JP2009131016A - Disconnection protective relay - Google Patents

Disconnection protective relay Download PDF

Info

Publication number
JP2009131016A
JP2009131016A JP2007302298A JP2007302298A JP2009131016A JP 2009131016 A JP2009131016 A JP 2009131016A JP 2007302298 A JP2007302298 A JP 2007302298A JP 2007302298 A JP2007302298 A JP 2007302298A JP 2009131016 A JP2009131016 A JP 2009131016A
Authority
JP
Japan
Prior art keywords
disconnection
current
phase
terminal
condition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007302298A
Other languages
Japanese (ja)
Other versions
JP5283369B2 (en
Inventor
Minoru Tomita
稔 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2007302298A priority Critical patent/JP5283369B2/en
Publication of JP2009131016A publication Critical patent/JP2009131016A/en
Application granted granted Critical
Publication of JP5283369B2 publication Critical patent/JP5283369B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Locating Faults (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a disconnection protective relay capable of solving the hot-line state of a disconnection section by opening a breaker by accurately detecting a single-line disconnection with no ground fault. <P>SOLUTION: The disconnection protective relay has an input conversion section 11 inputting the current and voltage of its own terminal, a transmission-reception section 12 transmitting and receiving current data and a current arithmetic section 13 deciding the presence of an operation on the basis of a predetermined setting condition from the current data of its own terminal and an opposite terminal. The disconnection protective relay further has an operation-circuit decision section 18 inputting the open-close state of the breaker fitted to a transmission distribution line and deciding a single-line operation state or a two-line operation state and a differential-current arithmetic section 14 deciding the presence of the operation on the basis of the predetermined setting condition from the differential current of each phase of its own terminal and the opposite terminal. The disconnection protective relay further has an accident detecting section 16 detecting an undervoltage and a ground-fault overvoltage by the voltage data of its own terminal and an operation deciding section 15 outputting a disconnection detecting signal according to a condition detecting no accident by the accident detecting section 16, a condition having no differential current in the differential-current arithmetic section 14 or a condition having no disconnection in other phases. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電力の送配電系統の地絡を伴わない断線事故を検出して遮断器を動作させることによって、断線系統への電力の供給を停止させる断線保護継電器に関する。   The present invention relates to a disconnection protection relay that stops a power supply to a disconnection system by detecting a disconnection accident without a ground fault in a power transmission / distribution system and operating a circuit breaker.

電力系統の送電線や配電線(以下、送配電線という。)は、地下はもちろん架空に張られるものも近年絶縁シールドした絶縁電線が使われている。このため、断線してもこの絶縁シールドにより導体が大地に接触せず、地絡事故にならないことがほとんどであり、大地に流れる零相電流(Io)が発生しないため、地絡保護継電器では地絡を検出することができず、事故の送配電線を遮断することができないという問題がある。   In recent years, insulated wires that are insulated and shielded are used for power transmission lines and distribution lines (hereinafter referred to as transmission and distribution lines) that are not only underground but also suspended in the air. For this reason, even if the wire breaks, the conductor does not come into contact with the ground due to this insulation shield, and in most cases there will be no ground fault, and no zero-phase current (Io) flowing to the ground will occur. There is a problem that the fault cannot be detected and the transmission / distribution line in the accident cannot be cut off.

図7を用いてこの問題を説明する。一般的な送配電系統は、電源系の変電所の電源31から繋がる3相の送配電線32により、負荷となる変電所の変圧器37を介して下位の負荷系統38に接続される。各変電所の送配電線の引き出し口には、遮断器33、34が挿入されている。電源系の変電所には、送配電線の地絡事故時に、地絡保護継電器を確実に動作させるため、中性点接地抵抗器50が設けられている。また、地絡事故を検出して該当する遮断器33を開放する地絡保護継電器40が変流器35を介して接続されている。この系統において、たとえば、絶縁電線であるc相の送配電線32cが断線した場合、導体が大地に接触せず、零相電流(Io)は流れないため、地絡保護継電器40が動作せず、該当の遮断器33は開放されない。   This problem will be described with reference to FIG. A general power transmission / distribution system is connected to a lower load system 38 via a transformer 37 of a substation serving as a load by a three-phase power transmission / distribution line 32 connected to a power supply 31 of a power substation. Circuit breakers 33 and 34 are inserted into the outlets of the transmission and distribution lines of each substation. In the power substation, a neutral grounding resistor 50 is provided in order to ensure that the ground fault protection relay operates in the event of a ground fault in the transmission and distribution lines. Further, a ground fault protection relay 40 that detects a ground fault and opens the corresponding circuit breaker 33 is connected via a current transformer 35. In this system, for example, when the c-phase transmission / distribution line 32c, which is an insulated wire, is disconnected, the conductor does not contact the ground and the zero-phase current (Io) does not flow, so the ground fault protection relay 40 does not operate. The corresponding circuit breaker 33 is not opened.

従来、この断線を検出する技術が提案されている。たとえば、特許文献1には、3相の電流の少なくとも1相の電流が所定値以上であり、ある相間の電流が、最大の相間電流に対する相間電流の比が、所定値以下であることより1線断線を検出する技術が提案されている。しかし、これも不平衡な負荷電流が流れる送配電線では、常に相間電流に差が生じるため、1線断線を検出する相間電流の比の所定値を大きくして、感度を上げることに限界があり、断線の検出精度が上がらないという問題がある。
特開平6―253446号公報
Conventionally, techniques for detecting this disconnection have been proposed. For example, in Patent Document 1, the current of at least one of the three-phase currents is equal to or greater than a predetermined value, and the current between certain phases is 1 because the ratio of the interphase current to the maximum interphase current is equal to or less than the predetermined value. Techniques have been proposed for detecting wire breaks. However, since there is always a difference in the interphase current in the transmission / distribution line in which an unbalanced load current flows, there is a limit in increasing the sensitivity by increasing the predetermined value of the ratio of the interphase current for detecting the one-wire disconnection. There is a problem that the detection accuracy of disconnection does not increase.
JP-A-6-253446

本発明は、上述の係る事情に鑑みてなされたものであり、地絡を伴わない1線断線、および並行2回線での1線および2線断線を的確に検出して遮断器を開放することによって断線部の活線状態を解消することのできる断線保護継電器を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and accurately detects a one-wire break without a ground fault and a one-wire and a two-wire break in parallel two lines to open the circuit breaker. It aims at providing the disconnection protection relay which can eliminate the live state of a disconnection part by.

本発明の特徴は、断線時において、断線した相の電流が零になることと、相電流が不平衡になり変流器の残留回路の残留電流が流れることと、自端子と相手端子の各相の電流が同じ値になって相互に電流を受け渡し、その差電流が零になることに着目して、線断線を検出するようにしたところにある。   The feature of the present invention is that the current of the disconnected phase becomes zero at the time of disconnection, the phase current becomes unbalanced, the residual current of the residual circuit of the current transformer flows, and each of the own terminal and the counterpart terminal Focusing on the fact that the phase currents are equal to each other and exchange the currents and the difference current becomes zero, the disconnection is detected.

具体的には、本発明にかかわる断線保護継電器は、電力系統の送配電線の各端子に設けられ、測定したディジタル信号の電流値により、各端子間で相互に伝送し合い保護を行う電流差動式の断線保護継電器であって、送配電線に装備された遮断器の開閉状態を入力して、1回線運用状態か、2回線運用状態かを判定する運用回線判定部と、測定した自端子の各相の電流値と、伝送路を介して受信した相手端子の各相の電流値とに基づき、断線相の条件の判定を行う電流演算部と、前記運用回線判定部によって判定された回線の運用状態と、前記自端子の電流値と相手端子の電流値から演算した各相の差電流の値と、測定した自端子の残留電流の値と、伝送路を介して受信した相手端子の残留電流の値とに基づいて断線の条件を判定する差電流演算部と、前記電流演算部における断線相の条件の判定と、前記差電流演算部における断線の条件の判定とに基づいて断線検出信号を出力する動作判定部と、を備えたことを特徴とする。   Specifically, the disconnection protection relay according to the present invention is provided at each terminal of the transmission / distribution line of the power system, and the current difference between the terminals is transmitted and protected between the terminals according to the measured current value of the digital signal. This is a dynamic disconnection protection relay that inputs the open / close state of the circuit breaker installed on the transmission / distribution line and determines whether it is in the 1-line operation state or 2-line operation state, and the measured self Based on the current value of each phase of the terminal and the current value of each phase of the counterpart terminal received via the transmission line, the current calculation unit that determines the condition of the disconnection phase, and the operation line determination unit Operation status of the line, the difference current value of each phase calculated from the current value of the own terminal and the current value of the counterpart terminal, the measured residual current value of the own terminal, and the counterpart terminal received via the transmission line Difference current to determine the condition of disconnection based on the residual current value of A calculation unit; and an operation determination unit that outputs a disconnection detection signal based on determination of a disconnection phase condition in the current calculation unit and determination of a disconnection condition in the difference current calculation unit. To do.

本発明によれば、送配電線の電流値のみに着目して断線を検出することができるので、断線保護継電器を比較的簡易な構成とすることができる。また、回線運用状態に基づいて断線の判定を行うので、正確な断線判定を行うことが出来る。   According to the present invention, it is possible to detect a disconnection by paying attention only to the current value of the transmission / distribution line, and thus it is possible to make the disconnection protection relay relatively simple. Moreover, since the disconnection determination is performed based on the line operation state, the accurate disconnection determination can be performed.

また、本発明にかかる断線保護継電器において、前記電流演算部における断線相の条件の判定は、前記自端子と相手端子の各相の電流値が整定値以下である場合に、断線相の必要条件を満たすものと判定し、前記差電流演算部における断線の条件の判定は、前記自端子と相手端子の各相における差電流の値が整定値以下であって、前記自端子と相手端子のいずれかの相における残留電流の値が整定値以上である場合に、断線の必要条件を満たすものと判定することを特徴とする。   Further, in the disconnection protection relay according to the present invention, the determination of the condition of the disconnection phase in the current calculation unit is a necessary condition for the disconnection phase when the current value of each phase of the own terminal and the counterpart terminal is equal to or less than a set value. In the determination of the disconnection condition in the difference current calculation unit, the difference current value in each phase of the own terminal and the counterpart terminal is equal to or less than a set value, and any of the own terminal and the counterpart terminal is determined. When the value of the residual current in the phase is equal to or higher than the set value, it is determined that the requirement for disconnection is satisfied.

さらに、本発明にかかわる断線保護継電器は、測定した自端子の電圧値に基づいて、不足電圧および地絡過電圧による送配電線の事故を検出する事故検出部を備え、前記動作判定部は、前記電流演算部による断線相の条件と、前記差電流演算部による断線の条件と、前記事故検出部により事故を検出していない条件とに基づいて、断線検出信号を出力することを特徴とする。   Furthermore, the disconnection protection relay according to the present invention includes an accident detection unit that detects an accident of a transmission and distribution line due to an undervoltage and a ground fault overvoltage based on the measured voltage value of the terminal, and the operation determination unit includes the operation determination unit, A disconnection detection signal is output based on a disconnection phase condition by a current calculation unit, a disconnection condition by the difference current calculation unit, and a condition in which no accident is detected by the accident detection unit.

これにより、断線によらない事故を排除して断線を判定することができるので、判定の精度を向上させるという効果を奏する。   Thereby, since the accident which does not depend on a disconnection can be excluded and a disconnection can be determined, there exists an effect of improving the precision of determination.

本発明の電流差動式保護継電器を用いた断線検出方法は、電力系統の送配電線の各端子に配した電流差動式保護継電器を用い、各端子における電流値を測定して相互に電流値データの伝送を行うことで、送配電線の断線を検出する断線検出方法であって、送配電線に装備された遮断器の開閉状態を入力して、1回線運用状態か、2回線運用状態かの運用状態を判定するステップと、測定した自端子の各相の電流値と、伝送路を介して受信した相手端子の各相の電流値とに基づき、断線相の条件の判定を行うステップと、前記運用状態と、前記自端子の電流値と相手端子の電流値から演算した各相の差電流の値と、測定した自端子の残留電流の値と、伝送路を介して受信した相手端子の残留電流の値とに基づいて断線の条件を判定するステップと、前記断線相の条件の判定結果と、前記断線の条件の判定結果とに基づいて断線検出信号を出力するステップと、を含むことを特徴とする。   The disconnection detection method using the current differential type protective relay of the present invention uses a current differential type protective relay arranged at each terminal of the transmission and distribution line of the power system, measures the current value at each terminal, A disconnection detection method that detects disconnection of transmission and distribution lines by transmitting value data, and inputs the open / close state of the circuit breaker installed in the transmission and distribution lines, and either one line operation state or two line operation The condition of the disconnection phase is determined based on the step of determining the operational state of the state, the measured current value of each phase of the own terminal, and the current value of each phase of the counterpart terminal received via the transmission line. Step, the operating state, the difference current value of each phase calculated from the current value of the own terminal and the current value of the counterpart terminal, the measured value of the residual current of the own terminal, and received via the transmission line A step of determining a disconnection condition based on the value of the residual current of the mating terminal Characterized in that it comprises the determination result of the condition of the disconnection phase, and outputting a disconnection detection signal based on the determination result of the condition of the break, the.

本発明によれば、既存の電流差動式保護継電器を用いて容易に断線を検出することができるので、断線検出用に新たに保護継電器を増設する必要がなく、コストを削減することができる。   According to the present invention, the disconnection can be easily detected using the existing current differential type protective relay, so that it is not necessary to newly add a protective relay for detecting the disconnection, and the cost can be reduced. .

以上の如く本発明によれば、地絡の有無に係わらず、全ての線断線事故を的確に検出して遮断器を動作させることができる。また、従来の電流差動式の保護継電器の機能に本発明の機能を加えることにより、絶縁電線の送配電線の地絡および断線事故時の保護ができるため設備コストの削減を図ることができる。   As described above, according to the present invention, it is possible to accurately detect all wire breakage accidents and operate the circuit breaker regardless of the presence or absence of a ground fault. Further, by adding the function of the present invention to the function of the conventional current differential type protective relay, it is possible to protect the grounding of the transmission / distribution line of the insulated wire and the disconnection accident, thereby reducing the equipment cost. .

以下、本発明の一実施形態を説明する。
図1は、本実施の形態による断線保護継電器1の機能ブロック図である。断線保護継電器1は、送電線(回線)の遮断器の開閉状態を入力して1回線の設備か、または、並行2回線の設備で片方の回線の遮断器だけが閉状態の1回線運用か、両回線の遮断器が閉状態の2回線運用かを判定する運用回線判定部18、3相の送電線の電流信号や電圧信号を入力して、この後の演算処理に必要な電流データや電圧データに変換する入力変換部11、この自端子電流データを相手端子の断線保護継電器へ伝送路41を介して送信し、また相手端子の電流データを受信する送受信部12、入力した各相の自端子電流データと相手端子電流データから、断線などに起因して各相の両端電流が整定値以下(零)となった相(断線相)を演算して検出する電流演算部13、運用回線判定部18からの回線運用状態や、各相の両端電流の差を演算し、整定値以下(零)の値であって、両端の変流器の残留電流が両方とも予め整定した値以上である場合に断線条件を検出する差電流演算部14、入力変換部11からの各相の自端子電圧が整定値以下の不足電圧事故や、零相電圧が整定値以上の地絡事故などの、断線事故以外の事故の発生を検出する事故検出部16、電流演算部13が検出した断線相に基づく第1の断線条件と、差電流演算部14が検出した第2の断線条件と、前記事故検出部16の他の事故無しの条件で最終的に断線事故と判定して、該当する遮断器を開放させる動作判定部15とで構成さている。
Hereinafter, an embodiment of the present invention will be described.
FIG. 1 is a functional block diagram of a disconnection protection relay 1 according to the present embodiment. The disconnection protection relay 1 is a one-line facility that inputs the open / close state of the circuit breaker of the transmission line (line), or is a one-line operation in which only one of the circuit breakers is closed in a parallel two-line facility The operation line determination unit 18 for determining whether the circuit breakers of both lines are closed and the current signal and voltage signal of the three-phase power transmission line are input, and the current data and Input conversion unit 11 for converting to voltage data, this own terminal current data is transmitted to the disconnection protection relay of the counterpart terminal via the transmission line 41, and the transmission / reception unit 12 for receiving the current data of the counterpart terminal, for each input phase Current calculation unit 13 for calculating and detecting a phase (disconnection phase) in which the current at both ends of each phase is equal to or lower than a set value (zero) due to disconnection or the like from the self-terminal current data and the counterpart terminal current data, operation line The line operation status from the judgment unit 18 and the power at both ends of each phase A difference current calculation unit 14 for detecting a disconnection condition when the residual current of both current transformers is equal to or greater than a pre-set value when the difference is less than a set value (zero) An accident detection unit 16 that detects the occurrence of an accident other than a disconnection accident, such as an undervoltage accident in which the terminal voltage of each phase from the conversion unit 11 is less than a set value, or a ground fault in which the zero phase voltage is greater than a set value; The first disconnection condition based on the disconnection phase detected by the current calculation unit 13, the second disconnection condition detected by the differential current calculation unit 14, and finally the disconnection under other conditions without the accident detection unit 16 It is comprised with the operation | movement determination part 15 which determines with an accident and opens the applicable circuit breaker.

入力変換部11は、信号をフィルタリングするフィルタ回路111、信号を一定時間保持するサンプルホールド回路112、アナログ信号をディジタル信号に変換するA/D変換回路113を備え、サンプリング信号を生成してサンプルホールド回路112に供給するサンプリング信号発生回路115、A/D変換処理された電流信号を時間のデータなどを付加した電流データファイル116へ保存する電流信号入力処理手段114とで構成される。   The input conversion unit 11 includes a filter circuit 111 that filters a signal, a sample and hold circuit 112 that holds the signal for a certain period of time, and an A / D conversion circuit 113 that converts the analog signal into a digital signal. A sampling signal generating circuit 115 to be supplied to the circuit 112, and a current signal input processing means 114 for storing the current signal subjected to A / D conversion processing in a current data file 116 to which time data and the like are added.

上記の構成を有する断線保護継電器1について、図3の1回線運用時の系統図と図8の位相特性図により断線事故時の動作を説明する。   With respect to the disconnection protection relay 1 having the above configuration, the operation at the time of the disconnection accident will be described with reference to the system diagram at the time of one-line operation of FIG. 3 and the phase characteristic diagram of FIG.

図3において、電源31から繋がる3相の送電線の32a,32b,32cは、負荷側の変圧器37を介して負荷の系統38に接続されている。3相の各送電線には、その両端に遮断器33と34が挿入されている。また、各回線の送電線の引き出し口には、変流器35,36と接地変圧器39,40を介して断線保護継電器1a,1bが設置される。両端の断線保護継電器1a,1b間は、伝送路41で相互のデータを送受できるよう接続される。各電流の記号は、変流器35,36に流れる各相の電流Ia,Ib,Icと電流Ia′、Ib′、Ic′、その帰還回路である残留回路の残留電流Ix,Ix′である。   In FIG. 3, three-phase power transmission lines 32 a, 32 b, and 32 c connected from the power supply 31 are connected to a load system 38 via a load-side transformer 37. Circuit breakers 33 and 34 are inserted at both ends of each of the three-phase power transmission lines. Further, disconnection protection relays 1a and 1b are installed at the outlets of the transmission lines of the respective lines via current transformers 35 and 36 and grounding transformers 39 and 40, respectively. The disconnection protection relays 1a and 1b at both ends are connected to each other via a transmission line 41 so that mutual data can be transmitted and received. The symbols of the respective currents are the currents Ia, Ib, Ic and the currents Ia ′, Ib ′, Ic ′ flowing through the current transformers 35, 36, and the residual currents Ix, Ix ′ of the residual circuit which is the feedback circuit. .

この系統での各相の位相特性の変化について図8を用いて説明する。平常時(1)は、各相の電流Ia,Ib,Icは、120度の位相関係で流れる。平衡負荷の場合(1a)、残留電流Ixは流れず、不平衡負荷の場合は(1b)、その不平衡分だけ残留電流Ixが流れる。1線断線が発生すると(2)、当然、残った2相で閉回路を形成するため、その相間は、逆相の180度の関係になる。このような系統で断線保護継電器1a,1bが1線断線を検出したら、その回線の遮断器33,34を開放して、給電を停止する。   Changes in the phase characteristics of each phase in this system will be described with reference to FIG. During normal operation (1), the currents Ia, Ib, and Ic of each phase flow in a phase relationship of 120 degrees. In the case of a balanced load (1a), the residual current Ix does not flow, and in the case of an unbalanced load (1b), the residual current Ix flows for the unbalanced portion. When a one-wire break occurs (2), naturally, a closed circuit is formed by the remaining two phases, so that the phases are in a 180-degree relationship of opposite phases. When the disconnection protection relays 1a and 1b detect a one-wire disconnection in such a system, the circuit breakers 33 and 34 of the line are opened to stop power feeding.

次に、図3に基づいて断線保護継電器1aの動作を説明する。
平常時において、断線保護継電器1aは、送電線に取り付けられた変流器35を介して電流信号Ia,Ib,Ic,Ixを取り込む。その電流信号Ia,Ib,Icは、図1に示す入力変換部11のフィルタ回路111、サンプルホールド回路112、A/D変換回路113を通して、ディジタル信号に変換され、電流信号入力処理手段114によって、後述するサンプリングの識別番号または、時刻などを付加して電流データファイル116に保存される。なお、A/D変換回路113の前段にマルチプレクサを設けて、複数の電流データを時分割でスキャンして入力するようにしても良い。
Next, operation | movement of the disconnection protection relay 1a is demonstrated based on FIG.
In normal times, the disconnection protection relay 1a takes in the current signals Ia, Ib, Ic, Ix via the current transformer 35 attached to the power transmission line. The current signals Ia, Ib, and Ic are converted into digital signals through the filter circuit 111, the sample hold circuit 112, and the A / D conversion circuit 113 of the input conversion unit 11 shown in FIG. A sampling identification number (to be described later) or a time is added and stored in the current data file 116. Note that a multiplexer may be provided before the A / D conversion circuit 113 so that a plurality of current data are scanned and input in a time division manner.

サンプルホールド回路112と電流信号入力処理手段114は、サンプリング信号発生回路115から出力されるサンプリング信号に同期して動作する。また、電流データファイル116は、サンプリング周期ごとに入力された電流値が系統上の電流にスケール変換されて電流データファイル116に保存される。なお、サンプリング周期とは、サンプリングの間隔であるが、例えば、系統周波数に対して30°ごとにサンプリングを実行する。電流データファイルには、このサンプリングの識別番号あるいは時刻を付して電流データを保存するようにする。   The sample hold circuit 112 and the current signal input processing means 114 operate in synchronization with the sampling signal output from the sampling signal generation circuit 115. In addition, the current data file 116 is scale-converted into a current on the system, and stored in the current data file 116, with the current value input for each sampling period. Note that the sampling period is a sampling interval. For example, sampling is performed every 30 ° with respect to the system frequency. The current data file is stored with the sampling identification number or time attached.

送受信部12では、入力変換部11でA/D変換した電流データファイル116から自端子の電流値を定周期で入力して伝送路41に送信し、また、相手端子から定周期で送信された電流値を受信して電流演算部13に出力する。   In the transmission / reception unit 12, the current value of its own terminal is input from the current data file 116 A / D-converted by the input conversion unit 11 at a fixed period and transmitted to the transmission line 41, and transmitted from the counterpart terminal at a fixed period. The current value is received and output to the current calculation unit 13.

電流演算部13では、入力変換部11からの自端子の電流値や、送受信部12からの相手端子からの電流値を、実効値データなどに演算するとともに、各相の両端の電流が整定値以下に変化した場合に断線相条件を満たすとして、「断線相信号」を生成して動作判定部15に出力する。「断線相信号」は、動作判定部15において後述の条件判定のもと「第1の断線条件信号」として出力される。   The current calculation unit 13 calculates the current value of the own terminal from the input conversion unit 11 and the current value of the counterpart terminal from the transmission / reception unit 12 to the effective value data, and the currents at both ends of each phase are set values. Assuming that the disconnection phase condition is satisfied when it changes to the following, a “disconnection phase signal” is generated and output to the operation determination unit 15. The “disconnection phase signal” is output as a “first disconnection condition signal” by the operation determination unit 15 under condition determination described later.

差電流演算部14では、電流演算部13で演算された自端子および相手端子の電流値を使用して、各相の差電流が整定値以下である場合に生成される「差電流無信号」と、運用回線判定部18からの回線運用状態や、両端の残留電流が整定値以上である場合に生成される「残留電流信号」とに基づいて、「第2の断線条件信号」を生成して動作判定部15に出力する。   The difference current calculation unit 14 uses the current values of the own terminal and the counterpart terminal calculated by the current calculation unit 13 to generate a “no difference current signal” that is generated when the difference current of each phase is equal to or less than a set value. And the “second disconnection condition signal” is generated based on the line operation state from the operation line determination unit 18 and the “residual current signal” generated when the residual current at both ends is equal to or higher than the set value. To the operation determination unit 15.

事故検出部16では、入力変換部11からの各相の電圧が整定値以下である場合に生成される「不足電圧信号」と、零相電圧の整定値以上の過電圧である場合に生成される「地絡事故信号」とに基づいて、断線事故以外の事故の発生を示す「他事故信号」を生成して動作判定部15に出力する。   The accident detection unit 16 generates an “undervoltage signal” generated when the voltage of each phase from the input conversion unit 11 is equal to or lower than the set value, and an overvoltage equal to or higher than the set value of the zero phase voltage. Based on the “ground fault signal”, an “other accident signal” indicating the occurrence of an accident other than a disconnection accident is generated and output to the operation determination unit 15.

動作判定部15では、先述の「断線相信号」に基づき1線と2線の断線条件を検出し、その信号から「第1の断線条件信号」を生成し、前記「第2の断線条件信号」と、前記「他事故信号」の否定論理とのANDにより、最終的に断線と判定して、「遮断器開放信号」を生成して時限継電器17に出力する。   The operation determination unit 15 detects the disconnection condition of the first and second wires based on the aforementioned “disconnection phase signal”, generates a “first disconnection condition signal” from the signal, and generates the “second disconnection condition signal”. ”And the negative logic of the“ other accident signal ”, it is finally determined that the circuit is disconnected, and a“ breaker open signal ”is generated and output to the time relay 17.

図3に示す系統において、たとえばb相の1線断線が発生したとき、図8(2)の位相特性図に示すように、a相とc相で電気を供給するため両端の電流は、Ib=Ib′=0、Ia=Ia′>0、Ic=Ic′>0および、差電流はIb−Ib′=0、Ia−Ia′=0、Ic−Ic′=0となり、また運用回線判定は一回線運用となる。断線保護継電器1aは、この条件成立に加え、さらに「他の事故なし」の条件成立によって該当する遮断器33を開放する。相手端の断線保護継電器1bも、上記と同じ判定動作によって、該当する遮断器34を開放する。なお、実際の比較判定は計測誤差等を考慮し、それぞれ所定値を定めその値を基準に行う。   In the system shown in FIG. 3, for example, when a one-phase disconnection of b phase occurs, as shown in the phase characteristic diagram of FIG. = Ib '= 0, Ia = Ia'> 0, Ic = Ic '> 0, and the difference currents are Ib-Ib' = 0, Ia-Ia '= 0, Ic-Ic' = 0, and the operation line is determined Is one line operation. In addition to the establishment of this condition, the disconnection protection relay 1a opens the corresponding circuit breaker 33 when the "no other accident" condition is satisfied. The disconnection protection relay 1b at the other end also opens the corresponding circuit breaker 34 by the same determination operation as described above. Note that actual comparison and determination are performed with reference to each predetermined value, taking into account measurement errors and the like.

図2は、上記の断線保護継電器1の動作論理を示すシーケンス図である。
電流演算部13は第1のAND回路13a,13b,13cを備え、各相の自端子電流(Ia,Ib,Ic)と相手端子電流(Ia′,Ib′,Ic′)の両方が整定値以下の不足電流である場合を検出して、断線相の条件を満たすとする「断線相信号」を生成して、動作判定部15に出力する。
FIG. 2 is a sequence diagram showing the operation logic of the disconnection protection relay 1 described above.
The current calculation unit 13 includes first AND circuits 13a, 13b, and 13c, and both the self-terminal currents (Ia, Ib, Ic) and the counterpart terminal currents (Ia ', Ib', Ic ') of each phase are set values. A case of the following shortage current is detected, and a “disconnection phase signal” that satisfies the condition of the disconnection phase is generated and output to the operation determination unit 15.

動作判定部15は、電流演算部13から出力された各相の「断線相信号」すなわちAND回路13a,13b,13cの各出力と、残りの他の2相の「断線相信号」との否定論理と、をそれぞれ第2のAND回路151a,151b,151cへ入力することによって、1相の断線条件を検出して「1線断線信号」を生成する(第2のAND回路151a,151b,151cの出力)。また、ある2相の「断線相信号」と残りの1相の「断線相信号」の否定論理とを第3のAND回路152a,152b,152cに入力することによって、2相の断線条件を検出して「2線断線信号」を生成する(第2のAND回路152a,152b,152cの出力)。さらに、その全てをORする第1のOR回路15dにより、「第1の断線条件信号」を生成する。   The operation determination unit 15 negates the “disconnection phase signal” of each phase output from the current calculation unit 13, that is, the outputs of the AND circuits 13a, 13b, and 13c, and the remaining “disconnection phase signal” of the other two phases. By inputting logic to the second AND circuits 151a, 151b, and 151c, respectively, a one-phase disconnection condition is detected and a “one-wire disconnection signal” is generated (second AND circuits 151a, 151b, and 151c). Output). Also, a two-phase disconnection condition is detected by inputting a negative logic of a certain two-phase “disconnection phase signal” and the remaining one-phase “disconnection phase signal” to the third AND circuits 152a, 152b, and 152c. Then, a “2-wire disconnection signal” is generated (outputs of the second AND circuits 152a, 152b, and 152c). Furthermore, a “first disconnection condition signal” is generated by the first OR circuit 15 d that ORs all of them.

また、運用回線判定部18は、各回線の遮断器の入切状態を入力して、この両状態信号をNAND回路18aに入力して、1回線運用状態のときは、「1」、2回線運用状態のときは「0」が出力されるようにする。   In addition, the operation line determination unit 18 inputs the circuit breaker ON / OFF state of each line, inputs both state signals to the NAND circuit 18a, and “1”, 2 lines in the 1-line operation state. “0” is output in the operational state.

次に、差電流演算部14は、各相の差電流Ida(=Ia−Ia′)、Idb(=Ib−Ib′)、Idc(=Ic−Ic′)の否定論理をANDして両端の入出力電流に差がないことを検出する第4のAND回路14aの出力信号と、両端の残留電流Ix、Ix′が整定値以上である場合を検出する第5のAND回路14bの出力と運用回線判定部18のNAND回路18aの出力とのOR演算を実行する第2のOR回路14dの出力信号と、その両信号をANDして断線条件を検出する第6のAND回路14cにより「第2の断線条件信号」を生成する。   Next, the difference current calculation unit 14 ANDs the negative logic of the difference currents Ida (= Ia−Ia ′), Idb (= Ib−Ib ′), and Idc (= Ic−Ic ′) of each phase. The output signal of the fourth AND circuit 14a that detects that there is no difference between the input and output currents, and the output and operation of the fifth AND circuit 14b that detects the case where the residual currents Ix and Ix 'at both ends are equal to or higher than the set value. The output signal of the second OR circuit 14d that performs an OR operation with the output of the NAND circuit 18a of the line determination unit 18 and the sixth AND circuit 14c that detects the disconnection condition by ANDing both the signals are used as “second”. Is generated.

一方、事故検出部16では、断線以外の事故を検出する。具体的には、相電圧が整定値以下になる「不足電圧信号」と、零相電圧が整定値以上の過電圧である場合の「地絡事故信号」を検出して、第3のOR回路16aにより、両信号をORすることで断線事故以外の事故を示す「他事故信号」を生成する。   On the other hand, the accident detection unit 16 detects an accident other than disconnection. Specifically, the third OR circuit 16a detects the “undervoltage signal” in which the phase voltage is equal to or lower than the set value and the “ground fault signal” in the case where the zero phase voltage is the overvoltage equal to or higher than the set value. Thus, an “other accident signal” indicating an accident other than a disconnection accident is generated by ORing both signals.

そして、動作判定部15は、「第1の断線条件信号」、「第2の断線条件信号」、および、「他事故信号」の否定論理、の各信号のANDを行う第7のAND回路15eにより、最終的に断線であると判定して、他の保護システムなどとの時間協調をとるための時限継電器17を介して、該当する遮断器へ「遮断器開放信号」を出力する。
以上、1回線運用状態での1線断線事故での断線保護継電器1の動作について説明した。
Then, the operation determination unit 15 performs an AND operation on the “first disconnection condition signal”, the “second disconnection condition signal”, and the negative logic of the “other accident signal”, and a seventh AND circuit 15e. Accordingly, it is determined that the circuit is finally disconnected, and a “breaker open signal” is output to the corresponding breaker via the time relay 17 for time coordination with other protection systems and the like.
The operation of the disconnection protection relay 1 in the one-line disconnection accident in the one-line operation state has been described above.

次に2回線運用状態での1線断線事故での断線保護継電器1の動作を図4の2回線系統図と、図5の位相特性図および図6の断線判定用位相特性図を用いて説明する。   Next, the operation of the disconnection protection relay 1 in a one-line disconnection accident in a two-line operation state will be described using the two-line system diagram of FIG. 4, the phase characteristic diagram of FIG. 5, and the phase characteristic diagram for disconnection determination of FIG. To do.

図4において、図3と同一部分には同一符号または補助符号を追加した符号にして説明を省く。電源31から繋がる3相の2回線送電線すなわち第1回線送電線32a1,32b1,32c1と第2回線送電線32a2,32b2,32c2が負荷側の変圧器37を介して負荷の系統38に接続されている。3相の各送電線には、その両端に遮断器331,341と、遮断器332,342が挿入されている。また、各回線の送電線の引き出し口には、変流器351,352と接地変圧器39を介して断線保護継電器1a,1cが、変流器361,362と接地変圧器40を介して断線保護継電器1b,1dが、それぞれ設置される。両端の断線保護継電器1a,1b間と断線保護継電器1c,1d間は、それぞれ伝送路41,42で接続されている。   In FIG. 4, the same parts as those in FIG. Three-phase two-line transmission lines connected from the power source 31, that is, the first line transmission lines 32a1, 32b1, 32c1 and the second line transmission lines 32a2, 32b2, 32c2 are connected to a load system 38 via a load-side transformer 37. ing. Circuit breakers 331 and 341 and circuit breakers 332 and 342 are inserted at both ends of each of the three-phase power transmission lines. In addition, disconnection protection relays 1a and 1c are connected to the outlets of the transmission lines of the respective lines via current transformers 351 and 352 and a grounding transformer 39, and are disconnected via current transformers 361 and 362 and a grounding transformer 40. Protective relays 1b and 1d are installed respectively. The disconnection protection relays 1a and 1b at both ends and the disconnection protection relays 1c and 1d are connected by transmission lines 41 and 42, respectively.

このような系統での平衡負荷において、平常時と1線断線時の各相の位相特性を図5に示す。図5(1)に示す平常時は、両回線とも同じ電流値と位相を示し、平衡負荷の場合、変流器351の残留電流Ix1と変流器361の残留電流Ix1′は零であり、変流器352の残留電流Ix2と変流器362の残留電流Ix2′も零である。   FIG. 5 shows the phase characteristics of each phase when the balanced load is in such a system and during normal operation and when one wire is disconnected. In the normal state shown in FIG. 5 (1), both lines show the same current value and phase. In the case of a balanced load, the residual current Ix1 of the current transformer 351 and the residual current Ix1 ′ of the current transformer 361 are zero. The residual current Ix2 of the current transformer 352 and the residual current Ix2 'of the current transformer 362 are also zero.

平衡負荷における1線断線時で、たとえば第1回線のb相32b1が断線した場合、第1回線の位相特性は、図5(2)に示すようにb相の電流Ib1および電流Ib1′が零になり、その不平衡分残留電流Ix1=−Ib1、Ix1′=−Ib1′がb相に対して180度の位相角を持って現れる。第2回線側は、平常時における第1回線のb相の電流Ib1,Ib1′が平常時における第2回線のb相の電流Ib2,Ib2′に加算された電流値で現れる。この不平衡電流により、残留電流Ix2,Ix2′には、b相の位相と同じ位相の第1回線のb相の電流Ib1,Ib1′と同じ値の電流が現れる。   For example, when the b-phase 32b1 of the first line is disconnected at the time of one-wire disconnection in the balanced load, the phase characteristics of the first line are zero when the b-phase current Ib1 and the current Ib1 'are zero as shown in FIG. And the unbalanced residual currents Ix1 = −Ib1 and Ix1 ′ = − Ib1 ′ appear with a phase angle of 180 degrees with respect to the b phase. The second line side appears as a current value obtained by adding the b-phase currents Ib1 and Ib1 ′ of the first line in normal times to the b-phase currents Ib2 and Ib2 ′ of the second line in normal times. Due to this unbalanced current, in the residual currents Ix2 and Ix2 ′, currents having the same value as the b-phase currents Ib1 and Ib1 ′ of the first line having the same phase as the b-phase appear.

図6にこの位相特性の変化により断線条件を判定する位相特性を示す。この図は、電流または電圧の位相特性が、実線の円の内側に影を付けたものではその円の内側にある時、円の外側に影を付けたものではその外側にある時は、断線の条件となる事故であることを示す。そして、電流または電圧の位相特性により断線と判定する条件として、(イ)各相の電流がI以下の不足電流であること(図6a)、(ロ)各相の両端の差電流がI以下であること(図6b)、(ハ)両端の残留電流がI以上で不平衡な状態であること(図6c)、(ニ)他の事故として各相の電圧がV以下の不足電圧(27)、または零相電圧がVo以上の地絡事故(64V)(図6d,図6e)ではないことを示す。   FIG. 6 shows the phase characteristics for determining the disconnection condition based on the change of the phase characteristics. This figure shows that when the phase characteristics of current or voltage are inside the circle with a shadow inside the solid circle, it is broken when it is inside the circle, and when the shadow is outside the circle, it is broken. Indicates an accident that is a condition of The conditions for determining the disconnection based on the phase characteristics of the current or voltage are as follows: (a) the current of each phase is an undercurrent of I or less (FIG. 6a), (b) the difference current between both ends of each phase is I or less (C) Residual current at both ends is I or more and is in an unbalanced state (FIG. 6c), (d) As another accident, the voltage of each phase is less than V (27 ) Or a ground fault (64V) (FIGS. 6d and 6e) where the zero-phase voltage is equal to or higher than Vo.

このような位相特性の変化を検出して、図6に示す判定条件を全て満足した場合、図2の判定シーケンスに従って断線と判定し、断線保護継電器1a,1bまたは断線保護継電器1c,1dは「遮断器開放信号」を出力して、その回線の遮断器331,341または遮断器332,342を開放して電力の供給を停止する。   When such a change in the phase characteristic is detected and all the determination conditions shown in FIG. 6 are satisfied, it is determined that the disconnection occurs according to the determination sequence of FIG. 2, and the disconnection protection relays 1a and 1b or the disconnection protection relays 1c and 1d The circuit breaker open signal "is output, the circuit breakers 331, 341 or circuit breakers 332, 342 of the line are opened, and the power supply is stopped.

以下、第1回線側のb相の1線断線事故時の断線保護継電器1aと断線保護継電器1cの動作を説明する。断線のある第1回線側の断線保護継電器1aは、上記した図5(2)の位相特性図の状態になり、上記した1回線運用時の断線保護継電器1aと同じ動作をして、図6に示す判定条件の(イ)Ib1が不足電流、(ロ)差電流Ida,Idb,Idcがない、(ハ)残留電流Ix,Ix′がある不平衡状態、(ニ)不足電圧でなく、地絡でもない、ことにより、b相の1線断線を図2のシーケンスにより検出して該当の遮断器331を開放する。   Hereinafter, the operation of the disconnection protection relay 1a and the disconnection protection relay 1c at the time of the b-phase one-line disconnection accident on the first line side will be described. The disconnection protection relay 1a on the first line side having a disconnection is in the state of the phase characteristic diagram of FIG. 5 (2) described above, and operates in the same manner as the disconnection protection relay 1a during the one-line operation described above. (B) There is no difference current Ida, Idb, Idc, (c) An unbalanced state with residual currents Ix, Ix ', (d) Ground voltage is not As a result, the breaker 331 is opened by detecting the b-phase 1 wire breakage by the sequence of FIG.

第2回線側の断線保護継電器1cは、図6の判定条件で、(イ)の不足電流が検出されないため断線を検出しない。このため該当の遮断器332は、開放されない。   The disconnection protection relay 1c on the second line side does not detect disconnection because the undercurrent of (A) is not detected under the determination conditions of FIG. For this reason, the corresponding circuit breaker 332 is not opened.

同様に、相手端子の断線保護継電器1b,1dも、断線保護継電器1a,1cと同じ動作を行い、第1回線の断線保護継電器1bは、断線を検出して該当の遮断器341を開放し、第2回線の断線保護継電器1dは、断線を検出せず該当の遮断器342を開放しない。   Similarly, the disconnection protection relays 1b and 1d of the counterpart terminal perform the same operation as the disconnection protection relays 1a and 1c. The disconnection protection relay 1b of the first line detects the disconnection and opens the corresponding circuit breaker 341. The disconnection protection relay 1d of the second line does not detect the disconnection and does not open the corresponding circuit breaker 342.

以上、本実施の形態によれば、各相の電流値と残留電流の変化と、断線以外の他の事故である各相の電圧や零相電圧の変化を監視して、予め決められた整定値の条件を満たすことによって断線と判定することにより、該当する遮断器を開放することができる。   As described above, according to the present embodiment, changes in the current value and residual current of each phase and changes in the voltage of each phase and the zero-phase voltage, which are other accidents other than disconnection, are set in advance. By determining that the wire breaks by satisfying the value condition, the corresponding circuit breaker can be opened.

特に、電流差動式保護継電器により各相の差電流を判定条件に組み込むことによって、既存の構成を利用して精度の高い断線検出が可能となる。   In particular, by incorporating the differential current of each phase into the determination condition by the current differential protection relay, it is possible to detect disconnection with high accuracy using the existing configuration.

本発明による断線保護継電器の機能ブロック図である。It is a functional block diagram of a disconnection protection relay according to the present invention. 本発明の実施の形態による断線保護継電器のシーケンス図である。It is a sequence diagram of a disconnection protection relay according to an embodiment of the present invention. 本発明の実施の形態による断線保護継電器の1回線系統への接続状態を示す系統図である。It is a systematic diagram which shows the connection state to the 1 circuit system | strain of the disconnection protection relay by embodiment of this invention. 本発明の実施の形態による断線保護継電器の2回線系統への接続状態を示す系統図である。It is a systematic diagram which shows the connection state to the 2 circuit system of the disconnection protection relay by embodiment of this invention. 本発明の実施の形態による断線保護継電器の2回線系統での位相特性図である。It is a phase characteristic figure in 2 circuit systems of a disconnection protection relay by an embodiment of the invention. 本発明の実施の形態による断線保護継電器の断線判定用位相特性図である。It is a phase characteristic diagram for disconnection determination of the disconnection protection relay according to the embodiment of the present invention. 従来の電力系統における保護継電装置の接続状態の説明図である。It is explanatory drawing of the connection state of the protection relay apparatus in the conventional electric power system. 本発明の実施の形態による断線保護継電器の1回線系統への接続状態を示す位相特性図である。It is a phase characteristic figure which shows the connection state to the 1 circuit | line system of the disconnection protection relay by embodiment of this invention.

符号の説明Explanation of symbols

1,1a,1b,1c,1d 断線保護継電器
11 入力変換部
12 送受信部
13 電流演算部
14 差電流演算部
15 動作判定部
16 事故検出部
17 時限継電器
18 運用回線判定部
31 電源
32,32a,32b,32c,321a,・・・,322c 送電線
33,34,331,332,341,342 遮断器
35,36,351,352,361,362 変流器
37 変圧器
38 負荷側系統
39,40 接地変圧器
41,42 伝送路
111 フィルタ回路
112 サンプルホールド回路
113 A/D変換回路
114 電流信号入力処理手段
115 サンプリング信号発生回路
116 電流データファイル
Ia,Ib,Ic,Ix,Ia′,Ib′,Ic′,Ix′ 電流
Ida,Idb,Idc 差電流
1, 1a, 1b, 1c, 1d Disconnection protection relay 11 Input converter 12 Transmitter / receiver 13 Current calculator 14 Differential current calculator 15 Operation determination unit 16 Accident detection unit 17 Timed relay 18 Operation line determination unit 31 Power supply 32, 32a, 32b, 32c, 321a, ..., 322c Transmission line 33, 34, 331, 332, 341, 342 Breaker 35, 36, 351, 352, 361, 362 Current transformer 37 Transformer 38 Load side system 39, 40 Grounding transformer 41, 42 Transmission path 111 Filter circuit 112 Sample hold circuit 113 A / D conversion circuit 114 Current signal input processing means 115 Sampling signal generation circuit 116 Current data file Ia, Ib, Ic, Ix, Ia ′, Ib ′, Ic ', Ix' Current Ida, Idb, Idc Difference current

Claims (4)

電力系統の送配電線の各端子に設けられ、測定したディジタル信号の電流値により、各端子間で相互に伝送し合い保護を行う電流差動式の断線保護継電器であって、
送配電線に装備された遮断器の開閉状態を入力して、1回線運用状態か、2回線運用状態かを判定する運用回線判定部と、
測定した自端子の各相の電流値と、伝送路を介して受信した相手端子の各相の電流値とに基づき、断線相の条件の判定を行う電流演算部と、
前記運用回線判定部によって判定された回線の運用状態と、前記自端子の電流値と相手端子の電流値から演算した各相の差電流の値と、測定した自端子の残留電流の値と、伝送路を介して受信した相手端子の残留電流の値とに基づいて断線の条件を判定する差電流演算部と、
前記電流演算部における断線相の条件の判定と、前記差電流演算部における断線の条件の判定とに基づいて断線検出信号を出力する動作判定部と、
を備えたことを特徴とする断線保護継電器。
A current differential type disconnection protection relay that is provided at each terminal of a power transmission / distribution line of the power system, and transmits and protects between each terminal according to the measured current value of the digital signal,
An operation line determination unit that inputs a switching state of a circuit breaker mounted on a transmission / distribution line and determines whether it is in a 1-line operation state or a 2-line operation state;
Based on the measured current value of each phase of the own terminal and the current value of each phase of the counterpart terminal received via the transmission line, a current calculation unit that determines the condition of the disconnection phase,
The operational state of the line determined by the operational line determination unit, the value of the current difference of each phase calculated from the current value of the own terminal and the current value of the counterpart terminal, the value of the measured residual current of the own terminal, A difference current calculation unit for determining a disconnection condition based on the value of the residual current of the counterpart terminal received via the transmission line;
An operation determination unit that outputs a disconnection detection signal based on the determination of the condition of the disconnection phase in the current calculation unit and the determination of the condition of the disconnection in the difference current calculation unit;
A disconnection protection relay characterized by comprising:
前記電流演算部における断線相の条件の判定は、前記自端子と相手端子の各相の電流値が共に整定値以下である場合に、断線相の条件を備えるものと判定し、
前記差電流演算部における断線の条件の判定は、1回線運用状態の場合は、前記自端子と相手端子の各相における差電流の値が整定値以下である場合に断線の条件を備えるものと判定し、2回線運用状態の場合は、前記自端子と相手端子の各相における差電流の値が整定値以下であって、前記自端子と相手端子の残留電流の値が共に整定値以上である場合に断線の条件を備えるものと判定することを特徴とする請求項1記載の断線保護継電器。
The determination of the condition of the disconnection phase in the current calculation unit determines that the condition of the disconnection phase is provided when the current values of each phase of the own terminal and the counterpart terminal are both equal to or less than a set value.
In the determination of the disconnection condition in the difference current calculation unit, in the case of one-line operation state, the disconnection condition is provided when the value of the difference current in each phase of the own terminal and the counterpart terminal is equal to or less than a set value. In the case of a two-line operation state, the difference current value in each phase of the own terminal and the counterpart terminal is less than or equal to a set value, and the residual current values of the own terminal and the counterpart terminal are both greater than or equal to the set value. The disconnection protection relay according to claim 1, wherein the disconnection protection relay is determined to have a disconnection condition in some cases.
測定した自端子の電圧値に基づいて、不足電圧および地絡過電圧による送配電線の事故を検出する事故検出部を備え、
前記動作判定部は、前記電流演算部による断線相の条件と、前記差電流演算部による断線の条件と、前記事故検出部により事故を検出していない条件とに基づいて、断線検出信号を出力することを特徴とする請求項1又は2に記載の断線保護継電器。
Based on the measured voltage value of its own terminal, equipped with an accident detection unit that detects accidents in transmission and distribution lines due to undervoltage and ground fault overvoltage,
The operation determination unit outputs a disconnection detection signal based on a disconnection phase condition by the current calculation unit, a disconnection condition by the difference current calculation unit, and a condition in which no accident is detected by the accident detection unit. The disconnection protection relay according to claim 1 or 2, characterized in that:
電力系統の送配電線の各端子に配した電流差動式保護継電器を用い、各端子における電流値を測定して相互に電流値データの伝送を行うことで、送配電線の断線を検出する断線検出方法であって、
送配電線に装備された遮断器の開閉状態を入力して、1回線運用状態か、2回線運用状態かの運用状態を判定するステップと、
測定した自端子の各相の電流値と、伝送路を介して受信した相手端子の各相の電流値とに基づき、断線相の条件の判定を行うステップと、
前記運用状態と、前記自端子の電流値と相手端子の電流値から演算した各相の差電流の値と、測定した自端子の残留電流の値と、伝送路を介して受信した相手端子の残留電流の値とに基づいて断線の条件を判定するステップと、
前記断線相の条件の判定結果と、前記断線の条件の判定結果とに基づいて断線検出信号を出力するステップと、
を含むことを特徴とする電流差動式保護継電器を用いた断線検出方法。
Using a current differential protection relay placed at each terminal of the power transmission and distribution line of the power system, the current value at each terminal is measured and current value data is transmitted to each other to detect disconnection of the transmission and distribution line A disconnection detection method,
A step of inputting an open / close state of a circuit breaker mounted on a transmission / distribution line and determining an operation state of a one-line operation state or a two-line operation state;
A step of determining the condition of the disconnection phase based on the measured current value of each phase of the own terminal and the current value of each phase of the counterpart terminal received via the transmission line;
The operating state, the difference current value of each phase calculated from the current value of the own terminal and the current value of the counterpart terminal, the measured value of the residual current of the own terminal, and the counterpart terminal received via the transmission line Determining a disconnection condition based on the value of the residual current;
Outputting a disconnection detection signal based on the determination result of the disconnection phase condition and the determination result of the disconnection condition;
The disconnection detection method using the current differential type protective relay characterized by including.
JP2007302298A 2007-11-21 2007-11-21 Disconnection protection relay Expired - Fee Related JP5283369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007302298A JP5283369B2 (en) 2007-11-21 2007-11-21 Disconnection protection relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007302298A JP5283369B2 (en) 2007-11-21 2007-11-21 Disconnection protection relay

Publications (2)

Publication Number Publication Date
JP2009131016A true JP2009131016A (en) 2009-06-11
JP5283369B2 JP5283369B2 (en) 2013-09-04

Family

ID=40821401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007302298A Expired - Fee Related JP5283369B2 (en) 2007-11-21 2007-11-21 Disconnection protection relay

Country Status (1)

Country Link
JP (1) JP5283369B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013212007A (en) * 2012-03-30 2013-10-10 Toshiba Corp Line selective protective relay device
JP2016070855A (en) * 2014-10-01 2016-05-09 中国電力株式会社 Device for disconnection detection and method therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5133732U (en) * 1974-09-04 1976-03-12
JPH06253446A (en) * 1993-03-01 1994-09-09 Hokkaido Electric Power Co Inc:The Detecting circuit for single-line disconnection of power transmission and distribution line
JP2005020873A (en) * 2003-06-25 2005-01-20 Tohoku Electric Mfg Co Ltd System for detecting disconnection of distribution line

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5133732U (en) * 1974-09-04 1976-03-12
JPH06253446A (en) * 1993-03-01 1994-09-09 Hokkaido Electric Power Co Inc:The Detecting circuit for single-line disconnection of power transmission and distribution line
JP2005020873A (en) * 2003-06-25 2005-01-20 Tohoku Electric Mfg Co Ltd System for detecting disconnection of distribution line

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013212007A (en) * 2012-03-30 2013-10-10 Toshiba Corp Line selective protective relay device
JP2016070855A (en) * 2014-10-01 2016-05-09 中国電力株式会社 Device for disconnection detection and method therefor

Also Published As

Publication number Publication date
JP5283369B2 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
EP2335082B1 (en) Method and apparatus for dynamic signal switching of a merging unit in an electrical power system
CN108603909B (en) Method and apparatus for detecting a fault of a transmission line in an electric power system
US9250282B2 (en) Fault parameter indicator device and related methods
US10826287B2 (en) Method and system providing feeder fault response
US20170356965A1 (en) Phase Selection for Traveling Wave Fault Detection Systems
NZ560345A (en) An apparatus and method for detecting the loss of a current transformer connection coupling a current differential relay to an element of a power system
KR20020031078A (en) Fault type selection system for identifying faults in an electric power system
CN111480275B (en) Zero sequence current based differential protection for power transmission lines
CA2737689C (en) Reclosing system for power transmission line
KR102057201B1 (en) Out of order discrimination apparatus and protective relay apparatus
JP5283369B2 (en) Disconnection protection relay
CN110596529B (en) Flexible direct current power grid ground insulation fault detection device and system
JP2013090445A (en) Power system protection system
WO2012136241A1 (en) Fault handling during circuit breaker maintenance in a double-breaker busbar switchyard
JP4921246B2 (en) Ground fault distance relay
KR101437340B1 (en) Swichgear Having Self-diagnosis Circuit for Transformer
JP5903143B1 (en) Disconnection detection apparatus and method
JP5241434B2 (en) Cable section accident detection device
JP4176529B2 (en) Differential protection relay system
JP6729483B2 (en) Ratio differential relay
JP5224760B2 (en) Disconnection protection relay
JP2012157115A (en) Disconnection detection and protection device
JP2019187012A (en) Transmission line protection system
JPH0522852A (en) Method and apparatus for determining grounding section of distribution line
Loken et al. Use of frame agreement to standardize Protection in Digital Substation Automation Systems, Cooperation between Statnett and ABB

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130528

R150 Certificate of patent or registration of utility model

Ref document number: 5283369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees