JP3613916B2 - Detection device for conductive substances in glass fabric - Google Patents

Detection device for conductive substances in glass fabric Download PDF

Info

Publication number
JP3613916B2
JP3613916B2 JP35962996A JP35962996A JP3613916B2 JP 3613916 B2 JP3613916 B2 JP 3613916B2 JP 35962996 A JP35962996 A JP 35962996A JP 35962996 A JP35962996 A JP 35962996A JP 3613916 B2 JP3613916 B2 JP 3613916B2
Authority
JP
Japan
Prior art keywords
woven fabric
glass woven
microwave
glass
waveguides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP35962996A
Other languages
Japanese (ja)
Other versions
JPH10185839A (en
Inventor
友厚 佐藤
世志彦 端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP35962996A priority Critical patent/JP3613916B2/en
Publication of JPH10185839A publication Critical patent/JPH10185839A/en
Application granted granted Critical
Publication of JP3613916B2 publication Critical patent/JP3613916B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガラス織布(クロス)の中に内在する導電性物質を簡単且つ精度良く検出することができる装置に関するものである。
【0002】
【従来の技術】
ガラス織布中、特にそれを構成しているガラス繊維中には、その原料あるいは製造の過程において異物が混入することがある。この異物は、主として金属化合物や硫化物などの導電性物質である。ガラス織布中のこれらの導電性物質は、例えば、プリント基板などに使用したとき、その基板上に構成された電気信号回路の絶縁性を損い、そのことが起因して重要な問題を誘発する場合がある。そのために、ガラス織布を製造する工程において、ガラス織布中に内在する導電性物質を事前に検知し、ガラス織布の品質を充分に管理することが要求されている。
【0003】
従来、ガラス織布中に内在する導電性物質を検知する方法としては、▲1▼誘電率の変化を利用した方法、▲2▼マイクロ波の位相差を利用した方法、▲3▼マイクロ波共振を利用した方法などが試みられている。
【0004】
しかしながら、これら公知の▲1▼,▲2▼の検知方法では、ガラス織布の繊維の太さやシワ、あるいはガラス織布の含水率などの差違によってガラス織布の誘電率が微少に変わり、このために検知信号レベルも変化してしまうことから、安定化した高感度のレベルで検知することは難しい。また、▲3▼の共振法を利用した方法の場合には、ガラス織布を通過させながらマイクロ波を伝送するスリット導波管の長手方向の電界分布が、常に線路上の同じ位置に波節(波動の振幅の絶対値が最小の点)と波腹(波動の振幅の絶対値が最大の点)の形態の波動、すなわち定在波が存在することとなるために、波腹点近傍を通過ずる導電性物質の検知感度は高いが、反対に波節点近傍を通過する導電性物質の検知感度は低くなる欠点を有している。
【0005】
一方、近年はプリント基板上に形成される電気配線回路は、ますます高密度化の傾向にあり、このためプリント基板に組み込まれるガラス織布においては、例えば長さが5mm以下の線状体からなる導電性物質が内在している場合であっても不良と看做され、ガラス織布に内在する導電性物質の許容範囲が、より小さくなってきている。
【0006】
【発明が解決しようとする課題】
本発明は、ガラス繊維の太さやシワ、更に含水率などの影響を排除すると同時に、共振法でみられるように、定在波の波節と波腹との間で電界の強弱が存在することによって起る検知感度の不安定現象を無くし、例えば長さが5mm以下の微小な線状体からなる導電性物質を、ガラス繊布の全幅にわたって確実に検知することができるガラス織布中の導電性物質の検知装置を得ることを課題とするものである。
【0007】
【課題を解決するための手段】
本発明は、上記の課題を解決するためになされたもので、無反射終端器を有し、ガラス織布を通すスリットを設けた少なくとも2本以上の導波管を、前記ガラス織布の移送方向に対して傾斜させて並設してなり、これら導波管にマイクロ波発振器から進行方向が相互に逆で且つ相互に位相をずらしたマイクロ波を供給し、ガラス織布中の導電性物質によって生じた反射波を検波器で検波することを特徴とするガラス織布中の導電性物質の検知装置である。
【0008】
【発明の実施の形態】
以下、図1に示す本発明の実施例について説明すれば次の通りである。
【0009】
1は9,389〜9,411MH、例えば基準周波数9,400MHのマイクロ波を発振するマイクロ波発振器であって、発振されるマイクロ波はマイクロ波発振器に内蔵されている変調器によって、たとえば周波数9,400MHに対して±11MHの範囲で変調できるものである。このマイクロ波発振器1から出力されたマイクロ波は分配器2で2分割されて2系統の線路A,Bにそれぞれ供給される。
【0010】
第1の線路Aにおいて、分配器2から出力は、サーキュレータ3a,整合器4aおよび移相器5aを経て矩形導波管6aに供給される。この矩形導波管6aを通過したマイクロ波は無反射終端器7aに到達する。そこに到達したマイクロ波は無反射終端器7aに内蔵されている電波吸収体によって、全て吸収され熱エネルギーとなって系外へ放散されることとなり、一旦無反射終端器7aに到達したマイクロ波は反射して矩形導波管6aの方へ戻ることはない。また第2の線路Bにおいても、分配器2からの出力は、サーキュレータ3b,整合器4bおよび移相器5bを経て、上記矩形導波管6bと同じ構造を有する矩形導波管6bに供給される。そしてこの矩形導波管6bを通過したマイクロ波は無反射終端器7bに到達し、上記A線路と同じように無反射終端器7bに到達したマイクロ波は熱エネルギーとなって系外に放散される。
【0011】
ここで矩形導波管6aと6bの固有の減衰特性から、矩形導波管6aと6bに供給するマイクロ波の進行方向は相互に逆になるように構成されている。サーキュレータ3a.3bは、矩形導波管6a,6b内で生じた反射波を移相器5a,5bと整合器4a,4bとを経由させて検波器8a,8bの方へ送り込むものである。また、整合器4a,4bは、矩形導波管6a,6b側の負荷インピーダンスの整合をとるためのものである。
【0012】
移相器5a,5bはマイクロ波の位相を調整するためのものであり、また無反射終端器7a,7bは、矩形導波管6a,6bを通過してきた進行波を全部吸収して、そこで反射させないようにする役割をもつものである。
【0013】
矩形導波管6a,6bには、その長手方向に沿ってスリット9a,9bが長辺面の両中央にそれぞれ形成されており、これらのスリット9a,9bを通して検出対象であるガラス織布11が矩形導波管6a,6bを通過する。
【0014】
矩形導波管6a,6bを通過するガラス織布11に内在する導電性物質によって発生した反射波は、サーキュレータ3a,3bによって検波器8a,8bに送られ、検波器8a,8bは、検波器に内蔵されているダイオードの作用で反射波をアナログ信号に変えて、信号処理警報発信器10へ伝送させる。
【0015】
信号処理警報発信器10は、2線路A,Bの検波器8a,8bから発信されたそれぞれの信号を増幅し、ガラス織布特有の外乱要因である繊維太さの差違、シワ、誘電率や含水率のバラツキ、またガラス織布11が移動する際の振動などによって発生する不規則な信号(外乱信号)を除去させる機能を有していて、ガラス織布に内在する導電性物質によって発生した反射波に相当した信号だけを選別し、その信号をもとに警報信号として外部へ出力する。
【0016】
本発明の実施例では、図2aに示したように、短形導波管6a,6bの軸心間の距離dは、両導波管に伝送するマイクロ波が互いに干渉しない範囲に定めてある。即ち、50〜100mm程度が望ましく、例えば98mmに定める。また図2(b)に示すように矩形導波管6a,6bの断面の内法寸法(a×b)は、マイクロ波の周波数が8,200MH〜12,400MHの範囲で伝送できるもので、例えば22.9mm×10.2mmのものを用いる。また、ガラス織布11の緯糸xおよび経糸yの何れかに内在している導電性物質をも検出するために、矩形導波管6a,6bの軸心方向がガラス織布11の移送方向に対して∠αだけ傾斜させてある。その理由は次の通りである。
【0017】
図3はガラス織布11を構成しているガラス繊維に内在する導電性物質の存在状態を示す模式図である。ガラス織布11は、ガラス繊維を複数本束ねたものを緯糸xと経糸yとして織り込まれたものであり、ガラス織布11に内在する導電性物質Pは微小径の線状体としてガラス繊維に内在している。一方、マイクロ波による導電性物質の検出は、矩形導波管6a,6bに伝送されたマイクロ波が導電性物質に衝突し反射することによって行われるものであるが、上記のようにガラス織布11に内在する導電性物質Pは極めて微小径の線状体であることから、例えば、ガラス織布11の移送方向を経糸y方向とし、このガラス織布11の移送方向に対し矩形導波管6a,6bを直角に配置した場合には、経糸y中に内在する導電性物質Pに対してはマイクロ波が反射して検出することができるが、緯糸x中に内在する導電性物質Pに対してはマイクロ波の反射が殆ど生じないため検出できない。
【0018】
そこで、本発明では矩形導波管6a,6bをガラス織布11の移送方向に対して∠αだけ傾斜させることにより、緯糸x及び経糸yに内在する導電性物質Pに対して、マイクロ波を反射させることができ、検出可能になる。そしてこの傾斜角度αを例えば45゜にすれば、緯糸xと経糸yの方向に対して、同じ検知感度で導電性物質Pを検出することができる。
【0019】
また、矩形導波管6a,6bに伝送されたマイクロ波が、ガラス織布11に内在している導電性物質Pに衝突して反射が起り、その反射波が検波器8a,8bに跳ね返ってくることにより、矩形導波管6a,6bの内部では、上記マイクロ波の進行波と反射波とが合成された定在波が形成される。この定在波は、図4の〔I〕の(a)に示すよに導波管の同じ位置に波節点12と波腹点13をもった波となり、その波腹点13と波腹点13との間隔は、たとえば周波数が9,400MHの場合、略22mmとなり常に一定となる。この隣り合う波腹点間の間隔は、マイクロ波をTE10モードを伝送したときの管内波長λg/2と合致する。
【0020】
しかしながら、マイクロ波の伝送理論から、定在波の波腹点13で電界が最大となり、反対に波節点12で電界が最少となることが判っており、従って、図4の〔I〕の(a)に示すように、ガラス織布11に導電性物質Pが内在している場合の定在波において、その波腹点13近傍が検波器に取り込まれる場合には高い感度で検出できるが、逆に、波節点12近傍が検波器に取り込まれる場合は、検知性能が低下することになる。このように、定在波の波腹点13、波節点12の位置、即ち検波器に取り込まれるのが定在波の波腹点13近傍か波節点12近傍かは、導電性物質Pがガラス織布11のどの位置に内在しているかによって決まる。この関係を矩形導波管の長手方向における検出可否の分布として捉えてみると、図4の〔I〕の(b)のようになる。
【0021】
そこで本発明では、このような不都合を無くすために、検出回路を2系統設け、矩形導波管6aと6bとに伝送されるマイクロ波の位相を図4の〔II〕の(a)のようにλg/4だけ相互にずらすように移相器5a,5bでそれぞれ調整し、その結果図4の〔II〕の(b)のように両者が相俟って常に高い検知性能が発揮されるようにしてある。また、上記の移相器は、例えばガラス織布の幅寸法の異なったものを検知する場合、そこで発生する定在波の波長は多少ずれることになり、かかる場合でも移相器5a,5bで移相を調整することにより、常に最高感度の状態で検知ができることにもなる。
【0022】
図1の線路AまたはBのどちらか一方において、スリットを設けた導波管の内部をマイクロ波が伝送するとき、そのマイクロ波の減衰量が重要となる。一般的にスリットを設けない通常の矩形導波管を用いて9,400MHのマイクロ波を伝送させたときの単位長さ当りの減衰量は略0.11dB/mであるのに対し、同一形状寸法の導波管にスリットを設けたものに上記の周波数のマイクロ波を伝送したときの減衰量は、略1,13dB/mとなり、上記の場合に比べて略10倍の減衰が生ずることが実測の結果判明している。
【0023】
この結果によれば、線路AもしくはBのどちらか一方の単列スリットの場合の導電性物質の検知性能は、無反射終端器側に近づくにつれて、その性能は漸次低下してしまうことになる。
【0024】
そこで本発明は、上記のような不具合を無くすための手段として、線路AとBで矩形導波管6aと6bにおいて、それぞれマイクロ波の進行する方向が相互に逆で対向する2線を構成する方式を採用することにより、ガラス織布11のすべての部分について導電性物質の有無を確実に検知することができるようにしている。
【0025】
前述のように、検波器8aと8bとから送信された2つの信号は、信号処理警報発信器10に入る。この信号処理警報発信器10は信号処理入力信号を増幅する回路とガラス織布11が移動する際に生ずる振動、ガラス織布の誘電率あるいは含水率の変化などが起因して発生する不規則な信号を外乱信号として除去し、ガラス織布に内在する導電性物質によって生じた反射波に対応した信号だけを選別する回路、そして上記の選別された信号にもとづき外部へ警報信号として発信させる回路から構成されている。このような機能を構成することにより、不必要な信号による誤動作が無くなり、例えば直径1μ長さ3mm程度の微小な導電性物質でも検知できることから信頼性の高い検知が可能となるのである。
【0026】
図5は導電性物質を検知した出力信号をオシロスコープを用いて記録したものを例示したもので、導電性物質があるとこのようにピーク波形を示す。この図の中で上に突出しているピークの高さが高い程、各種の外乱要素に起因する特性変化との比較が容易になることから、微少な導電性物質でも確実に検知が可能で、その検知した結果は高い信頼性を期することができる。
【0027】
以上で、本発明の一実施例について詳述したが、本発明は、この実施例に限定されるものでなく、他の変更および修正が可能である。例えば、上記実施例において2系統の導波管に、それぞれ矩形導波管を用いたが、円形その他の形状の導波管を用いてもよい。また、A系統の導波管とB系統の導波管とを別々に構成したが、これらを一体化したダブル形の導波管を用いても同じ目的は達成できる。
【0028】
また、実施例では、マイクロ波発振器を1台にし、その出力を分配器で分配して2系統の線路に供給するようにしてあるが、勿論それぞれ2系統の線路に独立してマイクロ波発振器を接合させてもよい。更に、導波管の数を2本以上とすれば、より検出能力を向上することができる。
【0029】
【発明の効果】
本発明によれば、ガラス織布中に内在する極めて微小な導電性物質による欠陥をガラス織布の全体に亘って確実に検知できるという優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明の実施例のブロック図である。
【図2】(a)は本発明の実施例における導波管の配置を示す平面図、(b)は(a)におけるA−A線拡大断面図である。
【図3】導電性物質の存在状態模式図である。
【図4】定在波の説明図である。
【図5】オシロスコープに表われた検波波形の一例を示す図である。
【符号の説明】
1 マイクロ波発振器
2 分配器
3a,3b サーキュレータ
4a,4b 整合器
5a,5b 移相器
6a,6b 導波管
7a,7b 無反射終端器
8a,8b 検波器
9a,9b スリット
10 信号処理警報発信器
11 ガラス織布
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus capable of easily and accurately detecting a conductive substance contained in a glass woven cloth (cloth).
[0002]
[Prior art]
In the glass woven fabric, particularly in the glass fiber constituting it, foreign materials may be mixed in in the raw material or in the process of production. These foreign substances are mainly conductive substances such as metal compounds and sulfides. These conductive materials in glass woven fabrics, for example, when used for printed circuit boards, impair the insulation of the electrical signal circuit constructed on the circuit board, thereby causing important problems There is a case. Therefore, in the process of manufacturing a glass woven fabric, it is required to detect in advance a conductive substance present in the glass woven fabric and to sufficiently control the quality of the glass woven fabric.
[0003]
Conventionally, as a method for detecting a conductive substance contained in a glass woven fabric, (1) a method using a change in dielectric constant, (2) a method using a phase difference of microwave, and (3) microwave resonance. Attempts have been made to use the method.
[0004]
However, in these known detection methods (1) and (2), the dielectric constant of the glass woven fabric slightly changes due to the difference in fiber thickness and wrinkles of the glass woven fabric or the moisture content of the glass woven fabric. Therefore, since the detection signal level also changes, it is difficult to detect at a stable and highly sensitive level. Further, in the case of the method using the resonance method (3), the electric field distribution in the longitudinal direction of the slit waveguide that transmits the microwave while passing through the glass woven fabric is always at the same position on the line. Since there is a wave in the form of (the point where the absolute value of the wave amplitude is the minimum) and the wave antinode (the point where the absolute value of the wave amplitude is the maximum), that is, a standing wave exists, Although the detection sensitivity of the conductive substance passing through is high, the detection sensitivity of the conductive substance passing through the vicinity of the wave node is low.
[0005]
On the other hand, in recent years, electrical wiring circuits formed on printed circuit boards tend to have a higher density. For this reason, in glass woven fabrics incorporated into printed circuit boards, for example, from a linear body having a length of 5 mm or less. Even when the conductive material is contained, it is regarded as defective, and the allowable range of the conductive material contained in the glass woven fabric is becoming smaller.
[0006]
[Problems to be solved by the invention]
The present invention eliminates the influence of glass fiber thickness, wrinkles, moisture content, etc., and at the same time, as seen by the resonance method, there is an electric field strength between the standing wave nodule and the antinode. Conductivity in a glass woven fabric that can reliably detect a conductive substance composed of a fine linear body having a length of 5 mm or less, for example, over the entire width of the glass fabric without the unstable phenomenon of detection sensitivity caused by An object is to obtain a substance detection device.
[0007]
[Means for Solving the Problems]
The present invention has been made in order to solve the above-described problems. At least two waveguides having a non-reflective terminator and provided with slits for passing the glass woven fabric are transferred to the glass woven fabric. The conductive materials in the glass woven fabric are arranged in parallel with each other, and are supplied with microwaves whose traveling directions are opposite to each other and out of phase with each other. The apparatus detects a conductive substance in a glass woven fabric, wherein a reflected wave generated by the wave is detected by a detector.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the embodiment of the present invention shown in FIG. 1 will be described.
[0009]
1 is a microwave oscillator which oscillates microwave 9,389~9,411MH z, for example, the reference frequency 9,400MH z, by a modulator microwaves oscillated built in microwave oscillator, e.g. those that can be modulated in a range of ± 11MH z relative frequency 9,400MH z. The microwave output from the microwave oscillator 1 is divided into two by a distributor 2 and supplied to two lines A and B, respectively.
[0010]
In the first line A, the output from the distributor 2 is supplied to the rectangular waveguide 6a through the circulator 3a, the matching unit 4a, and the phase shifter 5a. The microwave that has passed through the rectangular waveguide 6a reaches the non-reflecting terminator 7a. The microwaves that have reached there are all absorbed by the electromagnetic wave absorber incorporated in the non-reflective terminator 7a and are dissipated out of the system as thermal energy. Once the microwaves reach the non-reflective terminator 7a Does not reflect back to the rectangular waveguide 6a. Also in the second line B, the output from the distributor 2 is supplied to the rectangular waveguide 6b having the same structure as the rectangular waveguide 6b via the circulator 3b, the matching unit 4b, and the phase shifter 5b. The Then, the microwave that has passed through the rectangular waveguide 6b reaches the non-reflecting terminator 7b, and the microwave that has reached the non-reflecting terminator 7b is dissipated out of the system as thermal energy in the same way as the A line. The
[0011]
Here, due to the inherent attenuation characteristics of the rectangular waveguides 6a and 6b, the traveling directions of the microwaves supplied to the rectangular waveguides 6a and 6b are opposite to each other. Circulator 3a. 3b sends the reflected waves generated in the rectangular waveguides 6a and 6b to the detectors 8a and 8b via the phase shifters 5a and 5b and the matching units 4a and 4b. The matching units 4a and 4b are for matching the load impedances on the rectangular waveguides 6a and 6b side.
[0012]
The phase shifters 5a and 5b are for adjusting the phase of the microwave, and the non-reflection terminators 7a and 7b absorb all the traveling waves that have passed through the rectangular waveguides 6a and 6b. It has a role to prevent reflection.
[0013]
In the rectangular waveguides 6a and 6b, slits 9a and 9b are formed at both centers of the long side surfaces along the longitudinal direction thereof, and the glass woven fabric 11 to be detected is detected through these slits 9a and 9b. It passes through the rectangular waveguides 6a and 6b.
[0014]
Reflected waves generated by the conductive material inherent in the glass woven fabric 11 passing through the rectangular waveguides 6a and 6b are sent to the detectors 8a and 8b by the circulators 3a and 3b. The detectors 8a and 8b The reflected wave is converted into an analog signal by the action of the diode incorporated in the signal and transmitted to the signal processing alarm transmitter 10.
[0015]
The signal processing alarm transmitter 10 amplifies each signal transmitted from the detectors 8a and 8b of the two lines A and B, and the difference in fiber thickness, wrinkles, dielectric constant, It has the function of removing irregular signals (disturbance signals) generated by fluctuations in moisture content, vibrations when the glass woven fabric 11 moves, etc., and is generated by a conductive substance present in the glass woven fabric. Only the signal corresponding to the reflected wave is selected and output to the outside as an alarm signal based on the signal.
[0016]
In the embodiment of the present invention, as shown in FIG. 2a, the distance d between the axial centers of the short waveguides 6a and 6b is determined in such a range that the microwaves transmitted to both waveguides do not interfere with each other. . That is, about 50-100 mm is desirable, for example, it is set to 98 mm. The rectangular waveguide 6a as shown in FIG. 2 (b), inner dimension (a × b) of 6b cross-section, which the frequency of the microwave can be transmitted in the range of 8,200MH z ~12,400MH z Then, for example, the one with 22.9 mm × 10.2 mm is used. In addition, the axial direction of the rectangular waveguides 6a and 6b is set in the transport direction of the glass woven fabric 11 in order to detect a conductive substance contained in either the weft x or the warp y of the glass woven fabric 11. On the other hand, it is inclined by ∠α. The reason is as follows.
[0017]
FIG. 3 is a schematic view showing a state of existence of a conductive substance inherent in the glass fiber constituting the glass woven fabric 11. The glass woven fabric 11 is made by weaving a plurality of bundles of glass fibers as wefts x and warps y, and the conductive substance P contained in the glass woven fabric 11 is made into a glass fiber as a fine-diameter linear body. Is inherent. On the other hand, the detection of the conductive material by the microwave is performed when the microwave transmitted to the rectangular waveguides 6a and 6b collides with and reflects the conductive material. 11 is a linear body having a very small diameter. For example, the direction of transport of the glass woven fabric 11 is the warp y direction, and a rectangular waveguide is formed with respect to the direction of transport of the glass woven fabric 11. When 6a and 6b are arranged at right angles, the microwave can reflect and detect the conductive material P contained in the warp y, but the conductive material P contained in the weft x can be detected. On the other hand, since the reflection of the microwave hardly occurs, it cannot be detected.
[0018]
Accordingly, in the present invention, the rectangular waveguides 6a and 6b are inclined by ∠α with respect to the transfer direction of the glass woven fabric 11, so that the microwave is applied to the conductive material P existing in the weft x and the warp y. It can be reflected and becomes detectable. If the inclination angle α is set to 45 °, for example, the conductive substance P can be detected with the same detection sensitivity in the directions of the weft x and the warp y.
[0019]
Further, the microwaves transmitted to the rectangular waveguides 6a and 6b collide with the conductive material P existing in the glass woven fabric 11 to cause reflection, and the reflected waves bounce back to the detectors 8a and 8b. As a result, a standing wave in which the traveling wave of the microwave and the reflected wave are combined is formed inside the rectangular waveguides 6a and 6b. This standing wave becomes a wave having a wave node 12 and an antinode 13 at the same position of the waveguide as shown in FIG. 4 [I] (a). spacing and 13, for example when the frequency is 9,400MH z, always constant substantially 22mm next. The interval between the adjacent antinodes coincides with the in-tube wavelength λg / 2 when the microwave is transmitted in the TE 10 mode.
[0020]
However, it is known from the microwave transmission theory that the electric field is maximized at the antinode 13 of the standing wave, and conversely, the electric field is minimized at the wave node 12, and therefore (I) in FIG. As shown in a), in the standing wave when the conductive material P is inherent in the glass woven fabric 11, when the vicinity of the antinode 13 is taken into the detector, it can be detected with high sensitivity. On the other hand, when the vicinity of the wave node 12 is taken into the detector, the detection performance is degraded. As described above, the position of the antinode 13 and the node 12 of the standing wave, that is, the vicinity of the antinode 13 or the node 12 of the standing wave is taken into the detector, the conductive substance P is glass. It depends on which position of the woven fabric 11 is present. If this relationship is considered as a distribution of detection availability in the longitudinal direction of the rectangular waveguide, it becomes as shown in (b) of [I] in FIG.
[0021]
Therefore, in the present invention, in order to eliminate such an inconvenience, two detection circuits are provided, and the phase of the microwave transmitted to the rectangular waveguides 6a and 6b is as shown in (a) of [II] in FIG. The phase shifters 5a and 5b are adjusted so as to be shifted from each other by λg / 4, and as a result, as shown in (b) of [II] in FIG. It is like that. In addition, when the above phase shifter detects, for example, glass cloths having different width dimensions, the wavelength of the standing wave generated there is slightly shifted, and even in such a case, the phase shifters 5a and 5b By adjusting the phase shift, detection can always be performed with the highest sensitivity.
[0022]
In either one of the lines A and B in FIG. 1, when microwaves are transmitted through a waveguide provided with slits, the attenuation amount of the microwaves is important. While the attenuation per unit length when generally using conventional rectangular waveguide provided with no slits is transmitted microwave 9,400MH z is substantially 0.11 dB / m, the same When a microwave having the above frequency is transmitted to a waveguide having a shape and dimension having a slit, the attenuation amount is approximately 1,13 dB / m, which is approximately 10 times that of the above case. Is found as a result of actual measurement.
[0023]
According to this result, the detection performance of the conductive material in the case of the single row slit of either the line A or B gradually decreases as it approaches the non-reflection termination side.
[0024]
Therefore, in the present invention, as means for eliminating the above problems, the lines A and B constitute two lines in the rectangular waveguides 6a and 6b that are opposed to each other with the microwave traveling directions opposite to each other. By adopting this method, it is possible to reliably detect the presence or absence of a conductive substance for all portions of the glass woven fabric 11.
[0025]
As described above, the two signals transmitted from the detectors 8 a and 8 b enter the signal processing alarm transmitter 10. This signal processing alarm transmitter 10 is an irregular circuit that is generated due to a circuit that amplifies the signal processing input signal and vibration generated when the glass woven fabric 11 moves, a change in the dielectric constant or moisture content of the glass woven fabric, and the like. From the circuit that removes the signal as a disturbance signal, selects only the signal corresponding to the reflected wave generated by the conductive material inherent in the glass woven fabric, and the circuit that transmits the alarm signal to the outside based on the selected signal It is configured. By configuring such a function, malfunction due to unnecessary signals is eliminated, and even a minute conductive material having a diameter of about 1 μ and a length of about 3 mm can be detected, so that highly reliable detection is possible.
[0026]
FIG. 5 illustrates an example in which an output signal obtained by detecting a conductive substance is recorded using an oscilloscope, and when there is a conductive substance, a peak waveform is shown. In this figure, the higher the peak that protrudes upwards, the easier it is to compare with changes in characteristics caused by various disturbance elements, so even minute conductive substances can be detected reliably. The detected result can be highly reliable.
[0027]
As mentioned above, although one Example of this invention was explained in full detail, this invention is not limited to this Example, Other changes and corrections are possible. For example, in the above-described embodiment, rectangular waveguides are used for the two waveguides, but circular or other waveguides may be used. In addition, although the A-system waveguide and the B-system waveguide are separately configured, the same object can be achieved by using a double-type waveguide in which these are integrated.
[0028]
In the embodiment, one microwave oscillator is provided, and the output is distributed by a distributor and supplied to two lines. Of course, the microwave oscillator is independently provided to each of the two lines. You may make it join. Furthermore, if the number of waveguides is two or more, the detection capability can be further improved.
[0029]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, there exists the outstanding effect that the defect by the very minute electroconductive substance which exists in a glass woven fabric can be reliably detected over the whole glass woven fabric.
[Brief description of the drawings]
FIG. 1 is a block diagram of an embodiment of the present invention.
2A is a plan view showing the arrangement of waveguides in an embodiment of the present invention, and FIG. 2B is an enlarged cross-sectional view taken along line AA in FIG.
FIG. 3 is a schematic diagram showing the existence state of a conductive substance.
FIG. 4 is an explanatory diagram of a standing wave.
FIG. 5 is a diagram illustrating an example of a detection waveform appearing on an oscilloscope.
[Explanation of symbols]
1 Microwave Oscillator 2 Dividers 3a and 3b Circulators 4a and 4b Matching Units 5a and 5b Phase Shifters 6a and 6b Waveguides 7a and 7b Non-reflective Terminators 8a and 8b Detectors 9a and 9b Slit 10 Signal Processing Alarm Transmitter 11 Glass woven fabric

Claims (1)

無反射終端器を有し、ガラス織布を通すスリットを設けた少なくとも2本以上の導波管を、前記ガラス織布の移送方向に対して傾斜させて並設してなり、これら導波管にマイクロ波発振器から進行方向が相互に逆で且つ相互に位相をずらしたマイクロ波を供給し、ガラス織布中の導電物質によって生じた反射波を検波器で検波することを特徴とするガラス織布中の導電性物質の検知装置。At least two or more waveguides having a non-reflective terminator and provided with slits through which the glass woven fabric passes are arranged in parallel to be inclined with respect to the transport direction of the glass woven fabric. A glass weaving characterized in that a microwave oscillator feeds microwaves whose traveling directions are opposite to each other and out of phase with each other, and a reflected wave generated by a conductive material in the glass weaving cloth is detected by a detector. Detection device for conductive substances in cloth.
JP35962996A 1996-12-20 1996-12-20 Detection device for conductive substances in glass fabric Expired - Lifetime JP3613916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35962996A JP3613916B2 (en) 1996-12-20 1996-12-20 Detection device for conductive substances in glass fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35962996A JP3613916B2 (en) 1996-12-20 1996-12-20 Detection device for conductive substances in glass fabric

Publications (2)

Publication Number Publication Date
JPH10185839A JPH10185839A (en) 1998-07-14
JP3613916B2 true JP3613916B2 (en) 2005-01-26

Family

ID=18465479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35962996A Expired - Lifetime JP3613916B2 (en) 1996-12-20 1996-12-20 Detection device for conductive substances in glass fabric

Country Status (1)

Country Link
JP (1) JP3613916B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1564548A1 (en) * 2004-02-12 2005-08-17 AMS- Advanced Microwave Systems GmbH Microwave resonator excited in higher modes for measuring dielectric properties of a product
DE202005001756U1 (en) * 2004-02-12 2005-05-04 Trützschler GmbH & Co KG Microwave sensor for measuring a dielectric property of a product
JP2006300828A (en) * 2005-04-22 2006-11-02 Kindai Techno Corp Detector for conductive micro particle substance contained in prepreg
JP5189582B2 (en) * 2009-12-16 2013-04-24 近代テクノリサーチ株式会社 Method and apparatus for detecting conductive particulate matter in sheet-like electrical material
JP5416019B2 (en) * 2010-04-02 2014-02-12 旭化成エンジニアリング株式会社 Foreign object detection device and system using the same

Also Published As

Publication number Publication date
JPH10185839A (en) 1998-07-14

Similar Documents

Publication Publication Date Title
US5170169A (en) Quasi-optical transmission/reflection switch and millimeter-wave imaging system using the same
KR100220145B1 (en) Motion detector unit
JP4241844B2 (en) Contactless transmission device for electrical signals and / or energy
US20020040596A1 (en) Filling level gage
JP3613916B2 (en) Detection device for conductive substances in glass fabric
US20080291088A1 (en) Radar Apparatus
JP2001510898A (en) Apparatus and method for measuring microwave reflectivity and microwave oven provided with the same
WO1991011706A1 (en) Detector for conductive substance mixed in string-like material
CA1124326A (en) Microwave moisture-profile gauge
US4580132A (en) Method of and apparatus for detecting electrically conductive material in glass fibers or articles made of glass fibers
AU691257B2 (en) Reproduction apparatus with microwave detection
JPS628741B2 (en)
CA2290562C (en) Device for transmitting high-frequency signals
FI128134B (en) Method and apparatus of measuring properties of a moving sheet
EP0339873B1 (en) Apparatus and method for measuring electric characteristics of material
US3739263A (en) Cross-sectional area measuring device
JPS63169543A (en) Detector for electrically conductive material in glass fiber
JPH05148744A (en) Electrostatic weft cutting and stopping apparatus and loom having weft cutting and stopping apparatus like this
JPS62259048A (en) Detecting device for conductive material in glass fiber
US2915714A (en) Frequency and phase shifters and modulators for very high frequency electro-magneticwaves
JP2006300828A (en) Detector for conductive micro particle substance contained in prepreg
JPH031623B2 (en)
EP0287725A1 (en) Method for measuring properties of sheet- or foil-like materials of low electrical conductivity
JP2584727B2 (en) Detecting device for foreign matter in dielectric by microwave
Tiuri et al. A microwave method for measurement of fiber orientation in paper

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041025

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

EXPY Cancellation because of completion of term