagram of a surge absorber with a measurement function according to the first embodiment of the present invention, and FIG. 4 is a circuit diagram of a general power facility using the surge absorber.

図1(a)において、計測機能付きサージアブソーバー(以下、「計測SA」と略す)1は、コンデンサで形成され、静電容量を分割できるサージアブソーバー(分圧手段)2、分割された静電容量によって分圧された交流電圧を取り出すための分圧端子2a、および、絶縁手段3で構成される。なお、絶縁手段3は、電圧測定や保護継電器用の計器用変圧器(以下、「PT」と略す)で構成することができる。分圧端子2aは、サージアブソーバー2の中間、すなわち、図1(b)に示す等価的に直列に接続された2式のコンデンサC1,C2の接続点から電圧を取り出す。   In FIG. 1A, a surge absorber with a measurement function (hereinafter abbreviated as “measurement SA”) 1 is formed of a capacitor, and a surge absorber (voltage dividing means) 2 that can divide a capacitance, and divided electrostatics. A voltage dividing terminal 2 a for taking out an AC voltage divided by the capacitance and an insulating means 3 are configured. The insulating means 3 can be constituted by a voltage transformer for measuring voltage or a protective relay (hereinafter abbreviated as “PT”). The voltage dividing terminal 2a takes out a voltage from the middle of the surge absorber 2, that is, from a connection point of two sets of capacitors C1 and C2 equivalently connected in series as shown in FIG.

絶縁手段3は、コンデンサ型のサージアブソーバー2の分圧端子2aと、アースEに一次側を接続し、二次側を計測端子Kとしている。   The insulating means 3 has a primary side connected to the voltage dividing terminal 2a of the capacitor type surge absorber 2 and the ground E, and the secondary side is used as a measuring terminal K.

図4において、電力設備9は、電源20が遮断器30を介して母線10に接続され、この母線10に計測SA1を装備して、これに電圧計50や保護継電器41,42を接続している。   In FIG. 4, the power equipment 9 includes a power source 20 connected to the bus 10 via the circuit breaker 30, and the bus 10 is equipped with a measurement SA 1, to which a voltmeter 50 and protective relays 41 and 42 are connected. Yes.

次に、上記の構成を有する計測SA1の作用を図1(b)を用いて説明する。サージアブソーバー2の分圧端子2aに分圧される交流電圧V2xは、サージアブソーバー2の両端に掛かる交流電圧V1に対して、V2x=(C1/(C1+C2))・V1となり、V1に比例した電圧がV2xに現れる。この電圧V2xは、絶縁手段3で絶縁され、計測用の電圧V2が二次側の計測端子Kに出力される。   Next, the effect | action of measurement SA1 which has said structure is demonstrated using FIG.1 (b). The AC voltage V2x divided by the voltage dividing terminal 2a of the surge absorber 2 is V2x = (C1 / (C1 + C2)) · V1 with respect to the AC voltage V1 applied to both ends of the surge absorber 2, and is a voltage proportional to V1. Appears at V2x. The voltage V2x is insulated by the insulation means 3, and the measurement voltage V2 is output to the secondary measurement terminal K.

このように従来のコンデンサ型のサージアブソーバーから分圧できる端子2aを設けることで、これに印加される電圧を低電圧化して出力するとともに、この分圧端子2aに絶縁手段3として計器用変圧器等を接続することにより、一般的な計器用変圧器としても使用できる。   Thus, by providing the terminal 2a capable of dividing the voltage from the conventional capacitor type surge absorber, the voltage applied to the terminal 2a is reduced and outputted, and the voltage transformer terminal 2a is used as an insulating means 3 as an instrument transformer. Etc. can be used as a general instrument transformer.

次に、第2の実施の形態を説明する。
図2は、本実施の形態による三相交流電圧用の計測SA1の回路図である。この図で、計測SA1は、C1□,C2□(□:r,s,t)でそれぞれ構成される第1の実施形態のサージアブソーバー2を3式備え、さらに一次巻線3aと二次巻線3bまたは三次巻線3cまで持つ三相PT3で構成される。この3式の各サージアブソーバー2は、各相のR、S、TとアースE間に装備され、中間点の分圧端子2aを介して三相PT3の一次巻線3aにY結線されている。PT3の二次巻線3bもY結線され、各正相電圧Vr2,Vs2,Vt2を出力する。三次巻線3cは、オープンデルタ結線され、アースへ流れる零相電圧V02を出力する。
Next, a second embodiment will be described.
FIG. 2 is a circuit diagram of the measurement SA1 for three-phase AC voltage according to the present embodiment. In this figure, the measurement SA1 is provided with three sets of the surge absorber 2 of the first embodiment each composed of C1 □, C2 □ (□: r, s, t), and further includes a primary winding 3a and a secondary winding. It is composed of a three-phase PT3 having up to a line 3b or a tertiary winding 3c. Each of the three types of surge absorbers 2 is mounted between R, S, T of each phase and the ground E, and is Y-connected to the primary winding 3a of the three-phase PT 3 via a voltage dividing terminal 2a at the intermediate point. . The secondary winding 3b of PT3 is also Y-connected, and outputs the positive phase voltages Vr2, Vs2, and Vt2. The tertiary winding 3c is connected in an open delta manner and outputs a zero-phase voltage V02 that flows to the ground.

本実施の形態における計測SA1の作用としては、第1の実施形態と同様の原理によって、各相の分圧電圧がサージアブソーバー2から現れる。三相PT3が一次巻線3aにY結線され、二次巻線3bもY結線されているため、各相の分圧電圧が正相電圧Vr2,Vs2,Vt2の各端子に出力される。また、三次巻線3cをオープンデルタ結線することにより、両端の電圧を測定することによって、零相電圧を測定できる。   As an effect | action of measurement SA1 in this Embodiment, the divided voltage of each phase appears from the surge absorber 2 by the principle similar to 1st Embodiment. Since the three-phase PT3 is Y-connected to the primary winding 3a and the secondary winding 3b is also Y-connected, the divided voltage of each phase is output to each terminal of the positive phase voltages Vr2, Vs2, and Vt2. Further, the zero-phase voltage can be measured by measuring the voltage at both ends by connecting the tertiary winding 3c to the open delta connection.

三相電力設備に対して、単相の計測SA1相当を3式各接続して、その中のPT3の接続をY結線とΔ結線にすることにより、上記と同様に一般の計器用変圧器の機能と同じ正相電圧と零相電圧が同時に計測できる。   By connecting three types of single-phase measurement SA1 equivalents to a three-phase power facility, and connecting the PT3 in the Y-connection and Δ-connection in the same way as above, a general instrument transformer The same positive phase voltage and zero phase voltage as the function can be measured simultaneously.

次に、第3の実施の形態を説明する。
図3は、本実施の形態による計測SA1の回路図である。この図で、計測SA1は、三相R,S,Tに接続される3式のコンデンサC1r、C1s、C1tが、1式の共通コンデンサC2oを介してアースEに接続される。このC2o間の電圧を単相の絶縁変圧器3に接続して計測出力V02とする。
Next, a third embodiment will be described.
FIG. 3 is a circuit diagram of the measurement SA1 according to this embodiment. In this figure, in measurement SA1, three types of capacitors C1r, C1s, and C1t connected to three-phase R, S, and T are connected to ground E through one set of common capacitor C2o. The voltage between C2o is connected to the single-phase insulating transformer 3 to obtain a measurement output V02.

この回路構成により、地絡事故時などの各相のバランスが崩れたときのアース間に発生する零相電圧V02が測定できる。   With this circuit configuration, it is possible to measure the zero-phase voltage V02 generated between the grounds when the balance of each phase is lost such as during a ground fault.

本実施形態により、サージアブソーバーの機能と、零相電圧のみを計測する場合、第2の実施形態の計測SA1より構成部品を削減できる。   According to the present embodiment, when only the function of the surge absorber and the zero-phase voltage are measured, the number of components can be reduced from the measurement SA1 of the second embodiment.

次に、第4の実施の形態を説明する。
図5,6は、計測SA1の電力設備における制御保護回路構成図の使用例である。図5は、第2または第3の実施形態による計測SA1を使用した保護回路構成図である。この図において、配電用変電所の一次側に電力用変圧器60の一次側遮断器31が、二次側に二次側遮断器32がそれぞれ装備され、当該二次側遮断器32に配電線の母線10が設備されている。変圧器60の二次側Bと二次側遮断器32の間に、計測SA1が装備され、当該計測SA1に電圧計50や地絡過電圧継電器40が接続されている。母線10には、計器用変圧器3Xに2種の地絡過電圧継電器41,42などが装備されるのが一般的である。
Next, a fourth embodiment will be described.
5 and 6 are usage examples of the configuration diagram of the control protection circuit in the power facility of the measurement SA1. FIG. 5 is a configuration diagram of a protection circuit using the measurement SA1 according to the second or third embodiment. In this figure, the primary side circuit breaker 31 of the power transformer 60 is provided on the primary side of the distribution substation, and the secondary side circuit breaker 32 is provided on the secondary side, and the secondary side circuit breaker 32 is connected to the distribution line. No. 10 bus 10 is provided. A measurement SA1 is provided between the secondary side B of the transformer 60 and the secondary side circuit breaker 32, and a voltmeter 50 and a ground fault overvoltage relay 40 are connected to the measurement SA1. The bus 10 is generally equipped with two types of ground fault overvoltage relays 41, 42, etc. in the instrument transformer 3X.

この構成において、母線10に地絡事故などが発生すると、図5(a)に示すように、母線10に装備された計器用変圧器3Xを介した地絡過電圧継電器41,または42などが、事故を検出して、母線10に電気を供給する変圧器60の二次側遮断器32を開放して事故を回避する。また、変圧器60と二次側遮断器32間に地絡事故が発生した場合、図5(b)に示すように、この間に装備された計器SA1を介した地絡過電圧継電器40と、母線10に接続された地絡過電圧継電器41,または42,が事故を検出し、まず、母線10の保護継電器41,または42により二次側遮断器32が開放される。しかし、事故区間に装備された保護継電器40は、まだ事故継続中を検出して変圧器60の一次側遮断器31をトリップさせる。この2段階の動作により事故が回避される。
これにより、事故箇所に応じて適切な停電範囲にすることができる。
In this configuration, when a ground fault or the like occurs in the bus 10, as shown in FIG. 5 (a), the ground fault overvoltage relay 41 or 42 via the instrument transformer 3X installed in the bus 10 is An accident is detected, and the secondary circuit breaker 32 of the transformer 60 that supplies electricity to the bus 10 is opened to avoid the accident. Further, when a ground fault occurs between the transformer 60 and the secondary circuit breaker 32, as shown in FIG. 5 (b), the ground fault overvoltage relay 40 via the instrument SA1 installed therebetween, and the bus The ground fault overvoltage relay 41 or 42 connected to 10 detects an accident, and the secondary circuit breaker 32 is first opened by the protective relay 41 or 42 of the bus 10. However, the protective relay 40 installed in the accident section detects that the accident is still continuing and trips the primary circuit breaker 31 of the transformer 60. Accidents are avoided by this two-stage operation.
Thereby, it can be set as the appropriate power failure range according to an accident location.

次に、第5の実施の形態を説明する。
図6は、第2の実施形態の計測SA1を使用した電圧調整回路構成図である。
2式の変圧器60a,60bで構成されるいわゆる2バンク型の配電変電所において、各変圧器60aまたは60b周辺の回路構成を第3の実施形態と同じ、各変圧器60a,60bの二次巻線Bと、二次側遮断器32a,32b間に計測SA1a,1bを介して電圧計50a,50bが装備されている。母線10a,10bの計器用変圧器3Xa,3Xbにも電圧計51a,51bが装備され、両母線10a,10bの間には、連絡遮断器31cが設けられている。
Next, a fifth embodiment will be described.
FIG. 6 is a voltage adjustment circuit configuration diagram using the measurement SA1 of the second embodiment.
In a so-called two-bank type distribution substation composed of two transformers 60a and 60b, the circuit configuration around each transformer 60a or 60b is the same as that in the third embodiment, and the secondary of each transformer 60a and 60b. Voltmeters 50a and 50b are provided between the winding B and the secondary circuit breakers 32a and 32b via measurement SA1a and 1b. Voltmeters 51a and 51b are also provided in the instrument transformers 3Xa and 3Xb of the buses 10a and 10b, and a communication breaker 31c is provided between the buses 10a and 10b.

この構成により、片系の変圧器60bの保守作業を行う場合、まず両母線10a,10bを接続する連絡遮断器31cの投入後、一次側遮断器31bと二次側遮断器32bが、開放操作される。この状態で保守作業が行われ、この復旧時に、まず一次側遮断器31bが投入され、二次側の電圧と母線10bの電圧を合わせるために電圧計50bと51bにより両電圧が測定され、変圧器60bのタップが両電圧を一致させるよう調整される。   With this configuration, when performing maintenance work on the single-system transformer 60b, first, after the connection circuit breaker 31c connecting both buses 10a and 10b is turned on, the primary circuit breaker 31b and the secondary circuit breaker 32b are opened. Is done. Maintenance work is performed in this state, and at the time of recovery, the primary circuit breaker 31b is first turned on, and both voltages are measured by the voltmeters 50b and 51b to match the voltage on the secondary side and the voltage on the bus 10b. The tap of the device 60b is adjusted to match both voltages.

この調整は、計測SA1により電圧が測定できるため、この電圧を、遠方監視制御装置を介してこの変電所を監視制御する制御所に送信し、この値によって変圧器60bのタップを遠方から調整制御することもできる。   In this adjustment, since the voltage can be measured by the measurement SA1, this voltage is transmitted to the control station that monitors and controls this substation via the remote monitoring and control device, and the tap of the transformer 60b is adjusted and controlled from this distance by this value. You can also

以上、第4,5の実施の形態によれば、計測および保護のレベルを改善することができるため、事故時の停電の範囲の限定や時間の短縮を行うことができるともに、変圧器の保守作業時においてもきめの細かい電圧調整と遠方監視制御なども可能となる。   As described above, according to the fourth and fifth embodiments, since the level of measurement and protection can be improved, it is possible to limit the range of power outage at the time of an accident and to shorten the time and to maintain the transformer. Fine voltage adjustment and remote monitoring control are possible even during work.

本発明は、電力系統における電圧測定と保護に利用することができる。   The present invention can be used for voltage measurement and protection in a power system.

図1(a)は、本発明の第1の実施の形態による計測機能付きサージアブソーバーの回路図であり、図1(b)は、図1(a)の等価回路図である。FIG. 1A is a circuit diagram of a surge absorber with a measurement function according to the first embodiment of the present invention, and FIG. 1B is an equivalent circuit diagram of FIG. 本発明の第2の実施の形態による計測機能付きサージアブソーバーの回路図である。It is a circuit diagram of the surge absorber with a measurement function by the 2nd Embodiment of this invention. 本発明の第3の実施の形態による計測機能付きサージアブソーバーの回路図である。It is a circuit diagram of the surge absorber with a measurement function by the 3rd Embodiment of this invention. 本発明の計測機能付きサージアブソーバーの基本的な使用回路例である。It is a basic circuit example of the surge absorber with a measurement function of the present invention. 本発明の第4の実施の形態による計測機能付きサージアブソーバーを用いた保護回路の構成図である。It is a block diagram of the protection circuit using the surge absorber with a measurement function by the 4th Embodiment of this invention. 本発明の第5の実施の形態による計測機能付きサージアブソーバーを用いた保護回路の構成図である。It is a block diagram of the protection circuit using the surge absorber with a measurement function by the 5th Embodiment of this invention. 従来の基本的な電力設備の回路構成図である。It is a circuit block diagram of the conventional basic power equipment. 従来の配電用変電所の保護回路の構成図である(その1)。It is a block diagram of the protection circuit of the conventional distribution substation (the 1). 従来の配電用変電所の保護回路の構成図である(その2)。It is a block diagram of the protection circuit of the conventional distribution substation (the 2).

符号の説明Explanation of symbols

1,1a,1b サージアブソーバー
2 分圧手段
2a 分圧端子
3、3X、3Xa,3Xb 絶縁手段(計器用変圧器,PT)
9 電力設備
10、10,10a,10b 母線
30、31,31a,31b,32,32a,32b 遮断器
40,41,・・・ 保護継電器
50、50a,50b、51a,51b 電圧計
60、60a,60b 変圧器
1, 1a, 1b Surge absorber 2 Voltage dividing means 2a Voltage dividing terminal 3, 3X, 3Xa, 3Xb Insulating means (instrument transformer, PT)
9 Electric power equipment 10, 10, 10a, 10b Busbar 30, 31, 31a, 31b, 32, 32a, 32b Breaker 40, 41, ... Protection relay 50, 50a, 50b, 51a, 51b Voltmeter 60, 60a, 60b transformer

Claims (5)

電力設備用のサージアブソーバーであって、
前記サージアブソーバーの有する静電容量を分割することによって、前記サージアブソーバーに印加された交流電圧を分圧する分圧手段と、
前記分圧手段によって分圧された分圧電圧を取り出すための分圧端子と、
を備えたことを特徴とする計測機能付きサージアブソーバー。
A surge absorber for electric power equipment,
Voltage dividing means for dividing the alternating voltage applied to the surge absorber by dividing the electrostatic capacity of the surge absorber;
A voltage dividing terminal for taking out a divided voltage divided by the voltage dividing means;
Surge absorber with measuring function, characterized by having
前記分圧手段は、電源線の各相に夫々その一端が接続され、他端は共通接続されるコンデンサと、前記他端と対地間に接続される対地用コンデンサとを有し、前記対地用コンデンサの両端の電圧を分圧電圧として取り出すことを特徴とする請求項1記載の計測機能付きサージアブソーバー。   The voltage dividing means includes a capacitor having one end connected to each phase of the power line and the other end connected in common, and a ground capacitor connected between the other end and the ground. 2. The surge absorber with a measuring function according to claim 1, wherein the voltage across the capacitor is taken out as a divided voltage. 請求項1または2記載の計測機能付きサージアブソーバーによって分圧された交流電圧を絶縁して出力する絶縁手段を備えたことを特徴とする計器用変圧器。   3. An instrument transformer comprising an insulating means for insulating and outputting an alternating voltage divided by a surge absorber with a measuring function according to claim 1. 電力用変圧器と当該変圧器の一次側を遮断する一次側遮断器と当該変圧器の二次側を遮断する二次側遮断器とを有する変電所の電力設備であって、
前記変圧器の二次巻線と前記二次側遮断器との間に請求項1または2記載の計測機能付きサージアブソーバーもしくは請求項3記載の計器用変圧器を接続したことを特徴とする電力設備。
A power facility of a substation having a power transformer, a primary circuit breaker that interrupts a primary side of the transformer, and a secondary circuit breaker that interrupts a secondary side of the transformer,
3. A power characterized by connecting a surge absorber with a measuring function according to claim 1 or a measuring instrument transformer according to claim 3 between a secondary winding of the transformer and the secondary circuit breaker. Facility.
請求項4記載の電力設備の保護方法であって、
前記分圧端子に電圧計測手段を接続して二次側の電圧を計測し、
当該計測値を地絡過電圧保護継電器に入力し、当該地絡過電圧保護継電器が、前記二次側の電圧を監視することによって事故を検出したときは、前記二次側遮断器を遮断することを特徴とする電力設備の保護方法。
A method for protecting a power facility according to claim 4,
Connect the voltage measuring means to the voltage dividing terminal to measure the secondary voltage,
When the measured value is input to the ground fault overvoltage protection relay and the ground fault overvoltage protection relay detects an accident by monitoring the secondary side voltage, the secondary side circuit breaker is shut off. A method for protecting electric power equipment.
JP2007186654A 2007-07-18 2007-07-18 Power equipment protection method and surge absorber with measurement function Expired - Fee Related JP5079413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007186654A JP5079413B2 (en) 2007-07-18 2007-07-18 Power equipment protection method and surge absorber with measurement function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007186654A JP5079413B2 (en) 2007-07-18 2007-07-18 Power equipment protection method and surge absorber with measurement function

Publications (2)

Publication Number Publication Date
JP2009027802A true JP2009027802A (en) 2009-02-05
JP5079413B2 JP5079413B2 (en) 2012-11-21

Family

ID=40399081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007186654A Expired - Fee Related JP5079413B2 (en) 2007-07-18 2007-07-18 Power equipment protection method and surge absorber with measurement function

Country Status (1)

Country Link
JP (1) JP5079413B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014017938A (en) * 2012-07-06 2014-01-30 Mitsubishi Electric Corp Ferro-resonance arrester and power substation using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5276660A (en) * 1975-12-20 1977-06-28 Meidensha Electric Mfg Co Ltd Lighting discharger
JPS57132727A (en) * 1981-02-05 1982-08-17 Tokyo Shibaura Electric Co Transformer protecting relay unit
JP2000286108A (en) * 1999-03-30 2000-10-13 Mitsubishi Electric Corp Porcelain type arrester

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5276660A (en) * 1975-12-20 1977-06-28 Meidensha Electric Mfg Co Ltd Lighting discharger
JPS57132727A (en) * 1981-02-05 1982-08-17 Tokyo Shibaura Electric Co Transformer protecting relay unit
JP2000286108A (en) * 1999-03-30 2000-10-13 Mitsubishi Electric Corp Porcelain type arrester

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014017938A (en) * 2012-07-06 2014-01-30 Mitsubishi Electric Corp Ferro-resonance arrester and power substation using the same

Also Published As

Publication number Publication date
JP5079413B2 (en) 2012-11-21

Similar Documents

Publication Publication Date Title
Brunello et al. Shunt capacitor bank fundamentals and protection
EP2730023B1 (en) System for detecting internal winding faults of a synchronous generator, computer program product and method
EP2128951B1 (en) Electronic active earthing system for use in high-voltage distribution networks
US9008982B2 (en) Systems and methods for determining residual flux in a power transformer
AU2005295599A1 (en) Corrective device protection
KR101923993B1 (en) Protection system of power line with neutral ground resistor and design method thereof
JP5380702B2 (en) Leakage current measuring device and measuring method
Bishop et al. A primer on capacitor bank protection
JP5935554B2 (en) Iron resonance prevention device and receiving / transforming equipment using the same
JP5079413B2 (en) Power equipment protection method and surge absorber with measurement function
JP2008053334A (en) Voltage transformer for gage, electric facility using the same, high pressure load switching box, and voltage/current transformer for gage
Shen et al. Grounding transformer application, modeling, and simulation
KR100591437B1 (en) 154KV (2CT, 3PT) Neutral Grounding Method
Karandikar et al. Digital switchgear: The next phase in the evolution of safety by design
CN109782113B (en) Single-phase disconnection line selection method and system for neutral point ungrounded system
Dionise et al. Power quality investigation of back-to-back harmonic filters for a high-voltage anode foil manufacturing facility
Kokor et al. Effects of neutral point grounding methods on single-phase short circuit fault characteristics
Shirkovets et al. Experimental investigations and calculations in 6–35 kV networks with various neutral conditions
JP2016070855A (en) Device for disconnection detection and method therefor
JP5247164B2 (en) Protective relay device
CN204855756U (en) Two cover DC power supply system cluster electric detection means of transformer substation
Kojovic Applications of Rogowski coils for advanced power system solutions
Karandikar et al. The Next Phase in the Evolution of Safety by Design–Medium Voltage Digital Switchgear
CN105116352B (en) The double set DC power system string electro-detection methods of substation
Keri et al. Insulation coordination for delta connected transformers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5079413

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees