JPH10185839A - Detector for conductive material in glass fiber woven fabric - Google Patents

Detector for conductive material in glass fiber woven fabric

Info

Publication number
JPH10185839A
JPH10185839A JP35962996A JP35962996A JPH10185839A JP H10185839 A JPH10185839 A JP H10185839A JP 35962996 A JP35962996 A JP 35962996A JP 35962996 A JP35962996 A JP 35962996A JP H10185839 A JPH10185839 A JP H10185839A
Authority
JP
Japan
Prior art keywords
woven fabric
glass fiber
glass woven
conductive material
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35962996A
Other languages
Japanese (ja)
Other versions
JP3613916B2 (en
Inventor
Tomoatsu Sato
友厚 佐藤
Yoshihiko Hata
世志彦 端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP35962996A priority Critical patent/JP3613916B2/en
Publication of JPH10185839A publication Critical patent/JPH10185839A/en
Application granted granted Critical
Publication of JP3613916B2 publication Critical patent/JP3613916B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a detector for a conductive material in glass fiber woven fabric wherein such effects of a glass fiber as thickness, wrinkle, water content, etc., are eliminated, and at the same time, as seen in resonance method, unstable phenomenan in detection sensitivity occurring due to the presence of strong/weak in an electric field between a wave node and the wave antinode of a standing wave is eliminated, and such conductive material as of a minute filament of, for example, 5mm or less can be detected with sure over the entire of the glass fiber woven fabric. SOLUTION: Two rectangular guide-waves 6a and 6b, comprising a non- reflection terminator 7b, provided with a slit for a glass fiber 11 to pass are placed, side by side, while inclined to a transportation direction of the glass fiber 11, and these rectangular guide-waves 6a and 8b are supplied with microwaves, while rivers in direction from each other, whose phases are displaced mutually from a microwave oscillator 1, and a reflection wave caused by a conductive material in the glass fiber woven fabric is detected with a wave detector 8a.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガラス織布(クロ
ス)の中に内在する導電性物質を簡単且つ精度良く検出
することができる装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus capable of simply and accurately detecting a conductive substance contained in a woven glass cloth (cloth).

【0002】[0002]

【従来の技術】ガラス織布中、特にそれを構成している
ガラス繊維中には、その原料あるいは製造の過程におい
て異物が混入することがある。この異物は、主として金
属化合物や硫化物などの導電性物質である。ガラス織布
中のこれらの導電性物質は、例えば、プリント基板など
に使用したとき、その基板上に構成された電気信号回路
の絶縁性を損い、そのことが起因して重要な問題を誘発
する場合がある。そのために、ガラス織布を製造する工
程において、ガラス織布中に内在する導電性物質を事前
に検知し、ガラス織布の品質を充分に管理することが要
求されている。
2. Description of the Related Art Foreign matter may be mixed in a glass woven fabric, particularly in a glass fiber constituting the same, in a raw material or a manufacturing process. These foreign substances are mainly conductive substances such as metal compounds and sulfides. These conductive substances in woven glass fabric, for example, when used in printed circuit boards, etc., impair the insulation of the electric signal circuits formed on the board, which causes significant problems. May be. Therefore, in a process of manufacturing a glass woven fabric, it is required to detect a conductive substance existing in the glass woven fabric in advance and to sufficiently control the quality of the glass woven fabric.

【0003】従来、ガラス織布中に内在する導電性物質
を検知する方法としては、誘電率の変化を利用した方
法、マイクロ波の位相差を利用した方法、マイクロ
波共振を利用した方法などが試みられている。
Conventionally, methods for detecting a conductive substance contained in a glass woven fabric include a method using a change in dielectric constant, a method using a microwave phase difference, and a method using microwave resonance. Attempted.

【0004】しかしながら、これら公知の,の検知
方法では、ガラス織布の繊維の太さやシワ、あるいはガ
ラス織布の含水率などの差違によってガラス織布の誘電
率が微少に変わり、このために検知信号レベルも変化し
てしまうことから、安定化した高感度のレベルで検知す
ることは難しい。また、の共振法を利用した方法の場
合には、ガラス織布を通過させながらマイクロ波を伝送
するスリット導波管の長手方向の電界分布が、常に線路
上の同じ位置に波節(波動の振幅の絶対値が最小の点)
と波腹(波動の振幅の絶対値が最大の点)の形態の波
動、すなわち定在波が存在することとなるために、波腹
点近傍を通過ずる導電性物質の検知感度は高いが、反対
に波節点近傍を通過する導電性物質の検知感度は低くな
る欠点を有している。
However, in these known detection methods, the dielectric constant of the glass woven fabric changes minutely due to the difference in the thickness or wrinkles of the fiber of the glass woven fabric or the moisture content of the glass woven fabric. Since the signal level also changes, it is difficult to detect at a stabilized high sensitivity level. In addition, in the case of the method using the resonance method, the electric field distribution in the longitudinal direction of the slit waveguide that transmits microwaves while passing through a glass woven fabric always has a node (wave motion) at the same position on the line. The point where the absolute value of the amplitude is the smallest)
And the antinode (the point where the absolute value of the amplitude of the wave is the maximum), that is, a standing wave exists. Therefore, the detection sensitivity of the conductive substance passing near the antinode is high, On the contrary, there is a disadvantage that the detection sensitivity of the conductive substance passing near the node is reduced.

【0005】一方、近年はプリント基板上に形成される
電気配線回路は、ますます高密度化の傾向にあり、この
ためプリント基板に組み込まれるガラス織布において
は、例えば長さが5mm以下の線状体からなる導電性物
質が内在している場合であっても不良と看做され、ガラ
ス織布に内在する導電性物質の許容範囲が、より小さく
なってきている。
On the other hand, in recent years, electric wiring circuits formed on a printed circuit board have been becoming more and more dense. Therefore, in a glass woven fabric incorporated in a printed circuit board, for example, a wire having a length of 5 mm or less is used. Even in the case where the conductive material having the shape is present, it is regarded as defective, and the allowable range of the conductive material present in the glass woven fabric is becoming smaller.

【0006】[0006]

【発明が解決しようとする課題】本発明は、ガラス繊維
の太さやシワ、更に含水率などの影響を排除すると同時
に、共振法でみられるように、定在波の波節と波腹との
間で電界の強弱が存在することによって起る検知感度の
不安定現象を無くし、例えば長さが5mm以下の微小な
線状体からなる導電性物質を、ガラス繊布の全幅にわた
って確実に検知することができるガラス織布中の導電性
物質の検知装置を得ることを課題とするものである。
SUMMARY OF THE INVENTION The present invention eliminates the influence of the thickness and wrinkles of the glass fiber and the water content, and at the same time, as shown by the resonance method, the connection between the nodes and antinodes of the standing wave. Eliminates the instability of detection sensitivity caused by the presence of an electric field between the electrodes. For example, it is possible to reliably detect a conductive substance consisting of a fine linear body with a length of 5 mm or less over the entire width of a glass cloth. It is an object of the present invention to obtain a device for detecting a conductive substance in a glass woven fabric, which can perform the following.

【0007】[0007]

【課題を解決するための手段】本発明は、上記の課題を
解決するためになされたもので、無反射終端器を有し、
ガラス織布を通すスリットを設けた少なくとも2本以上
の導波管を、前記ガラス織布の移送方向に対して傾斜さ
せて並設してなり、これら導波管にマイクロ波発振器か
ら進行方向が相互に逆で且つ相互に位相をずらしたマイ
クロ波を供給し、ガラス織布中の導電性物質によって生
じた反射波を検波器で検波することを特徴とするガラス
織布中の導電性物質の検知装置である。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and has an anti-reflection terminator.
At least two or more waveguides provided with slits through which the glass woven fabric is provided are arranged side by side inclining with respect to the direction of transport of the glass woven fabric. By supplying microwaves which are opposite to each other and are out of phase with each other, the reflected wave generated by the conductive material in the glass woven fabric is detected by a detector. It is a detection device.

【0008】[0008]

【発明の実施の形態】以下、図1に示す本発明の実施例
について説明すれば次の通りである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiment of the present invention shown in FIG. 1 will be described below.

【0009】1は9,389〜9,411MH、例え
ば基準周波数9,400MHのマイクロ波を発振する
マイクロ波発振器であって、発振されるマイクロ波はマ
イクロ波発振器に内蔵されている変調器によって、たと
えば周波数9,400MHに対して±11MHの範
囲で変調できるものである。このマイクロ波発振器1か
ら出力されたマイクロ波は分配器2で2分割されて2系
統の線路A,Bにそれぞれ供給される。
[0009] 1 9,389~9,411MH z, for example, a microwave oscillator for generating microwaves of a reference frequency 9,400MH z, modulator microwaves oscillated built in microwave oscillator by, for example, those that can be modulated in a range of ± 11MH z relative frequency 9,400MH z. The microwave output from the microwave oscillator 1 is divided into two by a distributor 2 and supplied to two lines A and B, respectively.

【0010】第1の線路Aにおいて、分配器2から出力
は、サーキュレータ3a,整合器4aおよび移相器5a
を経て矩形導波管6aに供給される。この矩形導波管6
aを通過したマイクロ波は無反射終端器7aに到達す
る。そこに到達したマイクロ波は無反射終端器7aに内
蔵されている電波吸収体によって、全て吸収され熱エネ
ルギーとなって系外へ放散されることとなり、一旦無反
射終端器7aに到達したマイクロ波は反射して矩形導波
管6aの方へ戻ることはない。また第2の線路Bにおい
ても、分配器2からの出力は、サーキュレータ3b,整
合器4bおよび移相器5bを経て、上記矩形導波管6b
と同じ構造を有する矩形導波管6bに供給される。そし
てこの矩形導波管6bを通過したマイクロ波は無反射終
端器7bに到達し、上記A線路と同じように無反射終端
器7bに到達したマイクロ波は熱エネルギーとなって系
外に放散される。
In the first line A, the output from the distributor 2 is supplied to a circulator 3a, a matching unit 4a, and a phase shifter 5a.
Is supplied to the rectangular waveguide 6a. This rectangular waveguide 6
The microwave having passed through a reaches the non-reflection terminator 7a. The microwave arriving there is completely absorbed by the radio wave absorber incorporated in the non-reflection terminator 7a and is radiated out of the system as heat energy. Is reflected and does not return toward the rectangular waveguide 6a. Also in the second line B, the output from the distributor 2 passes through the circulator 3b, the matching unit 4b, and the phase shifter 5b, and passes through the rectangular waveguide 6b.
Is supplied to the rectangular waveguide 6b having the same structure as the above. The microwaves passing through the rectangular waveguide 6b reach the non-reflection terminator 7b, and the microwaves reaching the non-reflection terminator 7b become heat energy and are radiated out of the system as in the case of the A line. You.

【0011】ここで矩形導波管6aと6bの固有の減衰
特性から、矩形導波管6aと6bに供給するマイクロ波
の進行方向は相互に逆になるように構成されている。サ
ーキュレータ3a.3bは、矩形導波管6a,6b内で
生じた反射波を移相器5a,5bと整合器4a,4bと
を経由させて検波器8a,8bの方へ送り込むものであ
る。また、整合器4a,4bは、矩形導波管6a,6b
側の負荷インピーダンスの整合をとるためのものであ
る。
Here, due to the inherent attenuation characteristics of the rectangular waveguides 6a and 6b, the traveling directions of the microwaves supplied to the rectangular waveguides 6a and 6b are configured to be opposite to each other. Circulator 3a. Reference numeral 3b is for sending reflected waves generated in the rectangular waveguides 6a and 6b to the detectors 8a and 8b via the phase shifters 5a and 5b and the matching devices 4a and 4b. The matching devices 4a and 4b are rectangular waveguides 6a and 6b.
This is for matching the load impedance on the side.

【0012】移相器5a,5bはマイクロ波の位相を調
整するためのものであり、また無反射終端器7a,7b
は、矩形導波管6a,6bを通過してきた進行波を全部
吸収して、そこで反射させないようにする役割をもつも
のである。
The phase shifters 5a and 5b are for adjusting the phase of the microwave, and are non-reflection terminators 7a and 7b.
Has a role of absorbing all traveling waves that have passed through the rectangular waveguides 6a and 6b, and preventing the traveling waves from being reflected there.

【0013】矩形導波管6a,6bには、その長手方向
に沿ってスリット9a,9bが長辺面の両中央にそれぞ
れ形成されており、これらのスリット9a,9bを通し
て検出対象であるガラス織布11が矩形導波管6a,6
bを通過する。
Slits 9a and 9b are formed in the rectangular waveguides 6a and 6b along the longitudinal direction thereof at both centers of the long sides, and the glass weave to be detected is passed through these slits 9a and 9b. The cloth 11 is a rectangular waveguide 6a, 6
b.

【0014】矩形導波管6a,6bを通過するガラス織
布11に内在する導電性物質によって発生した反射波
は、サーキュレータ3a,3bによって検波器8a,8
bに送られ、検波器8a,8bは、検波器に内蔵されて
いるダイオードの作用で反射波をアナログ信号に変え
て、信号処理警報発信器10へ伝送させる。
The reflected waves generated by the conductive material inside the glass woven cloth 11 passing through the rectangular waveguides 6a and 6b are detected by the circulators 3a and 3b.
b, and the detectors 8a and 8b convert the reflected wave into an analog signal by the action of a diode built in the detector and transmit the analog signal to the signal processing alarm transmitter 10.

【0015】信号処理警報発信器10は、2線路A,B
の検波器8a,8bから発信されたそれぞれの信号を増
幅し、ガラス織布特有の外乱要因である繊維太さの差
違、シワ、誘電率や含水率のバラツキ、またガラス織布
11が移動する際の振動などによって発生する不規則な
信号(外乱信号)を除去させる機能を有していて、ガラ
ス織布に内在する導電性物質によって発生した反射波に
相当した信号だけを選別し、その信号をもとに警報信号
として外部へ出力する。
The signal processing alarm transmitter 10 has two lines A and B.
Amplifies the respective signals transmitted from the detectors 8a and 8b, and causes differences in fiber thickness, wrinkles, variations in dielectric constant and moisture content, and fluctuations in the glass woven cloth 11, which are factors specific to glass woven cloth. It has a function to remove irregular signals (disturbance signals) generated by vibrations, etc. at the time, and selects only signals corresponding to reflected waves generated by a conductive substance contained in glass woven fabric, Is output to the outside as an alarm signal based on

【0016】本発明の実施例では、図2aに示したよう
に、短形導波管6a,6bの軸心間の距離dは、両導波
管に伝送するマイクロ波が互いに干渉しない範囲に定め
てある。即ち、50〜100mm程度が望ましく、例え
ば98mmに定める。また図2(b)に示すように矩形
導波管6a,6bの断面の内法寸法(a×b)は、マイ
クロ波の周波数が8,200MH〜12,400MH
の範囲で伝送できるもので、例えば22.9mm×1
0.2mmのものを用いる。また、ガラス織布11の緯
糸xおよび経糸yの何れかに内在している導電性物質を
も検出するために、矩形導波管6a,6bの軸心方向が
ガラス織布11の移送方向に対して∠αだけ傾斜させて
ある。その理由は次の通りである。
In the embodiment of the present invention, as shown in FIG. 2A, the distance d between the axes of the short waveguides 6a and 6b is set so that the microwaves transmitted to both waveguides do not interfere with each other. It is determined. That is, it is desirable to be about 50 to 100 mm, for example, 98 mm. The rectangular waveguide 6a as shown in FIG. 2 (b), inner dimension (a × b) of 6b of the cross-section, the frequency of the microwave 8,200MH z ~12,400MH
z can be transmitted in the range of, for example, 22.9 mm × 1
Use the one with 0.2 mm. In addition, in order to detect a conductive substance contained in either the weft x or the warp y of the glass woven fabric 11, the axial direction of the rectangular waveguides 6a and 6b is set in the transport direction of the glass woven fabric 11. On the other hand, it is inclined by ∠α. The reason is as follows.

【0017】図3はガラス織布11を構成しているガラ
ス繊維に内在する導電性物質の存在状態を示す模式図で
ある。ガラス織布11は、ガラス繊維を複数本束ねたも
のを緯糸xと経糸yとして織り込まれたものであり、ガ
ラス織布11に内在する導電性物質Pは微小径の線状体
としてガラス繊維に内在している。一方、マイクロ波に
よる導電性物質の検出は、矩形導波管6a,6bに伝送
されたマイクロ波が導電性物質に衝突し反射することに
よって行われるものであるが、上記のようにガラス織布
11に内在する導電性物質Pは極めて微小径の線状体で
あることから、例えば、ガラス織布11の移送方向を経
糸y方向とし、このガラス織布11の移送方向に対し矩
形導波管6a,6bを直角に配置した場合には、経糸y
中に内在する導電性物質Pに対してはマイクロ波が反射
して検出することができるが、緯糸x中に内在する導電
性物質Pに対してはマイクロ波の反射が殆ど生じないた
め検出できない。
FIG. 3 is a schematic view showing a state of existence of a conductive substance contained in glass fibers constituting the glass woven fabric 11. The glass woven fabric 11 is obtained by weaving a bundle of a plurality of glass fibers as a weft x and a warp y, and the conductive substance P contained in the glass woven fabric 11 is converted into a glass fiber as a linear body having a small diameter. Inherent. On the other hand, the detection of the conductive substance by the microwave is performed by the microwave transmitted to the rectangular waveguides 6a and 6b colliding with and reflecting the conductive substance. Since the conductive substance P contained in the glass cloth 11 is a linear body having a very small diameter, for example, the transfer direction of the glass woven cloth 11 is set to the warp y direction, and the rectangular waveguide is formed with respect to the transfer direction of the glass woven cloth 11. When 6a and 6b are arranged at right angles, the warp y
Microwaves can be detected by reflecting microwaves on the conductive substance P contained therein, but cannot be detected on the conductive substance P contained in the weft yarn x because the reflection of microwaves hardly occurs. .

【0018】そこで、本発明では矩形導波管6a,6b
をガラス織布11の移送方向に対して∠αだけ傾斜させ
ることにより、緯糸x及び経糸yに内在する導電性物質
Pに対して、マイクロ波を反射させることができ、検出
可能になる。そしてこの傾斜角度αを例えば45゜にす
れば、緯糸xと経糸yの方向に対して、同じ検知感度で
導電性物質Pを検出することができる。
Therefore, in the present invention, the rectangular waveguides 6a, 6b
Is tilted by Δα with respect to the transport direction of the glass woven fabric 11, microwaves can be reflected on the conductive substance P contained in the weft yarn x and the warp yarn y, and detection becomes possible. If the inclination angle α is, for example, 45 °, the conductive substance P can be detected with the same detection sensitivity in the directions of the weft x and the warp y.

【0019】また、矩形導波管6a,6bに伝送された
マイクロ波が、ガラス織布11に内在している導電性物
質Pに衝突して反射が起り、その反射波が検波器8a,
8bに跳ね返ってくることにより、矩形導波管6a,6
bの内部では、上記マイクロ波の進行波と反射波とが合
成された定在波が形成される。この定在波は、図4の
〔I〕の(a)に示すよに導波管の同じ位置に波節点1
2と波腹点13をもった波となり、その波腹点13と波
腹点13との間隔は、たとえば周波数が9,400MH
の場合、略22mmとなり常に一定となる。この隣り
合う波腹点間の間隔は、マイクロ波をTE10モードを
伝送したときの管内波長λg/2と合致する。
Further, the microwave transmitted to the rectangular waveguides 6a and 6b collides with the conductive substance P existing in the glass woven cloth 11 and is reflected, and the reflected waves are reflected by the detectors 8a and 8b.
8b, the rectangular waveguides 6a, 6
Inside b, a standing wave is formed in which the traveling wave of the microwave and the reflected wave are combined. As shown in (a) of [I] of FIG.
2 and an antinode 13, and the interval between the antinode 13 and the antinode 13 is, for example, a frequency of 9,400 MHz.
In the case of z , it is approximately 22 mm and is always constant. The interval between antinodes points adjacent consistent with guide wavelength lambda] g / 2 when the microwave transmitting the TE 10 mode.

【0020】しかしながら、マイクロ波の伝送理論か
ら、定在波の波腹点13で電界が最大となり、反対に波
節点12で電界が最少となることが判っており、従っ
て、図4の〔I〕の(a)に示すように、ガラス織布1
1に導電性物質Pが内在している場合の定在波におい
て、その波腹点13近傍が検波器に取り込まれる場合に
は高い感度で検出できるが、逆に、波節点12近傍が検
波器に取り込まれる場合は、検知性能が低下することに
なる。このように、定在波の波腹点13、波節点12の
位置、即ち検波器に取り込まれるのが定在波の波腹点1
3近傍か波節点12近傍かは、導電性物質Pがガラス織
布11のどの位置に内在しているかによって決まる。こ
の関係を矩形導波管の長手方向における検出可否の分布
として捉えてみると、図4の〔I〕の(b)のようにな
る。
However, from the microwave transmission theory, it is known that the electric field becomes maximum at the antinode 13 of the standing wave, and the electric field becomes minimum at the node 12 of the standing wave. ] (A) as shown in FIG.
In the case of a standing wave in which the conductive substance P is contained in the detector 1, when the vicinity of the antinode 13 is taken into the detector, the detection can be performed with high sensitivity. , The detection performance is degraded. As described above, the positions of the antinode 13 and the node 12 of the standing wave, that is, the antinode 1 of the standing wave are taken into the detector.
Whether the vicinity is 3 or the vicinity of the node 12 is determined by where in the glass woven fabric 11 the conductive substance P is present. Considering this relationship as a distribution of detection possibility in the longitudinal direction of the rectangular waveguide, it becomes as shown in FIG.

【0021】そこで本発明では、このような不都合を無
くすために、検出回路を2系統設け、矩形導波管6aと
6bとに伝送されるマイクロ波の位相を図4の〔II〕
の(a)のようにλg/4だけ相互にずらすように移相
器5a,5bでそれぞれ調整し、その結果図4の〔I
I〕の(b)のように両者が相俟って常に高い検知性能
が発揮されるようにしてある。また、上記の移相器は、
例えばガラス織布の幅寸法の異なったものを検知する場
合、そこで発生する定在波の波長は多少ずれることにな
り、かかる場合でも移相器5a,5bで移相を調整する
ことにより、常に最高感度の状態で検知ができることに
もなる。
Therefore, in the present invention, in order to eliminate such inconvenience, two detection circuits are provided, and the phase of the microwave transmitted to the rectangular waveguides 6a and 6b is changed by [II] in FIG.
As shown in FIG. 4A, the phase shifters 5a and 5b make adjustments so that they are shifted from each other by λg / 4, and as a result, [I
As shown in (b) of I), the two are combined so as to always exhibit high detection performance. Also, the above phase shifter is
For example, when detecting a glass woven cloth having a different width dimension, the wavelength of the standing wave generated there is slightly shifted. This means that detection can be performed with the highest sensitivity.

【0022】図1の線路AまたはBのどちらか一方にお
いて、スリットを設けた導波管の内部をマイクロ波が伝
送するとき、そのマイクロ波の減衰量が重要となる。一
般的にスリットを設けない通常の矩形導波管を用いて
9,400MHのマイクロ波を伝送させたときの単位
長さ当りの減衰量は略0.11dB/mであるのに対
し、同一形状寸法の導波管にスリットを設けたものに上
記の周波数のマイクロ波を伝送したときの減衰量は、略
1,13dB/mとなり、上記の場合に比べて略10倍
の減衰が生ずることが実測の結果判明している。
When a microwave is transmitted inside a waveguide provided with a slit on either one of the lines A and B in FIG. 1, the amount of attenuation of the microwave is important. While the attenuation per unit length when generally using conventional rectangular waveguide provided with no slits is transmitted microwave 9,400MH z is substantially 0.11 dB / m, the same When a microwave having the above frequency is transmitted to a waveguide having a shape and a slit provided with a slit, the attenuation is about 1,13 dB / m, which is about 10 times as large as the above case. Is found as a result of actual measurement.

【0023】この結果によれば、線路AもしくはBのど
ちらか一方の単列スリットの場合の導電性物質の検知性
能は、無反射終端器側に近づくにつれて、その性能は漸
次低下してしまうことになる。
According to this result, the performance of detecting a conductive substance in the case of a single-line slit of either the line A or the line B gradually decreases as approaching the non-reflection terminator side. become.

【0024】そこで本発明は、上記のような不具合を無
くすための手段として、線路AとBで矩形導波管6aと
6bにおいて、それぞれマイクロ波の進行する方向が相
互に逆で対向する2線を構成する方式を採用することに
より、ガラス織布11のすべての部分について導電性物
質の有無を確実に検知することができるようにしてい
る。
Therefore, the present invention provides a means for eliminating the above-mentioned disadvantages by using two lines, in which the traveling directions of microwaves are opposite to each other in the rectangular waveguides 6a and 6b in the lines A and B, respectively. Is adopted, the presence or absence of a conductive substance can be reliably detected in all portions of the glass woven fabric 11.

【0025】前述のように、検波器8aと8bとから送
信された2つの信号は、信号処理警報発信器10に入
る。この信号処理警報発信器10は信号処理入力信号を
増幅する回路とガラス織布11が移動する際に生ずる振
動、ガラス織布の誘電率あるいは含水率の変化などが起
因して発生する不規則な信号を外乱信号として除去し、
ガラス織布に内在する導電性物質によって生じた反射波
に対応した信号だけを選別する回路、そして上記の選別
された信号にもとづき外部へ警報信号として発信させる
回路から構成されている。このような機能を構成するこ
とにより、不必要な信号による誤動作が無くなり、例え
ば直径1μ長さ3mm程度の微小な導電性物質でも検知
できることから信頼性の高い検知が可能となるのであ
る。
As described above, the two signals transmitted from the detectors 8a and 8b enter the signal processing alarm transmitter 10. The signal processing alarm transmitter 10 has a circuit for amplifying the signal processing input signal and an irregular vibration generated when the glass woven cloth 11 moves, a change in the dielectric constant or the water content of the glass woven cloth, and the like. Remove the signal as a disturbance signal,
The circuit comprises a circuit for selecting only a signal corresponding to a reflected wave generated by a conductive substance contained in the glass woven fabric, and a circuit for transmitting an alarm signal to the outside based on the selected signal. By configuring such a function, malfunctions due to unnecessary signals are eliminated, and for example, a minute conductive material having a diameter of about 1 μm and a length of about 3 mm can be detected, so that highly reliable detection can be performed.

【0026】図5は導電性物質を検知した出力信号をオ
シロスコープを用いて記録したものを例示したもので、
導電性物質があるとこのようにピーク波形を示す。この
図の中で上に突出しているピークの高さが高い程、各種
の外乱要素に起因する特性変化との比較が容易になるこ
とから、微少な導電性物質でも確実に検知が可能で、そ
の検知した結果は高い信頼性を期することができる。
FIG. 5 shows an example in which an output signal obtained by detecting a conductive substance is recorded by using an oscilloscope.
When there is a conductive substance, a peak waveform is shown in this manner. The higher the height of the peak protruding upward in this figure, the easier it is to compare with the characteristic changes caused by various disturbance elements, so that it is possible to reliably detect even a minute conductive substance, The result of the detection can ensure high reliability.

【0027】以上で、本発明の一実施例について詳述し
たが、本発明は、この実施例に限定されるものでなく、
他の変更および修正が可能である。例えば、上記実施例
において2系統の導波管に、それぞれ矩形導波管を用い
たが、円形その他の形状の導波管を用いてもよい。ま
た、A系統の導波管とB系統の導波管とを別々に構成し
たが、これらを一体化したダブル形の導波管を用いても
同じ目的は達成できる。
Although the embodiment of the present invention has been described in detail above, the present invention is not limited to this embodiment.
Other changes and modifications are possible. For example, although a rectangular waveguide is used for each of the two systems of waveguides in the above embodiment, a waveguide having a circular or other shape may be used. In addition, although the A-system waveguide and the B-system waveguide are separately configured, the same object can be achieved by using a double waveguide in which these are integrated.

【0028】また、実施例では、マイクロ波発振器を1
台にし、その出力を分配器で分配して2系統の線路に供
給するようにしてあるが、勿論それぞれ2系統の線路に
独立してマイクロ波発振器を接合させてもよい。更に、
導波管の数を2本以上とすれば、より検出能力を向上す
ることができる。
In the embodiment, the microwave oscillator is 1
The output is distributed by a distributor and supplied to two lines. Of course, a microwave oscillator may be independently connected to each of the two lines. Furthermore,
If the number of waveguides is two or more, the detection capability can be further improved.

【0029】[0029]

【発明の効果】本発明によれば、ガラス織布中に内在す
る極めて微小な導電性物質による欠陥をガラス織布の全
体に亘って確実に検知できるという優れた効果を奏す
る。
According to the present invention, there is an excellent effect that a defect caused by an extremely minute conductive substance existing in a glass woven fabric can be reliably detected over the entire glass woven fabric.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例のブロック図である。FIG. 1 is a block diagram of an embodiment of the present invention.

【図2】(a)は本発明の実施例における導波管の配置
を示す平面図、(b)は(a)におけるA−A線拡大断
面図である。
FIG. 2A is a plan view showing an arrangement of waveguides according to an embodiment of the present invention, and FIG. 2B is an enlarged sectional view taken along line AA in FIG.

【図3】導電性物質の存在状態模式図である。FIG. 3 is a schematic view of a state of presence of a conductive substance.

【図4】定在波の説明図である。FIG. 4 is an explanatory diagram of a standing wave.

【図5】オシロスコープに表われた検波波形の一例を示
す図である。
FIG. 5 is a diagram showing an example of a detection waveform shown on an oscilloscope.

【符号の説明】[Explanation of symbols]

1 マイクロ波発振器 2 分配器 3a,3b サーキュレータ 4a,4b 整合器 5a,5b 移相器 6a,6b 導波管 7a,7b 無反射終端器 8a,8b 検波器 9a,9b スリット 10 信号処理警報発信器 11 ガラス織布 DESCRIPTION OF SYMBOLS 1 Microwave oscillator 2 Divider 3a, 3b Circulator 4a, 4b Matching device 5a, 5b Phase shifter 6a, 6b Waveguide 7a, 7b Non-reflection terminator 8a, 8b Detector 9a, 9b Slit 10 Signal processing alarm transmitter 11 Glass woven cloth

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 無反射終端器を有し、ガラス織布を通す
スリットを設けた少なくとも2本以上の導波管を、前記
ガラス織布の移送方向に対して傾斜させて並設してな
り、これら導波管にマイクロ波発振器から進行方向が相
互に逆で且つ相互に位相をずらしたマイクロ波を供給
し、ガラス織布中の導電物質によって生じた反射波を検
波器で検波することを特徴とするガラス織布中の導電性
物質の検知装置。
At least two waveguides having an anti-reflection terminator and provided with slits for passing a glass woven fabric are arranged side by side with respect to the direction of transport of the glass woven fabric. It is assumed that microwaves whose traveling directions are opposite to each other and whose phases are shifted from each other are supplied to these waveguides from a microwave oscillator, and a reflected wave generated by a conductive material in the glass woven fabric is detected by a detector. Characteristic device for detecting conductive substances in glass woven fabric.
JP35962996A 1996-12-20 1996-12-20 Detection device for conductive substances in glass fabric Expired - Lifetime JP3613916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35962996A JP3613916B2 (en) 1996-12-20 1996-12-20 Detection device for conductive substances in glass fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35962996A JP3613916B2 (en) 1996-12-20 1996-12-20 Detection device for conductive substances in glass fabric

Publications (2)

Publication Number Publication Date
JPH10185839A true JPH10185839A (en) 1998-07-14
JP3613916B2 JP3613916B2 (en) 2005-01-26

Family

ID=18465479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35962996A Expired - Lifetime JP3613916B2 (en) 1996-12-20 1996-12-20 Detection device for conductive substances in glass fabric

Country Status (1)

Country Link
JP (1) JP3613916B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1564548A1 (en) * 2004-02-12 2005-08-17 AMS- Advanced Microwave Systems GmbH Microwave resonator excited in higher modes for measuring dielectric properties of a product
FR2866430A1 (en) * 2004-02-12 2005-08-19 Truetzschler & Co SENSOR, HYPERFREQUENCY FOR MEASURING A DIELECTRIC PROPERTY OF A BODY
JP2006300828A (en) * 2005-04-22 2006-11-02 Kindai Techno Corp Detector for conductive micro particle substance contained in prepreg
JP2011127971A (en) * 2009-12-16 2011-06-30 Kindai Techno Corp Method for detecting conductive particle substance in sheet-like electric material and device for the same
JP2011220684A (en) * 2010-04-02 2011-11-04 Asahi Kasei Engineering Kk Foreign matter detector and system using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1564548A1 (en) * 2004-02-12 2005-08-17 AMS- Advanced Microwave Systems GmbH Microwave resonator excited in higher modes for measuring dielectric properties of a product
FR2866430A1 (en) * 2004-02-12 2005-08-19 Truetzschler & Co SENSOR, HYPERFREQUENCY FOR MEASURING A DIELECTRIC PROPERTY OF A BODY
JP2005241638A (en) * 2004-02-12 2005-09-08 Truetzschler Gmbh & Co Kg Microwave sensor and device for microwave sensor
US7068048B2 (en) 2004-02-12 2006-06-27 TRüTZSCHLER GMBH & CO. KG Microwave sensor for measuring a dielectric property of a product
JP2006300828A (en) * 2005-04-22 2006-11-02 Kindai Techno Corp Detector for conductive micro particle substance contained in prepreg
JP2011127971A (en) * 2009-12-16 2011-06-30 Kindai Techno Corp Method for detecting conductive particle substance in sheet-like electric material and device for the same
JP2011220684A (en) * 2010-04-02 2011-11-04 Asahi Kasei Engineering Kk Foreign matter detector and system using the same

Also Published As

Publication number Publication date
JP3613916B2 (en) 2005-01-26

Similar Documents

Publication Publication Date Title
US6606904B2 (en) Filling level gage
KR100220145B1 (en) Motion detector unit
JP4241844B2 (en) Contactless transmission device for electrical signals and / or energy
US4864315A (en) Phased array antenna testing arrangement
US5170169A (en) Quasi-optical transmission/reflection switch and millimeter-wave imaging system using the same
US10760940B2 (en) Fill level device
US5781003A (en) Electric field sensor
EP0495819B1 (en) Improvements to oil/water measurement
US3314066A (en) Method and apparatus for detecting the entrance of an object into a region being monitored
JPH02503822A (en) Device for measuring microwave electromagnetic fields diffracted by objects at multiple positions
JPH10185839A (en) Detector for conductive material in glass fiber woven fabric
CA3044427C (en) Method and apparatus of measuring properties of a moving sheet
US4843346A (en) Radio frequency strain monitor
US4319185A (en) Delay line microwave moisture measuring apparatus
GB2033090A (en) Microwave moisture-profile gauge
US5672859A (en) Reproduction apparatus with microwave detection
CN208460980U (en) A kind of radar antenna and radar microwave sensor
JP3789203B2 (en) Microwave application equipment
US7212077B2 (en) Device for transmitting signals between movable units
US2810904A (en) Balanced detector
JP3809434B2 (en) Object detection device and object movement detection system
US4554551A (en) Asymmetric resonant waveguide aperture manifold
JP2006300828A (en) Detector for conductive micro particle substance contained in prepreg
Fischer et al. Design Aspects of Stripliine Resonator Sensors for Industrial Applications
JPS62259048A (en) Detecting device for conductive material in glass fiber

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041025

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

EXPY Cancellation because of completion of term