JP2009254036A - Ground fault protecting relay system - Google Patents

Ground fault protecting relay system Download PDF

Info

Publication number
JP2009254036A
JP2009254036A JP2008095879A JP2008095879A JP2009254036A JP 2009254036 A JP2009254036 A JP 2009254036A JP 2008095879 A JP2008095879 A JP 2008095879A JP 2008095879 A JP2008095879 A JP 2008095879A JP 2009254036 A JP2009254036 A JP 2009254036A
Authority
JP
Japan
Prior art keywords
ground fault
relay device
power transmission
line
transmission line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008095879A
Other languages
Japanese (ja)
Inventor
Shigeo Matsumoto
重穗 松本
Yoshiaki Date
義明 伊達
Masami Takenaka
正実 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2008095879A priority Critical patent/JP2009254036A/en
Publication of JP2009254036A publication Critical patent/JP2009254036A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ground fault protecting relay system capable of protecting a parallel two-line transmission line against a ground fault without causing deterioration in the degree of reliability of supply. <P>SOLUTION: When a ground fault breaking out in a first transmission power 1L direction is detected in a first transmission terminal ground fault relay device 21<SB>1</SB>and the ground fault is further detected in a power transmission end ground fault overcurrent relay device 11, a first ground fault current relay device trip signal T<SB>OCG1</SB>is output to a first breaker 4<SB>1</SB>, and when a ground fault breaking out in a second transmission line 2L direction is detected by a second transmission end ground fault direction relay device 21<SB>2</SB>, and the ground fault is further detected by the transmission end ground fault overcurrent relay device 11, a second ground fault overcurrent relay device trip signal T<SB>OCG2</SB>is output to a second breaker 4<SB>2</SB>. A power reception end ground fault overcurrent relay device 12, and first and second power reception end ground fault direction relay devices 22<SB>1</SB>, 22<SB>2</SB>operate similarly to the power transmission end ground fault overcurrent relay device 11 and the first and second power transmission end ground fault direction relay devices 21<SB>1</SB>, 21<SB>2</SB>. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、地絡保護継電システムに関し、特に、平衡2回線送電線を地絡事故から保護するのに好適な地絡保護継電システムに関する。   The present invention relates to a ground fault protection relay system, and more particularly to a ground fault protection relay system suitable for protecting a balanced two-line transmission line from a ground fault.

従来、抵抗接地型平衡2回線送電線のローカル系統での地絡保護は、図10に示す地絡保護継電システムのように、主保護として地絡回線選択継電装置(送電端地絡回線選択継電装置111と受電端地絡回線選択継電装置112)を使用するとともに、後備保護として地絡方向継電装置(第1および第2の地絡方向継電装置1211,1212と第1および第2の受電端地絡方向継電装置1221,1222)を使用して行われている(下記の特許文献1など参照)。 Conventionally, the ground fault protection in the local system of the resistance ground type balanced two-line transmission line is the main protection like the ground fault protection relay system shown in FIG. While using the selective relay device 111 and the power receiving terminal ground fault line selective relay device 112), as a back-up protection, the ground fault direction relay devices (first and second ground fault direction relay devices 121 1 , 121 2 and The first and second power receiving end ground fault direction relay devices 122 1 , 122 2 ) are used (see, for example, Patent Document 1 below).

なお、下記の特許文献2には、線路零相電流と中性点零相電流との比が1/W(回線数)よりも大きいか否かを判定し、線路零相電流と中性点零相電流との比が1/Wよりも大きい場合には地絡事故発生と判定して遮断信号を遮断器に供給することにより、線路零相電流と中性点零相電流との比は事故点抵抗値を含まないので、事故点抵抗値に影響されず確実に地絡事故を検出するようにした地絡回線選択保護継電装置が開示されている。
特開平11−69608号公報 特開平5−328588号公報
In Patent Document 2 below, it is determined whether or not the ratio between the line zero-phase current and the neutral point zero-phase current is greater than 1 / W (number of lines). When the ratio of the zero-phase current is larger than 1 / W, it is determined that a ground fault has occurred, and the interrupt signal is supplied to the circuit breaker, so that the ratio of the line zero-phase current and the neutral zero-phase current is Since the fault point resistance value is not included, there has been disclosed a ground fault line selection protection relay device that reliably detects a ground fault without being affected by the fault point resistance value.
Japanese Patent Laid-Open No. 11-69608 JP-A-5-328588

しかしながら、図10に示した地絡保護継電システムでは、以下に示すように零相循環電流による送電端地絡回線選択継電装置111および受電端地絡回線選択継電装置112の誤動作に起因する供給信頼度の低下という問題があった。
主保護として使用されている送電端地絡回線選択継電装置111および受電端地絡回線選択継電装置112は保護区間(送電端母線と受電端母線との間の区間)の50%地点(線路中間点)での故障時の最小零相電流(保護区間の30%相当の不完全零相電流)で動作するように整定されている。
たとえば、系統内最小NGR容量=150A時の整定とすると、送電端地絡回線選択継電装置111および受電端地絡回線選択継電装置112に入力される電流の値は(150×0.3)/2=22.5(A)になるため、送電端地絡回線選択継電装置111および受電端地絡回線選択継電装置112の整定値は22.5Aとされる。
このため、零相循環電流が11.25A以上流れると、リレー入力の零相電流(差接続された第1および第2の零相変流器31,32から送電端地絡回線選択継電装置111に入力される零相電流と、差接続された第3および第4の零相変流器33,34から受電端地絡回線選択継電装置112に入力される零相電流)は零相循環電流の2倍(22.5A以上)になって整定値以上になるため、送電端地絡回線選択継電装置111および受電端地絡回線選択継電装置112が誤動作してしまい、供給信頼度の低下を招いている。
なお、零相循環電流により誤動作しないように送電端地絡回線選択継電装置111および受電端地絡回線選択継電装置112を整定した場合には、保護範囲が狭まって無保護区間が生じる。また、零相循環電流対策付きの地絡回線選択継電装置(たとえば、差回路に流れる事故時の零相電流の有効分と事故前の零相電流の有効分との差分を求めることにより零相循環電流の影響を除去して動作量を算出する変化分検出器(変化幅形)地絡回線選択継電装置や、リレー入力の零相電流から零相循環電流分を除去するように補償をかける補償形地絡回線選択継電装置)を使用した場合には、コスト増になる。
However, in the ground fault protection relay system shown in FIG. 10, it is caused by a malfunction of the power transmission terminal ground fault line selection relay device 111 and the power receiving terminal ground fault line selection relay device 112 due to the zero-phase circulating current as shown below. There was a problem that the supply reliability decreased.
The power transmission terminal ground fault line selection relay device 111 and the power reception terminal ground fault line selection relay device 112 used as the main protection are 50% of the protection section (the section between the power transmission terminal bus and the power reception terminal bus) ( It is set so as to operate with a minimum zero-phase current at the time of a failure at the line intermediate point (an incomplete zero-phase current corresponding to 30% of the protection interval).
For example, assuming that the minimum NGR capacity in the system is 150 A, the value of the current input to the power transmission terminal ground fault line selection relay device 111 and the power reception terminal ground fault line selection relay device 112 is (150 × 0.3). ) /2=22.5 (A), the setting values of the power transmission terminal ground fault line selection relay device 111 and the power reception terminal ground fault line selection relay device 112 are 22.5 A.
For this reason, if the zero-phase circulating current flows over 11.25 A, the relay input zero-phase current (the first and second zero-phase current transformers 3 1 and 3 2 connected to each other from the differentially connected power transmission terminal ground fault line selection relay) Zero-phase current input to the electric device 111 and zero-phase current input from the third and fourth zero-phase current transformers 3 3 and 3 4 connected to each other to the power receiving terminal ground fault line selection relay device 112 ) Becomes twice the zero-phase circulating current (22.5A or more) and exceeds the set value, so that the power transmission terminal ground fault line selection relay device 111 and the power reception terminal ground fault line selection relay device 112 malfunction. As a result, the supply reliability is lowered.
In addition, when the power transmission terminal ground fault line selection relay device 111 and the power reception terminal ground fault line selection relay device 112 are set so as not to malfunction due to the zero-phase circulating current, the protection range is narrowed and an unprotected section is generated. In addition, a ground fault line selection relay device with a zero-phase circulating current countermeasure (for example, zero by calculating the difference between the effective amount of the zero-phase current at the time of the accident flowing through the difference circuit and the effective component of the zero-phase current before the accident) Change detector (variation width type) ground fault line selection relay that eliminates the effect of phase circulating current and calculates the amount of operation, and compensates to remove zero phase circulating current from relay input zero phase current When a compensation type ground fault line selection relay device is applied, the cost increases.

本発明の目的は、供給信頼度の低下を招くことなく平衡2回線送電線を地絡事故から保護することができる地絡保護継電システムを提供することにある。   An object of the present invention is to provide a ground fault protection relay system capable of protecting a balanced two-line transmission line from a ground fault without causing a decrease in supply reliability.

本発明の地絡保護継電システムは、平衡2回線送電線を地絡事故から保護するための地絡保護継電システムであって、前記平衡2回線送電線に設置された、かつ、該平衡2回線送電線の第1および第2の送電線(1L,2L)をそれぞれ流れる零相電流の差電流に基づいて動作する地絡過電流継電装置(11;12)と、前記第1および第2の送電線にそれぞれ設置された第1および第2の地絡方向継電装置(211,212;221,222)とを具備し、前記第1の地絡方向継電装置において前記第1の送電線方向で発生した地絡事故を検出するとともに前記地絡過電流継電装置においても該地絡事故を検出すると、該第1の送電線に設置された遮断器(41,43)を遮断するためのトリップ信号を出力し、前記第2の地絡方向継電装置において前記第2の送電線方向で発生した地絡事故を検出するとともに前記地絡過電流継電装置においても該地絡事故を検出すると、該第2の送電線に設置された他の遮断器(42,44)を遮断するための他のトリップ信号を出力することを特徴とする。
また、本発明の地絡保護継電システムは、平衡2回線送電線を地絡事故から保護するための地絡保護継電システムであって、前記平衡2回線送電線の送電端に設置された送電端地絡過電流継電装置(11)と第1および第2の送電端地絡方向継電装置(211,212)とを具備し、前記第1の送電端地絡方向継電装置が、前記平衡2回線送電線の第1の送電線(1L)方向において地絡事故が発生したことを検出すると第1の事故回線判定結果信号(S1)を前記送電端地絡過電流継電装置に出力する第1のリレー判定手段(31)を備え、前記第2の送電端地絡方向継電装置が、前記平衡2回線送電線の第2の送電線(2L)方向において地絡事故が発生したことを検出すると第2の事故回線判定結果信号(S2)を前記送電端地絡過電流継電装置に出力する第2のリレー判定手段(41)を備え、前記送電端地絡過電流継電装置が、前記第1の送電線の送電端を流れる第1の零相電流(I01)および前記第2の送電線の送電端を流れる第2の零相電流(I02)の差電流(I01−I02)に基づいて該第1または第2の送電線における地絡事故の発生を検出する地絡事故検出手段(51)と、該地絡事故検出手段において地絡事故の発生を検出するとともに前記第1の送電端地絡方向継電装置から前記第1の事故回線判定結果信号が入力されると、該第1の送電線の送電端に設置された第1の遮断器(41)を遮断するための第1の地絡過電流継電装置トリップ信号(TOCG1)を発生する第1の地絡過電流継電装置トリップ信号発生手段(531)と、前記地絡事故検出手段において地絡事故の発生を検出するとともに前記第2の送電端地絡方向継電装置から前記第2の事故回線判定結果信号が入力されると、該第2の送電線の送電端に設置された第2の遮断器(42)を遮断するための第2の地絡過電流継電装置トリップ信号(TOCG2)を発生する第2の地絡過電流継電装置トリップ信号発生手段(532)とを備えることを特徴とする。
ここで、前記平衡2回線送電線の受電端に設置された受電端地絡過電流継電装置(12)と第1および第2の受電端地絡方向継電装置(221,222)とをさらに具備し、前記第1の受電端地絡方向継電装置が、前記第1の送電線方向において地絡事故が発生したことを検出すると第3の事故回線判定結果信号(S3)を前記受電端地絡過電流継電装置に出力する第3のリレー判定手段(61)を備え、前記第2の受電端地絡方向継電装置が、前記第2の送電線方向において地絡事故が発生したことを検出すると第4の事故回線判定結果信号(S4)を前記受電端地絡過電流継電装置に出力する第4のリレー判定手段(71)を備え、前記受電端地絡過電流継電装置が、前記第1の送電線の受電端を流れる第3の零相地絡電流(I03)および前記第2の送電線の受電端を流れる第4の零相地絡電流(I04)の差電流(I03−I04)に基づいて該第1または第2の送電線における地絡事故の発生を検出する他の地絡事故検出手段(81)と、該他の地絡事故検出手段において地絡事故の発生を検出するとともに前記第1の受電端地絡方向継電装置から前記第3の事故回線判定結果信号が入力されると、該第1の送電線の受電端に設置された第3の遮断器(43)を遮断するための第3の地絡過電流継電装置トリップ信号(TOCG3)を発生する第3の地絡過電流継電装置トリップ信号発生手段(831)と、前記地絡事故検出手段において地絡事故の発生を検出するとともに前記第2の受電端地絡方向継電装置から前記第4の事故回線判定結果信号が入力されると、該第2の送電線の受電端に設置された第4の遮断器(44)を遮断するための第4の地絡過電流継電装置トリップ信号(TOCG4)を発生する第4の地絡過電流継電装置トリップ信号発生手段(832)とを備えてもよい。
前記送電端地絡過電流継電装置が、前記第1および第2の遮断器が遮断されていないことを条件に前記第1および第2の地絡過電流継電装置トリップ信号発生手段に前記第1および第2の地絡過電流継電装置トリップ信号をそれぞれ発生させる手段(533,534,535)をさらに備え、前記受電端地絡過電流継電装置が、前記第3および第4の遮断器が遮断されていないことを条件に前記第3および第4の地絡過電流継電装置トリップ信号発生手段に前記第3および第4の地絡過電流継電装置トリップ信号をそれぞれ発生させる手段(833,834,835)をさらに備えてもよい。
前記送電端地絡過電流継電装置が、前記平衡2回線送電線の送電端正相電圧(V1S)の大きさが整定値以下になったことを示す第1のUVG出力信号(SUVG1)が第1の短絡検出用地絡不足電圧継電装置から入力されていないことを条件に、前記第1および第2の地絡過電流継電装置トリップ信号発生手段に前記第1および第2の地絡過電流継電装置トリップ信号をそれぞれ発生させる手段(534,535)をさらに備え、前記受電端地絡過電流継電装置が、前記平衡2回線送電線の受電端正相電圧(V1R)の大きさが整定値以下になったことを示す第2のUVG出力信号(SUVG2)が第2の短絡検出用地絡不足電圧継電装置から入力されていないことを条件に、前記第3および第4の地絡過電流継電装置トリップ信号発生手段に前記第3および第4の地絡過電流継電装置トリップ信号をそれぞれ発生させる手段(834,835)をさらに備えてもよい。
The ground fault protection relay system of the present invention is a ground fault protection relay system for protecting a balanced two-line power transmission line from a ground fault, and is installed in the balanced two-line power transmission line. A ground fault overcurrent relay device (11; 12) that operates based on a difference current between zero-phase currents flowing through the first and second transmission lines (1L, 2L) of the two-line transmission lines, and the first and second And a first ground fault direction relay device (21 1 , 21 2 ; 22 1 , 22 2 ) installed on each of the two power transmission lines, in the first ground fault direction relay device When detecting a ground fault occurring in the direction of the first power transmission line and also detecting the ground fault in the ground fault overcurrent relay device, a circuit breaker (4 1 , 4, 4 3) outputs a trip signal for blocking the said second earth fault direction relay electric When detecting a ground fault in the direction of the second power transmission line and detecting the ground fault in the ground fault overcurrent relay device, another circuit breaker installed in the second power transmission line ( 4 2 , 4 4 ), another trip signal for shutting off is output.
The ground fault protection relay system of the present invention is a ground fault protection relay system for protecting a balanced two-line transmission line from a ground fault, and is installed at a power transmission end of the balanced two-line transmission line. A power transmission terminal ground fault overcurrent relay device (11) and first and second power transmission terminal ground fault direction relay devices (21 1 , 21 2 ) are provided, and the first power transmission terminal ground fault direction relay device is provided. However, when it is detected that a ground fault has occurred in the first transmission line (1L) direction of the balanced two-line transmission line, the first fault line determination result signal (S 1 ) is transmitted to the transmission terminal ground fault overcurrent relay. 1st relay judgment means (31) which outputs to an apparatus, and the said 2nd power transmission end ground fault direction relay apparatus is a ground fault accident in the 2nd power transmission line (2L) direction of the said balanced 2 line power transmission line the sending end locations fault over photoelectrically detects the second fault line determination result signal (S 2) that but generated A second relay judging means for outputting to the relay device (41), wherein the sending end locations fault overcurrent relay device, the first of the first zero-phase current flowing through the sending end of the transmission line (I 01) And occurrence of a ground fault in the first or second transmission line based on the difference current (I 01 -I 02 ) of the second zero-phase current (I 02 ) flowing through the transmission end of the second transmission line A ground fault detection means (51) for detecting the fault, and the ground fault detection means detects the occurrence of a ground fault and the first fault line determination result from the first power transmission terminal ground fault relay device. When the signal is input, a first ground fault overcurrent relay trip signal (T OCG1 ) for breaking the first circuit breaker (4 1 ) installed at the power transmission end of the first transmission line is sent . a first ground fault overcurrent relay device trip signal generating means for generating (53 1), said ground fault detecting means When the occurrence of a ground fault is detected and the second fault line determination result signal is input from the second power transmission end ground fault direction relay device, it is installed at the power transmission end of the second power transmission line. the second circuit breaker has (4 2) second ground fault overcurrent relay device trip signal (T OCG2) second ground fault overcurrent relay device trip signal generating means for generating for blocking (53 2) It is characterized by providing.
Here, a receiving end ground fault overcurrent relay device (12) and first and second receiving end ground fault direction relay devices (22 1 , 22 2 ) installed at the receiving end of the balanced two-line transmission line, And when the first power receiving end ground fault direction relay device detects that a ground fault has occurred in the first power transmission line direction, a third fault line determination result signal (S 3 ) is provided. A third relay determining means (61) for outputting to the power receiving end ground fault overcurrent relay device is provided, and the second power receiving end ground fault direction relay device causes a ground fault in the second power transmission line direction. When it is detected that a fault has occurred, a fourth relay judgment means (71) is provided for outputting a fourth fault line judgment result signal (S 4 ) to the power receiving terminal ground fault overcurrent relay device, and the power receiving terminal ground fault overcurrent relay is provided. The electric device is connected to a third zero-phase ground fault current (I 03 ) flowing through the receiving end of the first transmission line. And a ground fault in the first or second transmission line based on the difference current (I 03 -I 04 ) of the fourth zero-phase ground fault current (I 04 ) flowing through the receiving end of the second transmission line. The other ground fault detection means (81) for detecting the occurrence of the ground fault, and the other ground fault fault detection means detects the occurrence of the ground fault and the first receiving end ground fault direction relay device When the fault line determination result signal 3 is input, the third ground fault overcurrent relay trip for breaking the third circuit breaker (4 3 ) installed at the receiving end of the first transmission line A third ground fault overcurrent relay trip signal generating means (83 1 ) for generating a signal (T OCG3 ), and detecting the occurrence of a ground fault in the ground fault detecting means and the second power receiving terminal When the fourth fault line determination result signal is input from the tangential relay device, the second power transmission line Fourth breaker installed in the receiving end (4 4) Fourth ground fault overcurrent relay device trip signal (T OCG4) fourth ground fault overcurrent relay device trip signal generator for generating for blocking Means (83 2 ).
The first and second ground fault overcurrent relay trip signal generating means is connected to the first and second ground fault overcurrent relay trip signal generating means on condition that the first and second circuit breakers are not cut off. And a means (53 3 , 53 4 , 53 5 ) for generating a second ground fault overcurrent relay trip signal, respectively, and the power receiving end ground fault overcurrent relay device includes the third and fourth interruptions. Means for causing the third and fourth ground fault overcurrent relay trip signal generating means to generate the third and fourth ground fault overcurrent relay trip signals, respectively, on condition that the device is not cut off (83); 3 , 83 4 , 83 5 ).
A first UVG output signal (S UVG1 ) indicating that the magnitude of the positive phase voltage (V 1S ) of the power transmission end of the balanced two-line transmission line has become equal to or less than a set value is received by the power transmission end ground fault overcurrent relay device. The first and second ground fault overcurrents are supplied to the first and second ground fault overcurrent relay trip signal generating means on condition that the first short circuit detection ground fault undervoltage relay is not input. Means (53 4 , 53 5 ) for generating relay device trip signals are further provided, and the power receiving end ground fault overcurrent relay device has a magnitude of a receiving end positive phase voltage (V 1R ) of the balanced two-line transmission line. On the condition that the second UVG output signal (S UVG2 ) indicating that the value is equal to or less than the set value is not input from the second short-circuiting detection ground fault undervoltage relay device. The ground fault overcurrent relay trip signal generating means is And the fourth ground fault overcurrent relay device trip signal means for generating respectively (83 4, 83 5) may further comprise a.

本発明の地絡保護継電システムは、以下に示す効果を奏する。
(1)差電流監視型の地絡過電流継電装置と2つの地絡方向継電装置とを組み合わせて、地絡事故検出を地絡過電流継電装置で行い事故回線判定を地絡方向継電装置で行うことにより、従来の地絡保護継電システムにおいて主保護として用いられていた地絡回線選択継電装置を不要にすることができるため、上述した零相循環電流による遮断器の不要遮断を防止することができるので、供給信頼度の低下を招くことがない。
(2)地絡回線選択継電装置は電圧要素と電流要素とに基づいて動作するために零相電圧を印加したり方向試験を行ったりする必要があるが、地絡過電流継電装置は電流要素のみに基づいて動作するために試験を容易に行うことができる。
The ground fault protection relay system of the present invention has the following effects.
(1) By combining a ground fault overcurrent relay device of difference current monitoring type and two ground fault direction relay devices, a ground fault is detected by the ground fault overcurrent relay device, and fault line judgment is performed in the ground fault direction relay. By using the device, the ground fault line selection relay device used as the main protection in the conventional ground fault protection relay system can be made unnecessary. Therefore, the supply reliability is not lowered.
(2) In order to operate the ground fault line selection relay device based on the voltage element and the current element, it is necessary to apply a zero-phase voltage or to conduct a direction test. Tests can be easily performed to operate on elements only.

上記の目的を、平衡2回線送電線の第1の送電線に設置された第1の地絡方向継電装置において第1の送電線方向で発生した地絡事故を検出するとともに地絡過電流継電装置においてもこの地絡事故を検出すると、第1の送電線に設置された遮断器を遮断するためのトリップ信号を出力し、平衡2回線送電線の第2の送電線に設置された第2の地絡方向継電装置において第2の送電線方向で発生した地絡事故を検出するとともに地絡過電流継電装置においてもこの地絡事故を検出すると、第2の送電線に設置された他の遮断器を遮断するための他のトリップ信号を出力することにより実現した。   The above object is achieved by detecting a ground fault in the first power line direction relay device installed in the first power line of the balanced two-line power line and detecting a ground fault overcurrent relay. When this ground fault is detected also in the electric device, a trip signal for breaking the circuit breaker installed in the first transmission line is output, and the second transmission line installed in the balanced two-line transmission line is output. When a ground fault occurred in the direction of the second power transmission line in the ground fault direction relay device 2 and when this ground fault was detected also in the ground fault overcurrent relay device, it was installed in the second power transmission line. This was realized by outputting another trip signal for breaking other circuit breakers.

以下、本発明の地絡保護継電システムの実施例について図面を参照して説明する。
本発明の一実施例による地絡保護継電システムは、従来の地絡保護継電システムでは地絡事故検出および事故回線判定を地絡回線選択継電装置で行っていたが、差電流監視型の地絡過電流継電装置(OCG)と2つの地絡方向継電装置(DG)とを組み合わせることにより地絡事故検出を地絡過電流継電装置で行い事故回線判定を地絡方向継電装置で行うようにしたことを特徴とする。
Hereinafter, embodiments of the ground fault protection relay system of the present invention will be described with reference to the drawings.
In the ground fault protection relay system according to the embodiment of the present invention, in the conventional ground fault protection relay system, the ground fault detection and the fault line determination are performed by the ground fault line selection relay device. By combining the ground fault overcurrent relay device (OCG) and two ground fault direction relay devices (DG), the ground fault detection is performed by the ground fault overcurrent relay device and the fault line judgment is performed. It is characterized in that it was done in

そのため、本実施例による地絡保護継電システムは、図1に示すように、平衡2回線送電線の送電端に設置された送電端地絡過電流継電装置11並びに第1および第2の送電端地絡方向継電装置211,212と、平衡2回線送電線の受電端に設置された受電端地絡過電流継電装置12並びに第1および第2の受電端地絡方向継電装置221,222とを具備する。 Therefore, the ground fault protection relay system according to the present embodiment is, as shown in FIG. 1, the power transmission terminal ground fault overcurrent relay device 11 and the first and second power transmissions installed at the power transmission terminal of the balanced two-line power transmission line. Terminal ground fault direction relay devices 21 1 and 21 2 , power receiving end ground fault overcurrent relay device 12 installed at the power receiving end of the balanced two-line transmission line, and first and second power receiving end ground fault direction relay devices 22 1 , 22 2 .

第1の送電端地絡方向継電装置211は、図2に示すようにリレー判定回路31と第1乃至第3の遅延回路(タイマー)321〜323と論理積回路33と論理和回路34とを有する第1の送電端地絡方向継電装置トリップ信号発生回路30を備える。 As shown in FIG. 2, the first power transmission terminal ground fault direction relay device 21 1 includes a relay determination circuit 31, first to third delay circuits (timers) 32 1 to 32 3 , a logical product circuit 33, and a logical sum. A first power transmission ground fault direction relay device trip signal generation circuit 30 having a circuit 34 is provided.

リレー判定回路31は、平衡2回線送電線の第1の送電線1Lの送電端に設置された第1の零相変流器31から入力される第1の零相電流I01と送電端母線に設置された第1の接地形計器用変圧器(EVT)51から入力される送電端零相電圧V0Sとに基づいて事故回線判定を行う(図1参照)。
すなわち、リレー判定回路31は、第1の零相電流I01の大きさと送電端零相電圧V0Sおよび第1の零相電流I01の位相関係とに基づいて自回線(第1の送電線1L)方向に発生した地絡事故を検出すると、ハイレベルの第1の事故回線判定結果信号S1を出力する。
第1の事故回線判定結果信号S1は論理積回路33および送電端地絡過電流継電装置11に出力される。
Relay determining circuit 31, the sending end and the first zero-phase current I 01 which is input from the first zero-phase current transformer 3 1 installed on the sending end of the first transmission line 1L of the equilibrium 2-circuit transmission line conducting an accident line determination based on the first earth type potential transformer (EVT) 5 1 sending end zero-phase voltage is inputted from the V 0S installed in bus (see FIG. 1).
That is, the relay determining circuit 31, the first zero-phase current I 01 of the size and sending end zero-phase voltage V 0S and the first zero-phase current I 01 of the own channel based on the phase relationship (first transmission line 1L) When a ground fault that has occurred in the direction is detected, a first fault line determination result signal S 1 at a high level is output.
The first fault line determination result signal S 1 is output to the AND circuit 33 and the power transmission terminal ground fault overcurrent relay device 11.

第1の遅延回路321は、不図示の第1の地絡検出用地絡過電圧継電装置(OVG)から入力される第1のOVG出力信号SOVG1を第1の時限協調時間GT11だけ遅延する。ここで、第1の地絡検出用地絡過電圧継電装置は、送電端零相電圧V0Sの大きさが整定値以上になるとハイレベルの第1のOVG出力信号SOVG1を出力する。また、第1の時限協調時間GT11は、第1の送電線1Lの受電端背後の送電線に設置された他の地絡方向継電装置(不図示)との時限協調のために設定される(たとえば800msに設定される)。
論理積回路33は、リレー判定回路31から入力される第1の事故回線判定結果信号S1と第1の遅延回路321によって第1の時限協調時間GT11だけ遅延された第1のOVG出力信号SOVG1との論理積をとる。
第2の遅延回路322は、論理積回路33の出力信号を第1の零相自由振動誤動作防止時間GT21だけ遅延する。ここで、第1の零相自由振動誤動作防止時間GT21は、零相自由振動(事故点切離し後も零相電圧が一定時間だけ残る現象)による誤動作防止のために設定される(通常は100msに設定される)。また、第1の送電端地絡方向継電装置211の動作時限は第1の時限協調時間GT11と第1の零相自由振動誤動作防止時間GT21との合計時間(=GT11+GT21)となる。
The first delay circuit 32 1 delays the first OVG output signal S OVG1 input from a first ground fault detection ground fault overvoltage relay (OVG) (not shown) by a first time- dependent coordination time GT 11. To do. Here, the first ground fault overvoltage relay device for ground fault detection outputs a high-level first OVG output signal S OVG1 when the magnitude of the power transmission end zero-phase voltage V 0S becomes a set value or more. The first timed coordination time GT1 1 is set for the timed coordination with the first transmission line 1L other ground direction relay device installed in the receiving end behind the transmission line (not shown) (For example, set to 800 ms).
The AND circuit 33 receives the first fault line determination result signal S 1 input from the relay determination circuit 31 and the first OVG output delayed by the first time limit coordination time GT1 1 by the first delay circuit 32 1 . The logical product with the signal S OVG1 is obtained.
The second delay circuit 32 2 delays the output signal of the logical product circuit 33 by the first zero-phase free vibration malfunction prevention time GT2 1 . Here, the first zero-phase free vibration lockout time GT2 1 is the zero-phase free vibration is set to prevent malfunction due to (after the accident point disconnecting also the zero-phase voltage only remains phenomenon predetermined time) (typically 100ms To be set). The first sending end ground fault direction relay device 21 1 of the operation time period is the total time (= GT1 1 + GT2 1 of 1 GT2 first timed coordination time GT1 1 and the first zero-phase free vibration lockout time )

第3の遅延回路323は、第1のOVG出力信号SOVG1を第1のOVG遮断時間GT31だけ遅延する。ここで、第1のOVG遮断時間GT31は、第1の地絡検出用地絡過電圧継電装置の動作だけで、第1の送電線1Lの送電端に設置された第1の遮断器41(図1参照)を遮断させるために設定される。 The third delay circuit 32 3 delays the first OVG output signal S OVG1 only first OVG breaking time GT3 1. Here, the first OVG breaking time GT3 1 is only the operation of the first ground detection site fault over-voltage relay device, a first breaker 4 1 installed on the sending end of the first transmission line 1L (See FIG. 1).

論理和回路34は、第2の遅延回路322の出力信号と第3の遅延回路323の出力信号との論理和をとる。論理和回路34からは、第1の遮断器41を遮断するための第1の地絡方向継電装置トリップ信号TDG1が第1の遮断器41に出力される。 The logical sum circuit 34 calculates the logical sum of the output signal of the second delay circuit 32 2 and the output signal of the third delay circuit 32 3 . The OR circuit 34, a first earth fault direction relay device trip signal T DG1 for blocking the first breaker 4 1 is output to the first breaker 4 1.

第2の送電端地絡方向継電装置212は、図3に示すようにリレー判定回路41と第1乃至第3の遅延回路(タイマー)421〜423と論理積回路43と論理和回路44とを有する第2の送電端地絡方向継電装置トリップ信号発生回路40を備える。 As shown in FIG. 3, the second power transmission ground fault relay device 21 2 includes a relay determination circuit 41, first to third delay circuits (timers) 42 1 to 42 3 , a logical product circuit 43, and a logical sum. And a second power transmission terminal ground fault direction relay device trip signal generating circuit 40 having a circuit 44.

リレー判定回路41は、平衡2回線送電線の第2の送電線2Lの送電端に設置された第2の零相変流器32から入力される第2の零相電流I02と第1の接地形計器用変圧器51から入力される送電端零相電圧V0Sとに基づいて事故回線判定を行う(図1参照)。
すなわち、リレー判定回路41は、第2の零相電流I02の大きさと送電端零相電圧V0Sおよび第2の零相電流I02の位相関係とに基づいて自回線(第2の送電線2L)方向に発生した地絡事故を検出すると、ハイレベルの第2の事故回線判定結果信号S2を出力する。
第2の事故回線判定結果信号S2は論理積回路43および送電端地絡過電流継電装置11に出力される。
Relay determining circuit 41, a second zero-phase current I 02 which is input the second from the zero-phase current transformer 3 2 installed on the sending end of the second transmission line 2L of the equilibrium 2-circuit transmission line first of conducting an accident line determination based on the sending end zero-phase voltage V 0S inputted from earth type potential transformer 5 1 (see FIG. 1).
That is, the relay determining circuit 41, a second zero-phase current I 02 of the size and sending end zero-phase voltage V 0S and second self-line based on the phase relation of the zero-phase current I 02 (second transmission line Upon detecting a ground fault generated in 2L) direction, and outputs a high-level second accident line determination result signal S 2.
The second fault line determination result signal S 2 is output to the AND circuit 43 and the power transmission terminal ground fault overcurrent relay device 11.

第1の遅延回路321は、第1の地絡検出用地絡過電圧継電装置から入力される第1のOVG出力信号SOVG1を第2の時限協調時間GT12だけ遅延する。ここで、第2の時限協調時間GT12は、第2の送電線2Lの受電端背後の送電線に設置された他の地絡方向継電装置(不図示)との時限協調のために設定される(たとえば800msに設定される)。
論理積回路43は、リレー判定回路41から入力される第2の事故回線判定結果信号S2と第1の遅延回路421によって第2の時限協調時間GT12だけ遅延された第1のOVG出力信号SOVG1との論理積をとる。
第2の遅延回路422は、論理積回路43の出力信号を第2の零相自由振動誤動作防止時間GT22だけ遅延する。したがって、第2の送電端地絡方向継電装置212の動作時限は第2の時限協調時間GT12と第2の零相自由振動誤動作防止時間GT22との合計時間(=GT12+GT22)となる。
The first delay circuit 32 1 delays the first OVG output signal S OVG1 inputted from the first ground detection site fault over-voltage relay device only GT1 2 second timed coordination time. The second timed coordination time GT1 2 is set for timed coordination with the second transmission line 2L other ground direction relay device installed in the receiving end behind the transmission line (not shown) (For example, set to 800 ms).
The AND circuit 43 outputs the first OVG output delayed by the second time limit coordination time GT1 2 by the second fault line determination result signal S 2 input from the relay determination circuit 41 and the first delay circuit 42 1 . The logical product with the signal S OVG1 is obtained.
The second delay circuit 42 2 delays the output signal of the AND circuit 43 by the second zero-phase free vibration malfunction prevention time GT 2 2 . Thus, the second sending end operation timed earth fault direction relay device 21 2 Total time (= GT1 2 + GT2 2 with 2 second timed coordination time GT1 2 and the second zero-phase free vibration lockout time GT2 )

第3の遅延回路423は、第1のOVG出力信号SOVG1を第2のOVG遮断時間GT32だけ遅延する。ここで、第2のOVG遮断時間GT32は、第1の地絡検出用地絡過電圧継電装置の動作だけで、第2の送電線2Lの送電端に設置された第2の遮断器42(図1参照)を遮断させるために設定される。 The third delay circuit 42 3 delays the first OVG output signal S OVG1 by the second OVG cutoff time GT3 2 . Here, the second OVG cutoff time GT3 2 is the second circuit breaker 4 2 installed at the power transmission end of the second power transmission line 2L only by the operation of the first ground fault detection ground fault overvoltage relay device. (See FIG. 1).

論理和回路44は、第2の遅延回路422の出力信号と第3の遅延回路423の出力信号との論理和をとる。論理和回路44からは、第2の遮断器42を遮断するための第2の地絡方向継電装置トリップ信号TDG2が第2の遮断器42に出力される。 OR circuit 44 takes the logical sum of the second delay circuit 42 and second output signal and the third delay circuit 42 3 of the output signal. The OR circuit 44, a second ground fault direction relay device trip signal T DG2 for blocking the second circuit breaker 4 2 is output to the second circuit breaker 4 2.

送電端地絡過電流継電装置11は、図4に示すように地絡事故検出回路51と第1および第2の遅延回路521,522と第1乃至第5の論理積回路531〜535とを有する送電端地絡過電流継電装置トリップ信号発生回路50を備える。 As shown in FIG. 4, the power transmission terminal ground fault overcurrent relay device 11 includes a ground fault detection circuit 51, first and second delay circuits 52 1 and 52 2, and first to fifth AND circuits 53 1 to 53 1 . comprising a sending end locations fault overcurrent relay device trip signal generating circuit 50 and a 53 5.

地絡事故検出回路51は、第1の零相変流器31から入力される第1の零相電流I01および第2の零相変流器32から入力される第2の零相電流I02の差電流I01−I02に基づいて第1または第2の送電線1L,2Lにおける地絡事故の発生を検出する。
すなわち、地絡事故検出回路51は、差電流I01−I02の大きさが整定値以上であると、第1または第2の送電線1L,2Lにおいて地絡事故が発生したと判定して、第1および第2の論理積回路531,532にハイレベルの出力信号を出力する。
A ground fault detection circuit 51, a second zero-phase inputted from the first zero-phase current I 01 and the second zero-phase current transformer 3 2 input from the first zero-phase current transformer 3 1 The occurrence of a ground fault in the first or second power transmission line 1L, 2L is detected based on the difference current I 01 -I 02 of the current I 02 .
That is, the ground fault detection circuit 51 determines that a ground fault has occurred in the first or second power transmission line 1L, 2L when the magnitude of the difference current I 01 -I 02 is equal to or greater than a set value. A high level output signal is output to the first and second AND circuits 53 1 and 53 2 .

第1の論理積回路531は、地絡事故検出回路51の出力信号と第1の送電端地絡方向継電装置211から入力される第1の地絡事故判定信号S1と第2の送電端地絡方向継電装置212から入力される第2の地絡事故判定信号S2の極性を反転した信号(−S2)と第1の地絡検出用地絡過電圧継電装置から入力される第1のOVG出力信号SOVG1との論理積をとる。
第2の論理積回路532は、地絡事故検出回路51の出力信号と第1の地絡事故判定信号S1の極性を反転した信号(−S1)と第2の地絡事故判定信号S2と第1のOVG出力信号SOVG1との論理積をとる。
The first AND circuit 53 1 includes the output signal of the ground fault detection circuit 51, the first ground fault determination signal S 1 and the second input from the first power transmission ground fault direction relay device 21 1 . From the signal (−S 2 ) obtained by inverting the polarity of the second ground fault determination signal S 2 inputted from the power transmission end ground fault direction relay device 21 2 and the first ground fault detection ground fault overvoltage relay device. The logical product of the input first OVG output signal S OVG1 is obtained.
The second AND circuit 53 2 includes a signal (−S 1 ) obtained by inverting the polarities of the output signal of the ground fault detection circuit 51 and the first ground fault determination signal S 1 and the second ground fault determination signal. The logical product of S 2 and the first OVG output signal S OVG1 is obtained.

第3の論理積回路533は、第1の遮断器41から入力される第1の接点信号SCB1(第1の遮断器41が遮断されていない状態ではハイレベルの信号)と第2の遮断器42から入力される第2の接点信号SCB2(第2の遮断器42が遮断されていない状態ではハイレベルの信号)との論理積をとる。 The third AND circuit 53 3 includes a first contact signal S CB1 (a high level signal when the first circuit breaker 4 1 is not cut off) input from the first circuit breaker 4 1 and the first contact signal S CB1 . ANDing the second contact signal S CB2 inputted from the second circuit breaker 4 2 (high-level signal in a state in which the second circuit breaker 4 2 is not blocked).

第4の論理積回路534は、第1の論理積回路531の出力信号と第3の論理積回路533の出力信号と不図示の第1の短絡検出用地絡不足電圧継電装置(UVG)から入力される第1のUVG出力信号SUVG1の極性を反転した信号(−SUVG1)との論理積をとる。ここで、第1の短絡検出用地絡不足電圧継電装置は、送電端正相電圧V1Sの大きさが整定値以下になるとハイレベルの第1のUVG出力信号SUVG1を出力する。
第1の遅延回路521は、第4の論理積回路534の出力信号を第3の零相自由振動誤動作防止時間GT23だけ遅延する。第1の遅延回路521からは、第1の遮断器41を遮断するための第1の地絡過電流継電装置トリップ信号TOCG1が第1の遮断器41に出力される。したがって、第1の地絡過電流継電装置トリップ信号TOCG1については、送電端地絡過電流継電装置11の動作時限は第3の零相自由振動誤動作防止時間GT22となる。
なお、第1の地絡過電流継電装置トリップ信号TOCG1は、第1のOVG出力信号SOVG1がハイレベルでありかつ第1および第2の接点信号SCB1,SCB2がハイレベルでありかつ第1のUVG出力信号SUVG1がロウレベルであることを条件に、第1の遮断器41に出力される。
The fourth AND circuit 53 4, the first AND circuit 53 1 of the output signal and the third AND circuit 53 third output signal and the first short detection site絡不undervoltage relay device (not shown) ( Logical product with the signal (-S UVG1 ) obtained by inverting the polarity of the first UVG output signal S UVG1 input from ( UVG ). Here, the first short-circuit detection ground fault undervoltage relay device outputs a high-level first UVG output signal S UVG1 when the magnitude of the power transmission end positive phase voltage V 1S becomes a set value or less.
The first delay circuit 52 1 delays the output signal of the fourth AND circuit 534 by the third zero-phase free vibration malfunction prevention time GT2 3 . From the first delay circuit 52 1, the first ground fault overcurrent relay device trip signal T OCG1 for blocking the first breaker 4 1 is output to the first breaker 4 1. Thus, for the first ground fault overcurrent relay device trip signal T OCG1, operation timed the sending end locations fault overcurrent relay device 11 becomes GT2 2 third zero-phase free vibration lockout time.
The first ground fault overcurrent relay trip signal T OCG1 is such that the first OVG output signal S OVG1 is at a high level and the first and second contact signals S CB1 and S CB2 are at a high level; on condition that the first UVG output signal S UVG1 is at a low level is output to the first breaker 4 1.

第5の論理積回路535は、第2の論理積回路532の出力信号と第3の論理積回路533の出力信号と第1のUVG出力信号SUVG1の極性を反転した信号(−SUVG1)との論理積をとる。
第2の遅延回路522は、第5の論理積回路535の出力信号を第4の零相自由振動誤動作防止時間GT24だけ遅延する。第2の遅延回路522からは、第2の遮断器42を遮断するための第2の地絡過電流継電装置トリップ信号TOCG2が第2の遮断器42に出力される。したがって、第2の地絡過電流継電装置トリップ信号TOCG2については、送電端地絡過電流継電装置11の動作時限は第4の零相自由振動誤動作防止時間GT24となる。
なお、第2の地絡過電流継電装置トリップ信号TOCG2は、第1のOVG出力信号SOVG1がハイレベルでありかつ第1および第2の接点信号SCB1,SCB2がハイレベルでありかつ第1のUVG出力信号SUVG1がロウレベルであることを条件に、第2の遮断器42に出力される。
Fifth AND circuit 53 5, a second AND circuit 53 and second output signal and the third AND circuit 53 third output signal and the first UVG output signal polarity inverted signal of the S UVG1 (- AND with S UVG1 ).
The second delay circuit 52 2 delays the output signal of the fifth AND circuit 535 by the fourth zero-phase free vibration malfunction prevention time GT2 4 . From the second delay circuit 52 2, the second earth fault overcurrent relay device trip signal T OCG2 for blocking the second circuit breaker 4 2 is output to the second circuit breaker 4 2. Thus, for the second ground fault overcurrent relay device trip signal T OCG2, operation timed the sending end locations fault overcurrent relay device 11 is the fourth zero-phase free vibration lockout time GT2 4.
Note that the second ground fault overcurrent relay trip signal T OCG2 is such that the first OVG output signal S OVG1 is at a high level and the first and second contact signals S CB1 and S CB2 are at a high level; first UVG output signal S UVG1 on condition that the low level is output to the second circuit breaker 4 2.

第1の受電端地絡方向継電装置221は、図5に示すようにリレー判定回路61と第1乃至第3の遅延回路(タイマー)621〜623と論理積回路63と論理和回路64とを有する第1の受電端地絡方向継電装置トリップ信号発生回路60を備える。 As shown in FIG. 5, the first power receiving terminal ground fault direction relay device 22 1 includes a relay determination circuit 61, first to third delay circuits (timers) 62 1 to 62 3 , a logical product circuit 63, and a logical sum. A first power receiving end ground fault direction relay device trip signal generating circuit 60 having a circuit 64 is provided.

リレー判定回路61は、第1の送電線1Lの受電端に設置された第3の零相変流器33から入力される第3の零相電流I03と受電端母線に設置された第2の接地形計器用変圧器52から入力される受電端零相電圧V0Rとに基づいて事故回線判定を行う(図1参照)。
すなわち、リレー判定回路61は、第3の零相電流I03の大きさと受電端零相電圧V0Rおよび第3の零相電流I03の位相関係とに基づいて自回線(第1の送電線1L)方向に発生した地絡事故を検出すると、ハイレベルの第3の事故回線判定結果信号S3を出力する。
第3の事故回線判定結果信号S3は論理積回路63および受電端地絡過電流継電装置12に出力される。
Relay determining circuit 61, first installed in the third third of the receiving end bus and zero-phase current I 03 inputted from the zero-phase current transformer 3 3 installed in the receiving end of the first transmission line 1L conducting an accident line determination based on the second receiving end zero-phase voltage V 0R inputted from earth type potential transformer 5 2 (see FIG. 1).
That is, the relay determining circuit 61, a third zero-phase current I 03 of the size and receiving end zero-phase voltage V 0R and third zero-phase current I 03 of the own channel based on the phase relationship (first transmission line Upon detecting a ground fault generated in 1L) direction, and outputs a third accident line determination result signal S 3 of the high level.
The third fault line determination result signal S 3 is output to the AND circuit 63 and the power receiving terminal ground fault overcurrent relay device 12.

第1の遅延回路621は、不図示の第2の地絡検出用地絡過電圧継電装置(OVG)から入力される第2のOVG出力信号SOVG2を第3の時限協調時間GT13だけ遅延する。ここで、第2の地絡検出用地絡過電圧継電装置は、受電端零相電圧V0Rの大きさが整定値以上になるとハイレベルの第2のOVG出力信号SOVG2を出力する。また、図2に示した第1の遅延回路321において設定された第1の時限協調時間GT11(たとえば800ms)は、時限協調のために、第3の時限協調時間GT13(たとえば400ms)よりも大きくなるように設定される(GT11>GT13)。
論理積回路63は、リレー判定回路61から入力される第3の事故回線判定結果信号S3と第1の遅延回路621によって第3の時限協調時間GT13だけ遅延された第2のOVG出力信号SOVG2との論理積をとる。
第2の遅延回路622は、論理積回路63の出力信号を第5の零相自由振動誤動作防止時間GT25だけ遅延する。したがって、第1の受電端地絡方向継電装置221の動作時限は第3の時限協調時間GT13と第5の零相自由振動誤動作防止時間GT25との合計時間(=GT13+GT25)となる。
The first delay circuit 62 1 delays the second OVG output signal S OVG2 input from a second ground fault detection ground fault overvoltage relay device (OVG) (not shown) by a third time coordination time GT1 3. To do. Here, the second ground fault overvoltage relay device for ground fault detection outputs a second OVG output signal S OVG2 at a high level when the magnitude of the power receiving end zero-phase voltage V 0R exceeds a set value. Further, the first time cooperation time GT1 1 (for example, 800 ms) set in the first delay circuit 32 1 shown in FIG. 2 is the third time cooperation time GT1 3 (for example, 400 ms) for the time cooperation. (GT1 1 > GT1 3 ).
The AND circuit 63 outputs the second OVG output delayed by the third time limit coordination time GT1 3 by the third fault line determination result signal S 3 input from the relay determination circuit 61 and the first delay circuit 62 1 . The logical product with the signal S OVG2 is obtained.
The second delay circuit 62 2 delays the output signal of the AND circuit 63 by the fifth zero-phase free vibration malfunction prevention time GT2 5 . Therefore, the operation time limit of the first power receiving end ground fault direction relay device 22 1 is the total time of the third time cooperation time GT1 3 and the fifth zero-phase free vibration malfunction prevention time GT2 5 (= GT1 3 + GT2 5 )

第3の遅延回路623は、第2のOVG出力信号SOVG2を第3のOVG遮断時間GT33だけ遅延する。ここで、第3のOVG遮断時間GT33は、第2の地絡検出用地絡過電圧継電装置の動作だけで、第1の送電線1Lの受電端に設置された第3の遮断器43(図1参照)を遮断させるために設定される。 The third delay circuit 62 3 delays the second OVG output signal S OVG2 by the third OVG cutoff time GT3 3 . Here, the third OVG cutoff time GT3 3 is the third circuit breaker 4 3 installed at the power receiving end of the first power transmission line 1L only by the operation of the second ground fault detection ground fault overvoltage relay device. (See FIG. 1).

論理和回路64は、第2の遅延回路622の出力信号と第3の遅延回路623の出力信号との論理和をとる。論理和回路64からは、第3の遮断器43を遮断するための第2の地絡方向継電装置トリップ信号TDG3が第3の遮断器43に出力される。 OR circuit 64 takes the logical sum of the second delay circuit 62 and second output signal and the third delay circuit 62 3 of the output signal. The OR circuit 64, a second ground fault direction relay device trip signal T DG3 for blocking the third breaker 4 3 is output to the third circuit breakers 4 3.

第2の受電端地絡方向継電装置222は、図6に示すようにリレー判定回路71と第1乃至第3の遅延回路(タイマー)721〜723と論理積回路73と論理和回路74とを有する第2の受電端地絡方向継電装置トリップ信号発生回路70を備える。 As shown in FIG. 6, the second power receiving end ground fault relay device 22 2 includes a relay determination circuit 71, first to third delay circuits (timers) 72 1 to 72 3 , a logical product circuit 73, and a logical sum. A second power receiving terminal ground fault direction relay device trip signal generating circuit 70 having a circuit 74 is provided.

リレー判定回路71は、第2の送電線2Lの受電端に設置された第4の零相変流器34から入力される第4の零相電流I04と第2の接地形計器用変圧器52から入力される受電端零相電圧V0Rとに基づいて事故回線判定を行う(図1参照)。
すなわち、リレー判定回路71は、第4の零相電流I04の大きさと受電端零相電圧V0Rおよび第4の零相電流I04の位相関係とに基づいて自回線(第2の送電線2L)方向に発生した地絡事故を検出すると、ハイレベルの第4の事故回線判定結果信号S4を出力する。
第4の事故回線判定結果信号S4は論理積回路73および受電端地絡過電流継電装置12に出力される。
Relay determining circuit 71, the fourth and the fourth zero-phase current I 04 inputted from the zero-phase current transformer 3 4 transformers for the second ground measuring meter installed in the receiving end of the second transmission line 2L conducting an accident line determined based on the receiving end zero-phase voltage V 0R inputted from vessel 5 2 (see FIG. 1).
That is, the relay determining circuit 71, the fourth zero-phase current I 04 of the size and receiving end zero-phase voltage V 0R and the fourth zero-phase current I 04 of the own channel based on the phase relationship (second transmission line Upon detecting a ground fault generated in 2L) direction, and outputs a fourth accident line determination result signal S 4 of the high level.
The fourth fault line determination result signal S 4 is output to the AND circuit 73 and the power receiving terminal ground fault overcurrent relay device 12.

第1の遅延回路722は、第2の地絡検出用地絡過電圧継電装置から入力される第2のOVG出力信号SOVG2を第4の時限協調時間GT14だけ遅延する。ここで、図3に示した第1の遅延回路421において設定された第2の時限協調時間GT12(たとえば800ms)は、時限協調のために、第4の時限協調時間GT14(たとえば400ms)よりも大きくなるように設定される(GT12>GT14)。
論理積回路73は、リレー判定回路71から入力される第4の事故回線判定結果信号S4と第1の遅延回路721によって第4の時限協調時間GT14だけ遅延された第2のOVG出力信号SOVG2との論理積をとる。
第2の遅延回路722は、論理積回路73の出力信号を第6の零相自由振動誤動作防止時間GT26だけ遅延する。したがって、第2の受電端地絡方向継電装置222の動作時限は第4の時限協調時間GT14と第6の零相自由振動誤動作防止時間GT26との合計時間(=GT14+GT26)となる。
The first delay circuit 72 2 delays the second OVG output signal S OVG2 inputted from the second ground detection site fault over-voltage relay device by a fourth timed coordination time GT1 4. Here, the second time cooperation time GT1 2 (for example, 800 ms) set in the first delay circuit 42 1 shown in FIG. 3 is the fourth time cooperation time GT1 4 (for example, 400 ms) for the time cooperation. ) (GT1 2 > GT1 4 ).
The AND circuit 73 outputs the second OVG output delayed by the fourth time limit coordination time GT1 4 by the fourth fault line determination result signal S 4 input from the relay determination circuit 71 and the first delay circuit 72 1 . The logical product with the signal S OVG2 is obtained.
The second delay circuit 72 2 delays the output signal of the AND circuit 73 by the sixth zero-phase free vibration malfunction prevention time GT2 6 . Therefore, the operation time limit of the second power receiving end ground fault direction relay device 22 2 is the total time of the fourth time cooperation time GT1 4 and the sixth zero-phase free vibration malfunction prevention time GT2 6 (= GT1 4 + GT2 6 )

第3の遅延回路723は、第2のOVG出力信号SOVG2を第4のOVG遮断時間GT34だけ遅延する。ここで、第4のOVG遮断時間GT34は、第2の地絡検出用地絡過電圧継電装置の動作だけで、第2の送電線2Lの受電端に設置された第4の遮断器44(図1参照)を遮断させるために設定される。 The third delay circuit 72 3 delays the second OVG output signal S OVG2 by the fourth OVG cutoff time GT3 4 . Here, the fourth OVG cutoff time GT3 4 is the fourth circuit breaker 4 4 installed at the power receiving end of the second power transmission line 2L only by the operation of the second ground fault detection ground fault overvoltage relay device. (See FIG. 1).

論理和回路74は、第2の遅延回路722の出力信号と第3の遅延回路723の出力信号との論理和をとる。論理和回路74からは、第4の遮断器44を遮断するための第4の地絡方向継電装置トリップ信号TDG4が第4の遮断器44に出力される。 OR circuit 74 takes the logical sum of the second delay circuit 72 and second output signal and the third delay circuit 72 3 of the output signal. From the OR circuit 74, the fourth ground direction relay device trip signal T DG4 for blocking the fourth breaker 4 4 is outputted to the fourth circuit breaker 4 4.

受電端地絡過電流継電装置12は、図7に示すように地絡事故検出回路81と第1および第2の遅延回路821,822と第1乃至第5の論理積回路831〜835とを有する送電端地絡過電流継電装置トリップ信号発生回路80を備える。 As shown in FIG. 7, the power receiving end ground fault overcurrent relay device 12 includes a ground fault detection circuit 81, first and second delay circuits 82 1 and 82 2, and first to fifth AND circuits 83 1 to 83 1 . comprising a sending end locations fault overcurrent relay device trip signal generating circuit 80 and a 83 5.

地絡事故検出回路81は、第3の零相変流器33から入力される第3の零相電流I03および第4の零相変流器34から入力される第4の零相電流I04の差電流I03−I04に基づいて第1および第2の送電線1L,2Lにおける地絡事故の発生を検出する。
すなわち、地絡事故検出回路81は、差電流I03−I04の大きさが整定値以上であると、第1および第2の論理積回路831,832にハイレベルの出力信号を出力する。
A ground fault detection circuit 81, a fourth zero phase input from the third zero-phase current I 03 and the fourth zero-phase current transformer 3 4 inputted from the third zero-phase current transformer 3 3 The occurrence of a ground fault in the first and second transmission lines 1L and 2L is detected based on the difference current I 03 -I 04 of the current I 04 .
That is, the ground fault detection circuit 81 outputs a high level output signal to the first and second AND circuits 83 1 and 83 2 when the magnitude of the difference current I 03 -I 04 is equal to or larger than the set value. To do.

第1の論理積回路831は、地絡事故検出回路81の出力信号と第1の受電端地絡方向継電装置221から入力される第3の地絡事故判定信号S3と第2の受電端地絡方向継電装置222から入力される第4の地絡事故判定信号S4の極性を反転した信号(−S4)と第2の地絡検出用地絡過電圧継電装置から入力される第2のOVG出力信号SOVG2との論理積をとる。
第2の論理積回路832は、地絡事故検出回路81の出力信号と第3の地絡事故判定信号S3の極性を反転した信号(−S3)と第4の地絡事故判定信号S4と第2のOVG出力信号SOVG2との論理積をとる。
The first AND circuit 83 1 includes the output signal of the ground fault detection circuit 81, the third ground fault determination signal S 3 input from the first power receiving terminal ground fault direction relay device 22 1, and the second From the signal (−S 4 ) obtained by inverting the polarity of the fourth ground fault accident determination signal S 4 input from the power receiving end ground fault direction relay device 22 2 and the second ground fault detection ground fault overvoltage relay device. The logical product of the input second OVG output signal S OVG2 is obtained.
The second AND circuit 83 2 includes a signal (−S 3 ) obtained by inverting the polarities of the output signal of the ground fault detection circuit 81 and the third ground fault determination signal S 3 and the fourth ground fault determination signal. The logical product of S 4 and the second OVG output signal S OVG2 is obtained.

第3の論理積回路833は、第3の遮断器43から入力される第3の接点信号SCB3(第3の遮断器43が遮断されていない状態ではハイレベルの信号)と第4の遮断器44から入力される第4の接点信号SCB4(第4の遮断器44が遮断されていない状態ではハイレベルの信号)との論理積をとる。 The third AND circuit 83 3 has a third contact signal S CB3 (a high level signal when the third circuit breaker 4 3 is not cut off) inputted from the third circuit breaker 4 3 and the third contact signal S CB3 . (a fourth state in which the circuit breaker 4 4 is not interrupted in the high-level signal) fourth contact signal S CB4 inputted from breaker 4 4 4 ANDing the.

第4の論理積回路834は、第1の論理積回路831の出力信号と第3の論理積回路833の出力信号と不図示の第2の短絡検出用地絡不足電圧継電装置(UVG)から入力される第2のUVG出力信号SUVG2の極性を反転した信号(−SUVG2)との論理積をとる。ここで、第2の短絡検出用地絡不足電圧継電装置は、受電端正相電圧V1Rの大きさが整定値以下になるとハイレベルの第2のUVG出力信号SUVG2を出力する。
第1の遅延回路821は、第4の論理積回路834の出力信号を第7の零相自由振動誤動作防止時間GT27だけ遅延する。第1の遅延回路821からは、第3の遮断器43を遮断するための第3の地絡過電流継電装置トリップ信号TOCG3が第3の遮断器43に出力される。したがって、第3の地絡過電流継電装置トリップ信号TOCG3については、受電端地絡過電流継電装置12の動作時限は第7の零相自由振動誤動作防止時間GT27となる。
なお、第3の地絡過電流継電装置トリップ信号TOCG3は、第2のOVG出力信号SOVG2がハイレベルでありかつ第3および第4の接点信号SCB3,SCB4がハイレベルでありかつ第2のUVG出力信号SUVG2がロウレベルであることを条件に、第3の遮断器43に出力される。
The fourth AND circuit 83 4, the first AND circuit 83 1 of the output signal and the third AND circuit 83 3 and the output signal from the second short detection site絡不undervoltage relay device (not shown) ( Logical product with a signal (-S UVG2 ) obtained by inverting the polarity of the second UVG output signal S UVG2 input from ( UVG ). Here, the second short-circuiting detection ground fault undervoltage relay device outputs a high-level second UVG output signal S UVG2 when the magnitude of the receiving-end positive phase voltage V 1R becomes equal to or less than a set value.
The first delay circuit 82 1 delays the output signal of the fourth AND circuit 834 by the seventh zero-phase free vibration malfunction prevention time GT2 7 . From the first delay circuit 82 1, the third ground fault overcurrent relay device trip signal T OCG3 for blocking the third breaker 4 3 is output to the third circuit breakers 4 3. Thus, for the third ground fault overcurrent relay device trip signal T OCG3, operation timed receiving end locations fault overcurrent relay device 12 becomes zero phase free vibration lockout time GT2 7 of the seventh.
The third ground fault overcurrent relay trip signal T OCG3 is such that the second OVG output signal S OVG2 is at a high level and the third and fourth contact signals S CB3 and S CB4 are at a high level. on condition that the second UVG output signal S UVG2 is at a low level is output to the third circuit breaker 4 3.

第5の論理積回路835は、第2の論理積回路832の出力信号と第3の論理積回路833の出力信号と第2のUVG出力信号SUVG2の極性を反転した信号(−SUVG2)との論理積をとる。
第2の遅延回路822は、第5の論理積回路835の出力信号を第8の零相自由振動誤動作防止時間GT28だけ遅延する。第2の遅延回路822からは、第4の遮断器44を遮断するための第4の地絡過電流継電装置トリップ信号TOCG4が第4の遮断器44に出力される。したがって、第4の地絡過電流継電装置トリップ信号TOCG4については、受電端地絡過電流継電装置12の動作時限は第8の零相自由振動誤動作防止時間GT28となる。
なお、第4の地絡過電流継電装置トリップ信号TOCG4は、第2のOVG出力信号SOVG2がハイレベルでありかつ第3および第4の接点信号SCB3,SCB4がハイレベルでありかつ第2のUVG出力信号SUVG2がロウレベルであることを条件に、第4の遮断器44に出力される。
Fifth AND circuit 83 5, a second AND circuit 83 and second output signal and the third AND circuit 83 3 and the output signal from the second UVG output signal polarity inverted signal of the S UVG2 (- AND with S UVG2 ).
The second delay circuit 82 2 delays the output signal of the fifth AND circuit 835 by the eighth zero-phase free vibration malfunction prevention time GT2 8 . From the second delay circuit 82 2, the fourth ground fault overcurrent relay device trip signal T OCG4 for blocking the fourth breaker 4 4 is outputted to the fourth circuit breaker 4 4. Thus, for the fourth ground fault overcurrent relay device trip signal T OCG4, operation timed receiving end locations fault overcurrent relay device 12 becomes zero phase free vibration lockout time GT2 8 eighth.
The fourth ground fault overcurrent relay trip signal T OCG4 is such that the second OVG output signal S OVG2 is at a high level, and the third and fourth contact signals S CB3 and S CB4 are at a high level. on condition that the second UVG output signal S UVG2 is at a low level it is outputted to the fourth circuit breaker 4 4.

次に、図8(a)に示すように第1の送電線1Lの受電端至近端において地絡事故が発生した場合の本実施例による地絡保護継電システムの動作について、図8(b),(c)を参照して説明する。
なお、図8および図9では、送電端地絡過電流継電装置11は「OCGS」と、第1の送電端地絡方向継電装置211は「DGS1」と、第2の送電端地絡方向継電装置212は「DGS2」と、受電端地絡過電流継電装置12は「OCGR」と、第1の受電地絡方向継電装置221は「DGR1」と、第2の受電端地絡方向継電装置222は「DGR2」と表記している。
Next, as shown in FIG. 8 (a), the operation of the ground fault protection relay system according to the present embodiment when a ground fault occurs at the power receiving end closest to the first transmission line 1L will be described with reference to FIG. This will be described with reference to b) and (c).
8 and 9, the power transmission end ground fault overcurrent relay device 11 is “OCG S ”, the first power transmission end ground fault direction relay device 21 1 is “DG S1 ”, and the second power transmission end. The ground fault direction relay device 21 2 is “DG S2 ”, the power receiving end ground fault overcurrent relay device 12 is “OCG R ”, the first power receiving ground fault direction relay device 22 1 is “DG R1 ”, The second power receiving end ground fault direction relay device 22 2 is described as “DG R2 ”.

第1の送電線1Lの受電端至近端において地絡事故が発生すると、第1の受電端地絡方向継電装置221の第1の受電端地絡方向継電装置トリップ信号発生回路60のリレー判定回路61(図5参照)は、第3の零相変流器33から入力される第3の零相電流I03および第2の接地形計器用変圧器52から入力される受電端零相電圧VORに基づいて事故回線判定を行い、第1の送電線1L方向において地絡事故が発生したと判定して、ハイレベルの第3の事故回線判定結果信号S3を受電端地絡過電流継電装置12に出力する。
一方、第2の受電端地絡方向継電装置222の第2の受電端地絡方向継電装置トリップ信号発生回路70のリレー判定回路71(図6参照)は、第4の零相変流器34から入力される第4の零相電流I04および第2の接地形計器用変圧器52から入力される受電端零相電圧VORに基づいて事故回線判定を行い、第2の送電線2L方向において地絡事故が発生していないと判定して、ロウレベルの第4の事故回線判定結果信号S4を受電端地絡過電流継電装置12に出力したままとなる。
また、受電端地絡過電流継電装置12の受電端地絡過電流継電装置トリップ信号発生回路80の地絡事故検出回路81(図7参照)は、第3の零相変流器33から入力される第3の零相電流I03および第4の零相変流器34から入力される第4の零相電流I04の差電流I03−I04に基づいて地絡事故が発生したことを検出して、ハイレベルの出力信号を第1および第2の論理積回路831,832に出力する。
その結果、第2のOVG出力信号SOVG2がハイレベルであるとともに第3および第4の接点信号SCB3,SCB4がハイレベルであると、第3の過電流継電装置トリップ信号TOCG3が第3の遮断器43に第7の零相自由振動誤動作防止時間GT27経過後に出力される。
これにより、第3の遮断器43は、受電端地絡過電流継電装置12におけるリレー判定時間、第7の零相自由振動誤動作防止時間GT27および遮断器遮断時間の合計時間経過後に完全に遮断される(図8(b)参照)。
When a ground fault occurs at the power receiving end closest to the first power transmission line 1L, the first power receiving end ground fault direction relay device trip signal generating circuit 60 of the first power receiving end ground fault direction relay device 22 1 is used. relay determining circuit 61 (see FIG. 5) is inputted from the third zero-phase current transformer 3 3 third zero-phase current I 03 and the second earth type instrument transformer 5 2 inputted from perform accident line determined based on the receiving end the zero-phase voltage V OR, it is determined that the ground fault occurs in the first transmission line 1L direction, receiving a third accident line determination result signal S 3 of the high-level Output to the terminal ground fault overcurrent relay device 12.
On the other hand, the relay judgment circuit 71 (see FIG. 6) of the second power receiving end ground fault direction relay device trip signal generating circuit 70 of the second power receiving end ground fault direction relay device 22 2 has a fourth zero phase change. Nagareki 3 4 based on the fourth zero-phase current I 04 and the second receiving end zero-phase voltage V oR inputted from earth type potential transformer 5 2 inputted from perform accident line determination, the second the transmission line is determined as in the 2L direction ground fault does not occur, and remains to output the fourth accident line determination result signal S 4 of the low level to the receiving end locations fault overcurrent relay device 12.
Further, ground fault detection circuit 81 of the receiving end locations fault overcurrent relay device trip signal generating circuit 80 of the receiving end locations fault overcurrent relay device 12 (see FIG. 7), from the third zero-phase current transformer 3 3 ground fault occurs on the basis of a difference current I 03 -I 04 of the fourth zero-phase current I 04 inputted from the third zero-phase current I 03 and the fourth zero-phase current transformer 3 4 input When this is detected, a high level output signal is output to the first and second AND circuits 83 1 and 83 2 .
As a result, when the second OVG output signal S OVG2 is at high level and the third and fourth contact signals S CB3 and S CB4 are at high level, the third overcurrent relay trip signal T OCG3 is is output to the third circuit breakers 4 3 seventh zero-phase free vibration lockout time GT2 7 after a.
Accordingly, the third breaker 4 3 of the relay determination time at the receiving end locations fault overcurrent relay device 12, completely after a total time of 7 zero-phase free vibration lockout time GT2 7 and breaker breaking time of It is blocked (see FIG. 8B).

なお、第1の送電線1Lの受電端至近端において地絡事故が発生すると、第1の送電端地絡方向継電装置211の第1の送電端地絡方向継電装置トリップ信号発生回路30のリレー判定回路31(図2参照)は、ハイレベルの第1の事故回線判定結果信号S1を送電端過電流継電装置11に出力するが、第2の送電端地絡方向継電装置212の第2の送電端地絡方向継電装置トリップ信号発生回路40のリレー判定回路41(図3参照)も、ハイレベルの第2の事故回線判定結果信号S2を送電端過電流継電装置11に出力する。
しかし、このときに第1の送電線1Lの送電端に流れる第1の零相電流I01および第2の送電線2Lの送電端に流れる第2の零相電流I02の差電流I01−I02は整定値よりも小さいため、送電端過電流継電装置11の送電端過電流継電装置トリップ信号発生回路50の地絡事故検出回路51(図4参照)は、ロウレベルの出力信号を第1および第2の論理積回路531,532に出力したままとなる。
その結果、第1および第2の地絡過電流継電装置トリップ信号TOCG1,TOC2は送電端過電流継電装置トリップ信号発生回路50から出力されないので、第1および第2の遮断器41,42が遮断されることはない。
When a ground fault occurs at the power receiving end close to the first power transmission line 1L, a first power transmission end ground fault direction relay device trip signal is generated by the first power transmission end ground fault direction relay device 21 1 . relay determining circuit 31 of the circuit 30 (see FIG. 2), the first accident line determination result of the high level is output to signals S 1 to the power transmission end over-current relay device 11, the second sending end earth fault direction relay The relay determination circuit 41 (see FIG. 3) of the second power transmission end ground fault direction relay device trip signal generation circuit 40 of the power transmission device 21 2 also transmits the second fault line determination result signal S 2 having a high level to the power transmission end. Output to the current relay device 11.
However, at this time, the difference current I 01 − between the first zero-phase current I 01 flowing through the power transmission end of the first power transmission line 1L and the second zero-phase current I 02 flowing through the power transmission end of the second power transmission line 2L Since I 02 is smaller than the set value, the ground fault detection circuit 51 (see FIG. 4) of the power transmission end overcurrent relay trip signal generation circuit 50 of the power transmission end overcurrent relay device 11 outputs a low level output signal. It remains output to the first and second AND circuits 53 1 and 53 2 .
As a result, the first and second ground fault overcurrent relay device trip signal T OCG1, T OC2 is because it is not output from the sending end overcurrent relay device trip signal generating circuit 50, first and second circuit breakers 4 1 , 4 2 is not blocked.

上述したようにして第3の遮断器43が完全に遮断されると第1の送電線1Lの送電端を流れる第1の零相電流I01と第2の送電線2Lの送電端を流れる第2の零相電流I02との差電流I01−I02は大きくなるため、第1の送電端地絡方向継電装置211の第1の送電端地絡方向継電装置トリップ信号発生回路30のリレー判定回路31(図2参照)は、第1の零相変流器31から入力される第1の零相電流I01および第1の接地形計器用変圧器51から入力される送電端零相電圧VOSに基づいて事故回線判定を行い、第1の送電線1L方向において地絡事故が発生したと判定して、ハイレベルの第1の事故回線判定結果信号S1を送電端地絡過電流継電装置11に出力している。
一方、第2の送電端地絡方向継電装置212の第2の送電端地絡方向継電装置トリップ信号発生回路40のリレー判定回路41(図3参照)は、第2の零相変流器32から入力される第2の零相電流I02および第1の接地形計器用変圧器51から入力される送電端零相電圧VOSに基づいて事故回線判定を行い、第2の送電線2L方向において地絡事故が発生していないと判定して、ロウレベルの第2の事故回線判定結果信号S2を送電端地絡過電流継電装置11に出力する。
また、送電端地絡過電流継電装置11の送電端地絡過電流継電装置トリップ信号発生回路50の地絡事故検出回路51(図4参照)は、第1の零相変流器31から入力される第1の零相電流I01および第2の零相変流器32から入力される第2の零相電流I02の差電流I01−I02に基づいて地絡事故が発生したことを検出して、ハイレベルの出力信号を第1および第2の論理積回路531,532に出力する。
その結果、第1のOVG出力信号SOVG1がハイレベルであるとともに第1および第2の接点信号SCB1,SCB2がハイレベルであると、第1の過電流継電装置トリップ信号TOCG1が第1の遮断器41に第3の零相自由振動誤動作防止時間GT23経過後に出力される。
これにより、第1の遮断器41は、第3の遮断器43が完全に遮断されたのち、送電端地絡過電流継電装置11におけるリレー判定時間、第3の零相自由振動誤動作防止時間GT23および遮断器遮断時間の合計時間経過後に完全に遮断される(図8(c)参照)。
Flowing through the third circuit breaker 4 when 3 is completely shut off from the first zero-phase current I 01 flowing in the sending end of the first transmission line 1L sending end of the second transmission line 2L in the manner described above Since the difference current I 01 -I 02 from the second zero-phase current I 02 becomes large, the first power transmission end ground fault direction relay device 21 1 generates the first power transmission end ground fault direction relay device trip signal. relay determining circuit 31 of the circuit 30 (see FIG. 2), the first zero-phase current I 01 and the first earth type input from the instrumentation transformer 5 1 input from the first zero-phase current transformer 3 1 The fault line determination is performed based on the transmitted power zero-phase voltage V OS , it is determined that a ground fault has occurred in the direction of the first power transmission line 1L, and the high-level first fault line determination result signal S 1 Is output to the power transmission terminal ground fault overcurrent relay device 11.
On the other hand, the relay determination circuit 41 (see FIG. 3) of the second power transmission end ground fault direction relay device trip signal generation circuit 40 of the second power transmission end ground fault direction relay device 21 2 is used for the second zero phase change. perform accident line determination based on the second zero-phase current I 02 and the first sending end zero-phase voltage V OS input from the earth type potential transformer 5 1 inputted from Nagareki 3 2, second of it is determined that a ground fault in the transmission line 2L direction has not occurred, and outputs a second accident line determination result signal S 2 to the sending end locations fault overcurrent relay device 11 at a low level.
In addition, the ground fault detection circuit 51 (see FIG. 4) of the power transmission ground fault overcurrent relay device trip signal generation circuit 50 of the power transmission ground fault overcurrent relay device 11 includes the first zero-phase current transformer 3 1. ground fault occurs on the basis of a difference current I 01 -I 02 of the first zero-phase current I 01 and the second zero-phase current transformer 3 is inputted from the 2 second zero-phase current I 02 inputted In response to this, a high level output signal is output to the first and second AND circuits 53 1 and 53 2 .
As a result, when the first OVG output signal S OVG1 is high level and the first and second contact signals S CB1 and S CB2 are high level, the first overcurrent relay trip signal T OCG1 is output a third zero-phase free vibration lockout time after GT2 3 lapse of the first breaker 4 1.
Accordingly, the first breaker 4 1, after the third breaker 4 3 is completely cut off, the relay determination time in the sending end locations fault overcurrent relay device 11, preventing the third zero-phase free oscillation malfunction After the total time of the time GT2 3 and the circuit breaker breaking time has elapsed, the circuit is completely cut off (see FIG. 8C).

次に、図9(a)に示すように第1の送電線1Lの送電端至近端において地絡事故が発生した場合の本実施例による地絡保護継電システムの動作について、図9(b),(c)を参照して説明する。   Next, as shown in FIG. 9 (a), the operation of the ground fault protection relay system according to the present embodiment when a ground fault occurs at the power transmission end closest to the first transmission line 1L will be described with reference to FIG. This will be described with reference to b) and (c).

第1の送電線1Lの送電端至近端において地絡事故が発生すると、第1の送電端地絡方向継電装置211の第1の送電端地絡方向継電装置トリップ信号発生回路30のリレー判定回路31(図2参照)は、第1の零相変流器31から入力される第1の零相電流I01および第1の接地形計器用変圧器51から入力される送電端零相電圧VOSに基づいて事故回線判定を行い、第1の送電線1L方向において地絡事故が発生したと判定して、ハイレベルの第1の事故回線判定結果信号S1を送電端地絡過電流継電装置11に出力する。
一方、第2の送電端地絡方向継電装置212の第2の送電端地絡方向継電装置トリップ信号発生回路40のリレー判定回路41(図3参照)は、第2の零相変流器32から入力される第2の零相電流I02および第1の接地形計器用変圧器51から入力される送電端零相電圧VOSに基づいて事故回線判定を行うが、地絡電流が小さいために第2の送電端地絡方向継電装置212は不動作となるため、第2の送電線2L方向において地絡事故が発生していないと判定して、ロウレベルの第2の事故回線判定結果信号S2を送電端地絡過電流継電装置11に出力したままとなる。
また、送電端地絡過電流継電装置11の送電端地絡過電流継電装置トリップ信号発生回路50の地絡事故検出回路51(図4参照)は、第1の零相変流器31から入力される第1の零相電流I01および第2の零相変流器32から入力される第2の零相電流I02の差電流I01−I02に基づいて地絡事故が発生したことを検出して、ハイレベルの出力信号を第1および第2の論理積回路531,532に出力する。
その結果、第1のOVG出力信号SOVG1がハイレベルであるとともに第1および第2の接点信号SCB1,SCB2がハイレベルであると、第1の過電流継電装置トリップ信号TOCG1が第1の遮断器41に第3の零相自由振動誤動作防止時間GT23経過後に出力される。
これにより、第1の遮断器41は、送電端地絡過電流継電装置11におけるリレー判定時間、第3の零相自由振動誤動作防止時間GT23および遮断器遮断時間の合計時間経過後に完全に遮断される(図9(b)参照)。
When a ground fault occurs at the power transmission end close to the first power transmission line 1L, the first power transmission end ground fault direction relay device trip signal generation circuit 30 of the first power transmission end ground fault direction relay device 21 1 is used. relay determining circuit 31 (see FIG. 2) is input from the first zero-phase current I 01 and the first earth type instrument transformer 5 1 input from the first zero-phase current transformer 3 1 The fault line is determined based on the zero-phase voltage V OS at the transmission end, it is determined that a ground fault has occurred in the direction of the first transmission line 1L, and the first fault line determination result signal S 1 of high level is transmitted. Output to the ground fault overcurrent relay device 11.
On the other hand, the relay determination circuit 41 (see FIG. 3) of the second power transmission end ground fault direction relay device trip signal generation circuit 40 of the second power transmission end ground fault direction relay device 21 2 is used for the second zero phase change. Nagareki 3 2 based on the second zero-phase current I 02 and the first sending end zero-phase voltage V OS input from the earth type potential transformer 5 1 input from performing an accident line determination, but the earth Since the fault current is small, the second power transmission terminal ground fault direction relay device 21 2 becomes inoperative, so it is determined that no ground fault has occurred in the second power transmission line 2L direction, and the low level first No. 2 fault line determination result signal S 2 is still output to the power transmission terminal ground fault overcurrent relay device 11.
In addition, the ground fault detection circuit 51 (see FIG. 4) of the power transmission ground fault overcurrent relay device trip signal generation circuit 50 of the power transmission ground fault overcurrent relay device 11 includes the first zero-phase current transformer 3 1. ground fault occurs on the basis of a difference current I 01 -I 02 of the first zero-phase current I 01 and the second zero-phase current transformer 3 is inputted from the 2 second zero-phase current I 02 inputted In response to this, a high level output signal is output to the first and second AND circuits 53 1 and 53 2 .
As a result, when the first OVG output signal S OVG1 is high level and the first and second contact signals S CB1 and S CB2 are high level, the first overcurrent relay trip signal T OCG1 is output a third zero-phase free vibration lockout time after GT2 3 lapse of the first breaker 4 1.
Accordingly, the first breaker 4 1, relay determination time in the sending end locations fault overcurrent relay device 11, completely after a total elapsed time of the third zero-phase free vibration lockout time GT2 3 and breaker breaking time It is blocked (see FIG. 9B).

なお、第1の送電線1Lの送電端至近端において地絡事故が発生すると、第2の受電端地絡方向継電装置222の第2の受電端地絡方向継電装置トリップ信号発生回路70のリレー判定回路71(図6参照)は、ロウレベルの第4の事故回線判定結果信号S4を受電端過電流継電装置12に出力したままであるが、第1の受電端地絡方向継電装置221の第1の受電端地絡方向継電装置トリップ信号発生回路60のリレー判定回路61(図5参照)は、ロウレベルの第3の事故回線判定結果信号S3を受電端過電流継電装置12に出力する。
また、このときに第1の送電線1Lの受電端に流れる第1の零相電流I01および第2の送電線2Lの受電端に流れる第2の零相電流I02の差電流I01−I02は整定値よりも小さいため、受電端過電流継電装置12の受電端過電流継電装置トリップ信号発生回路80の地絡事故検出回路81(図7参照)は、ロウレベルの出力信号を第1および第2の論理積回路831,832に出力したままとなる。
その結果、第3の地絡過電流継電装置トリップ信号TOCG3は受電端過電流継電装置トリップ信号発生回路80から第3の遮断器43に出力されないので、第3の遮断器43が遮断されることはない。
In addition, when a ground fault occurs at the power transmission end closest to the first power transmission line 1L, a second power receiving end ground fault direction relay device trip signal is generated by the second power receiving end ground fault direction relay device 22 2 . relay determining circuit 71 of the circuit 70 (see FIG. 6), which remains outputs a fourth accident line determination result signal S 4 of the low level to the receiving end over-current relay device 12, first receiving end earth fault The relay determination circuit 61 (see FIG. 5) of the first power receiving end ground fault direction relay device trip signal generation circuit 60 of the direction relay device 22 1 receives the low-level third fault line determination result signal S 3 as the power receiving end. Output to the overcurrent relay device 12.
At this time, the difference current I 01 − between the first zero-phase current I 01 flowing through the power receiving end of the first power transmission line 1L and the second zero-phase current I 02 flowing through the power receiving end of the second power transmission line 2L Since I 02 is smaller than the set value, the ground fault detection circuit 81 (see FIG. 7) of the receiving end overcurrent relay device trip signal generating circuit 80 of the receiving end overcurrent relay device 12 outputs a low level output signal. It remains output to the first and second AND circuits 83 1 and 83 2 .
As a result, the third ground fault overcurrent relay trip signal T OCG3 is not output from the power receiving end overcurrent relay trip signal generation circuit 80 to the third circuit breaker 4 3 , so that the third circuit breaker 4 3 It will not be blocked.

上述したようにして第1の遮断器41が完全に遮断されると第1の送電線1Lの受電端を流れる第3の零相電流I03と第2の送電線2Lの受電端を流れる第4の零相電流I04との差電流I01−I02は迂回電流により大きくなるため、第1の受電端地絡方向継電装置221の第1の受電端地絡方向継電装置トリップ信号発生回路60のリレー判定回路61(図5参照)は、第3の零相変流器33から入力される第3の零相電流I03および第2の接地形計器用変圧器52から入力される受電端零相電圧VORに基づいて事故回線判定を行い、第1の送電線1L方向において地絡事故が発生したと判定して、ハイレベルの第3の事故回線判定結果信号S3を受電端地絡過電流継電装置12に出力する。
一方、第2の受電端地絡方向継電装置222の第2の受電端地絡方向継電装置トリップ信号発生回路70のリレー判定回路71(図6参照)は、第4の零相変流器34から入力される第4の零相電流I04および第2の接地形計器用変圧器52から入力される受電端零相電圧VORに基づいて事故回線判定を行い、第2の送電線2L方向において地絡事故が発生していないと判定して、ロウレベルの第4の事故回線判定結果信号S4を受電端地絡過電流継電装置12に出力したままとなる。
また、受電端地絡過電流継電装置12の受電端地絡過電流継電装置トリップ信号発生回路80の地絡事故検出回路81(図7参照)は、第3の零相変流器33から入力される第3の零相電流I03および第4の零相変流器34から入力される第4の零相電流I04の差電流I03−I04に基づいて地絡事故が発生したことを検出して、ハイレベルの出力信号を第1および第2の論理積回路831,832に出力する。
その結果、第2のOVG出力信号SOVG2がハイレベルであるとともに第3および第4の接点信号SCB3,SCB4がハイレベルであると、第3の過電流継電装置トリップ信号TOCG3が第3の遮断器43に第7の零相自由振動誤動作防止時間GT27経過後に出力される。
これにより、第3の遮断器43は、第1の遮断器41が完全に遮断されたのち、受電端地絡過電流継電装置12におけるリレー判定時間、第7の零相自由振動誤動作防止時間GT27および遮断器遮断時間の合計時間経過後に完全に遮断される(図9(c)参照)。
Flowing the first breaker 4 1 is completely shut off in the manner described above with a third zero-phase current I 03 flowing in the receiving end of the first transmission line 1L to the receiving end of the second transmission line 2L fourth to the difference current I 01 -I 02 of the zero-phase current I 04 increases by bypassing the current, the first receiving end earth fault direction relay device 22 1 of the first receiving end earth fault direction relay device trip (see FIG. 5) relay determining circuit 61 of the signal generating circuit 60, a third zero-phase current I 03 and the second earth type instrument transformer input from the third zero-phase current transformer 3 3 5 The fault line determination is performed based on the receiving-end zero-phase voltage V OR input from 2, and it is determined that a ground fault has occurred in the direction of the first transmission line 1L, and the third fault line determination result of the high level The signal S 3 is output to the receiving end ground fault overcurrent relay device 12.
On the other hand, the relay judgment circuit 71 (see FIG. 6) of the second power receiving end ground fault direction relay device trip signal generating circuit 70 of the second power receiving end ground fault direction relay device 22 2 has a fourth zero phase change. Nagareki 3 4 based on the fourth zero-phase current I 04 and the second receiving end zero-phase voltage V oR inputted from earth type potential transformer 5 2 inputted from perform accident line determination, the second the transmission line is determined as in the 2L direction ground fault does not occur, and remains to output the fourth accident line determination result signal S 4 of the low level to the receiving end locations fault overcurrent relay device 12.
Further, ground fault detection circuit 81 of the receiving end locations fault overcurrent relay device trip signal generating circuit 80 of the receiving end locations fault overcurrent relay device 12 (see FIG. 7), from the third zero-phase current transformer 3 3 ground fault occurs on the basis of a difference current I 03 -I 04 of the fourth zero-phase current I 04 inputted from the third zero-phase current I 03 and the fourth zero-phase current transformer 3 4 input When this is detected, a high level output signal is output to the first and second AND circuits 83 1 and 83 2 .
As a result, when the second OVG output signal S OVG2 is at high level and the third and fourth contact signals S CB3 and S CB4 are at high level, the third overcurrent relay trip signal T OCG3 is is output to the third circuit breakers 4 3 seventh zero-phase free vibration lockout time GT2 7 after a.
Thereby, after the 1st circuit breaker 4 1 is completely interrupted, the third circuit breaker 4 3 prevents the relay determination time in the power receiving terminal ground fault overcurrent relay device 12 and the seventh zero-phase free vibration malfunction prevention. After the total time of the time GT2 7 and the circuit breaker breaking time has elapsed, it is completely cut off (see FIG. 9 (c)).

以上説明したように、本実施例による地絡保護継電システムを用いても、図10に示した従来の地絡保護継電システムと同じように平衡2回線送電線を地絡事故から保護することができる。   As described above, even when the ground fault protection relay system according to the present embodiment is used, the balanced two-line transmission line is protected from the ground fault as in the conventional ground fault protection relay system shown in FIG. be able to.

また、零相循環電流が流れても、送電端地絡過電流継電装置11および受電端地絡過電流継電装置12は地絡事故を検出するが、第1および第2の送電端地絡方向継電装置211,212と第1および第2の受電端地絡方向継電装置221,222とは動作しない(自回線事故とは判定しない)ため、第1乃至第4の遮断器41〜44が遮断されることはない。 Even if the zero-phase circulating current flows, the power transmission terminal ground fault overcurrent relay device 11 and the power receiving terminal ground fault overcurrent relay device 12 detect a ground fault, but the first and second power transmission terminal ground fault directions. Since the relay devices 21 1 and 21 2 and the first and second power receiving end ground fault direction relay devices 22 1 and 22 2 do not operate (it is not determined that the own line fault occurs), the first to fourth interruptions The containers 4 1 to 4 4 are not shut off.

さらに、たとえば第1の送電線1Lの受電端背後の送電線において地絡事故(外部地絡事故)が発生すると、第1および第2の送電端地絡方向継電装置211,212は動作する(自回線事故と判定する)が、第1の零相電流I01と第2の零相電流I02との差電流I01−I02は生じないため、第1および第2の遮断器41,42が遮断されることはない。
さらにまた、前方に地絡事故が発生して事故回線の判定が不能になったときにたとえば第2の送電線2Lの受電端側で地絡事故が発生しても、第1および第2の受電端地絡方向継電装置221,222と受電端地絡過電流継電装置12とによって第4の遮断器44が先行遮断されることにより第1の送電端地絡方向継電装置211が復帰するため、健全回線側の第1の遮断器4が遮断されることはない。
Further, for example, when a ground fault (external ground fault) occurs in the power transmission line behind the power receiving end of the first power transmission line 1L, the first and second power transmission end ground fault direction relay devices 21 1 and 21 2 are Although operated (determined as an own line fault), a difference current I 01 -I 02 between the first zero-phase current I 01 and the second zero-phase current I 02 does not occur, so the first and second interruptions Units 4 1 and 4 2 are not shut off.
Furthermore, even if a ground fault occurs on the power receiving end side of the second power transmission line 2L, for example, when the ground fault occurs ahead and determination of the fault line becomes impossible, the first and second The 4th circuit breaker 4 4 is cut off in advance by the power receiving end ground fault direction relay devices 22 1 and 22 2 and the power receiving end ground fault overcurrent relay device 12, whereby the first power transmitting end ground fault direction relay device. Since 21 1 is restored, the first circuit breaker 4 on the sound line side is not interrupted.

以上の説明では、第1および第2の送電端地絡方向継電装置211,212と送電端地絡過電流継電装置11とを個々に構成したが、一体に構成してもよい。第1および第2の受電端地絡方向継電装置221,222と受電端地絡過電流継電装置12についても同様である。 In the above description, the first and second power transmission terminal ground fault direction relay devices 21 1 and 21 2 and the power transmission terminal ground fault overcurrent relay device 11 are individually configured, but may be configured integrally. The same applies to the first and second power receiving terminal ground fault direction relay devices 22 1 and 22 2 and the power receiving terminal ground fault overcurrent relay device 12.

また、平衡2回線送電線の送電端および受電端に地絡過電流継電装置を1つずつ設置したが、地絡過電流継電装置は地絡回線選択継電装置に比べて安価であるため、バックアップ用に他の地絡過電流継電装置を設置してもよい。これにより、いずれか一方の地絡過電流継電装置が故障した場合にも平衡受電を維持させることができる。   Moreover, although one earth fault overcurrent relay device was installed at the power transmission end and the power receiving end of the balanced two-line transmission line, the ground fault over current relay device is cheaper than the ground fault line selection relay device, Another ground fault overcurrent relay device may be installed for backup. Thereby, even when any one of the ground fault overcurrent relay devices fails, the balanced power reception can be maintained.

本発明の一実施例による地絡保護継電システムの構成を示す図である。It is a figure which shows the structure of the ground fault protection relay system by one Example of this invention. 図1に示した第1の送電端地絡方向継電装置211が備える第1の送電端地絡方向継電装置トリップ信号発生回路30の構成を示すブロック図である。Is a block diagram showing the configuration of the first sending end ground fault direction relay device trip signal generating circuit 30 in which the first sending end ground fault direction relay device 21 1 shown in FIG. 1 is provided. 図1に示した第2の送電端地絡方向継電装置212が備える第2の送電端地絡方向継電装置トリップ信号発生回路40の構成を示すブロック図である。It is a block diagram which shows the structure of the 2nd power transmission terminal ground fault direction relay apparatus trip signal generation circuit 40 with which the 2nd power transmission terminal ground fault direction relay apparatus 21 2 shown in FIG. 図1に示した送電端地絡過電流継電装置11が備える送電端地絡過電流継電装置トリップ信号発生回路50の構成を示すブロック図である。It is a block diagram which shows the structure of the power transmission terminal ground fault overcurrent relay apparatus trip signal generation circuit 50 with which the power transmission terminal ground fault overcurrent relay apparatus 11 shown in FIG. 図1に示した第1の受電端地絡方向継電装置221が備える第1の受電端地絡方向継電装置トリップ信号発生回路60の構成を示すブロック図である。It is a block diagram showing a configuration of a first receiving end earth fault direction relay device trip signal generating circuit 60 to first receiving end earth fault direction relay device 22 1 shown in FIG. 1 is provided. 図1に示した第2の受電端地絡方向継電装置222が備える第2の受電端地絡方向継電装置トリップ信号発生回路70の構成を示すブロック図である。It is a block diagram showing a configuration of a second receiving end earth fault direction relay device trip signal generating circuit 70 in which the second receiving end earth fault direction relay device 22 2 shown in FIG. 1 is provided. 図1に示した受電端地絡過電流継電装置12が備える受電端地絡過電流継電装置トリップ信号発生回路80の構成を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration of a power receiving terminal ground fault overcurrent relay device trip signal generation circuit 80 included in the power receiving terminal ground fault overcurrent relay device 12 illustrated in FIG. 1. 第1の送電線1Lの受電端至近端において地絡事故が発生した場合の図1に示した地絡保護継電システムの動作を説明するためのである。It is for demonstrating operation | movement of the ground fault protection relay system shown in FIG. 1 at the time of a ground fault occurring in the power receiving end close | similar end of 1 L of 1st power transmission lines. 第1の送電線1Lの送電端至近端において地絡事故が発生した場合の図1に示した地絡保護継電システムの動作を説明するためのである。It is for demonstrating operation | movement of the ground fault protection relay system shown in FIG. 1 at the time of a ground fault occurring in the power transmission end near 1st transmission line 1L. 主保護として地絡回線選択継電装置を使用するとともに後備保護として地絡方向継電装置を使用した従来の地絡保護継電システムの構成を示す図である。It is a figure which shows the structure of the conventional ground fault protection relay system which uses a ground fault line selection relay apparatus as main protection, and uses a ground fault direction relay apparatus as back-up protection.

符号の説明Explanation of symbols

1〜34 第1乃至第4の零相変流器
1〜44 第1乃至第4の遮断器
1,52 第1および第2の接地形計器用変圧器
11 送電端地絡過電流継電装置
12 受電端地絡過電流継電装置
211,212 第1および第2の送電端地絡方向継電装置
221,222 第1および第2の受電端地絡方向継電装置
30,40 第1および第2の送電端地絡方向継電装置トリップ信号発生回路
31,41,61,71 リレー判定回路
321〜323,421〜423,621〜623,721〜723 第1乃至第3の遅延回路
33,43,63,73 論理積回路
34,44,64,74 論理和回路
50 送電端地絡過電流継電装置トリップ信号発生回路
51,81 地絡事故検出回路
521,522,821,822 第1および第2の遅延回路
531〜535,831〜835 第1乃至第5の論理積回路
60,70 第1および第2の受電端地絡方向継電装置トリップ信号発生回路
80 受電端地絡過電流継電装置トリップ信号発生回路
111 送電端地絡回線選択継電装置
112 受電端地絡回線選択継電装置
1211,1212 第1および第2の送電端地絡方向継電装置
1221,1222 第1および第2の受電端地絡方向継電装置
1L,2L 第1および第2の送電線
01〜I04 第1乃至第4の零相電流
0S 送電端零相電圧
OR 受電端零相電圧
1S 送電端正相電圧
1R 受電端正相電圧
1〜S4 第1乃至第4の事故回線判定結果信号
CB1〜SCB4 第1乃至第4の接点信号
OVG1,SOVG2 第1および第2のOVG出力信号
UVG1,SUVG2 第1および第2のUVG出力信号
GT11〜GT14 第1乃至第4の時限協調時間
GT21〜GT28 第1乃至第8の零相自由振動誤動作防止時間
GT31〜GT34 第1乃至第4のOVG遮断時間
DG1〜TDG4 第1乃至第4の地絡方向継電装置トリップ信号
OCG1〜TOCG4 第1乃至第4の地絡過電流継電装置トリップ信号
3 1 to 3 4 1st to 4th zero-phase current transformers 4 1 to 4 4 1st to 4th circuit breakers 5 1 and 5 2 1st and 2nd earthing-type instrument transformer 11 Transmission terminal Fault overcurrent relay device 12 Receiving terminal ground fault overcurrent relay device 21 1 , 21 2 First and second power transmission terminal ground fault direction relay devices 22 1 , 22 2 First and second power receiving terminal ground fault direction relay collector 30, 40 first and second sending end ground fault direction relay device trip signal generating circuit 31,41,61,71 relay determining circuit 321 to 323, 42 1 to 42 3, 62 1 to 62 3 72 1 to 72 3 1st to 3rd delay circuits 33, 43, 63, 73 AND circuit 34, 44, 64, 74 OR circuit 50 Power transmission terminal ground fault overcurrent relay trip signal generating circuit 51, 81 Ground fault detection circuits 52 1 , 52 2 , 82 1 , 82 2 first and second delay circuits 53 1 to 53 5 , 8 3 1 to 8 5 1st to 5th AND circuits 60 and 70 First and second power receiving terminal ground fault direction relay device trip signal generating circuit 80 Power receiving terminal ground fault overcurrent relay device trip signal generating circuit 111 Terminal ground fault line selection relay device 112 Power receiving terminal ground fault line selection relay device 121 1 , 121 2 First and second power transmission terminal ground fault direction relay devices 122 1 , 122 2 First and second power receiving terminals Ground fault direction relay devices 1L, 2L First and second transmission lines I 01 to I 04 First to fourth zero phase current V 0S Transmission end zero phase voltage V OR Reception end zero phase voltage V 1S Transmission end positive phase Voltage V 1R receiving end positive phase voltage S 1 to S 4 first to fourth fault line determination result signals S CB1 to S CB4 first to fourth contact signals S OVG1 , S OVG2 first and second OVG output signals S UVG1, S UVG2 first and second UVG output signal GT1 1 ~GT1 4 first to fourth timed Adjusting time GT2 1 ~GT2 8 first to the zero-phase free vibration lockout time GT3 1 ~GT3 4 first to fourth OVG interruption time T DG1 through T DG4 first to fourth ground direction relay eighth Device trip signal T OCG1 to T OCG4 1st to 4th ground fault overcurrent relay trip signal

Claims (5)

平衡2回線送電線を地絡事故から保護するための地絡保護継電システムであって、
前記平衡2回線送電線に設置された、かつ、該平衡2回線送電線の第1および第2の送電線(1L,2L)をそれぞれ流れる零相電流の差電流に基づいて動作する地絡過電流継電装置(11;12)と、
前記第1および第2の送電線にそれぞれ設置された第1および第2の地絡方向継電装置(211,212;221,222)とを具備し、
前記第1の地絡方向継電装置において前記第1の送電線方向で発生した地絡事故を検出するとともに前記地絡過電流継電装置においても該地絡事故を検出すると、該第1の送電線に設置された遮断器(41,43)を遮断するためのトリップ信号を出力し、
前記第2の地絡方向継電装置において前記第2の送電線方向で発生した地絡事故を検出するとともに前記地絡過電流継電装置においても該地絡事故を検出すると、該第2の送電線に設置された他の遮断器(42,44)を遮断するための他のトリップ信号を出力する、
ことを特徴とする、地絡保護継電システム。
A ground fault protection relay system for protecting a balanced two-line transmission line from a ground fault,
A ground fault overcurrent that is installed in the balanced two-line transmission line and operates based on a difference current between zero-phase currents flowing through the first and second transmission lines (1L, 2L) of the balanced two-line transmission line. A relay device (11; 12);
First and second ground fault direction relay devices (21 1 , 21 2 ; 22 1 , 22 2 ) respectively installed on the first and second transmission lines,
When a ground fault occurring in the first transmission line direction is detected in the first ground fault direction relay device and the ground fault is detected also in the ground fault overcurrent relay device, the first transmission line is detected. Outputs a trip signal to shut off the circuit breakers (4 1 , 4 3 ) installed on the wires,
When the ground fault accident occurring in the second power transmission line direction is detected in the second ground fault direction relay device and the ground fault fault is also detected in the ground fault overcurrent relay device, the second transmission line is detected. Outputs other trip signals to shut off other circuit breakers (4 2 , 4 4 ) installed on the wires.
A ground fault protection relay system.
平衡2回線送電線を地絡事故から保護するための地絡保護継電システムであって、
前記平衡2回線送電線の送電端に設置された送電端地絡過電流継電装置(11)と第1および第2の送電端地絡方向継電装置(211,212)とを具備し、
前記第1の送電端地絡方向継電装置が、前記平衡2回線送電線の第1の送電線(1L)方向において地絡事故が発生したことを検出すると第1の事故回線判定結果信号(S1)を前記送電端地絡過電流継電装置に出力する第1のリレー判定手段(31)を備え、
前記第2の送電端地絡方向継電装置が、前記平衡2回線送電線の第2の送電線(2L)方向において地絡事故が発生したことを検出すると第2の事故回線判定結果信号(S2)を前記送電端地絡過電流継電装置に出力する第2のリレー判定手段(41)を備え、
前記送電端地絡過電流継電装置が、
前記第1の送電線の送電端を流れる第1の零相電流(I01)および前記第2の送電線の送電端を流れる第2の零相電流(I02)の差電流(I01−I02)に基づいて該第1または第2の送電線における地絡事故の発生を検出する地絡事故検出手段(51)と、
該地絡事故検出手段において地絡事故の発生を検出するとともに前記第1の送電端地絡方向継電装置から前記第1の事故回線判定結果信号が入力されると、該第1の送電線の送電端に設置された第1の遮断器(41)を遮断するための第1の地絡過電流継電装置トリップ信号(TOCG1)を発生する第1の地絡過電流継電装置トリップ信号発生手段(531)と、
前記地絡事故検出手段において地絡事故の発生を検出するとともに前記第2の送電端地絡方向継電装置から前記第2の事故回線判定結果信号が入力されると、該第2の送電線の送電端に設置された第2の遮断器(42)を遮断するための第2の地絡過電流継電装置トリップ信号(TOCG2)を発生する第2の地絡過電流継電装置トリップ信号発生手段(532)とを備える、
ことを特徴とする、地絡保護継電システム。
A ground fault protection relay system for protecting a balanced two-line transmission line from a ground fault,
A power transmission ground fault overcurrent relay device (11) installed at the power transmission end of the balanced two-line transmission line, and first and second power transmission terminal ground fault direction relay devices (21 1 , 21 2 ) are provided. ,
When the first power transmission terminal ground fault direction relay device detects that a ground fault has occurred in the first transmission line (1L) direction of the balanced two-line transmission line, a first fault line determination result signal ( First relay determination means (31) for outputting S 1 ) to the power transmission ground fault overcurrent relay device;
When the second power transmission terminal ground fault direction relay device detects that a ground fault has occurred in the second transmission line (2L) direction of the balanced two-line transmission line, a second fault line determination result signal ( S 2 ) comprising second relay determination means (41) for outputting the power transmission terminal ground fault overcurrent relay device;
The power transmission ground fault overcurrent relay device,
The difference current (I 01 − between the first zero-phase current (I 01 ) flowing through the power transmission end of the first power transmission line and the second zero-phase current (I 02 ) flowing through the power transmission end of the second power transmission line A ground fault detection means (51) for detecting the occurrence of a ground fault in the first or second transmission line based on I 02 ),
When the occurrence of a ground fault is detected in the ground fault detection means and the first fault line determination result signal is input from the first power transmission end ground fault relay device, the first power transmission line First ground fault overcurrent relay trip signal for generating a first ground fault overcurrent relay trip signal (T OCG1 ) for breaking the first circuit breaker (4 1 ) installed at the power transmission end of the Generating means (53 1 );
When the occurrence of a ground fault is detected by the ground fault detection means and the second fault line determination result signal is input from the second power transmission end ground fault relay device, the second power transmission line Second ground fault overcurrent relay trip signal for generating a second ground fault overcurrent relay trip signal (T OCG2 ) for breaking the second circuit breaker (4 2 ) installed at the power transmission end of Generating means (53 2 ),
A ground fault protection relay system.
前記平衡2回線送電線の受電端に設置された受電端地絡過電流継電装置(12)と第1および第2の受電端地絡方向継電装置(221,222)とをさらに具備し、
前記第1の受電端地絡方向継電装置が、前記第1の送電線方向において地絡事故が発生したことを検出すると第3の事故回線判定結果信号(S3)を前記受電端地絡過電流継電装置に出力する第3のリレー判定手段(61)を備え、
前記第2の受電端地絡方向継電装置が、前記第2の送電線方向において地絡事故が発生したことを検出すると第4の事故回線判定結果信号(S4)を前記受電端地絡過電流継電装置に出力する第4のリレー判定手段(71)を備え、
前記受電端地絡過電流継電装置が、
前記第1の送電線の受電端を流れる第3の零相地絡電流(I03)および前記第2の送電線の受電端を流れる第4の零相地絡電流(I04)の差電流(I03−I04)に基づいて該第1または第2の送電線における地絡事故の発生を検出する他の地絡事故検出手段(81)と、
該他の地絡事故検出手段において地絡事故の発生を検出するとともに前記第1の受電端地絡方向継電装置から前記第3の事故回線判定結果信号が入力されると、該第1の送電線の受電端に設置された第3の遮断器(43)を遮断するための第3の地絡過電流継電装置トリップ信号(TOCG3)を発生する第3の地絡過電流継電装置トリップ信号発生手段(831)と、
前記地絡事故検出手段において地絡事故の発生を検出するとともに前記第2の受電端地絡方向継電装置から前記第4の事故回線判定結果信号が入力されると、該第2の送電線の受電端に設置された第4の遮断器(44)を遮断するための第4の地絡過電流継電装置トリップ信号(TOCG4)を発生する第4の地絡過電流継電装置トリップ信号発生手段(832)とを備える、
ことを特徴とする、請求項2記載の地絡保護継電システム。
A power receiving end ground fault overcurrent relay device (12) installed at the power receiving end of the balanced two-line power transmission line, and first and second power receiving end ground fault direction relay devices (22 1 , 22 2 ) are further provided. And
When the first power receiving end ground fault direction relay device detects that a ground fault has occurred in the first power transmission line direction, a third fault line determination result signal (S 3 ) is transmitted to the power receiving end ground fault. A third relay determining means (61) for outputting to the current relay device;
When the second power receiving end ground fault direction relay device detects that a ground fault has occurred in the second power transmission line direction, a fourth fault line determination result signal (S 4 ) is transmitted to the power receiving end ground fault. A fourth relay determining means (71) for outputting to the current relay device;
The power receiving terminal ground fault overcurrent relay device,
The difference current between the third zero-phase ground fault current (I 03 ) flowing through the receiving end of the first transmission line and the fourth zero-phase ground fault current (I 04 ) flowing through the receiving end of the second transmission line Another ground fault detection means (81) for detecting the occurrence of a ground fault in the first or second power transmission line based on (I 03 -I 04 );
When the occurrence of a ground fault is detected in the other ground fault detection means and the third fault line determination result signal is input from the first power receiving end ground fault relay device, the first fault A third ground fault overcurrent relay device for generating a third ground fault overcurrent relay trip signal (T OCG3 ) for breaking a third circuit breaker (4 3 ) installed at the receiving end of the transmission line Trip signal generating means (83 1 );
When the occurrence of a ground fault is detected by the ground fault detection means and the fourth fault line determination result signal is input from the second power receiving end ground fault relay device, the second power transmission line fourth breaker (4 4) fourth ground fault overcurrent relay device trip signal (T OCG4) fourth ground fault overcurrent relay device trip signal for generating for blocking of which is installed in the receiving end of the Generating means (83 2 ),
The ground fault protection relay system according to claim 2, wherein:
前記送電端地絡過電流継電装置が、前記第1および第2の遮断器が遮断されていないことを条件に前記第1および第2の地絡過電流継電装置トリップ信号発生手段に前記第1および第2の地絡過電流継電装置トリップ信号をそれぞれ発生させる手段(533,534,535)をさらに備え、
前記受電端地絡過電流継電装置が、前記第3および第4の遮断器が遮断されていないことを条件に前記第3および第4の地絡過電流継電装置トリップ信号発生手段に前記第3および第4の地絡過電流継電装置トリップ信号をそれぞれ発生させる手段(833,834,835)をさらに備える、
ことを特徴とする、請求項2または3記載の地絡保護継電システム。
The first and second ground fault overcurrent relay trip signal generating means is connected to the first and second ground fault overcurrent relay trip signal generating means on condition that the first and second circuit breakers are not cut off. And means (53 3 , 53 4 , 53 5 ) for generating a second ground fault overcurrent relay trip signal, respectively,
The power receiving end ground fault overcurrent relay device is provided with the third and fourth ground fault overcurrent relay trip signal generating means on the condition that the third and fourth circuit breakers are not cut off. And means (83 3 , 83 4 , 83 5 ) for generating the fourth ground fault overcurrent relay trip signal, respectively.
The ground fault protection relay system according to claim 2 or 3, characterized in that.
前記送電端地絡過電流継電装置が、前記平衡2回線送電線の送電端正相電圧(V1S)の大きさが整定値以下になったことを示す第1のUVG出力信号(SUVG1)が第1の短絡検出用地絡不足電圧継電装置から入力されていないことを条件に、前記第1および第2の地絡過電流継電装置トリップ信号発生手段に前記第1および第2の地絡過電流継電装置トリップ信号をそれぞれ発生させる手段(534,535)をさらに備え、
前記受電端地絡過電流継電装置が、前記平衡2回線送電線の受電端正相電圧(V1R)の大きさが整定値以下になったことを示す第2のUVG出力信号(SUVG2)が第2の短絡検出用地絡不足電圧継電装置から入力されていないことを条件に、前記第3および第4の地絡過電流継電装置トリップ信号発生手段に前記第3および第4の地絡過電流継電装置トリップ信号をそれぞれ発生させる手段(834,835)をさらに備える、
ことを特徴とする、請求項2乃至4いずれかに記載の地絡保護継電システム。
A first UVG output signal (S UVG1 ) indicating that the magnitude of the positive phase voltage (V 1S ) of the power transmission end of the balanced two-line transmission line has become equal to or less than a set value is received by the power transmission end ground fault overcurrent relay device. The first and second ground fault overcurrents are supplied to the first and second ground fault overcurrent relay trip signal generating means on condition that the first short circuit detection ground fault undervoltage relay is not input. Means (53 4 , 53 5 ) for generating relay device trip signals respectively;
The power receiving end ground fault overcurrent relay device generates a second UVG output signal (S UVG2 ) indicating that the power receiving end positive phase voltage (V 1R ) of the balanced two-line transmission line is less than a set value. The third and fourth ground fault overcurrents are supplied to the third and fourth ground fault overcurrent relay trip signal generating means on condition that the second short circuit detection ground fault undervoltage relay is not input. Means (83 4 , 83 5 ) for generating relay device trip signals respectively;
The ground fault protection relay system according to any one of claims 2 to 4, wherein the ground fault protection relay system is characterized.
JP2008095879A 2008-04-02 2008-04-02 Ground fault protecting relay system Withdrawn JP2009254036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008095879A JP2009254036A (en) 2008-04-02 2008-04-02 Ground fault protecting relay system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008095879A JP2009254036A (en) 2008-04-02 2008-04-02 Ground fault protecting relay system

Publications (1)

Publication Number Publication Date
JP2009254036A true JP2009254036A (en) 2009-10-29

Family

ID=41314180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008095879A Withdrawn JP2009254036A (en) 2008-04-02 2008-04-02 Ground fault protecting relay system

Country Status (1)

Country Link
JP (1) JP2009254036A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010115080A (en) * 2008-11-10 2010-05-20 Chugoku Electric Power Co Inc:The Ground fault protection relay system
JP2015154669A (en) * 2014-02-18 2015-08-24 中国電力株式会社 ground fault protection relay system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010115080A (en) * 2008-11-10 2010-05-20 Chugoku Electric Power Co Inc:The Ground fault protection relay system
JP2015154669A (en) * 2014-02-18 2015-08-24 中国電力株式会社 ground fault protection relay system

Similar Documents

Publication Publication Date Title
US20160020601A1 (en) Power bay protection device and a method for portecting power bays
JP2019004661A (en) Bus protection device
JP5100423B2 (en) Protective relay system
JP2009005565A (en) Distribution line accident zone selecting and blocking device and distribution line accident zone selecting and blocking method
JP5208684B2 (en) Ground fault protection relay system
CA2737689A1 (en) Reclosing system for power transmission line
JP2009254036A (en) Ground fault protecting relay system
JP2010164514A (en) Fault point locator
WO2004008600A3 (en) Electrical network protection system
JP2010166769A (en) Ground distance relay device
JP2008160910A (en) Protective relay device
JP6834334B2 (en) Arc failure detection system
JP5224783B2 (en) Distribution line ground fault protection system
JP5198537B2 (en) Ground fault accident phase detection device and ground fault phase detection method
JP5241434B2 (en) Cable section accident detection device
JP2008161013A (en) Ground fault overcurrent relay device
JP4836663B2 (en) Loop system protection device and method
JP4488922B2 (en) Line selection protection relay system and line selection protection relay device
JP2011254626A (en) Transmission line protector
JP5371414B2 (en) Overcurrent relay with directional characteristics
JP2008161010A (en) Ground directional relay device
JP2012157115A (en) Disconnection detection and protection device
JP6803146B2 (en) Distribution board with seismic isolation function
JP2016152741A (en) Ground directional relay
JP2013146127A (en) Overload relay

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110607