JP2016070855A - Device for disconnection detection and method therefor - Google Patents

Device for disconnection detection and method therefor Download PDF

Info

Publication number
JP2016070855A
JP2016070855A JP2014202805A JP2014202805A JP2016070855A JP 2016070855 A JP2016070855 A JP 2016070855A JP 2014202805 A JP2014202805 A JP 2014202805A JP 2014202805 A JP2014202805 A JP 2014202805A JP 2016070855 A JP2016070855 A JP 2016070855A
Authority
JP
Japan
Prior art keywords
power
phase
disconnection
voltage
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014202805A
Other languages
Japanese (ja)
Other versions
JP5903143B1 (en
Inventor
泰紀 戸佐間
Yasunori Tosama
泰紀 戸佐間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2014202805A priority Critical patent/JP5903143B1/en
Application granted granted Critical
Publication of JP5903143B1 publication Critical patent/JP5903143B1/en
Publication of JP2016070855A publication Critical patent/JP2016070855A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a device for disconnection detection that detects one-line disconnection in a transmission line for connecting power supplies at both terminals with each other and can surely detect the disconnection without increasing facilities, and provide a method therefor.SOLUTION: A device 10 for disconnection detection detects one-line disconnection in a transmission line 101 in a state where two electric power stations respectively provided with power-generating facilities are connected to both end terminals of a three-phase power line and where power generators 111 and 121 of internal combustion power plants B and C are operating, and the device comprises a processing part 12 that is provided in at least one of the internal combustion power plants B and C and checks power to be transmitted to the opposed internal combustion power plant. The processing part 12 determines that the one-line disconnection occurs in the transmission line 101 on the basis of: a first requirement that a three-phase line voltage value is unchanged; and a second requirement that the power to be transmitted to the opposed internal combustion power plant is changed from a value showing three-phase power to a value showing single-phase power.SELECTED DRAWING: Figure 1

Description

この発明は、電気を送るために配置されている電線の断線検出装置およびその方法に関する。   The present invention relates to a breakage detection device for an electric wire arranged for sending electricity and a method thereof.

電線には送電線や配電線があり、発電所の電気を送電線で送り、さらに送電線から変電所や配電線を経て需要家に電気が供給される。例えば、図7に示すように、A電力所担当区域に内燃力発電所Bと内燃力発電所Cとが有り、双方を三相用の送電線101が結んでいる。通常、双方の内燃力発電所B、Cの発電装置111、121は稼動しているため、内燃力発電所B、Cが両端電源となる。   Electric wires include power transmission lines and distribution lines. Electricity from the power plant is sent through the transmission lines, and electricity is supplied to customers through the substations and distribution lines. For example, as shown in FIG. 7, there are an internal combustion power station B and an internal combustion power station C in a power station A charge area, and a three-phase transmission line 101 is connected to both. Usually, since the power generators 111 and 121 of both internal combustion power plants B and C are operating, the internal combustion power plants B and C serve as power sources at both ends.

なお、図7には、計器用変流器(CT:Current Transformer)112、122や計器用変圧器(PT:Potential Transformer)113、123が示されている。計器用変流器112、122は送電線101の大電流を保護用のリレー(図示を省略)に必要な電流に変換し、計器用変圧器113、123は送電線101の高電圧をリレーに必要な電圧に変換する。そして、内燃力発電所Bと内燃力発電所Cとの保護用のリレーは、これらの電流と電圧とを基にして遮断器114、124の開閉を制御する。   In FIG. 7, instrument current transformers (CT) 112 and 122 and instrument transformers (PT) 113 and 123 are shown. The instrument current transformers 112 and 122 convert a large current of the transmission line 101 into a current required for a protective relay (not shown), and the instrument transformers 113 and 123 use the high voltage of the transmission line 101 as a relay. Convert to the required voltage. And the relay for protection of the internal combustion power station B and the internal combustion power station C controls the opening and closing of the circuit breakers 114 and 124 based on these currents and voltages.

片端電源の場合、配電用変電所で標準としている欠相遮断回路(27リレーと47リレーの組合せ)が採用できる。しかし、両端電源の状態で、送電線101で断線(1線)が発生した場合、配電用変電所で標準としている欠相遮断回路(27リレーと47リレーの組合せ)では1線断線が検出できない。また、絶縁電線を使用した送電線(22kV送電線)は、断線しても地絡を伴わないため、地絡の保護継電器では1線断線を検出できないことがある。なお、27リレーは不足電圧継電器であり、47リレーは欠相電圧継電器である。   In the case of a single-ended power supply, an open-phase cutoff circuit (a combination of 27 relays and 47 relays) that is standard in distribution substations can be adopted. However, if a disconnection (one line) occurs in the power transmission line 101 in the state of the power supply at both ends, the one-phase disconnection circuit (combination of 27 relays and 47 relays) that is standard in a distribution substation cannot detect a one-wire disconnection. . Moreover, since a power transmission line (22 kV power transmission line) using an insulated wire does not accompany a ground fault even if it is disconnected, a one-line disconnection may not be detected by a ground fault protective relay. The 27 relay is an undervoltage relay, and the 47 relay is an open phase voltage relay.

また、断線事故保護方式として、断線時の逆相電流を検出する逆相電流リレー方式(46リレー)が実用化されているが、負荷電流の不平衡でも検出するため採用できない。   Further, as a disconnection accident protection system, a reverse phase current relay system (46 relay) that detects a reverse phase current at the time of disconnection has been put into practical use, but it cannot be adopted because it detects even an imbalance of load current.

さらに、両端電源の場合に1線断線を検出する方法(例えば、特許文献1参照。)として、送配電線の三相(R、S、T)を流れる相電流の大きさの変化量と短絡・地絡リレーが動作していないことの条件に基づいて、断線事故が発生したかを判断するといったものがある。   Furthermore, as a method for detecting a one-wire break in the case of a power supply at both ends (see, for example, Patent Document 1), the amount of change in the magnitude of the phase current flowing through the three phases (R, S, T) of the transmission and distribution line and a short circuit -Based on the condition that the ground fault relay is not operating, it may be determined whether a disconnection accident has occurred.

特開2012−157115号公報JP 2012-157115 A

しかし、先に述べた方式、つまり、相電流の大きさの変化量とリレーの動作とを基に、両端電源の場合の1線断線を検出する方法には次の課題がある。
a.6kV配電線の短絡保護は2個の変流器(CT)を使っているため、この技術を採用する場合、変流器を1個増設する必要がある。
b.昨今、送電線保護継電装置はデジタル型で機器仕様の標準化が図れているため、この技術を採用するためには、送電線保護継電装置を特殊仕様とし、条件入力用の接点を用意する必要がある(ソフトウェアの独自開発が必要な場合も有る)。
c.三相電流の不平衡が有る場合、相電流および線間電流の大きさの変化量を監視したとしても逆相電流監視(46リレー)と同様のために、不要動作の可能性がある。
However, the method described above, that is, a method for detecting a one-wire breakage in the case of a power supply at both ends based on the amount of change in the magnitude of the phase current and the operation of the relay has the following problems.
a. Since short-circuit protection for 6 kV distribution lines uses two current transformers (CT), when this technology is adopted, it is necessary to add one current transformer.
b. In recent years, the transmission line protection relay device is digital and standardization of equipment specifications has been attempted. To adopt this technology, the transmission line protection relay device will be a special specification and contact points for condition input will be prepared. Necessary (in some cases, it is necessary to develop the software independently).
c. When there is an imbalance in the three-phase current, even if the amount of change in the magnitude of the phase current and the line current is monitored, it is the same as the reverse-phase current monitoring (46 relay), and there is a possibility of unnecessary operation.

この発明の目的は、前記の課題を解決し、両端電源を結ぶ送電線の1線断線を検出し、設備の増加を伴うことがなく、確実に断線を検出することができる断線検出装置およびその方法を提供することにある。   An object of the present invention is to solve the above-mentioned problems, detect one disconnection of a power transmission line connecting both ends of the power supply, detect disconnection reliably without increasing the number of facilities, and the device It is to provide a method.

前記の課題を解決するために、請求項1の発明は、発電設備をそれぞれ備える2つの電気所が三相用電線の両端に接続され、かつ、各発電設備が稼動している状態で前記電線の1線断線を検出する断線検出装置であって、前記両電気所の少なくとも1つに設けられ、対向する前記電気所に送られる電力を調べる処理装置を備え、前記処理装置は、三相の線間電圧の値が変化していないという第1の要件と、対向する前記電気所に送られる電力が三相電力を表す値から単相電力を表す値に変わったという第2の要件とにより、前記電線に1線断線が発生したと判定する、ことを特徴とする断線検出装置である。   In order to solve the above-mentioned problems, the invention of claim 1 is characterized in that two electric stations each having a power generation facility are connected to both ends of a three-phase electric wire and each power generation facility is in operation. A disconnection detecting device for detecting a one-wire disconnection, comprising: a processing device that is provided in at least one of the two electrical stations and that checks the power transmitted to the opposing electrical plant; Due to the first requirement that the value of the line voltage has not changed, and the second requirement that the power sent to the opposing electrical station has changed from a value representing three-phase power to a value representing single-phase power It is determined that one-wire breakage has occurred in the electric wire.

請求項1の発明では、発電設備をそれぞれ備える2つの電気所が三相用電線の両端に接続され、かつ、各発電設備が稼動している状態で、断線検出装置が電線の1線断線を検出する。このために、断線検出装置は、三相の線間電圧の値が変化していないという第1の要件と、対向する電気所に送られる電力が三相電力を表す値から単相電力を表す値に変わったという第2の要件とにより、電線に1線断線が発生したと判定する。   In the invention of claim 1, in the state where two electric stations each having a power generation facility are connected to both ends of the three-phase electric wire and each power generation facility is in operation, the disconnection detection device detects a one-wire disconnection of the electric wire. To detect. For this reason, the disconnection detection device represents single-phase power from the first requirement that the value of the three-phase line voltage has not changed and the value of the power sent to the opposite electrical station representing the three-phase power. Based on the second requirement that the value has changed, it is determined that a one-wire break has occurred in the electric wire.

請求項2の発明は、請求項1に記載の断線検出装置において、前記処理装置は、前記第1の要件と前記第2の要件とに加えて、相手端に送る電流の位相が変化したという第3の要件により、前記電線に1線断線が発生したと判定する、ことを特徴とする。   According to a second aspect of the present invention, in the disconnection detecting device according to the first aspect, in addition to the first requirement and the second requirement, the processing device has changed the phase of the current sent to the other end. According to a third requirement, it is determined that a one-wire disconnection has occurred in the electric wire.

請求項3の発明は、発電設備をそれぞれ備える2つの電気所が三相用電線の両端に接続され、かつ、各発電設備が稼動している状態で前記電線の1線断線を検出する断線検出方法であって、前記両電気所の少なくとも1つに設けられた処理装置により、対向する前記電気所に送られる電力を調べ、三相の線間電圧の値が変化していないという第1の要件と、対向する前記電気所に送られる電力の値が三相電力から単相電力に変わったという第2の要件とにより、前記電線に1線断線が発生したと前記処理装置により判定する、ことを特徴とする断線検出方法である。   The invention according to claim 3 is a disconnection detection for detecting a one-wire disconnection of the electric wire in a state where two electric stations each having a power generation facility are connected to both ends of the three-phase electric wire and each power generation facility is operating. A method is provided in which a processing device provided in at least one of the two electric power stations is used to check electric power sent to the opposite electric power stations, and a value of a three-phase line voltage has not changed. According to the requirement and the second requirement that the value of the electric power sent to the opposing electrical station has changed from three-phase power to single-phase power, the processing device determines that a one-wire disconnection has occurred in the electric wire, This is a disconnection detection method characterized by the above.

請求項1と請求項3の発明によれば、三相用電線の両端に設けられている電気所が発電設備を稼動している状態で、電線の1線断線を検出することができる。また、この発明によれば、処理装置が設けられている側の電気所で1線断線を検出することができるので、対抗する電気所と電圧や電流情報の送受信を行うための通信回線が不要である。   According to the first and third aspects of the invention, it is possible to detect a one-wire disconnection of the electric wire in a state where the electric stations provided at both ends of the three-phase electric wire operate the power generation equipment. In addition, according to the present invention, since a one-wire disconnection can be detected at the electric station on the side where the processing apparatus is provided, there is no need for a communication line for transmitting and receiving voltage and current information with the opposing electric station. It is.

請求項2の発明によれば、第1の要件と第2の要件とに加えて、三相の電流の位相が変化したという第3の要件により1線断線を判定するので、1線断線の検出精度を向上することが可能である。   According to the invention of claim 2, in addition to the first requirement and the second requirement, the one-wire breakage is determined by the third requirement that the phase of the three-phase current has changed. It is possible to improve detection accuracy.

この発明の実施の形態1による断線検出装置の一例を示す構成図である。It is a block diagram which shows an example of the disconnection detection apparatus by Embodiment 1 of this invention. 処理部の一例を示す構成図である。It is a block diagram which shows an example of a process part. 発電所側の正常時の電圧と電流との関係を示すベクトル図である。It is a vector diagram which shows the relationship between the voltage and electric current at the time of the power station side at the normal time. 発電所側の断線時の電圧と電流との関係を示すベクトル図である。It is a vector diagram which shows the relationship between the voltage at the time of a disconnection at the power station side, and an electric current. 二電力計法を説明するための構成図である。It is a block diagram for demonstrating the two wattmeter method. 1線断線が発生した様子を示す図である。It is a figure which shows a mode that 1 line disconnection generate | occur | produced. 両端電源がある場合の電力系統の一例を示す図である。It is a figure which shows an example of an electric power system in case there exists a both-ends power supply.

次に、この発明の各実施の形態について、図面を用いて詳しく説明する。   Next, embodiments of the present invention will be described in detail with reference to the drawings.

(実施の形態1)
この実施の形態1による断線検出装置を図1に示す。図1の断線検出装置10は内燃力発電所C側に設けられている。そして、断線検出装置10は両端電源の送電線101の1線断線を検出する。このために、断線検出装置10は、入力インターフェイス11と処理部12と出力部13とを備え、さらに、計器用変流器122と計器用変圧器123との出力を利用する。なお、この実施の形態では、先に説明した図7と同一もしくは同一と見なされる構成要素には、それと同じ参照符号を付けて、その説明を省略する。
(Embodiment 1)
A disconnection detecting device according to the first embodiment is shown in FIG. The disconnection detection device 10 of FIG. 1 is provided on the internal combustion power plant C side. And the disconnection detection apparatus 10 detects the 1-wire disconnection of the power transmission line 101 of a both-ends power supply. For this purpose, the disconnection detection device 10 includes an input interface 11, a processing unit 12, and an output unit 13, and further uses the outputs of the instrument current transformer 122 and the instrument transformer 123. In this embodiment, components that are the same as or the same as those in FIG. 7 described above are denoted by the same reference numerals, and description thereof is omitted.

入力インターフェイス11は、計器用変流器122と計器用変圧器123とからの出力を受け取る。つまり、送電線101や内燃力発電所Bの母線は三相交流を流すので、入力インターフェイス11は、計器用変流器122から三相交流の相電流である電流I、Iを入力とし、計器用変圧器123から三相交流の相電圧である電圧E、E、Eを入力とする。このとき、
電流Iのベクトル表示を・I
のように表す。同じようにして、
電流Iのベクトル表示を・I
電圧Eのベクトル表示を・E
電圧Eのベクトル表示を・E
電圧Eのベクトル表示を・E
のように表す。
The input interface 11 receives outputs from the instrument current transformer 122 and the instrument transformer 123. That is, since the generating line of the transmission line 101 and the internal combustion power plants B will flow three-phase alternating current, input interface 11, from the current transformer 122 current I R is the phase current of the three-phase AC, and inputs the I T The voltages E R , E S , and E T that are three-phase AC phase voltages are input from the instrument transformer 123. At this time,
- a vector display of the current I R I R
It expresses like this. In the same way
- a vector display of the current I T I T
- a vector display of voltage E R E R
- a vector display of voltage E S E S
- a vector display of voltage E T E T
It expresses like this.

入力インターフェイス11は、電流I、Iと電圧E、E、Eとを、処理部12で取り扱い可能なデジタルデータに変換する。そして、入力インターフェイス11は、デジタルデータの電流I、Iと電圧E、E、Eとを処理部12に出力する。 The input interface 11 converts the currents I R and IT and the voltages E R , E S , and E T into digital data that can be handled by the processing unit 12. The input interface 11 then outputs digital data currents I R and I T and voltages E R , E S and E T to the processing unit 12.

処理部12は、入力インターフェイス11からのデジタルデータから、送電線101の断線を検出する。このために、処理部12は、図2に示すように、比較部12Aと生成部12Bとを備えている。比較部12Aは、電流I、Iと電圧E、E、Eとから、位相変化を表す位相変化信号と、電力変化を表す電力変化信号と、線間電圧の変化を表す線間電圧無変化信号とを生成する。 The processing unit 12 detects disconnection of the power transmission line 101 from the digital data from the input interface 11. For this purpose, the processing unit 12 includes a comparison unit 12A and a generation unit 12B as shown in FIG. The comparison unit 12A includes a phase change signal indicating a phase change, a power change signal indicating a power change, and a line indicating a change in the line voltage from the currents I R and IT and the voltages E R , E S and E T. A voltage unchanged signal is generated.

このために、比較部12Aは、電圧Eと電圧Eとから三相交流のR相とS相との線間電圧VRSを算出する。線間電圧VRSのベクトル表示が・VRSである。また、比較部12Aは、電圧Eと電圧Eとから三相交流のS相とT相との線間電圧VSTを算出する。線間電圧VSTのベクトル表示が・VSTである。さらに、比較部12Aは、電圧Eと電圧Eとから三相交流のT相とR相との線間電圧VTRを算出する。線間電圧VTRのベクトル表示が・VTRである。そして、処理部12は、入力された電流Iおよび電流Iと、算出した線間電圧VRS、線間電圧VSTおよび線間電圧VTRとから、先に述べた各信号を生成する。 Therefore, the comparing unit 12A calculates the line voltage V RS of the R-phase and S-phase of the three-phase AC and a voltage E R and the voltage E S. Vector display of line-to-line voltage V RS is a · V RS. The comparison unit 12A calculates the line voltage V ST between the S-phase and T-phase of the three-phase AC and a voltage E S and the voltage E T. The vector display of the line voltage V ST is · V ST . Further, the comparing unit 12A calculates the line voltage V TR of the T-phase and R-phase of the three-phase AC from the voltage E T and the voltage E R. The vector display of the line voltage VTR is · VTR . Then, processing unit 12, from the current I R and a current I T which is input, the calculated line voltage V RS, the line voltage V ST and line voltage V TR, and generates the signals described above .

各信号を生成するために、比較部12Aは、位相比較部12Aと電力比較部12Aと電圧比較部12Aとを備えている。 To produce each signal, comparing unit 12A, and a phase comparator 12A 1 and the power comparator section 12A 2 and the voltage comparator 12A 3.

比較部12Aの位相比較部12Aは、線間電圧と電流との位相を比較することで、両端電源での1線断線の検出精度を上げている。つまり、1線断線が発生すると、電流Iや電流Iの位相が変化する点を、位相比較部12Aが利用している。この実施の形態では、位相比較部12Aは、線間電圧VRSと電流Iとの位相差を比較する。例えば、正常時の線間電圧と電流とのベクトル図を図3に示し、S相断線時の線間電圧と電流とのベクトル図を図4に示す。これら2つの図から明らかなように、両端電源の場合には、線間電圧VRSや線間電圧VSTなどの電圧の位相は変化しないが、電流Iや電流Iの位相は大きく変化する。例えば、R相の電流Iの場合、正常時には、線間電圧VRSに対して、電流Iの位相は、
30°+θ
であるが、S相断線時には、位相が
30°+30°+θ
となり、位相差は、
(30°+30°+θ)−(30°+θ)=30°
になる。ここで、角度θは例えばS相であれば、相電圧Eと相電圧Iとの位相差であり、角度30°は線間電圧VRSと相電圧Eとの位相差である。
Phase comparator 12A 1 of the comparator unit 12A, by comparing the phases of the line voltage and current, and by increasing the detection accuracy of the one-wire break at both ends power. That is, when 1 line disconnection occurs, the point where the phase of the current I R and a current I T is changed, the phase comparator 12A 1 is utilized. In this embodiment, the phase comparator 12A 1 compares the phase difference between the line voltage V RS and the current I R. For example, FIG. 3 shows a vector diagram of line voltage and current at normal time, and FIG. 4 shows a vector diagram of line voltage and current at S phase disconnection. These from two figures Obviously, if both ends power, although the voltage of the phase, such as line voltage V RS and the line voltage V ST does not change, the phase of the current I R and current I T is large changes To do. For example, if the current I R of the R-phase, during normal, with respect to the line voltage V RS, the current I R phase,
30 ° + θ
However, when the S phase is broken, the phase is 30 ° + 30 ° + θ.
And the phase difference is
(30 ° + 30 ° + θ) − (30 ° + θ) = 30 °
become. Here, if the angle θ is, for example, the S phase, it is the phase difference between the phase voltage E S and the phase voltage I S , and the angle 30 ° is the phase difference between the line voltage V RS and the phase voltage E S.

このように、位相比較部12Aは、例えば線間電圧VRSに対する電流Iの位相をリアルタイムで調べ、上式の演算結果から位相が30°以上変化した場合に、位相変化有りと判定する。そして、この場合に、位相比較部12Aは、ハイレベル(「1」)の位相変化信号を出力する。なお、この実施の形態では、1線断線の検出精度を向上するために、この位相変化を調べている。 Thus, the phase comparator 12A 1, for example examines the phase of the current I R for line voltage V RS in real time, if the phase from the calculation result of the above equation is changed 30 ° or more, determines that there is a phase change . Then, in this case, the phase comparator 12A 1 outputs the phase variation signal of a high level ( "1"). In this embodiment, this phase change is examined in order to improve the detection accuracy of the one-wire disconnection.

比較部12Aの電力比較部12Aは、電流Iおよび電流Iと、線間電圧VRS、線間電圧VSTおよび線間電圧VTRとから三相電力を調べる。この実施の形態では、電力比較部12Aは二電力計法を用いている。 Power comparing section 12A 2 of the comparison unit 12A checks the current I R and the current I T, the line voltage V RS, the three-phase power from the line voltage V ST and line voltage V TR. In this embodiment, the power comparing unit 12A 2 is using a two wattmeter method.

二電力計法は、図5に示すように、例えば内燃力発電所C側に2つの電力計201、202を設置する。そして、電力計201が線間電圧VRSと電流IとによりR相とS相との間の電力Wを計測し、電力計202が線間電圧VTSと電流IとによりT相とS相との間の電力Wを計測する。この後、電力比較部12Aは内燃力発電所Bに送られる電力Wを、
W=W+W
により算出する。
In the two-watt meter method, as shown in FIG. 5, for example, two watt meters 201 and 202 are installed on the internal combustion power plant C side. Then, the power W 1 between the R phase and the S phase was measured power meter 201 by the line voltage V RS and the current I R, T-phase power meter 202 by the line voltage V TS and the current I T and measuring the power W 2 between the S-phase. Thereafter, the electric power comparison unit 12A 2 uses the electric power W sent to the internal combustion power plant B,
W = W 1 + W 2
Calculated by

この実施の形態では、電力比較部12Aは、線間電圧VRSと線間電圧VTSと電流Iと電流Iとから、電力Wと電力Wとを、

Figure 2016070855
の式で算出して、二電力計法による測定を行う。このときの電圧・電流のベクトルを先の図3に示している。そして、電力比較部12Aは、内燃力発電所Bに送られる電力Wを、
Figure 2016070855

の式で算出する。これにより、電力比較部12Aは、正常時には、内燃力発電所Bに送られる電力として三相電力(√3VIcosθ)を計測する。なお、これらの式では、
Figure 2016070855
としている。 In this embodiment, the power comparing unit 12A 2 from the voltage across the line voltage V RS and the line V TS and the current I R and the current I T, and a power W 1 and the power W 2,
Figure 2016070855
Measured by the two wattmeter method. The voltage / current vectors at this time are shown in FIG. Then, the power comparing unit 12A 2 is a power W fed to the internal combustion power stations B,
Figure 2016070855

Calculate with the following formula. Thus, the power comparing unit 12A 2 Upon successful measures the three-phase power (√3VIcosθ) as power delivered to the internal combustion power plant B. In these equations,
Figure 2016070855
It is said.

ところで、例えば図6に示すようにS相に断線が発生した場合、電力比較部12Aは、線間電圧VRSと線間電圧VTSと電流Iと電流Iとから、電力Wと電力Wとを、

Figure 2016070855
の式で算出する。このときの電圧・電流のベクトルを先の図4に示している。そして、電力比較部12Aは、内燃力発電所Bに送られる電力として電力Wを、
Figure 2016070855
の式で算出する。これにより、電力比較部12Aは、S相の1線断線時には、内燃力発電所Bに送られる電力として単相電力(VIcosθ)を計測する。 Incidentally, for example, from when a disconnection in the S phase is generated as shown in FIG. 6, the power comparing unit 12A 2 is between line voltage V RS and the line voltage V TS and the current I R and the current I T, the power W 1 And power W 2
Figure 2016070855
Calculate with the following formula. The voltage / current vectors at this time are shown in FIG. Then, the power comparing unit 12A 2 is a power W as power delivered to the internal combustion power stations B,
Figure 2016070855
Calculate with the following formula. Thus, the power comparing unit 12A 2, at the time of 1-wire disconnection of S phase, measures the single-phase power (VIcosθ) as power delivered to the internal combustion power plant B.

つまり、S相の1線断線時では、電力比較部12Aは、
電力Wとして単相電力の1/2を計測する
電力Wとして単相電力の1/2を計測する
ので、
内燃力発電所B向けの電力Wとして単相電力(VIcosθ)を計測する
という結果になる。
That is, at the time of S-phase one-wire disconnection, the power comparison unit 12A 2
Measure half of single-phase power as power W 1 Measure half of single-phase power as power W 2 ,
As a result, the single-phase power (VI cos θ) is measured as the power W for the internal combustion power plant B.

同じようにして、R相の1線断線時では、電力比較部12Aは、
電力Wとして0(ゼロ)を計測する
電力Wとして単相電力(VIcosθ)を計測する
ので、
内燃力発電所B向けの電力Wとして単相電力(VIcosθ)を計測する
という結果になる。
In the same way, at the time of one-wire break in the R phase, the power comparing unit 12A 2 is
Measure 0 (zero) as power W 1 Measure single-phase power (VI cos θ) as power W 2 ,
As a result, the single-phase power (VI cos θ) is measured as the power W for the internal combustion power plant B.

また、T相の1線断線時では、電力比較部12Aは、
電力Wとして単相電力を計測する
電力Wとして0(ゼロ)を計測する
ので、
内燃力発電所B向けの電力Wとして単相電力(VIcosθ)を計測する
という結果になる。
Further, at the time one-wire break in the T-phase, the power comparing unit 12A 2 is
Since single-phase power is measured as power W 1 , 0 (zero) is measured as power W 2 .
As a result, the single-phase power (VI cos θ) is measured as the power W for the internal combustion power plant B.

これらの計測結果から、1線断線が発生すると、リアルタイムで計測した電力Wの値が√3VIcosθからVIcosθに変化するので、例えば「1−1/√3」以上の電力Wの値の変化があると、電力比較部12Aは、ハイレベル(「1」)の電力変化信号を出力する。 From these measurement results, when a one-wire disconnection occurs, the value of the electric power W measured in real time changes from √3 VI cos θ to VI cos θ, so there is a change in the electric power W value of, for example, “1-1 / √3” or more. When power comparator section 12A 2 outputs a power change signal of a high level ( "1").

比較部12Aの電圧比較部12Aは、線間電圧VRS、線間電圧VSTおよび線間電圧VTRの電圧値、つまり、

Figure 2016070855
をリアルタイムで調べる。そして、各電圧値に変化がなければ、電圧比較部12Aはハイレベル(「1」)の線間電圧無変化信号を出力する。 Voltage comparator 12A 3 of the comparator unit 12A, the line voltage V RS, the voltage value of the line voltage V ST and line voltage V TR, that is,
Figure 2016070855
In real time. Then, if there is no change in the voltage value, the voltage comparison section 12A 3 outputs a line voltage unchanged signal of a high level ( "1").

生成部12Bは、比較部12Aから位相変化信号と電力変化信号と線間電圧無変化信号とを受け取ると、これらの信号から断線検出信号を生成する。このために、生成部12Bは、アンドゲート12B、12Bとタイマー12Bとで構成されている。アンドゲート12Bは、位相変化信号と電力変化信号との論理積の演算を行い、アンドゲート12Bは、アンドゲート12Bの演算結果と線間電圧無変化信号との論理積の演算を行う。つまり、アンドゲート12Bとアンドゲート12Bとは、位相変化信号と電力変化信号と線間電圧無変化信号とがハイレベルになり、位相が変化したという要件と、電力が変化したという要件と、線間電圧が変化していないという要件が成り立ったときに、1線断線を検出する。タイマー12Bは、アンドゲート12B、12Bによる断線検出の状態が予め設定された設定時間だけ継続すると、1線断線の検出を表す断線検出信号を出力部13に出力する。 Upon receiving the phase change signal, the power change signal, and the line voltage unchanged signal from the comparison unit 12A, the generation unit 12B generates a disconnection detection signal from these signals. For this purpose, the generation unit 12B includes AND gates 12B 1 and 12B 2 and a timer 12B 3 . The AND gate 12B 1 performs a logical product operation of the phase change signal and the power change signal, and the AND gate 12B 2 performs a logical product operation of the AND gate 12B 1 operation result and the line voltage unchanged signal. . That is, the AND gate 12B 1 and the AND gate 12B 2 have a requirement that the phase change signal, the power change signal, and the line voltage non-change signal become high level, and the phase has changed, and that the power has changed. When the requirement that the line voltage does not change is satisfied, a one-wire disconnection is detected. When the disconnection detection state by the AND gates 12B 1 and 12B 2 continues for a preset time, the timer 12B 3 outputs a disconnection detection signal indicating the detection of the one-wire disconnection to the output unit 13.

出力部13は、処理部12から断線検出信号を受け取ると、遮断器124をトリップするためのトリップ信号の出力と、1線断線の発生を表す警報信号の出力とを行う。   When the output unit 13 receives the disconnection detection signal from the processing unit 12, the output unit 13 outputs a trip signal for tripping the circuit breaker 124 and outputs an alarm signal indicating the occurrence of the one-wire disconnection.

次に、この実施の形態の断線検出装置10による断線検出方法について説明する。内燃力発電所Cに設置されている断線検出装置10は、計器用変流器122から電流I、Iを入力とし、計器用変圧器123から電圧E、E、Eを入力とする。断線検出装置10の入力インターフェイス11は、電流I、Iと電圧E、E、Eとを、処理部12で取り扱い可能なデジタルデータに変換する。この後、入力インターフェイス11は、デジタルデータの電流I、Iと電圧E、E、Eとを処理部12に出力する。 Next, the disconnection detection method by the disconnection detection apparatus 10 of this embodiment will be described. Disconnection detection device is installed in an internal combustion power plant C 10, a current from the current transformer 122 I R, as input I T, the input voltage E R from the potential transformer 123, E S, the E T And The input interface 11 of the disconnection detection device 10 converts the currents I R and IT and the voltages E R , E S , and E T into digital data that can be handled by the processing unit 12. Thereafter, the input interface 11 outputs digital data currents I R and I T and voltages E R , E S and E T to the processing unit 12.

処理部12は、入力インターフェイス11から入力されたデジタルデータの電圧E、E、Eから線間電圧VRS、VST、VTRを算出する。そして、処理部12は、線間電圧VRS、VST、VTRと電流I、Iとから送電線101の1線断線を検出する。このとき、処理部12は、電流I、Iの位相の変化を調べ、位相に変化があると、ハイレベルの位相変化信号を生成する。また、処理部12は、内燃力発電所B向けの電力の値Wが三相電力(√3VIcosθ)から「1−1/√3」以上の変化があると、ハイレベルの電力変化信号を生成する。さらに、処理部12は、線間電圧VRS、VST、VTRに変化が無いと、ハイレベルの線間電圧無変化信号を生成する。 The processing unit 12 calculates line voltages V RS , V ST , V TR from the voltages E R , E S , E T of the digital data input from the input interface 11. Then, the processing unit 12, the line voltage V RS, V ST, V TR and the current I R, detects a line disconnection of the transmission line 101 from the I T. At this time, the processing unit 12 checks the variation of the phase of the current I R, I T, if there is a change in phase, to produce a phase change signal of a high level. Further, the processing unit 12 generates a high-level power change signal when the power value W for the internal combustion power plant B has a change of “1-1 / √3” or more from the three-phase power (√3 VI cos θ). To do. Further, when there is no change in the line voltages V RS , V ST , V TR , the processing unit 12 generates a high-level line voltage unchanged signal.

この後、処理部12は、位相変化信号と電力変化信号と線間電圧無変化信号との論理演算をして1線断線の検出を行い、断線検出の状態が設定時間だけ継続すると、1線断線の検出を表す断線検出信号を出力部13に出力する。出力部13は、断線検出信号を受け取ると、遮断器124をトリップするためのトリップ信号を出力し、1線断線の発生を表す警報信号を出力する。   Thereafter, the processing unit 12 performs a logical operation on the phase change signal, the power change signal, and the line voltage unchanged signal to detect a one-wire disconnection, and when the disconnection detection state continues for a set time, the one-wire A disconnection detection signal indicating detection of disconnection is output to the output unit 13. When the output unit 13 receives the disconnection detection signal, the output unit 13 outputs a trip signal for tripping the circuit breaker 124 and outputs an alarm signal indicating the occurrence of the one-wire disconnection.

このように、この実施の形態によれば、通常、発電所に備わっている計器用変流器や計器用変圧器からの電流や電圧を使用し、二電力計法による1線断線を検出することができる。この結果、この実施の形態によれば、
a.送電線の断線が検出できることにより、断線した電線に触れる前に電気を止めることが出来るため、感電を防ぐことができる
b.新たな変流器(CT)が不要のため、設備投資額を抑えることができる
c.分散型電源が配電線に接続した場合、両端電源となるが、この方法であれば断線検出が可能となる
d.分散型電源設置箇所の電圧・電流情報により断線検出する必要がないため、通信回線が不要である(自端のみで断線検出が可能)
e.他装置(他の保護継電装置)からの条件入力の必要が無いため、他装置の改造が不要であり、かつ特殊仕様品を製作する必要がない
という効果を達成することができる。
As described above, according to this embodiment, a current or voltage from an instrument current transformer or an instrument transformer usually provided in a power plant is used to detect a one-wire disconnection by a two-watt meter method. be able to. As a result, according to this embodiment,
a. Since the disconnection of the power transmission line can be detected, electricity can be stopped before touching the disconnected electric wire, thus preventing an electric shock. B. Since a new current transformer (CT) is not required, the capital investment can be reduced. C. When a distributed power supply is connected to a distribution line, it becomes a power supply at both ends. With this method, disconnection can be detected. D. Communication line is unnecessary because it is not necessary to detect disconnection based on voltage / current information at the location of the distributed power supply (disconnection detection is possible only by own terminal)
e. Since it is not necessary to input conditions from other devices (other protective relay devices), it is possible to achieve the effect that there is no need to modify other devices and there is no need to manufacture special specification products.

(実施の形態2)
この実施の形態では、実施の形態1の処理部12がさらに次の処理を行う。なお、この実施の形態では、実施の形態1と同一もしくは同一と見なされる構成要素には、それと同じ参照符号を付けて、その説明を省略する。
(Embodiment 2)
In this embodiment, the processing unit 12 of the first embodiment further performs the following processing. In this embodiment, components that are the same as or the same as those in the first embodiment are given the same reference numerals, and descriptions thereof are omitted.

実施の形態1では、処理部12の電力比較部12Aは、電力Wと電力Wと電力Wとの値を基に、R相の1線断線時では、
電力Wとして0(ゼロ)を計測する
電力Wとして単相電力を計測する
という結果を得ている。また、S相の1線断線時では、電力比較部12Aは、
電力Wとして単相電力の1/2を計測する
電力Wとして単相電力の1/2を計測する
という結果を得ている。さらに、T相の1線断線時では、電力比較部12Aは、
電力Wとして単相電力を計測する
電力Wとして0(ゼロ)を計測する
という結果を得ている。
In the first embodiment, the power comparing unit 12A 2 of the processor 12, based on the value of the power W 1 and the power W 2 and the power W, or when 1 line disconnection of R-phase,
And the results of measuring the single-phase power as electric power W 2 for measuring the 0 (zero) as the power W 1. In addition, at the time of the S-phase one-wire disconnection, the power comparison unit 12A 2
And the results of measuring the half of the single-phase power as electric power W 2 which measures half the single-phase power as the electric power W 1. Furthermore, at the time of one-phase disconnection of the T phase, the power comparison unit 12A 2
And the results of measuring the 0 (zero) as the power W 2 for measuring a single-phase power as the electric power W 1.

つまり、R相、S相、T相の断線に応じて、電力Wと電力Wとの値が異なる。この結果、こうした計測結果を基にして、電力比較部12AはR相、S相、T相の、どの相が断線したかを判定することができる。そして、電力比較部12Aは、判定結果を出力部13に出力する。 That is, the values of the electric power W 1 and the electric power W 2 are different depending on the disconnection of the R phase, the S phase, and the T phase. Consequently, by such a measurement result based on the power comparison section 12A 2 can determine R phase, S phase, T-phase, what phase is broken. Then, the power comparing unit 12A 2 outputs the determination result to the output unit 13.

これにより、出力部13は、断線発生を表す警報信号に対して、断線した相を表す情報を付加するようにしてもよい。   Thereby, the output unit 13 may add information indicating the disconnected phase to the alarm signal indicating occurrence of disconnection.

これにより、1線断線の警報を出すことができると同時に断線した相を通知することができる。   As a result, a one-wire break alarm can be issued, and at the same time a broken phase can be notified.

(実施の形態3)
実施の形態1では、処理部12は、線間電圧VRS、線間電圧VSTおよび線間電圧VTRと、電流Iおよび電流Iから二電力計法による電力Wと電力Wとを算出した。しかし、内燃力発電所C側に電力Wと電力Wとを測定する電力計がそれぞれ設置されていれば、これらの電力計からの出力を処理部12が利用してもよい。
(Embodiment 3)
In the first embodiment, the processing unit 12, the line voltage V RS, the line voltage V ST and line voltage V TR, current I power from R and current I T by two wattmeter method W 1 and power W 2 And calculated. However, if power meters that measure the power W 1 and the power W 2 are respectively installed on the internal combustion power plant C side, the processing unit 12 may use the outputs from these power meters.

これにより、電力Wと電力Wとの算出を省くことができるので、処理部12の負担を軽減することができる。 Thus, it is possible to omit the calculation of the power W 1 and the power W 2, it is possible to reduce the burden of the processing unit 12.

以上、この発明の各実施の形態を詳述してきたが、具体的な構成はこの実施の形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があっても、この発明に含まれる。例えば、各実施の形態では、断線検出装置10を内燃力発電所Cに設けたが、断線検出装置10は自端での断線検出を行うことができるので、これに限定されることなく、内燃力発電所Bに設けてもよく、また、両方の内燃力発電所B、Cに設けてもよい。さらに、6kV・22kV等の配電線が引き出されている発変電所の配電線に断線検出装置10を設けてもよい。   As mentioned above, although each embodiment of this invention has been described in detail, the specific configuration is not limited to this embodiment, and even if there is a design change or the like without departing from the scope of this invention, It is included in this invention. For example, in each embodiment, the disconnection detection device 10 is provided in the internal combustion power plant C. However, the disconnection detection device 10 can detect disconnection at its own end, and is not limited thereto. You may provide in the power plant B, and you may provide in both internal combustion power plants B and C. Furthermore, you may provide the disconnection detection apparatus 10 in the distribution line of the power substation from which distribution lines, such as 6 kV and 22 kV, are pulled out.

10 断線検出装置
11 入力インターフェイス
12 処理部(処理装置)
12A 比較部
12A 位相比較部
12A 電力比較部
12A 電圧比較部
12B 生成部
13 出力部
112 計器用変流器
113 計器用変圧器
10 Disconnection Detection Device 11 Input Interface 12 Processing Unit (Processing Device)
12A comparison unit 12A 1 phase comparison unit 12A 2 power comparison unit 12A 3 voltage comparison unit 12B generation unit 13 output unit 112 current transformer 113 instrument transformer

前記の課題を解決するために、請求項1の発明は、発電設備をそれぞれ備える2つの電気所が三相用電線の両端に接続され、かつ、各発電設備が稼動している状態で前記三相用電線の1線断線を検出する断線検出装置であって、前記両電気所の少なくとも1つに設けられ、前記三相用電線に供給する第1の相電圧、第2の相電圧および第3の相電圧と、前記第1の相電圧による相電流および前記第3の相電圧による相電流とを入力とする処理装置を備え、前記処理装置は、前記第1の相電圧と前記第2の相電圧との間の第1の線間電圧と、前記第2の相電圧と前記第3の相電圧との間の第2の線間電圧と、前記第3の相電圧と前記第1の相電圧との間の第3の線間電圧とを算出し、前記第1の相電圧による相電流の位相であって前記第1の線間電圧に対する位相を調べ、この位相が所定値以上変化した場合に位相変化有りとする第1の要件と、前記第1の線間電圧と前記第1の相電圧による相電流とから算出した電力と、前記第2の線間電圧と前記第3の相電圧による相電流とから算出した電力との和を算出し、この和の電力が三相電力を表す値から単相電力を表す値に変わったという第2の要件と、前記第1の線間電圧と前記第2の線間電圧と前記第3の線間電圧の各電圧値に変化がないという第3の要件と、により、前記三相用電線に1線断線が発生したと判定する、
ことを特徴とする断線検出装置。
In order to solve the above-mentioned problems, the invention of claim 1 is characterized in that the two electric stations each having a power generation facility are connected to both ends of a three-phase electric wire, and the three power generation facilities are in operation. a disconnection detecting unit that detects a line disconnection phase wires, said provided at least one of the two electric station, the first phase voltage supplied to the three-phase wires, a second phase voltage and the 3, a phase current due to the first phase voltage, and a phase current due to the third phase voltage are input. The processing device includes the first phase voltage and the second phase voltage. A first line voltage between the first phase voltage, a second line voltage between the second phase voltage and the third phase voltage, a third phase voltage and the first phase voltage. A third line voltage between the first phase voltage and a phase current phase of the first phase voltage, the first line Checking the phase with respect to the voltage, and when the phase changes by a predetermined value or more, the first requirement that there is a phase change, the power calculated from the first line voltage and the phase current due to the first phase voltage, The sum of the power calculated from the second line voltage and the phase current generated by the third phase voltage is calculated, and the sum power is changed from a value representing three-phase power to a value representing single-phase power. a second requirement that was the third requirement that there is no change in the voltage value of the first line voltage and said second line voltage and the third line voltage, by, the three It is determined that one-wire breakage has occurred in the phase wire.
The disconnection detection apparatus characterized by the above-mentioned.

請求項1の発明では、発電設備をそれぞれ備える2つの電気所が三相用電線の両端に接続され、かつ、各発電設備が稼動している状態で、断線検出装置が三相用電線の1線断線を検出する。このために、断線検出装置は、第1の相電圧による相電流の位相であって第1の線間電圧に対する位相が所定値以上変化した場合に位相変化有りとする第1の要件と、第1の線間電圧と第1の相電圧による相電流とから算出した電力と、第2の線間電圧と第3の相電圧による相電流とから算出した電力との和が三相電力を表す値から単相電力を表す値に変わったという第2の要件と、第1の線間電圧と第2の線間電圧と第3の線間電圧の各電圧値に変化がないという第3の要件とにより、電線に1線断線が発生したと判定する。 In the first aspect of the invention, the disconnection detection device is connected to both ends of the three-phase electric wire, and the disconnection detecting device is connected to the three-phase electric wire 1 in a state where the respective electric power generation facilities are operating. Wire breakage is detected. For this reason, the disconnection detecting device has a first requirement that a phase change occurs when the phase of the phase current by the first phase voltage and the phase with respect to the first line voltage changes by a predetermined value or more, and The sum of the power calculated from the line voltage of 1 and the phase current of the first phase voltage and the power calculated from the phase current of the second line voltage and the third phase voltage represents the three-phase power. A second requirement that the value has changed to a value representing single-phase power, and a third requirement that there is no change in each voltage value of the first line voltage, the second line voltage, and the third line voltage. It is determined that one wire breakage has occurred in the electric wire according to the requirements .

請求項の発明は、発電設備をそれぞれ備える2つの電気所が三相用電線の両端に接続され、かつ、各発電設備が稼動している状態で前記三相用電線の1線断線を検出する断線検出方法であって、前記両電気所の少なくとも1つに設けられた処理装置に対して、前記三相用電線に供給する第1の相電圧、第2の相電圧および第3の相電圧と、前記第1の相電圧による相電流および前記第3の相電圧による相電流とを入力とし、前記第1の相電圧と前記第2の相電圧との間の第1の線間電圧と、前記第2の相電圧と前記第3の相電圧との間の第2の線間電圧と、前記第3の相電圧と前記第1の相電圧との間の第3の線間電圧とを前記処理装置により算出し、前記第1の相電圧による相電流の位相であって前記第1の線間電圧に対する位相を調べ、この位相が所定値以上変化した場合に位相変化有りとする第1の要件と、前記第1の線間電圧と前記第1の相電圧による相電流とから算出した電力と、前記第2の線間電圧と前記第3の相電圧による相電流とから算出した電力との和を算出し、この和の電力が三相電力を表す値から単相電力を表す値に変わったという第2の要件と、前記第1の線間電圧と前記第2の線間電圧と前記第3の線間電圧の各電圧値に変化がないという第3の要件とにより、前記三相用電線に1線断線が発生したと前記処理装置により判定する、ことを特徴とする断線検出方法である。 The invention of claim 2 detects one-wire breakage of the three-phase electric wire in a state where two electric stations each equipped with the electric power generation facility are connected to both ends of the three-phase electric wire and each power generation facility is operating. A disconnection detection method, comprising: a first phase voltage, a second phase voltage, and a third phase supplied to the three-phase wire with respect to a processing device provided in at least one of the two electrical stations. A first line voltage between the first phase voltage and the second phase voltage, with the input of the voltage and the phase current due to the first phase voltage and the phase current due to the third phase voltage. A second line voltage between the second phase voltage and the third phase voltage, and a third line voltage between the third phase voltage and the first phase voltage. Is calculated by the processing device, and the phase of the phase current due to the first phase voltage and the phase with respect to the first line voltage is examined. When the phase changes by a predetermined value or more, the first requirement that there is a phase change, the power calculated from the first line voltage and the phase current due to the first phase voltage, and the second line The second requirement that the sum of the power calculated from the inter-phase voltage and the phase current due to the third phase voltage is calculated, and that the sum power is changed from a value representing three-phase power to a value representing single-phase power When, by the third requirement that there is no change in the voltage value of the first line voltage and said second line voltage and the third line voltage, 1 line disconnection on the three-phase wires The disconnection detection method is characterized in that it is determined by the processing device that the error has occurred.

請求項1と請求項の発明によれば、三相用電線の両端に設けられている電気所が発電設備を稼動している状態で、電線の1線断線を検出することができる。また、この発明によれば、処理装置が設けられている側の電気所で1線断線を検出することができるので、対抗する電気所と電圧や電流情報の送受信を行うための通信回線が不要である。 According to the first and second aspects of the present invention, it is possible to detect a one-wire disconnection of the electric wire in a state where the electric stations provided at both ends of the three-phase electric wire operate the power generation equipment. In addition, according to the present invention, since a one-wire disconnection can be detected at the electric station on the side where the processing apparatus is provided, there is no need for a communication line for transmitting and receiving voltage and current information with the opposing electric station. It is.

Claims (3)

発電設備をそれぞれ備える2つの電気所が三相用電線の両端に接続され、かつ、各発電設備が稼動している状態で前記電線の1線断線を検出する断線検出装置であって、
前記両電気所の少なくとも1つに設けられ、対向する前記電気所に送られる電力を調べる処理装置を備え、
前記処理装置は、三相の線間電圧の値が変化していないという第1の要件と、対向する前記電気所に送られる電力が三相電力を表す値から単相電力を表す値に変わったという第2の要件とにより、前記電線に1線断線が発生したと判定する、
ことを特徴とする断線検出装置。
Two electrical stations each equipped with a power generation facility are connected to both ends of a three-phase electric wire, and a disconnection detection device that detects a one-wire disconnection of the electric wire in a state where each power generation facility is operating,
A processing device that is provided in at least one of the two electric stations and that checks the electric power sent to the opposing electric stations;
In the processing apparatus, the first requirement that the value of the three-phase line voltage does not change, and the power sent to the opposing electrical station changes from a value representing three-phase power to a value representing single-phase power. It is determined that one wire breakage has occurred in the electric wire according to the second requirement.
The disconnection detection apparatus characterized by the above-mentioned.
前記処理装置は、前記第1の要件と前記第2の要件とに加えて、相手端に送る電流の位相が変化したという第3の要件により、前記電線に1線断線が発生したと判定する、
ことを特徴とする請求項1に記載の断線検出装置。
The said processing apparatus determines with the 3rd requirement that the phase of the electric current sent to the other end changed in addition to the said 1st requirement and the said 2nd requirement that the 1 wire disconnection generate | occur | produced in the said electric wire. ,
The disconnection detection apparatus according to claim 1.
発電設備をそれぞれ備える2つの電気所が三相用電線の両端に接続され、かつ、各発電設備が稼動している状態で前記電線の1線断線を検出する断線検出方法であって、
前記両電気所の少なくとも1つに設けられた処理装置により、対向する前記電気所に送られる電力を調べ、
三相の線間電圧の値が変化していないという第1の要件と、対向する前記電気所に送られる電力の値が三相電力から単相電力に変わったという第2の要件とにより、前記電線に1線断線が発生したと前記処理装置により判定する、
ことを特徴とする断線検出方法。
A disconnection detection method in which two electric stations each having a power generation facility are connected to both ends of a three-phase electric wire, and one wire disconnection of the electric wire is detected in a state where each power generation facility is operating,
By using a processing device provided in at least one of the two electrical stations, the power sent to the opposing electrical stations is examined,
According to the first requirement that the value of the three-phase line voltage has not changed, and the second requirement that the value of the power sent to the opposing electrical station has changed from three-phase power to single-phase power, The processing device determines that one wire breakage has occurred in the electric wire,
The disconnection detection method characterized by the above-mentioned.
JP2014202805A 2014-10-01 2014-10-01 Disconnection detection apparatus and method Active JP5903143B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014202805A JP5903143B1 (en) 2014-10-01 2014-10-01 Disconnection detection apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014202805A JP5903143B1 (en) 2014-10-01 2014-10-01 Disconnection detection apparatus and method

Publications (2)

Publication Number Publication Date
JP5903143B1 JP5903143B1 (en) 2016-04-13
JP2016070855A true JP2016070855A (en) 2016-05-09

Family

ID=55747760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014202805A Active JP5903143B1 (en) 2014-10-01 2014-10-01 Disconnection detection apparatus and method

Country Status (1)

Country Link
JP (1) JP5903143B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106997019A (en) * 2017-05-17 2017-08-01 国家电网公司 A kind of monitoring method for earth-free power system single-phase wire break
CN107831376A (en) * 2017-12-06 2018-03-23 国网宁夏电力有限公司宁东供电公司 Intelligent nuclear phase meter and Intelligent nuclear phase method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55150721A (en) * 1979-05-10 1980-11-22 Kansai Electric Power Co Power line disconnection detector
JP2005045969A (en) * 2003-07-24 2005-02-17 Tm T & D Kk Disconnection detector for protective control device of three-phase power source
JP2009131016A (en) * 2007-11-21 2009-06-11 Chugoku Electric Power Co Inc:The Disconnection protective relay

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55150721A (en) * 1979-05-10 1980-11-22 Kansai Electric Power Co Power line disconnection detector
JP2005045969A (en) * 2003-07-24 2005-02-17 Tm T & D Kk Disconnection detector for protective control device of three-phase power source
JP2009131016A (en) * 2007-11-21 2009-06-11 Chugoku Electric Power Co Inc:The Disconnection protective relay

Also Published As

Publication number Publication date
JP5903143B1 (en) 2016-04-13

Similar Documents

Publication Publication Date Title
Elmore Protective relaying: theory and applications
US8823307B2 (en) System for detecting internal winding faults of a synchronous generator, computer program product and method
US6810069B2 (en) Electrical arc furnace protection system
US6940702B2 (en) Electrical protection system
AU2006218736B2 (en) An apparatus and method for detecting the loss of a current transformer connection coupling a current differential relay to an element of a power system
AU2007324283B2 (en) Power supply monitoring system
KR102050255B1 (en) Method and test device for testing wiring of transducers
CN103852691A (en) Directional detection of a fault in a network of a grounding system with compensated or insulated neutral point
US11218023B2 (en) Recloser control fast open circuit detection
RU2550751C2 (en) Method and device for detection of ground short-circuit
Adewole et al. Residual current-based method for open phase detection in radial and multi-source power systems
US10338122B2 (en) Method and device for detecting a fault in an electrical network
JP5903143B1 (en) Disconnection detection apparatus and method
Taft Fault intelligence: Distribution grid fault detection and classification
EP1527505B1 (en) Electrical network protection system
JP5241434B2 (en) Cable section accident detection device
JP2008295144A (en) Ground distance relay
Redfern et al. Detecting loss of earth for embedded generation
JP7134846B2 (en) Transmission line protection relay device
US11735908B2 (en) Dependable open-phase detection in electric power delivery systems with inverter-based resources
Al-Mahrooqi et al. Simulation of distance protection for parallel transmission lines
KR101976372B1 (en) Master breaker
KR101759595B1 (en) System for protecting contact with ac line and dc line of transmission line
KR20240021619A (en) Substation Integrated Protection System and Substation Integrated Monitoring Method
Talebi et al. Substation testing and commissioning: Power transformer through fault test

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160311

R150 Certificate of patent or registration of utility model

Ref document number: 5903143

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150