JP2012157115A - Disconnection detection and protection device - Google Patents

Disconnection detection and protection device Download PDF

Info

Publication number
JP2012157115A
JP2012157115A JP2011012588A JP2011012588A JP2012157115A JP 2012157115 A JP2012157115 A JP 2012157115A JP 2011012588 A JP2011012588 A JP 2011012588A JP 2011012588 A JP2011012588 A JP 2011012588A JP 2012157115 A JP2012157115 A JP 2012157115A
Authority
JP
Japan
Prior art keywords
phase
transmission
disconnection
accident
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011012588A
Other languages
Japanese (ja)
Inventor
Shingo Inoue
眞吾 井上
Nobuyoshi Okamoto
信義 岡本
Akifumi Nishiyama
明文 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2011012588A priority Critical patent/JP2012157115A/en
Publication of JP2012157115A publication Critical patent/JP2012157115A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a disconnection detection and protection device capable of protecting a transmission/distribution line by surely detecting a disconnection accident.SOLUTION: Trip signal generating means 14, 14, 15, and 15, under a condition that ground fault/short circuit accident determination means 13determines that no ground fault nor short circuit accident has occurred on a transmission/distribution line based on a ground fault protection relay operation signal Sand a short circuit protection relay operation signal S, outputs a trip signal Sfor shutting off A-phase, B-phase, and C-phase circuit breakers installed in A-phase, B-phase, and C-phase of the transmission/distribution line, when A-phase, B-phase, and C-phase current monitoring circuits 11, 11, and 11detect a disconnection accident based on the amount of variation in magnitude of A-phase, B-phase, and C-phase currents I, I, and I, otherwise AB-phase, BC-phase, and CA-phase inter-line current monitoring circuits 12, 12, and 12detect a disconnection accident based on the amount of variation in magnitude of AB-phase, BC-phase, and CA-phase inter-line currents I, I, and I.

Description

本発明は、断線事故から送配電線を保護するのに好適な断線検出保護装置に関する。   The present invention relates to a disconnection detection and protection device suitable for protecting a transmission and distribution line from a disconnection accident.

近年、6kV以下の送配電線では、絶縁電線化に伴って、断線事故時に地絡を伴うケースが少なくなっているため、地絡保護リレーによる選択遮断が困難となってきている。
また、断線事故保護方式として、断線事故時の逆相電流を検出する逆相電流リレー方式(46リレー方式)が実用化されているが、確実に断線を検出できないため、断線事故保護方式については標準方式が定められていないのが現状である。
In recent years, in transmission / distribution lines of 6 kV or less, the number of cases with a ground fault at the time of a disconnection accident has been reduced along with the use of an insulated wire, and therefore it has become difficult to selectively cut off by a ground fault protection relay.
Moreover, as a disconnection accident protection method, the reverse phase current relay method (46 relay method) that detects the reverse phase current at the time of the disconnection accident has been put into practical use, but since the disconnection cannot be reliably detected, The current situation is that no standard system is defined.

なお、本出願人は、下記の特許文献1において、地絡を伴わない1線断線を的確に検出して遮断器を開放することによって断線部の活線状態を解消できるように、送配電線に装備された遮断器の開閉状態を入力して1回線運用状態か2回線運用状態かを判定する運用回線判定部と、回線の運用状態ごとに位相角に関する演算方法および整定条件を保存する整定条件保存部と、各相の電流値を入力し、いずれか一の相の電流値が予め定められた所定値以下になったことを検出する処理起動部と、処理起動部によって起動され、運用回線判定部によって判定された回線の運用状態に基づいて、整定条件保存部に保存されている運用状態の演算方法を抽出し、演算方法に従って位相角を算出する位相角演算部と、位相角演算部によって算出された位相角が整定条件を満たすか否かを判定し、整定条件を満たす場合には動作検出有りとする動作演算部と、動作演算部で一の相について動作検出が有り、かつ、動作検出の有った相以外の相については動作検出が無いときはこの一の相について断線検出ありと判定して断線検出信号を出力する動作判定部とを備える断線保護継電器を提案している。
また、下記の特許文献2には、1回線または2回線の送電構成に関係なく1線断線事故を確実に検出できるように、送配電線に設けられた変流器の2次回路に、3相電流の少なくとも1相の電流が所定値以上であることを検出する第1の要素と、最大の相間電流に対する相間電流の比が所定値以下であることを各相毎に検出する第2の要素とを備えた電流継電器を設け、第1の要素の動作と第2の要素の2相の動作を条件に送配電線の1線断線であると判定するようにした、送配電線の1線断線検出回路が開示されている。
In addition, in the following patent document 1, the present applicant is able to accurately detect a one-wire disconnection without a ground fault and open the circuit breaker so that the live line state of the disconnected portion can be eliminated. An operational line determination unit that inputs the open / close state of the circuit breaker installed in the circuit to determine whether it is in a 1-line operation state or a 2-line operation state; A condition storage unit, a process activation unit that inputs the current value of each phase and detects that the current value of any one phase is equal to or less than a predetermined value, and is activated by the process activation unit. Based on the operation state of the line determined by the line determination unit, a calculation method of the operation state stored in the settling condition storage unit is extracted, and a phase angle calculation unit that calculates a phase angle according to the calculation method, and a phase angle calculation Calculated by the department It is determined whether or not the angle satisfies the settling condition.If the settling condition is satisfied, the motion calculation unit has motion detection, and the motion calculation unit has motion detection for one phase and has motion detection. When there is no operation detection for a phase other than the above phase, a disconnection protection relay is proposed that includes an operation determination unit that determines that this one phase has disconnection detection and outputs a disconnection detection signal.
Further, in Patent Document 2 below, a secondary circuit of a current transformer provided on a transmission / distribution line is provided with 3 to ensure that a one-wire disconnection accident can be reliably detected regardless of a one-line or two-line power transmission configuration. A first element for detecting that at least one phase current of the phase current is greater than or equal to a predetermined value, and a second element for detecting for each phase that the ratio of the interphase current to the maximum interphase current is less than or equal to a predetermined value 1 of a power transmission / distribution line provided with a current relay provided with an element, and determined to be a one-wire disconnection of the transmission / distribution line on condition of the operation of the first element and the two-phase operation of the second element A wire break detection circuit is disclosed.

特開2009−81937号公報JP 2009-81937 A 特開平6−253446号公報JP-A-6-253446

しかしながら、実用化されている逆相電流リレー方式では、以下に示す問題がある。
(1)3相不平衡の大きい負荷では誤動作の恐れがある。
(2)2線断線および3線断線は検出できない。
(3)分岐線路では、分岐以降の断線は検出が困難となる。
However, the reversed-phase current relay system in practical use has the following problems.
(1) There is a risk of malfunction in a load with a large three-phase imbalance.
(2) 2-wire disconnection and 3-wire disconnection cannot be detected.
(3) In the branch line, it is difficult to detect the disconnection after the branch.

本発明の目的は、断線事故を確実に検出して送配電線を保護することができる断線検出保護装置を提供することにある。   The objective of this invention is providing the disconnection detection protection apparatus which can detect a disconnection accident reliably and can protect a power transmission and distribution line.

本発明の断線検出保護装置は、断線事故から送配電線を保護するための断線検出保護装置(10)であって、前記送配電線の第1乃至第3の相を流れる第1乃至第3の相電流(IA,IB,IC)の大きさを監視して、該第1乃至第3の相電流の大きさの変化量に基づいて該送配電線の第1乃至第3の相に断線事故が発生したか否かを検出する第1乃至第3の相電流監視手段(11A,11B,11C)と、前記送配電線の第1乃至第3の線間電流(IAB,IBC,ICA)の大きさを監視して、第1乃至第3の線間電流の大きさの変化量に基づいて該送配電線の第1乃至第3の相に断線事故が発生したか否かを検出する第1乃至第3の線間電流監視手段(12A,12B,12C)と、前記送配電線に設置された地絡保護リレーおよび短絡保護リレーから入力される地絡保護リレー動作信号(S67G)および短絡保護リレー動作信号(S51)に基づいて、該送配電線に地絡事故および短絡事故が発生していないか否かを判定する地絡・短絡事故判定手段(133)と、該地絡・短絡事故判定手段が前記送配電線に地絡事故および短絡事故が発生していないと判定していることを条件として、前記第1乃至第3の相電流監視手段および前記第1乃至第3の線間電流監視手段のうち少なくとも1つが前記送配電線の断線事故を検出すると、該送配電線の第1乃至第3の相に設置されている第1乃至第3の遮断器を遮断するためのトリップ信号(ST)を出力するトリップ信号発生手段(141,142,154,155)とを具備することを特徴とする。
ここで、前記送配電線の第1乃至第3の相に設置された第1乃至第3の不足電圧リレーから入力される第1乃至第3の不足電圧リレー動作信号(S27A,S27B,S27C)に基づいて、該送配電線に地絡事故および短絡事故が発生していないか否かを判定する第1のフェールセーフ手段(134)と、前記送配電線の第1乃至第3の相に設置された第1乃至第3の潮流検出リレーから入力される第1乃至第3の潮流検出リレー動作信号(S57A,S57B,S57C)に基づいて、該送配電線の第1乃至第3の相のうち少なくとも1つの相に潮流がないか否かを判定する第2のフェールセーフ手段(151〜153,135)と、前記第1乃至第3の遮断機から入力される第1乃至第3の遮断器入信号に基づいて、該第1乃至第3の遮断機が投入されているか否かを判定する第3のフェールセーフ手段(154)とをさらに具備し、前記トリップ信号発生手段が、前記第1のフェールセーフ手段が前記送配電線に地絡事故および短絡事故が発生していないと判定しており、かつ、前記第2のフェールセーフ手段が前記送配電線の第1乃至第3の相のうち少なくとも1つの相に潮流がないと判定していることをさらに条件として、前記トリップ信号を出力してもよい。
前記第1乃至第3の相電流監視手段および前記第1乃至第3の線間電流監視手段のうち少なくとも1つが前記送配電線の断線事故を検出すると、前記送配電線の対向端側に設置されたかつ前記断線検出保護装置と同じ構成の他の断線検出保護装置に自端側断線検出信号(S1)を伝送する断線検出信号伝送手段をさらに具備し、前記トリップ信号発生手段が、前記他の断線検出保護装置の第1乃至第3の他の相電流監視手段および第1乃至第3の他の線間電流監視手段のうち少なくとも1つが前記送配電線の断線事故を検出したことを示す対向端側断線検出信号(S2)が該他の断線検出保護装置から伝送されてきていることを条件として、前記トリップ信号を出力してもよい。
前記トリップ信号発生手段が、前記地絡保護リレーとの協調時間だけ前記トリップ信号を送れて出力させるためのタイマ(141,142)をさらに具備してもよい。
前記トリップ信号発生手段が、前記対向端側断線検出信号の伝送遅延だけ遅れて前記トリップ信号を出力させるための他のタイマ(143)をさらに具備してもよい。
The disconnection detection / protection device of the present invention is a disconnection detection / protection device (10) for protecting a transmission / distribution line from a disconnection accident, wherein the first to third flows through the first to third phases of the transmission / distribution line. The magnitudes of the phase currents (I A , I B , I C ) of the first and third phase currents are monitored based on the amount of change in the magnitudes of the first to third phase currents. First to third phase current monitoring means (11 A , 11 B , 11 C ) for detecting whether or not a disconnection accident has occurred in the phase; and first to third line currents ( I AB , I BC , I CA ) are monitored, and a disconnection accident occurs in the first to third phases of the transmission / distribution line based on the amount of change in the magnitude of the first to third line currents. the first to third of the line current monitoring means but for detecting whether the generated (12 a, 12 B, 12 C) and, the installed ground fault protection relay and short holding the electric transmission Based on the ground protection relay operation signal input from the relay (S 67G) and short-circuit protection relay operation signal (S 51), determine whether a ground fault and short-circuit fault has not occurred in said transmission distribution line The ground fault / short circuit accident judging means (13 3 ) and the ground fault / short circuit accident judging means for determining that the ground fault and short circuit accident have not occurred in the transmission / distribution line. When at least one of the first to third phase current monitoring means and the first to third line current monitoring means detects a disconnection accident of the transmission and distribution lines, the first to third of the transmission and distribution lines Trip signal generating means (14 1 , 14 2 , 15 4 , 15 5 ) for outputting a trip signal (S T ) for breaking the first to third circuit breakers installed in the phase. It is characterized by.
Here, the first to third undervoltage relay operation signals (S 27A , S 27B , S) input from the first to third under voltage relays installed in the first to third phases of the transmission / distribution line First fail-safe means (13 4 ) for determining whether or not a ground fault and a short-circuit accident have occurred in the transmission / distribution line based on S 27C ), and the first to the first of the transmission / distribution line Based on the first to third tidal current detection relay operation signals (S 57A , S 57B , S 57C ) input from the first to third tidal current detection relays installed in the third phase, Second fail-safe means (15 1 to 15 3 , 13 5 ) for determining whether or not there is a power flow in at least one of the first to third phases; and the first to third breakers The first to third circuit breakers are turned on based on the first to third circuit breaker input signals input from Dolphin third fail-safe means for determining whether (15 4) and further comprising, said trip signal generating means, the first fail-safe means a ground fault and short-circuit fault occurs in electric transmission It is further determined that the second fail-safe means determines that there is no power flow in at least one of the first to third phases of the transmission and distribution line. As an alternative, the trip signal may be output.
When at least one of the first to third phase current monitoring means and the first to third line current monitoring means detects a disconnection accident of the transmission / distribution line, it is installed on the opposite end side of the transmission / distribution line Further comprising a disconnection detection signal transmission means for transmitting the end-side disconnection detection signal (S 1 ) to another disconnection detection protection apparatus having the same configuration as that of the disconnection detection protection apparatus, and the trip signal generation means comprises the trip signal generation means, That at least one of the first to third other phase current monitoring means and the first to third other line current monitoring means of the other disconnection detection protection device has detected a disconnection accident of the transmission and distribution lines; The trip signal may be output on condition that the opposite end side disconnection detection signal (S 2 ) shown is transmitted from the other disconnection detection protection device.
The trip signal generating means may further comprise timers (14 1 , 14 2 ) for sending and outputting the trip signal for the cooperation time with the ground fault protection relay.
The trip signal generating means may further comprise another timer (14 3 ) for outputting the trip signal delayed by a transmission delay of the opposite-end-side disconnection detection signal.

本発明の断線検出保護装置は、以下の効果を奏する。
(1)送配電線に地絡および短絡事故が発生していないことを条件として、各相電流の大きさの変化量および各線間電流の大きさの変化量に基づいて断線事故を検出すると各相遮断器を遮断するためのトリップ信号を出力することにより、断線事故を確実に検出して送配電線を保護することができる。
(2)断線検出精度の向上を図ることができる。
(3)抵抗接地系統でも非接地系統でも適用可能である。
(4)自端判定か対向端との総合判定かを系統状況に応じて選択することができる。
The disconnection detection protection device of the present invention has the following effects.
(1) On condition that no ground fault or short circuit accident has occurred in the transmission / distribution line, if a disconnection accident is detected based on the amount of change in each phase current and the amount of change in each line current, By outputting a trip signal for interrupting the phase breaker, it is possible to reliably detect a disconnection accident and protect the transmission and distribution lines.
(2) The disconnection detection accuracy can be improved.
(3) It can be applied to both a resistance grounding system and a non-grounding system.
(4) It is possible to select whether it is self-end determination or comprehensive determination with the opposite end according to the system status.

本発明の一実施例による断線検出保護装置10の構成を示す図である。It is a figure which shows the structure of the disconnection detection protection apparatus 10 by one Example of this invention. 送配電線のA相が完全断線したときの図1に示した断線検出保護装置10の動作について説明するための図である。It is a figure for demonstrating operation | movement of the disconnection detection protection apparatus 10 shown in FIG. 1 when the A phase of a power transmission / distribution electric wire is completely disconnected. 送配電線のA相が不完全断線したときの図1に示した断線検出保護装置10の動作について説明するための図である。It is a figure for demonstrating operation | movement of the disconnection detection protection apparatus 10 shown in FIG. 1 when the A phase of a transmission / distribution electric wire is incompletely disconnected.

上記の目的を、送配電線に地絡および短絡事故が発生していないことを条件として、各相電流の大きさの変化量に基づいて断線事故を検出するか各線間電流の大きさの変化量に基づいて断線事故を検出すると、各相遮断器を遮断するためのトリップ信号を出力することにより実現した。   For the above purpose, on condition that no ground fault or short circuit accident has occurred in the transmission / distribution line, detect a disconnection accident based on the amount of change in the magnitude of each phase current or change in the magnitude of each line current This was realized by outputting a trip signal to shut off each phase breaker when a disconnection accident was detected based on the quantity.

以下、本発明の断線検出保護装置の実施例について図面を参照して説明する。
なお、本発明の断線検出保護装置は送配電線の2線断線事故および3線断線事故も検出することができるように断線事故前後の相電流および線間電流を監視するが、以下では、3つの相電流のうち少なくとも1つの大きさが3サイクル前の各相電流の大きさの5%未満である場合に「断線事故が発生した」と判定するとともに、3つの線間電流変化量のうち少なくとも1つの線間電流変化量が相電流の5%以上であり、かつ、線間電流と相電流との位相角が0°〜5°の範囲内である場合に「断線事故が発生した」と判定する場合を例として説明する。
Embodiments of the disconnection detection protection device of the present invention will be described below with reference to the drawings.
The disconnection detection and protection device of the present invention monitors the phase current and the line current before and after the disconnection accident so that the two-wire disconnection accident and the three-wire disconnection accident of the transmission and distribution lines can be detected. When the magnitude of at least one of the two phase currents is less than 5% of the magnitude of each phase current three cycles before, it is determined that a “disconnection accident has occurred” and of the three line current variations "A disconnection accident occurred" when at least one line current change amount is 5% or more of the phase current and the phase angle between the line current and the phase current is in the range of 0 ° to 5 °. As an example, the case of determining that the

本発明の一実施例による断線検出保護装置10は、送配電線の両端にそれぞれ設置されており、図1に示すように、A相、B相およびC相電流監視回路11A,11B,11Cと、AB相、BC相およびCA相線間電流監視回路12AB,12BC,12CAと、第1乃至第5の論理和回路131〜135と、第1乃至第3のタイマ141〜143と、第1乃至第5の論理積回路151〜155とを具備する。 The disconnection detection and protection device 10 according to one embodiment of the present invention is installed at both ends of the transmission / distribution line. As shown in FIG. 1, the A-phase, B-phase and C-phase current monitoring circuits 11 A , 11 B , 11 C , AB phase, BC phase, and CA phase line current monitoring circuits 12 AB , 12 BC , 12 CA , first to fifth OR circuits 13 1 to 13 5, and first to third timers 14 1 to 14 3 and first to fifth AND circuits 15 1 to 15 5 .

ここで、A相電流監視回路11Aは、送配電線の自端側(断線検出保護装置10が設置された側)のA相に設置された不図示のA相変流器から入力されるA相電流IAの大きさを監視し、A相電流IAの大きさが3サイクル前のA相電流IAの大きさの5%未満である場合には、「A相に断線事故が発生した」と判定して、ハイレベルの出力信号を第1の論理和回路131に出力する。
同様に、B相電流監視回路11Bは、送配電線の自端側のB相に設置された不図示のB相変流器から入力されるB相電流IBの大きさを監視し、B相電流IBの大きさが3サイクル前のB相電流IBの大きさの5%未満である場合には、「B相に断線事故が発生した」と判定して、ハイレベルの出力信号を第1の論理和回路131に出力する。
また、C相電流監視回路11Cは、送配電線の自端側のC相に設置された不図示のC相変流器から入力されるC相電流ICの大きさを監視し、C相電流ICの大きさが3サイクル前のC相電流ICの大きさの5%未満である場合には、「C相に断線事故が発生した」と判定して、ハイレベルの出力信号を第1の論理和回路131に出力する。
Here, the A-phase current monitoring circuit 11 A is input from the local end side of the installed not shown A phase (disconnection detection protection device 10 is installed side) A current transformer of the transmission and distribution lines monitoring the size of the a-phase current I a, when the size of the a-phase current I a is less than 5% of the size of three cycles before the a-phase current I a, the disconnection accident "a phase It determines generated ", and outputs an output signal of high level to a first logic OR circuit 13 1.
Similarly, the B-phase current monitoring circuit 11 B monitors the magnitude of the B-phase current I B input from a B-phase current transformer (not shown) installed in the B-phase on the own end side of the transmission and distribution line. If the size of the B phase current I B is less than 5% of the size of the three cycles before B phase current I B, it is determined that "disconnection accident occurred in phase B ', the high-level output The signal is output to the first OR circuit 13 1 .
Further, the C-phase current monitoring circuit 11 C monitors the magnitude of the C-phase current I C input from a C-phase current transformer (not shown) installed in the C-phase on the own end side of the transmission and distribution line. If the magnitude of the phase current I C is less than 5% of the size of 3 cycles ago C phase current I C, it is determined that "disconnection accident occurred in phase C ', the high level of the output signal Is output to the first OR circuit 13 1 .

AB相線間電流監視回路12ABは、A相変流器から入力されるA相電流IAとB相変流器から入力されるB相電流IBとに基づいてAB相線間電流IABの大きさを監視し、AB相線間電流変化量ΔIAB(1サイクル前のAB相線間電流変化量ΔIABの大きさとの差の絶対値)がB相電流IBの大きさの5%以上であり、かつ、AB相線間電流IABとB相電流IBとの位相角が0°〜5°の範囲内である場合には、「A相に断線事故が発生した」と判定して、ハイレベルの出力信号を第2の論理和回路132に出力する。
同様に、BC相線間電流監視回路12BCは、B相変流器から入力されるB相電流IBとC相変流器から入力されるC相電流ICとに基づいてBC相線間電流IBCの大きさを監視し、BC相線間電流変化量ΔIBC(1サイクル前のBC相線間電流変化量ΔIBCの大きさとの差の絶対値)がC相電流ICの大きさの5%以上であり、かつ、BC相線間電流IBCとC相電流ICとの位相角が0°〜5°の範囲内である場合には、「B相に断線事故が発生した」と判定して、ハイレベルの出力信号を第2の論理和回路132に出力する。
また、CA相線間電流監視回路12CAは、C相変流器から入力されるC相電流ICとA相変流器から入力されるA相電流IAとに基づいてCA相線間電流ICAの大きさを監視し、CA相線間電流変化量ΔICA(1サイクル前のCA相線間電流変化量ΔICAの大きさとの差の絶対値)がA相電流IAの大きさの5%以上であり、かつ、CA相線間電流ICAとA相電流IAとの位相角が0°〜5°の範囲内である場合には、「C相に断線事故が発生した」と判定して、ハイレベルの出力信号を第2の論理和回路132に出力する。
The AB phase line current monitoring circuit 12 AB is based on the A phase current I A inputted from the A phase current transformer and the B phase current I B inputted from the B phase current transformer. monitoring the size of the AB, (the absolute value of the difference between the magnitude of the immediately preceding cycle AB phase line between the current change amount [Delta] I AB) AB phase line between the current change amount [Delta] I AB is a B-phase current I B the magnitude of the is 5% or more, and, when the phase angle between AB phase line current between I AB and B phase current I B is in the range of 0 ° to 5 °, the "disconnection accident a phase occurs" determined to a to output an output signal of high level to the 2 second OR circuit 13.
Similarly, the BC phase line current monitoring circuit 12 BC is configured to generate a BC phase line based on the B phase current I B input from the B phase current transformer and the C phase current I C input from the C phase current transformer. monitoring the magnitude between the current I BC, (the absolute value of the difference between the magnitude of the immediately preceding cycle BC phase line between the current change amount [Delta] I BC) BC phase line between the current change amount [Delta] I BC is C-phase current I C If it is 5% or more of the magnitude and the phase angle between the BC phase line current I BC and the C phase current I C is in the range of 0 ° to 5 °, “the B phase is broken. It determines generated ", and outputs an output signal of high level to a second logical sum circuit 13 2.
Further, the CA phase line current monitoring circuit 12 CA is arranged between the CA phase lines based on the C phase current I C input from the C phase current transformer and the A phase current I A input from the A phase current transformer. It monitors the magnitude of the current I CA, (absolute value of the difference between the size of one cycle before the CA phase line between the current change amount [Delta] I CA) CA phase line between the current change amount [Delta] I CA is a phase current I a size If the phase angle between the CA phase line-to-line current I CA and the A phase current I A is in the range of 0 ° to 5 °, a “C phase disconnection accident has occurred. it is determined that the "outputs an output signal of high level to a second logical sum circuit 13 2.

第1の論理和回路131(OR回路)は、A相、B相およびC相電流監視回路11A,11B,11Cの出力信号の論理和とる。
第2の論理和回路132(OR回路)は、AB相、BC相およびCA相線間電流監視回路12AB,12BC,12CAの出力信号の論理和とる。
The first OR circuit 13 1 (OR circuit) takes the OR of the output signals of the A-phase, B-phase, and C-phase current monitoring circuits 11 A , 11 B , 11 C.
The second OR circuit 13 2 (OR circuit) takes the OR of the output signals of the AB phase, BC phase, and CA phase line current monitoring circuits 12 AB , 12 BC , and 12 CA.

第3の論理和回路133(OR回路)は、送配電線に地絡事故や短絡事故が発生した場合には断線検出保護装置10からトリップ信号STが出力されないようにするためのものであり、送配電線の自端側に設置された不図示の地絡方向リレー(67G)から入力される地絡方向リレー動作信号S67G(地絡方向リレーの動作時にハイレベルとなる信号)の反転信号と送配電線の自端側に設置された不図示の過電流リレー(51)から入力される過電流リレー動作信号S51(過電流リレーの動作時にハイレベルとなる信号)の反転信号との論理和をとる。 The third OR circuit 13 3 (OR circuit), when a ground fault or a short circuit accident electric transmission occurs intended to be so trip signal S T from the disconnection detection protection device 10 is not output Yes, a ground fault direction relay operation signal S 67G (a signal that becomes high when the ground fault direction relay operates) is input from a ground fault direction relay (67G) (not shown) installed on the own end of the transmission / distribution line. Inverted signal and inverted signal of overcurrent relay operation signal S 51 (a signal that becomes high level when the overcurrent relay is operated) input from an unillustrated overcurrent relay (51) installed on the end of the transmission / distribution line. OR with.

第1のタイマ141は、地絡方向リレーとの協調をとるためのものであり、第1の論理和回路131の出力信号を1秒間だけ遅れて出力する。すなわち、第1のタイマ141は、第1の論理和回路131からハイレベルの出力信号が入力されると、1秒遅れてハイレベルの出力信号を出力する。
同様に、第2のタイマ142は、地絡方向リレーとの協調をとるためのものであり、第2の論理和回路132の出力信号を1秒間だけ遅れて出力する。すなわち、第2のタイマ142は、第2の論理和回路132からハイレベルの出力信号が入力されると、1秒遅れてハイレベルの出力信号を出力する。
The first timer 14 1 is for cooperation with the ground fault direction relay, and outputs the output signal of the first OR circuit 13 1 with a delay of one second. That is, when a high level output signal is input from the first OR circuit 13 1 , the first timer 14 1 outputs a high level output signal with a delay of 1 second.
Similarly, the second timer 14 2 is for coordinating with the ground fault direction relay, and outputs the output signal of the second OR circuit 13 2 with a delay of 1 second. That is, when the high-level output signal is input from the second OR circuit 13 2 , the second timer 14 2 outputs a high-level output signal with a delay of 1 second.

第4の論理和回路134(NOR回路)は、送配電線の自端側の母線の電圧は短絡事故時には低下するが断線事故時には低下しないことに着目して、この母線のA相、B相およびC相に設置された不図示のA相、B相およびC相不足電圧リレー(27)がいずれも動作していないことをフェールセーフ要素として付加するためのものであり、A相、B相およびC相不足電圧リレーから入力されるA相、B相およびC相不足電圧リレー動作信号S27A,S27B,S27C(A相、B相およびC相不足電圧リレーの動作時にハイレベルとなる信号)の否定論理和をとる。 The fourth OR circuit 13 4 (NOR circuit) pays attention to the fact that the voltage of the bus at the end of the transmission / distribution line decreases at the time of a short-circuit accident but does not decrease at the time of the disconnection accident. In order to add as a fail-safe element that the A-phase, B-phase and C-phase undervoltage relays (27) (not shown) installed in the phases C and C are not operating, A phase, B phase, and C phase undervoltage relay operation signals S 27A , S 27B , S 27C (high-level when the A phase, B phase, and C phase under voltage relays are operated) (Or signal) is taken.

第1乃至第3の論理積回路151〜153(AND回路)および第5の論理和回路135(OR回路)は、送配電線のA相、B相およびC相の1相以上に潮流があることをフェールセーフ要素として付加するためのものである。
そのため、第1の論理積回路151は、送配電線の自端側のA相に設置された不図示のA相潮流検出リレー(57)から入力されるA相潮流検出リレー動作信号S57A(A相潮流検出リレーの動作時にハイレベルとなる信号)の反転信号と、送配電線の自端側のB相に設置された不図示のB相潮流検出リレーから入力されるB相潮流検出リレー動作信号S57B(B相潮流検出リレーの動作時にハイレベルとなる信号)と、送配電線の自端側のC相に設置された不図示のC相潮流検出リレーから入力されるC相潮流検出リレー動作信号S57C(C相潮流検出リレーの動作時にハイレベルとなる信号)との論理積をとる。
第2の論理積回路152は、A相潮流検出リレー動作信号S57AとB相潮流検出リレー動作信号S57Bの反転信号とC相潮流検出リレー動作信号S57Cとの論理積をとる。
第3の論理積回路153は、A相潮流検出リレー動作信号S57AとB相潮流検出リレー動作信号S57BとC相潮流検出リレー動作信号S57Cの反転信号との論理積をとる。
第5の論理和回路135は、第1乃至第3の論理積回路151〜153の出力信号の論理和をとる。
The first to third AND circuits 15 1 to 15 3 (AND circuit) and the fifth OR circuit 13 5 (OR circuit) are connected to one or more of the A phase, B phase, and C phase of the power transmission and distribution line. This is to add that there is a tidal current as a fail-safe element.
Therefore, the first AND circuit 15 1, the A-phase power flow detection relay operation signal S 57A input from local end side of the installed not shown to the A-phase A-phase power flow detection relay of transmission and distribution lines (57) Inverted signal (signal that becomes high level when the A-phase power flow detection relay is operated) and B-phase power flow detection input from a B-phase power flow detection relay (not shown) installed in the B phase on the own end of the transmission / distribution line Relay operation signal S 57B (a signal that goes high when the B-phase power flow detection relay operates) and a C-phase signal input from a C-phase power flow detection relay (not shown) installed on the C-phase on the own end of the transmission and distribution line The logical product of the power detection relay operation signal S 57C (a signal that becomes high level when the C-phase power flow detection relay operates) is obtained.
Second AND circuit 15 2, the logical product of an inverted signal and the C-phase power flow detection relay operation signal S 57C of the A-phase power flow detection relay operation signal S 57A and B-phase power flow detection relay operation signal S 57B.
The third AND circuit 15 3 takes a logical product of the A phase power flow detection relay operation signal S 57A , the B phase power flow detection relay operation signal S 57B, and the inverted signal of the C phase power flow detection relay operation signal S 57C .
The fifth logical sum circuit 13 5 takes the logical sum of the output signals of the first to third logical product circuits 15 1 to 15 3 .

第4の論理積回路154は、第1および第2のタイマ141,142の出力信号と第3乃至第5の論理和回路133〜135の出力信号と送配電線の自端側のA相、B相およびC相に設置された不図示のA相、B相およびC相遮断器から入力されるA相、B相およびC相遮断器入信号SCBA,SCBB,SCBC(A相、B相およびC相遮断器が入状態であるとハイレベルとなる信号)との論理積をとる。
ここで、A相、B相およびC相遮断器入信号SCBA,SCBB,SCBCは、送配電線の作業時にA相、B相およびC相遮断器を遮断して切状態にしたときに断線検出保護装置10をロックするためのフェールセーフ要素として付加するためのものである。
第4の論理積回路154の出力信号は、断線検出保護装置10によって断線事故が検出されたことを示す自端側断線検出信号S1として、送配電線の対向端側に設置された断線検出保護装置10(以下、「対向端側の断線検出保護装置10」と称する。)に不図示の伝送回路および通信回線を介して伝送される。
The fourth AND circuit 15 4 includes the output signals of the first and second timers 14 1 and 14 2 , the output signals of the third to fifth OR circuits 13 3 to 13 5 , and the end of the transmission / distribution line. A phase, B phase and C phase circuit breaker input signals S CBA , S CBB , S input from A phase, B phase and C phase circuit breakers (not shown) installed in the A phase, B phase and C phase on the side Logical product with CBC (signal which becomes high level when the A-phase, B-phase and C-phase circuit breakers are in the on state) is taken.
Here, the A-phase, B-phase, and C-phase circuit breaker input signals S CBA , S CBB , S CBC are when the A-phase, B-phase, and C-phase circuit breakers are cut off when the transmission / distribution line is operated . It is for adding as a fail-safe element for locking the disconnection detection protection apparatus 10 to the above.
The output signal of the fourth AND circuit 15 4 is a disconnection installed on the opposite end side of the transmission / distribution line as a self-side disconnection detection signal S 1 indicating that a disconnection accident has been detected by the disconnection detection protection device 10. The data is transmitted to the detection protection device 10 (hereinafter, referred to as “disconnection detection protection device 10 on the opposite end side”) via a transmission circuit and a communication line (not shown).

第5の論理積回路155は、対向端側の断線検出保護装置10から通信回線を介して伝送されてくる対向端側断線検出信号S2(対向端の断線検出保護装置10によって断線事故が検出されるとハイレベルとなる信号)と第4の論理積回路154の出力信号との論理積をとる。 Fifth AND circuit 15 5, disconnection accident by breaking detection protector 10 opposing end side disconnection detection signal S 2 (the opposite end from the disconnection detection protection device 10 of the opposite end side transmitted via the communication line When the signal is detected, the signal becomes a high level) and the output signal of the fourth AND circuit 15 4 is ANDed.

第3のタイマ143は、対向端の断線検出保護装置10と同時にトリップ信号STを出力するために通信回線の伝送遅延を考慮したものであり、第5の論理積回路155の出力信号を2秒間だけ遅れて出力する。すなわち、第3のタイマ143は、第5の論理積回路155からハイレベルの出力信号が入力されると、2秒遅れてハイレベルの出力信号を出力する。
なお、第3のタイマ143の出力信号は、トリップ信号STとして自端側のA相、B相およびC相遮断器に出力される。これにより、自端側のA相、B相およびC相遮断器は、ハイレベルのトリップ信号STによって遮断される。
Third timer 14 3 is obtained by considering the transmission delay of the communication line to output a disconnection detection protection device 10 simultaneously trip signal S T of the opposite end, the fifth AND circuit 15 5 of the output signal of the Is output with a delay of 2 seconds. That is, when a high level output signal is input from the fifth AND circuit 15 5 , the third timer 14 3 outputs a high level output signal with a delay of 2 seconds.
The output signal of the third timer 14 3, local end side of the A-phase as the trip signal S T, is output to the B-phase and C-phase circuit breaker. Thus, A-phase local end side, B-phase and C-phase circuit breaker is blocked by the high level trip signal S T.

次に、通常時の断線検出保護装置10の動作について図2(a)を参照して説明する。
送配電線に断線事故が生じていない場合には、送配電線のA相、B相およびC相には図2(a)に示すように同じ大きさのA相、B相およびC相電流IA,IB,ICが120°の位相差で流れ続ける。
したがって、A相電流監視回路11Aは、A相電流変化量ΔIA=0(すなわち、A相電流IAの大きさ=3サイクル前のA相電流IAの大きさ)となるため、「A相に断線事故が発生しない」と判定して、ロウレベルの出力信号を出力したままである。
同様にして、B相電流監視回路11BおよびC相電流監視回路11Cもロウレベルの出力信号を出力したままである。
その結果、第1の論理和回路131もロウレベルの出力信号を出力したままであるため、第4の論理積回路154の出力信号はロウレベルのままとなり、トリップ信号STもロウレベルのままである。
Next, the operation of the disconnection detection protection device 10 in the normal state will be described with reference to FIG.
When there is no disconnection accident in the transmission / distribution line, the A phase, B phase, and C phase currents of the same magnitude as shown in FIG. I A , I B and I C continue to flow with a phase difference of 120 °.
Therefore, the A-phase current monitoring circuit 11 A is, the A-phase current change amount [Delta] I A = 0 (i.e., the size of the A-phase current I A of size = 3 cycles before the phase A current I A), and therefore, " It is determined that a disconnection accident does not occur in phase A, and the low level output signal is still output.
Similarly, the B-phase current monitoring circuit 11 B and the C-phase current monitoring circuit 11 C still output a low level output signal.
As a result, the first OR circuit 13 1 is also remains outputs a low level output signal, the output signal of the fourth AND circuit 15 4 will remain low, a trip signal S T also remains at a low level is there.

次に、送配電線のA相が完全断線した場合の断線検出保護装置10の動作について図2(b)および図3(a),(b)を参照して説明する。
送配電線のA相が完全断線した場合には、図2(b)に示すように、A相断線事故後のA相電流Ia=0となり、A相断線事故後のB相電流IbおよびC相電流Icは通常時のB相電流IBおよびC相電流ICと同じ大きさで位相差=180°となる。
したがって、A相電流監視回路11Aは、A相電流変化量ΔIA=|IA|(すなわち、A相断線事故後のA相電流Iaの大きさ=0(3サイクル前のA相電流IAの大きさの5%未満))となるため、「A相に断線事故が発生した」と判定して、ハイレベルの出力信号を第1の論理和回路131に出力する。
その結果、第1の論理和回路131の出力信号がロウレベルからハイレベルとなる。
Next, the operation of the disconnection detection protection device 10 when the phase A of the transmission / distribution line is completely disconnected will be described with reference to FIG. 2 (b), FIG. 3 (a), and (b).
When the A phase of the transmission / distribution line is completely disconnected, as shown in FIG. 2B, the A phase current I a = 0 after the A phase disconnection accident and the B phase current I b after the A phase disconnection accident is obtained. The C phase current I c has the same magnitude as the B phase current I B and the C phase current I C in the normal state, and a phase difference = 180 °.
Therefore, the A-phase current monitoring circuit 11 A has the A-phase current change amount ΔI A = | I A | (that is, the magnitude of the A-phase current I a after the A-phase disconnection accident = 0 (the A-phase current three cycles before). since the I less than 5% of the magnitude of a)), a determination of "disconnection phase a fault has occurred", and outputs an output signal of high level to a first logic OR circuit 13 1.
As a result, the output signal of the first OR circuit 131 changes from the low level to the high level.

また、図3(b)に示すように、A相断線事故後のAB相線間電流Iab=−Ib=−IBとなるため、AB相線間電流変化量ΔIAB=|IAB|−|Iab|=(31/2−1)・|IB|≒0.73・|IB|(すなわち、A相断線事故後のAB相線間電流IabがA相断線事故後のB相電流Ibの5%以上)となる。また、A相断線事故後のAB相線間電流IabとA相断線事故後のB相電流Ibとの位相角=0°(すなわち、A相断線事故後のAB相線間電流IabとA相断線事故後のB相電流Ibとの位相角が0°〜5°の範囲内)となる。
したがって、AB相線間電流監視回路12ABは、「A相に断線事故が発生した」と判定して、ハイレベルの出力信号を第2の論理和回路132に出力する。
その結果、第2の論理和回路132の出力信号がロウレベルからハイレベルとなる。
Further, as shown in FIG. 3 (b), AB between phase line current after the A-phase disconnection fault I ab = -I b = for the -I B, AB-phase line-to-line current change amount ΔI AB = | I AB | − | I ab | = (3 1/2 −1) · | I B | ≈0.73 · | I B | (that is, the AB phase line current I ab after the A phase disconnection accident is the A phase disconnection accident equal to or greater than 5%) of B-phase current I b after. The phase angle between the AB phase line current I ab after the A phase disconnection accident and the B phase current I b after the A phase disconnection accident is 0 ° (that is, the AB phase line current I ab after the A phase disconnection accident). And the phase angle between the B-phase current I b after the A-phase disconnection accident is within the range of 0 ° to 5 °.
Thus, AB-phase line-to-line current monitoring circuit 12 AB, it is determined that "breakage accident A phase occurs", and outputs an output signal of high level to a second logical sum circuit 13 2.
As a result, the output signal of the second OR circuit 132 is changed from the low level to the high level.

送配電線のA相が完全断線しても地絡方向リレーおよび過電流リレーは動作しないため、地絡方向リレー動作信号S67Gおよび過電流リレー動作信号S51は共にロウレベルのままとなる。
その結果、第3の論理和回路133の出力信号はハイレベルのままである。
Since the ground fault direction relay and the overcurrent relay do not operate even if the A phase of the power transmission / distribution line is completely disconnected, both the ground fault direction relay operation signal S 67G and the over current relay operation signal S 51 remain at the low level.
As a result, the output signal of the third OR circuit 133 remains at a high level.

送配電線のA相が完全断線してもA相、B相およびC相不足電圧リレーは動作しないため、A相、B相およびC相不足電圧リレー動作信号S27A,S27B,S27Cはすべてロウレベルのままとなる。
その結果、第4の論理和回路134の出力信号はハイレベルのままである。
The A-phase, B-phase, and C-phase undervoltage relays do not operate even if the A-phase of the transmission / distribution line is completely disconnected, so the A-phase, B-phase, and C-phase undervoltage relay operation signals S27A , S27B , S27C All remain low.
As a result, the output signal of the fourth OR circuit 134 remains at a high level.

送配電線のA相が完全断線すると、B相およびC相潮流検出リレーは動作したままであるため、B相およびC相潮流検出リレー動作信号S57B,S57Cはハイレベルのままとなるが、A相潮流検出リレーは動作しなくなるため、A相潮流検出リレー動作信号S57Aはハイレベルからロウレベルとなる。
その結果、第1の論理積回路151の出力信号がロウレベルからハイレベルとなるため、第5の論理和回路135の出力信号がロウレベルからハイレベルとなる。
When the A phase of the transmission / distribution line is completely disconnected, the B phase and C phase power flow detection relays remain in operation, but the B phase and C phase power flow detection relay operation signals S 57B and S 57C remain at high level. Since the A-phase power flow detection relay does not operate, the A-phase power flow detection relay operation signal S 57A changes from the high level to the low level.
As a result, since the output signal of the first AND circuit 151 is changed from the low level to the high level, the output signal of the fifth OR circuit 135 is changed from the low level to the high level.

これにより、第5の論理積回路155の出力信号がロウレベルからハイレベルとなるため、ハイレベルの自端側断線検出信号S1が対向端側の断線検出保護装置10に通信回線を介して伝送される。 As a result, the output signal of the fifth AND circuit 15 5 changes from the low level to the high level, so that the high-level self-end-side disconnection detection signal S 1 is sent to the opposite-end-side disconnection detection protection device 10 via the communication line. Is transmitted.

このとき、対向端側の断線検出保護装置10においても、同様にして送配電線のA相の完全断線が検出されると、ハイレベルの対向側断線検出信号S2が対向端側の断線検出保護装置10から通信回線を介して伝送されてくる。 At this time, also in the disconnection detection protection device 10 of the opposite end, the complete disconnection of the A-phase of transmission and distribution lines are detected in a similar manner, the opposite side disconnection detection signal S 2 of the high-level of the opposite end side disconnection detection It is transmitted from the protection device 10 via a communication line.

その結果、自端側のA相、B相およびC相遮断器がすべて投入されていると、第5の論理積回路155の出力信号がロウレベルからハイレベルとなるため、ハイレベルのトリップ信号STが断線検出保護装置10から自端側のA相、B相およびC相遮断器に出力されて、自端側のA相、B相およびC相遮断器が遮断される。
同様にして、対向端側のA相、B相およびC相遮断器も、対向端側の断線検出保護装置10によって遮断される。
As a result, when all of the A-phase, B-phase, and C-phase circuit breakers on the end side are turned on, the output signal of the fifth AND circuit 155 changes from low level to high level. a phase S T disconnection detection from the protection device 10 itself end side, are outputted to the B-phase and C-phase circuit breaker, the a-phase of the self-end side, B-phase and C-phase circuit breaker is interrupted.
Similarly, the A-phase, B-phase, and C-phase circuit breakers on the opposite end side are also interrupted by the disconnection detection protection device 10 on the opposite end side.

次に、送配電線のA相が不完全断線した場合の断線検出保護装置10の動作について図2(c)および図3(c)を参照して説明する。
送配電線のA相が不完全断線した場合には、図2(c)に示すように、A相断線事故後のA相電流Iaの大きさは通常時のA相電流IBの大きさよりも小さくなり、A相断線事故後のB相およびC相電流Ib,Icは通常時のB相およびC相電流IB,ICと同じ大きさで、A相断線事故後のA相電流Iaの大きさに応じて位相差が120°よりも大きく180°よりも小さくなる(図示した例では、位相差≒170°としている。)。
したがって、A相断線事故後のA相電流Iaが3サイクル前のA相電流IAの大きさの5%未満であると、「A相に断線事故が発生した」と判定して、ハイレベルの出力信号を第1の論理和回路131に出力する。
その結果、第1の論理和回路131の出力信号がロウレベルからハイレベルとなる。
Next, the operation of the disconnection detection protection device 10 when the phase A of the transmission / distribution line is incompletely disconnected will be described with reference to FIGS. 2 (c) and 3 (c).
When the A-phase of the transmission and distribution lines are incompletely broken, as shown in FIG. 2 (c), the size of the A-phase current I a of the A-phase disconnection accident of normal A-phase current I B size The B-phase and C-phase currents I b , I c after the A-phase disconnection accident are the same as the normal B-phase and C-phase currents I B , I C , The phase difference is larger than 120 ° and smaller than 180 ° in accordance with the magnitude of the phase current I a (in the illustrated example, the phase difference is approximately 170 °).
Therefore, when the A-phase current I a of the A-phase disconnection fault is less than 5% of the size of the three cycles before the phase A current I A, a determination of "disconnection accident has occurred in the A-phase" high The level output signal is output to the first OR circuit 13 1 .
As a result, the output signal of the first OR circuit 131 changes from the low level to the high level.

また、図3(c)に示すように、AB相線間電流変化量ΔIAB=|IAB|−|Iab|となり、A相断線事故後のAB相線間電流IabとA相断線事故後のB相電流Ibとの位相角は、A相断線事故後のA相電流Iaの大きさに応じて0°よりも大きく30°よりも小さくなる(図示した例では、位相差≒15°)。
したがって、AB相線間電流監視回路12ABは、A相断線事故後のAB相線間電流IabがA相断線事故後のB相電流Ibの5%以上であり、かつ、A相断線事故後のAB相線間電流IabとA相断線事故後のB相電流Ibとの位相角が0°〜5°の範囲内である場合には、「A相に断線事故が発生した」と判定して、ハイレベルの出力信号を第2の論理和回路132に出力する。
その結果、第2の論理和回路132の出力信号がロウレベルからハイレベルとなる。
Further, as shown in FIG. 3C, the AB phase line current change amount ΔI AB = | I AB | − | I ab |, and the AB phase line current I ab and the A phase disconnection after the A phase disconnection accident The phase angle with the B-phase current I b after the accident is greater than 0 ° and smaller than 30 ° according to the magnitude of the A-phase current I a after the A-phase disconnection accident (in the illustrated example, the phase difference ≒ 15 °).
Therefore, the AB phase line current monitoring circuit 12 AB is such that the AB phase line current I ab after the A phase disconnection accident is 5% or more of the B phase current I b after the A phase disconnection accident, and the A phase disconnection If the phase angle between the AB phase line current I ab after the accident and the B phase current I b after the A phase disconnection accident is within the range of 0 ° to 5 °, “A phase disconnection accident occurred. "determined to a to output an output signal of high level to a second logical sum circuit 13 2.
As a result, the output signal of the second OR circuit 132 is changed from the low level to the high level.

送配電線のA相が不完全断線しても地絡方向リレーおよび過電流リレーは動作しないため、地絡方向リレー動作信号S67Gおよび過電流リレー動作信号S51は共にロウレベルのままとなる。
その結果、第3の論理和回路133の出力信号はハイレベルのままである。
Since the A-phase of the transmission and distribution lines are ground direction relay and the overcurrent relay does not operate even if incomplete disconnection, ground fault direction relay operation signal S 67G and overcurrent relay operating signal S 51 are both kept at a low level.
As a result, the output signal of the third OR circuit 133 remains at a high level.

送配電線のA相が不完全断線してもA相、B相およびC相不足電圧リレーは動作しないため、A相、B相およびC相不足電圧リレー動作信号S27A,S27B,S27Cはすべてロウレベルのままとなる。
その結果、第4の論理和回路134の出力信号はハイレベルのままである。
Even if the A phase of the transmission and distribution line is incompletely disconnected, the A phase, B phase, and C phase undervoltage relays do not operate. Therefore, the A phase, B phase, and C phase undervoltage relay operation signals S 27A , S 27B , S 27C All remain low.
As a result, the output signal of the fourth OR circuit 134 remains at a high level.

AB相線間電流監視回路12ABが「A相に断線事故が発生した」と判定する程度まで送配電線のA相が断線すると、B相およびC相潮流検出リレーは動作したままであるため、B相およびC相潮流検出リレー動作信号S57B,S57Cはハイレベルのままとなるが、A相潮流検出リレーは動作しなくなるため、A相潮流検出リレー動作信号S57Aはロウレベルとなる。
その結果、第1の論理積回路151の出力信号がロウレベルからハイレベルとなるため、第5の論理和回路135の出力信号がロウレベルからハイレベルとなる。
If the A phase of the transmission / distribution line is disconnected to the extent that the AB phase line current monitoring circuit 12 AB determines that “A phase disconnection has occurred”, the B phase and C phase power flow detection relays remain in operation. The B-phase and C-phase power flow detection relay operation signals S 57B and S 57C remain at the high level, but the A-phase power flow detection relay does not operate, so the A-phase power flow detection relay operation signal S 57A is at the low level.
As a result, since the output signal of the first AND circuit 151 is changed from the low level to the high level, the output signal of the fifth OR circuit 135 is changed from the low level to the high level.

これにより、第5の論理積回路155の出力信号がロウレベルからハイレベルとなるため、ハイレベルの自端側断線検出信号S1が対向端側の断線検出保護装置10に通信回線を介して伝送される。 As a result, the output signal of the fifth AND circuit 15 5 changes from the low level to the high level, so that the high-level self-end-side disconnection detection signal S 1 is sent to the opposite-end-side disconnection detection protection device 10 via the communication line. Is transmitted.

このとき、対向端側の断線検出保護装置10においても、同様にして送配電線のA相の断線事故が検出されると、ハイレベルの対向端側断線検出信号S2が対向端側の断線検出保護装置10から通信回線を介して伝送されてくる。 At this time, also in the disconnection detection protection device 10 of the opposite end, the accidental disconnection of the A-phase of transmission and distribution lines in the same manner is detected, disconnection opposite end disconnection detection signal S 2 of the high-level of the opposite end It is transmitted from the detection protection device 10 via a communication line.

その結果、自端側のA相、B相およびC相遮断器がすべて投入されていると、第5の論理積回路155の出力信号がロウレベルからハイレベルとなるため、ハイレベルのトリップ信号STが断線検出保護装置10から自端側のA相、B相およびC相遮断器に出力されて、自端側のA相、B相およびC相遮断器が遮断される。
同様にして、対向端側のA相、B相およびC相遮断器も、対向端側の断線検出保護装置10によって遮断される。
As a result, when all of the A-phase, B-phase, and C-phase circuit breakers on the end side are turned on, the output signal of the fifth AND circuit 155 changes from low level to high level. a phase S T disconnection detection from the protection device 10 itself end side, are outputted to the B-phase and C-phase circuit breaker, the a-phase of the self-end side, B-phase and C-phase circuit breaker is interrupted.
Similarly, the A-phase, B-phase, and C-phase circuit breakers on the opposite end side are also interrupted by the disconnection detection protection device 10 on the opposite end side.

以上の説明では、分岐以降の断線も検出できるように自端と対向端(送電端と受電端)との総合判定方式とするために、断線検出保護装置10は第5の論理積回路155を備えたが、自端判定のみを行う場合には第5の論理積回路155を備えていなくてもよい。この場合には、第4の論理積回路154の出力信号を第3のタイマ143に直接入力させればよいとともに、第4の論理積回路154から出力される自端側断線検出信号S1を対向端側の断線検出保護装置10に通信回線を介して伝送する必要はない。
また、系統状況により自端判定と総合判定との選択を行えるようにするために、総合判定とする場合にのみ対向端側断線検出信号S2を第5の論理積回路155に入力させるスイッチを対向端側断線検出信号S2の入力端子と第5の論理積回路155との間に設けてもよい。
In the above description, the disconnection detection protection device 10 has the fifth AND circuit 15 5 in order to adopt a comprehensive determination method between the own end and the opposite end (power transmission end and power reception end) so that disconnection after the branch can also be detected. Although provided with, in the case of performing only the local end determination may not be provided with the aND circuit 15 5 of the fifth. In this case, the output signal of the fourth AND circuit 15 4 may be directly input to the third timer 14 3 , and the self-end-side disconnection detection signal output from the fourth AND circuit 15 4 It is not necessary to transmit S 1 to the disconnection detection protection device 10 on the opposite end side via the communication line.
In addition, in order to enable selection between self-end determination and comprehensive determination depending on the system status, a switch that causes the opposite-end-side disconnection detection signal S 2 to be input to the fifth AND circuit 15 5 only when comprehensive determination is performed. May be provided between the input terminal of the opposite-end-side disconnection detection signal S 2 and the fifth AND circuit 15 5 .

試験などで断線検出保護装置10を使用しない場合にトリップ信号STが出力されないように、装置使用中信号が入力されると閉じるスイッチを第5のタイマ143とトリップ信号STの出力端子との間に設けてもよい。
また、送配電線のA相、B相およびC相すべてに潮流がある場合にはトリップ信号STが確実に出力されないように、A相、B相およびC相潮流検出リレー動作信号S57A,S57B,S57Cの論理積をとる論理積回路(AND回路)を設けて、この論理積回路の出力信号がハイレベルのときに第5のタイマ143とトリップ信号STの出力端子との間に設けたスイッチを閉じるようにしてもよい。
As trip signal S T is not outputted when tested, by not using the disconnection detection protection device 10, the a closing switch apparatus used in the signal is input and the fifth timer 14 3 and an output terminal of the trip signal S T You may provide between.
Also, when there is a power flow in all of the A-phase, B-phase, and C-phase of the transmission and distribution lines, the A-phase, B-phase, and C-phase power flow detection relay operation signal S 57A , so that the trip signal ST is not output reliably. S 57B, by providing a logical product circuit (aND circuit) ANDing S 57C, the output signal of the logical product circuit and the output terminal of the fifth timer 14 3 and the trip signal S T at the high level You may make it close the switch provided in between.

送配電線に地絡事故や短絡事故が発生した場合には断線検出保護装置10からトリップ信号STが出力されないようにするために、地絡方向リレー動作信号S67Gを第3の論理和回路133に入力したが、送配電線の自端側に地絡過電圧リレー(64V)が設置されている場合には、地絡過電圧リレー動作信号を第3の論理和回路133に入力してもよい。 To ensure that the trip signal S T from the disconnection detection protection device 10 is not output when the ground fault or a short circuit accident electric transmission occurs, the ground fault direction relay operation signal S 67G third OR circuit 13 has been inputted to the 3, if the local end side on the ground fault over-voltage relay transmission and distribution lines (64V) is installed, enter the ground fault over-voltage relay operating signal to the third OR circuit 13 3 Also good.

10 断線検出保護装置
11A,11B,11C A相、B相およびC相電流監視回路
12AB,12BC,12CA AB相、BC相およびCA相線間電流監視回路
131〜135 第1乃至第5の論理和回路
141〜143 第1乃至第3のタイマ
151〜155 第1乃至第5の論理積回路
A,IB,IC A相、B相およびC相電流
a,Ib,Ic A相断線事故後のA相、B相およびC相電流
ΔIA,ΔIB,ΔIC A相、B相およびC相電流変化量
AB,IBC,ICA AB相、BC相およびCA相線間電流
ab A相断線事故後のAB相線間電流
ΔIAB,ΔIBC,ΔICA AB相、BC相およびCA相線間電流変化量
67G 地絡方向リレー動作信号
51 過電流リレー動作信号
27A,S27B,S27C A相、B相およびC相不足電圧リレー動作信号
57A,S57B,S57C A相、B相およびC相潮流検出リレー動作信号
CBA,SCBB,SCBC A相、B相およびC相遮断器入信号
1,S2 自端側および対向端側断線検出信号
T トリップ信号
10 disconnection detection protection device 11 A , 11 B , 11 C A phase, B phase and C phase current monitoring circuit 12 AB , 12 BC , 12 CA AB phase, BC phase and CA phase line current monitoring circuit 13 1 to 13 5 1st to 5th OR circuits 14 1 to 13 3 1st to 3rd timers 15 1 to 15 5 1st to 5th AND circuits I A , I B , I C A phase, B phase and C Phase currents I a , I b , I c A phase, B phase and C phase currents ΔI A , ΔI B , ΔI C A phase, B phase and C phase current variations I AB , I BC , I CA AB phase, BC phase and CA phase line current I ab A phase AB line current after the A phase disconnection accident ΔI AB , ΔI BC , ΔI CA AB phase, BC phase and CA phase line current change S 67G fault direction relay operation signal S 51 overcurrent relay operating signal S 27A, S 27B, S 27C A phase, B phase and C phase undervoltage relay operation signal S 57A, S 5 7B , S 57C A phase, B phase and C phase power flow detection relay operation signal S CBA , S CBB , S CBC A phase, B phase and C phase circuit breaker input signals S 1 , S 2 Own end side and opposite end side disconnection Detection signal ST Trip signal

Claims (5)

断線事故から送配電線を保護するための断線検出保護装置(10)であって、
前記送配電線の第1乃至第3の相を流れる第1乃至第3の相電流(IA,IB,IC)の大きさを監視して、該第1乃至第3の相電流の大きさの変化量に基づいて該送配電線の第1乃至第3の相に断線事故が発生したか否かを検出する第1乃至第3の相電流監視手段(11A,11B,11C)と、
前記送配電線の第1乃至第3の線間電流(IAB,IBC,ICA)の大きさを監視して、第1乃至第3の線間電流の大きさの変化量に基づいて該送配電線の第1乃至第3の相に断線事故が発生したか否かを検出する第1乃至第3の線間電流監視手段(12A,12B,12C)と、
前記送配電線に設置された地絡保護リレーおよび短絡保護リレーから入力される地絡保護リレー動作信号(S67G)および短絡保護リレー動作信号(S51)に基づいて、該送配電線に地絡事故および短絡事故が発生していないか否かを判定する地絡・短絡事故判定手段(133)と、
該地絡・短絡事故判定手段が前記送配電線に地絡事故および短絡事故が発生していないと判定していることを条件として、前記第1乃至第3の相電流監視手段および前記第1乃至第3の線間電流監視手段のうち少なくとも1つが前記送配電線の断線事故を検出すると、該送配電線の第1乃至第3の相に設置されている第1乃至第3の遮断器を遮断するためのトリップ信号(ST)を出力するトリップ信号発生手段(141,142,154,155)と、
を具備することを特徴とする、断線検出保護装置。
A disconnection detection protection device (10) for protecting a transmission / distribution line from a disconnection accident,
The magnitudes of the first to third phase currents (I A , I B , I C ) flowing through the first to third phases of the transmission / distribution line are monitored, and the first to third phase currents are monitored. First to third phase current monitoring means (11 A , 11 B , 11) for detecting whether or not a disconnection accident has occurred in the first to third phases of the transmission / distribution line based on the change in size. C ) and
The magnitudes of the first to third line currents (I AB , I BC , I CA ) of the transmission / distribution lines are monitored and based on the amount of change in the magnitudes of the first to third line currents. First to third line current monitoring means (12 A , 12 B , 12 C ) for detecting whether or not a disconnection accident has occurred in the first to third phases of the transmission and distribution lines;
Based on the ground fault protection relay operation signal (S 67G ) and the short circuit protection relay operation signal (S 51 ) input from the ground fault protection relay and the short circuit protection relay installed on the transmission and distribution line, A ground fault / short circuit accident judging means (13 3 ) for judging whether or not a fault accident and a short circuit accident have occurred;
The first to third phase current monitoring units and the first phase are provided on the condition that the ground fault / short circuit accident determination unit determines that no ground fault or short circuit accident has occurred in the transmission / distribution line. When at least one of the third to third line current monitoring means detects a disconnection accident of the transmission / distribution line, the first to third circuit breakers installed in the first to third phases of the transmission / distribution line Trip signal generating means (14 1 , 14 2 , 15 4 , 15 5 ) for outputting a trip signal (S T ) for cutting off
A breakage detection protection device comprising:
前記送配電線の第1乃至第3の相に設置された第1乃至第3の不足電圧リレーから入力される第1乃至第3の不足電圧リレー動作信号(S27A,S27B,S27C)に基づいて、該送配電線に地絡事故および短絡事故が発生していないか否かを判定する第1のフェールセーフ手段(134)と、
前記送配電線の第1乃至第3の相に設置された第1乃至第3の潮流検出リレーから入力される第1乃至第3の潮流検出リレー動作信号(S57A,S57B,S57C)に基づいて、該送配電線の第1乃至第3の相のうち少なくとも1つの相に潮流がないか否かを判定する第2のフェールセーフ手段(151〜153,135)と、
前記第1乃至第3の遮断機から入力される第1乃至第3の遮断器入信号に基づいて、該第1乃至第3の遮断機が投入されているか否かを判定する第3のフェールセーフ手段(154)とをさらに具備し、
前記トリップ信号発生手段が、前記第1のフェールセーフ手段が前記送配電線に地絡事故および短絡事故が発生していないと判定しており、かつ、前記第2のフェールセーフ手段が前記送配電線の第1乃至第3の相のうち少なくとも1つの相に潮流がないと判定していることをさらに条件として、前記トリップ信号を出力する、
ことを特徴とする、請求項1記載の断線検出保護装置。
First to third undervoltage relay operation signals (S 27A , S 27B , S 27C ) input from first to third undervoltage relays installed in the first to third phases of the transmission and distribution lines. A first fail-safe means (13 4 ) for determining whether or not a ground fault and a short-circuit accident have occurred in the transmission and distribution line,
First to third tidal current detection relay operation signals (S 57A , S 57B , S 57C ) input from first to third tidal current detection relays installed in the first to third phases of the transmission and distribution lines. A second fail-safe means (15 1 to 15 3 , 13 5 ) for determining whether or not there is a power flow in at least one of the first to third phases of the transmission and distribution line,
A third fail for determining whether or not the first to third circuit breakers are turned on based on first to third circuit breaker input signals input from the first to third circuit breakers. Safe means (15 4 ),
The trip signal generating means determines that the first fail-safe means has not caused a ground fault or a short-circuit accident in the transmission / distribution line, and the second fail-safe means is the delivery / distribution. The trip signal is output on the further condition that it is determined that there is no power flow in at least one of the first to third phases of the wire.
The disconnection detection protection apparatus according to claim 1, wherein
前記第1乃至第3の相電流監視手段および前記第1乃至第3の線間電流監視手段のうち少なくとも1つが前記送配電線の断線事故を検出すると、前記送配電線の対向端側に設置されたかつ前記断線検出保護装置と同じ構成の他の断線検出保護装置に自端側断線検出信号(S1)を伝送する断線検出信号伝送手段をさらに具備し、
前記トリップ信号発生手段が、前記他の断線検出保護装置の第1乃至第3の他の相電流監視手段および第1乃至第3の他の線間電流監視手段のうち少なくとも1つが前記送配電線の断線事故を検出したことを示す対向端側断線検出信号(S2)が該他の断線検出保護装置から伝送されてきていることを条件として、前記トリップ信号を出力する、
ことを特徴とする、請求項1または2記載の断線検出保護装置。
When at least one of the first to third phase current monitoring means and the first to third line current monitoring means detects a disconnection accident of the transmission / distribution line, it is installed on the opposite end side of the transmission / distribution line A disconnection detection signal transmission means for transmitting the end-side disconnection detection signal (S 1 ) to the other disconnection detection protection device having the same configuration as that of the disconnection detection protection device,
The trip signal generating means is configured such that at least one of the first to third other phase current monitoring means and the first to third other line current monitoring means of the other disconnection detection protection device is the transmission / distribution line. The trip signal is output on the condition that the opposite-end-side disconnection detection signal (S 2 ) indicating that the disconnection accident is detected is transmitted from the other disconnection detection protection device,
The disconnection detection protection device according to claim 1, wherein the disconnection detection protection device is provided.
前記トリップ信号発生手段が、前記地絡保護リレーとの協調時間だけ前記トリップ信号を送れて出力させるためのタイマ(141,142)をさらに具備することを特徴とする、請求項1乃至3いずれかに記載の断線検出保護装置。 The trip signal generating means further comprises timers (14 1 , 14 2 ) for sending and outputting the trip signal for a cooperation time with the ground fault protection relay. Disconnection detection protection apparatus in any one. 前記トリップ信号発生手段が、前記対向端側断線検出信号の伝送遅延だけ遅れて前記トリップ信号を出力させるための他のタイマ(143)をさらに具備することを特徴とする、請求項3または4記載の断線検出保護装置。 5. The trip signal generating means further comprises another timer (14 3 ) for outputting the trip signal delayed by a transmission delay of the opposite-end-side disconnection detection signal. The disconnection detection protection device described.
JP2011012588A 2011-01-25 2011-01-25 Disconnection detection and protection device Withdrawn JP2012157115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011012588A JP2012157115A (en) 2011-01-25 2011-01-25 Disconnection detection and protection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011012588A JP2012157115A (en) 2011-01-25 2011-01-25 Disconnection detection and protection device

Publications (1)

Publication Number Publication Date
JP2012157115A true JP2012157115A (en) 2012-08-16

Family

ID=46838252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011012588A Withdrawn JP2012157115A (en) 2011-01-25 2011-01-25 Disconnection detection and protection device

Country Status (1)

Country Link
JP (1) JP2012157115A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107706891A (en) * 2017-09-13 2018-02-16 湖南长高思瑞自动化有限公司 A kind of integrated protection and monitoring device and method for ring main unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107706891A (en) * 2017-09-13 2018-02-16 湖南长高思瑞自动化有限公司 A kind of integrated protection and monitoring device and method for ring main unit

Similar Documents

Publication Publication Date Title
US8908342B2 (en) Systems, methods and apparatus for protecting power distribution feeder systems
EP2862252B1 (en) A power bay protection device and a method for protecting power bays
JP2018064416A (en) Two parallel line transmission line protection system
CA3068231C (en) Communication-based permissive protection scheme for power distribution networks
KR101008416B1 (en) Over current relay protection device for preventing mal-operation by reverse power and the driving method thereof
AU2018204368B2 (en) Upstream Parallel Arc Fault Outlet Protection Method
JP5100423B2 (en) Protective relay system
JP2009005565A (en) Distribution line accident zone selecting and blocking device and distribution line accident zone selecting and blocking method
JP5208684B2 (en) Ground fault protection relay system
JP2012075250A (en) Insulation ground fault monitoring device with adoption lock
JP2012157115A (en) Disconnection detection and protection device
JP5224783B2 (en) Distribution line ground fault protection system
JP2013255306A (en) Premise protective relay device
KR101437340B1 (en) Swichgear Having Self-diagnosis Circuit for Transformer
JP2009254036A (en) Ground fault protecting relay system
JP4836663B2 (en) Loop system protection device and method
JP2018098873A (en) Power transmission line ground fault protection system and power transmission line ground fault protection method
JP2012170221A (en) Stability determination device for power system, stabilization system, and method of determining stability
JP2011254626A (en) Transmission line protector
JP2009131016A (en) Disconnection protective relay
JP2023147430A (en) Bus voltage abnormality detection device and bus voltage abnormality detection method
JP5224760B2 (en) Disconnection protection relay
JPH0327716A (en) Method and apparatus for reclosing of transmission system
JP3843663B2 (en) Protection relay device
JP2008161013A (en) Ground fault overcurrent relay device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140401