JP3613754B2 - Machine tool spindle equipment - Google Patents

Machine tool spindle equipment Download PDF

Info

Publication number
JP3613754B2
JP3613754B2 JP12534199A JP12534199A JP3613754B2 JP 3613754 B2 JP3613754 B2 JP 3613754B2 JP 12534199 A JP12534199 A JP 12534199A JP 12534199 A JP12534199 A JP 12534199A JP 3613754 B2 JP3613754 B2 JP 3613754B2
Authority
JP
Japan
Prior art keywords
movable sleeve
sleeve member
housing
machine tool
spindle device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12534199A
Other languages
Japanese (ja)
Other versions
JP2000317754A (en
Inventor
直弘 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata Machine Techno Co Ltd
Original Assignee
Niigata Machine Techno Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata Machine Techno Co Ltd filed Critical Niigata Machine Techno Co Ltd
Priority to JP12534199A priority Critical patent/JP3613754B2/en
Publication of JP2000317754A publication Critical patent/JP2000317754A/en
Application granted granted Critical
Publication of JP3613754B2 publication Critical patent/JP3613754B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C27/00Elastic or yielding bearings or bearing supports, for exclusively rotary movement
    • F16C27/04Ball or roller bearings, e.g. with resilient rolling bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/06Ball or roller bearings

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Turning (AREA)
  • Machine Tool Units (AREA)
  • Support Of The Bearing (AREA)
  • Rolling Contact Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ハウジングに主軸をアンギュラ玉軸受等のころがり軸受を介して回転自在に支持した工作機械の主軸装置に関する。
【0002】
【従来の技術】
工作機械の主軸装置として、図7に示すものが知られている。
この主軸装置は、ハウジング1内に、主軸2が、前後2組(図7では左側を前とする。)のころがり軸受3,4で回転自在に支持され、主軸2を回転させる電動モータ6がころがり軸受3,4の間に設けられたものであって、ハウジング1と後側のころがり軸受4との間に、可動スリーブ部材7を、ころがり軸受4の外輪に嵌着するとともにスライドボールベアリング8によって主軸2の軸方向に移動自在に嵌挿し、予圧ばね9で後側に付勢してころがり軸受に予圧をかける構造となっている。
なお、ハウジング1は、その後端にボルト11で着脱自在に一体に固定された後部部材(リヤハウジング)1aを有し、可動スリーブ部材7はその後部部材1aに嵌挿されている。スライドボールベアリング8は、発熱体であるモータ6等の温度変化によりころがり軸受3,4間の大きな熱膨張を逃がし、ガタツキを防止するために用いられる。
【0003】
また、図8と図9に示す工作機械の主軸装置も知られている(特開平10−225802号公報)。
この主軸装置は、ハウジング1(後部部材1a)の内周面と可動スリーブ部材7の外周面との間に、油流入空間Saと流通隙間g及び油流出空間Sbとを3個宛周方向に交互に形成し、油循環装置13で作動油を油流入空間Saから流通隙間gを通じて油流出空間Sbに流すことにより、可動スリーブ部材7を作動油の圧力で中心に浮かせて支持する構造となっている。なお、他の構造は図7の主軸装置と同一であるので、同一の部材等に同一の符号を付してその説明を省略する。
【0004】
【発明が解決しようとする課題】
図7に示す上記前者の主軸装置は、スライドボールベアリング8に、ガタツキ防止のために予圧が与えられ、また径方向の大きな熱膨張力や切削反力が働くため、可動スリーブ部材7やハウジング1の後部部材1aにボールの圧痕が生じ、その圧痕により可動スリーブ部材7の動きが鈍くなってころがり軸受3,4が焼き付くおそれがある。
【0005】
また、図8と図9に示す後者の静圧軸受方式の主軸装置の場合は、作動油圧力の非常に大きい油循環装置13が必要であり、しかも加圧に伴う作動油の温度上昇を抑えるためには、大型の油循環装置13に見合う冷却能力を持つ大型の温度制御装置14が必要で、製造費のみならず運転費が割高になる。また、油流入空間Saと流通隙間g及び油流出空間Sbを交互に3個(或いは4個以上)宛形成しなければならないので、内部構造が複雑になり、この点でもコスト高になる問題点がある。
【0006】
また、図7の主軸装置からスライドボールベアリング8を省き、後部部材1aと可動スリーブ部材7の間に小さな隙間を設定して滑り案内にした主軸装置も一般に使用されているが、隙間が切削時のビレの原因となる他、径方向の荷重や主軸の自重による摩擦力で軸の熱膨張を円滑に逃せない場合にはころがり軸受の焼付けにもつながる。
【0007】
本発明は、重切削に耐える大きな支持剛性と負荷容量を得ることができる工作機械の主軸装置を提供することを目的とする。
本発明の他の目的は、軸受予圧の安定化を図ることができる工作機械の主軸装置を提供することである。
【0008】
【課題を解決するための手段】
上記の少なくとも1つの目的を達成するために、請求項1記載の発明は、ハウジング内に、主軸がころがり軸受で回転自在に支持され、上記ハウジングところがり軸受との間に、可動スリーブ部材がころがり軸受の外輪に嵌着して主軸の軸方向に移動自在に嵌挿され、上記ハウジングと可動スリーブ部材との間に、主軸の軸方向に屈撓自在とされた板ばねが、環状とされて主軸を中心に配設され、その外端部をハウジングに固定するとともに、内端部を可動スリーブ部材に固定して設けられた工作機械の主軸装置において、板ばねの外端部が油圧クランプ機構によってハウジングに着脱自在とされた構成とした。
【0009】
この手段では、板ばねは、例えば主軸が熱膨張した時に、主軸の軸方向に撓わんでハウジングに対して可動スリーブ部材を軸方向に移動させ、また、ハウジングに対する可動スリーブ部材の径方向の動きを強い剛性で阻止する。このため、主軸の熱膨張が吸収され、またハウジングに対する可動スリーブ部材の径方向のガタツキが抑止される。
板ばねの形状及び構造は任意であり、例えば、環状の1枚物、或いは矩形状の複数のばね板を環状に配した物などとすることができる。また、板ばねは1個とは限らず、2個以上設けることができる。
【0011】
また、この手段では、熱的条件の変化等により、板ばねに歪みが生じたような場合、油圧クランプ機構を作動させてハウジングに対する板ばね外端部の固定を解くことにより、歪みを逃がす。板ばねの固定解除は、通常、主軸が回転を停止し、主軸に負荷が掛かっていない条件下で行う。
【0012】
請求項1記載の工作機械の主軸装置において、ハウジングと可動スリーブ部材との間にスライドボールベアリングを装入することができる(請求項)。
この場合は、可動スリーブ部材の軸方向移動を円滑にするスライドボールベアリングの小さな負荷容量を板ばねが補う。
【0013】
請求項1記載の工作機械の主軸装置において、水平に配置されたハウジングの内周面のほぼ下半分と、これに対向する可動スリーブ部材の外周面のほぼ下半分との間に、作動油により可動スリーブ部材に浮力を付加する油圧室を、油供給孔に連絡して形成し、該油圧室上部のハウジングの内周面と可動スリーブ部材の外周面との間に、作動油の流出に抵抗をかける絞り隙間を、油排出孔に連絡して形成することができる(請求項3)
この構成では、作動油を油供給孔から油圧室に供給すると、絞り隙間の流出抵抗によって油圧室の作動油圧力が高まり、可動スリーブ部材に浮力を作用させる。このため、ハウジングに加わる可動スリーブ部材の下方向荷重が軽減され、ハウジングと可動スリーブ部材間の軸方向の摩擦抵抗が低下する。
【0014】
請求項1ないしのいずれか1つに記載の工作機械の主軸装置において、可動スリーブ部材に予圧手段を付設することができる(請求項)。
この構成では軸受予圧の安定化が図られる。
予圧手段には、ばね等を用いた定圧予圧手段や油圧等を利用した定位置予圧手段等があるが、それらを単独で使用することも、また併用することもできる。
【0015】
【発明の実施の形態】
発明の実施の形態を添付図面を参照して説明する。
図1ないし図4は本発明に係る工作機械の主軸装置の実施の形態を示す。なお、主軸装置の基本的な構造は、図7の主軸装置と同じであるので、同一の部材等に同一の符号を付してその説明を省略する。
【0016】
ハウジング1の後部部材1aと可動スリーブ部材7との間には、円環状の板ばね21,22が主軸2を中心にして設けられている。板ばね21,22は、その外端部21a,22aをハウジング1と後部部材1aとの間、及び後部部材1aと該後部部材1aにボルト23で着脱自在に一体に取り付けられたカバー部材1bとの間にそれぞれシム24を介して挟まれてハウジング1に固定され、また内端部21b,22bを可動スリーブ部材7と該可動スリーブ部材7にボルト25で着脱自在に一体に取り付けられた軸受押え7aとの間、及び可動スリーブ部材7と該可動スリーブ部材7にボルト26で着脱自在に一体に取り付けられたばね押え7bとの間にそれぞれ挟まれて可動スリーブ部材7に固定されて設けられており、主軸2の軸方向に屈撓自在とされている
【0017】
そして、板ばね22には3個又は4個以上の透孔22c(図2では1個しか示されていない。)が環状に等間隔で形成され、各透孔22cに予圧ばね9が挿通されている。シム24は、組込み時に板ばね21,22が平らになるよう調整するために使用する。
【0018】
水平状態のハウジング1の後部部材1aの内周面のほぼ下半分と、これに対向する可動スリーブ部材7の外周面のほぼ下半分との間に、油圧室Oaが油供給孔1cに連絡して形成されるとともに、ハウジング1の後部部材1aの内周面のほぼ上半分と、これに対向する可動スリーブ部材7の外周面のほぼ上半分との間に、排油室Obが油排出孔1dに連絡して形成され、また、油圧室Oaと排油室Obの間に、油圧室Oaから排油室Obに流れる作動油の流出に抵抗をかけて排油室Obと油圧室Oaに圧力差を生じさせる絞り隙間t,tが形成されている。
【0019】
また、油圧室Oaと絞り隙間t及び排油室Obの両側部には、軸受隙間cが後部部材1aと可動スリーブ部材7の全内外周面にわたって形成されている。そして、後部部材1aにはリング状のシール部材27が装着され、軸受隙間cを液密にしている。ボルト11,23,25,26はいずれも図に1個しか示されていないが、複数環状に配設されている。
【0020】
油供給孔1cと油排出孔1dは、ハウジング1の後部部材1aに穿設されており、油供給孔1cには供給管28によってポンプ付オイルクーラ29が接続され、また油排出孔1dには、流量センサ30を有する排油管31が接続されている。供給管28電磁流量調整弁32を持ち、供給管28の分岐管33には電磁リリーフ弁34が設けられている。ポンプ付オイルクーラ29は、油ポンプとオイルクーラとを分離した構造であっても、また場合によっては油ポンプのみであってもよい。
【0021】
電磁流量調整弁32は、ポンプ付オイルクーラ29から供給管28を通って油圧室Oaに供給される作動油(冷却油)の流量を調整するものである。また、電磁リリーフ弁34は、次式(1)によって表わされる浮力Fが、絞り隙間tと軸受隙間cの大きさδ1 ,δ2 の変動によって大きくなり過ぎないように作動油の供給圧力に上限を設けるために使用する。
F ≒W1 ×W2 ×(PA −PB ) ……(1)
但し、
W1 ;油圧室Oaの鉛直方向の投影幅
W2 ;油圧室Oaの前後幅
PA ;油圧室Oaの作動油圧力
PB ;排油室Obの作動油圧力
【0022】
ここで、軸受隙間cの大きさδ1 は、後部部材1aと可動スリーブ部材7間の温度差が最大となった場合でも支障を生じない大きさとされ、絞り隙間tの大きさδ2 よりも小さくされている。前後幅W3 を油圧室Oa及び排油室Obの前後幅W2 よりも小さくされた絞り隙間tの部分の軸受隙間cも絞りとして機能し、作動 油の流れに抵抗をかけるが、後部部材1aと可動スリーブ部材7間の負荷容量やそれらの嵌め合いを決定することが主体であり、作動油の流れを制御する割合は小さくされている。
【0023】
次に、上記の構成とされた工作機械の主軸装置の作用を説明する。
リリーフ弁34を、浮力Fが可動スリーブ部材7を含めた主軸2の自重ところがり軸受4に加わる支持荷重以下となるように設定してポンプ付オイルクーラ29を作動させ、作動油を油圧室Oaに供給しながらモータ6で主軸2を回転させて作業を開始する。
【0024】
ポンプ付オイルクーラ29から油圧室Oaに供給された作動油は、絞り隙間tを通って排油室Obに流れ、後部部材1aと可動スリーブ部材7を冷却してそれらの温度差を低下させるが、この際、絞り隙間tの働きによって油圧室Oaと排油室Obの間に圧力差が生じ、可動スリーブ部材7に浮力Fが作用するので、後部部材1aに対する可動スリーブ部材7の軸方向の摩擦抵抗が小さくなる。
また、板ばね21,22は、可動スリーブ部材7を、その径方向の変位を強い剛性で阻止するとともに、可動スリーブ部材7の軸方向の移動を屈撓性により自由にしてハウジング1に支持している。
【0025】
したがって、モータ6の発熱等によって主軸2が熱膨張した場合、可動スリーブ部材7は主軸2と一緒に軸方向に円滑に移動して熱膨張に起因する支障を防ぐ。また、可動スリーブ部材7が上記のように軸方向に円滑に移動するので、予圧ばね9によって主軸軸受であるころがり軸受3,4に設計通りの適正な予圧が付加される。
【0026】
上記において、可動スリーブ部材7の熱膨張が大きくて軸受隙間c(δ1 )が無くなり、可動スリーブ部材7の外周面が後部部材1aの内周面に接触した場合には、作動油の流量が減少する。この油量減少を流量センサ30で検知して警報を出し、モータ6を停止させるような措置がとられる。
【0027】
また、作動油の温度が下がり、過冷却になると、ころがり軸受4の外輪側が冷やされて従来構造では予圧上昇・変動につながるが、本主軸装置においては、温度低下により作動油の絶対粘度μが大きくなることから、絞り隙間t(δ2 )で作動油流量Qが下式(2)により絞られるため、過冷却が自動的に防止される。
Q =δ2 ・W3 ・(PA −PB )/(12μ・L) ……(2)
但し、
L ;絞り隙間tの長さ
【0028】
図5は本発明の第2の実施の形態を示す。
この工作機械の主軸装置は、板ばね21,22の外端部21a,22aを、シリンダCya,Cybに装入されたピストンPia,Pibによってハウジング1側に着脱自在に固定する構造となっている。シリンダCyaはハウジング1と後部部材1aに形成され、他のシリンダCybは後部部材1aとカバー部材1bに形成されている。シリンダCyaとピストンPia、及びシリンダCybとピストンPibはそれぞれ油圧クランプ機構を構成している。シリンダCya,Cybはそれぞれ油通路1e,1fを介して油供給源(図示せず)に連絡されている。
他の構造は、図1ないし図4の工作機械の主軸装置と同じである。
【0029】
この主軸装置においては、熱的な条件の変化により板ばね21,22に歪みが生じたような場合、板ばね21,22の外端部21a,22aのピストンPia,Pibによる固定を解き、再びピストンPia,Pibで固定し直すことにより、歪みを除去する。油圧クランプ機構による固定解除の外部指令は、主軸回転が停止し、主軸2に負荷が掛っていない条件下で行う。
【0030】
図6は、本発明の第3の実施の形態を示す。
この主軸装置は、図1ないし図4の主軸装置から、油圧室Oaと排油室Ob及び絞り隙間t並びに供給管28等を省き、後部部材1aと可動スリーブ部材7の隙間Ocにスライドボールベアリング8を装入した構造となっている。
もちろん、スライドボールベアリング8が装入された隙間Ocに冷却油を循環させ可動スリーブ部材7の熱膨張でスライドボールベアリング8の予圧を増大させない方法を取ることにより、主軸軸受の冷却を行うことが好ましいことは言うまでもない。
他の構造は図1ないし図4の主軸装置と同一である。
【0031】
この主軸装置の場合は、単独では小さいスライドボールベアリング8の負荷容量を、剛性と負荷容量の大きい板ばね21,22が補う。
したがって、この主軸装置においては、第1及び第2実施形態の主軸装置に準じた効果が得られる上、既存の工作機械の主軸装置を改良することが比較的容易になる。
【0032】
なお、後部部材1aの線膨張係数を可動スリーブ部材7の線膨張係数よりも大きくすることが好ましい。例を上げると、可動スリーブ部材7を鋼材とした場合に、後部部材1aを鋼材よりも線膨張係数の大きいアルミ材や黄銅などにする。ところで、発熱はころがり軸受4から起こって可動スリーブ部材7に伝わるため、温度は可動スリーブ部材7の方が後部部材1aよりも常に高くなる。したがって、例えば、後部部材1aと可動スリーブ部材7とが同材質の場合、温度上昇に伴い軸受隙間δ1 が小さくなるので、軸受隙間δ1 を大きく取らざるを得ないのが現状であるが、上記のように構成すると、後部部材1aよりも発熱源であるころがり軸受4に近い可動スリーブ部材7の温度が上昇する方向で温度差がついても、軸受隙間δ1 の減少が軽減されるので、予め軸受隙間δ1 を小さく設定できる。
アルミ材は、鋼材に比べて表面の硬度不足や強度面(ヤング率、耐力、引張強さ)が劣るが、作動油による半浮上によって接触面圧を下げ摩耗や変形を防ぐことができる。
【0033】
軸受隙間δ1 は、後部部材1aと可動スリーブ部材7が使用温度範囲の最低の同一温度となった条件下でゼロとならないように設定する。これによって、使用温度範囲で両者が同一温度なら線膨張係数の差から必ず軸受隙間を確保できる。
ころがり軸受4の発熱で内側の可動スリーブ部材7が膨張し、軸受隙間δ1 が小さくなると、作動油流量が減少してその温度が高くなる。この熱は線膨張係数の大きい後部部材1aに伝わり内径が大きくなることで軸受隙間δ1 が増加する。両部品が接触した場合、熱が更に伝わりやすくなり隙間増加方向に移行することになる。
【0034】
後部部材1aに温度センサを設置することで設定温度範囲外になったら注意を促す方法がとれ、流量センサの信号から実際に警報を発振するか否かを判定することができる。
【0035】
予圧には、ばね、油圧、空圧を用いた定圧予圧と油圧シリンダ等を用いた予圧切換装置により定位置予圧を取る方法が一般に使用されているが、本主軸装置においては、予圧ばね9の他に、定位置予圧を可能にする油圧シリンダを設けることができることは勿論、定位置予圧のみとすることも、場合によっては予圧の全くない主軸装置に適用することも可能である。また、予圧構造は、図のものに限らず任意である。
【0036】
また、図の主軸装置は、モータ6がハウジング1内に設けられたモータ内蔵型となっているが、モータ内蔵型でない主軸装置に適用することもできる。また、図6の主軸装置からスライドボールベアリング8を省くことができる。油圧室Oaを2個以上としたり、絞り隙間tを油排出孔1dに直接連絡して排油室Obを無くすることも可能である。
【0037】
【発明の効果】
以上説明したように、請求項1記載の発明によれば、重切削に耐える大きな支持剛性と負荷容量を得ることができる。したがって熱的変化の影響を極力抑えて主軸を低速域から高速域にわたってガタツキなく円滑に回転させ、加工等を精度よく行うことができる。
【0039】
また、組立構造が簡単になり、コストを低減することができる。熱的条件の変化等によって板ばねに歪みが発生してもこれを簡単に除去することができ、いつも正常な状態に保つことができる。
【0040】
請求項1記載の工作機械の主軸装置において、ハウジングと可動スリーブ部材との間にスライドボールベアリングを装入した場合、請求項1記載の工作機械の主軸装置において、水平に配置されたハウジングの内周面のほぼ下半分と、これに対向する可動スリーブ部材の外周面のほぼ下半分との間に、作動油により可動スリーブ部材に浮力を付加する油圧室を、油供給孔に連絡して形成し、該油圧室上部のハウジングの内周面と可動スリーブ部材の外周面との間に、作動油の流出に抵抗をかける絞り隙間を、油排出孔に連絡して形成した場合は、いずれも可動スリーブ部材の軸方向の摩擦抵抗が低下し、それだけ可動スリーブ部材が軸方向に円滑に移動するようになる。
【0041】
請求項1ないしのいずれか1つに記載の工作機械の主軸装置において、可動スリーブ部材に予圧手段を付設した構成では、軸受予圧の安定化が図られ、主軸の回転が一層円滑になる。
【図面の簡単な説明】
【図1】本発明に係る工作機械の主軸装置の実施の形態を示す垂直断面図である。
【図2】図1の主軸装置の水平断面図である。
【図3】油圧室と絞り隙間及び排油室の関係を示す図である。
【図4】油圧室と絞り隙間等の関係を示す断面図である。
【図5】本発明の第2の実施の形態を示す断面図である。
【図6】本発明の第3の実施の形態を示す断面図である。
【図7】従来の工作機械の主軸装置の断面図である。
【図8】従来の他の主軸装置の断面図である。
【図9】図8の主軸装置の(IX−IX)部分の断面図である。
【符号の説明】
1 ハウジング 1a 後部部材(リヤハウジング)
2 主軸 4 ころがり軸受
7 可動スリーブ部材 8 スライドボールベアリング
9 予圧ばね(予圧手段) 21,22 板ばね
21a,22a 外端部 21b,22b 内端部
Cya,Cyb シリンダ Pia,Pib ピストン
Oa 油圧室 Ob 排油室
Oc 隙間 t 絞り隙間
c 軸受隙間
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a spindle device of a machine tool in which a spindle is rotatably supported by a housing via a rolling bearing such as an angular ball bearing.
[0002]
[Prior art]
As a spindle device of a machine tool, the one shown in FIG. 7 is known.
In the main shaft device, a main shaft 2 is rotatably supported by two sets of front and rear rolling bearings 3 and 4 (the left side in FIG. 7 is the front) in a housing 1, and an electric motor 6 that rotates the main shaft 2 is provided. The movable sleeve member 7 is provided between the rolling bearings 3 and 4, and is fitted between the housing 1 and the rolling roller bearing 4 on the rear side to the outer ring of the rolling bearing 4, and the slide ball bearing 8. Thus, the main shaft 2 is movably inserted in the axial direction, and the preload spring 9 is urged rearward to apply preload to the rolling bearing.
The housing 1 has a rear member (rear housing) 1a that is detachably fixed integrally with a bolt 11 at the rear end, and the movable sleeve member 7 is fitted into the rear member 1a. The slide ball bearing 8 is used to release large thermal expansion between the rolling bearings 3 and 4 due to a temperature change of the motor 6 or the like that is a heating element, and to prevent rattling.
[0003]
A spindle device for a machine tool shown in FIGS. 8 and 9 is also known (Japanese Patent Laid-Open No. 10-225802).
This spindle device includes three oil inflow spaces Sa, flow gaps g, and oil outflow spaces Sb in the circumferential direction between the inner peripheral surface of the housing 1 (rear member 1a) and the outer peripheral surface of the movable sleeve member 7. The movable sleeve member 7 is floated and supported at the center by the pressure of the hydraulic oil by alternately forming and flowing the hydraulic oil from the oil inlet space Sa to the oil outlet space Sb through the circulation gap g by the oil circulation device 13. ing. Since the other structure is the same as that of the spindle apparatus of FIG. 7, the same reference numerals are assigned to the same members and the description thereof is omitted.
[0004]
[Problems to be solved by the invention]
In the former main spindle device shown in FIG. 7, a preload is applied to the slide ball bearing 8 in order to prevent rattling, and a large thermal expansion force and cutting reaction force in the radial direction act, so that the movable sleeve member 7 and the housing 1 A ball impression is generated on the rear member 1a, and the movement of the movable sleeve member 7 becomes dull due to the impression, and the rolling bearings 3 and 4 may be seized.
[0005]
Further, in the case of the latter hydrostatic bearing type spindle device shown in FIGS. 8 and 9, an oil circulation device 13 having a very high hydraulic oil pressure is required, and the temperature rise of hydraulic oil accompanying pressurization is suppressed. For this purpose, a large temperature control device 14 having a cooling capacity commensurate with the large oil circulation device 13 is required, and not only the manufacturing cost but also the operation cost is expensive. In addition, since the oil inflow space Sa, the flow gap g, and the oil outflow space Sb must be alternately formed for three (or four or more), the internal structure becomes complicated, which also increases the cost. There is.
[0006]
In addition, a spindle device in which the slide ball bearing 8 is omitted from the spindle device of FIG. 7 and a small gap is set between the rear member 1a and the movable sleeve member 7 to provide a sliding guide is generally used. In addition to the cause of cracking, rolling bearings can be seized when the thermal expansion of the shaft cannot be smoothly released due to the radial load or the frictional force due to the weight of the main shaft.
[0007]
An object of the present invention is to provide a spindle device of a machine tool capable of obtaining a large support rigidity and load capacity that can withstand heavy cutting.
Another object of the present invention is to provide a spindle device for a machine tool capable of stabilizing the bearing preload.
[0008]
[Means for Solving the Problems]
In order to achieve the above at least one object, an invention according to claim 1, in a housing, the main shaft is rotatably supported by a rolling bearing, between the bearing rolling the upper Symbol housing, the movable sleeve member inserted by fitting the rolling bearing outer ring fitted movably in the axial direction of the main shaft, between the housing and the movable sleeve member, a leaf spring which is freely flexed in the axial direction of the main axis, is an annular In the spindle device of a machine tool provided with the outer end fixed to the housing and the inner end fixed to the movable sleeve member, the outer end of the leaf spring is a hydraulic clamp. The mechanism is configured to be detachable from the housing .
[0009]
In this means, for example, when the main shaft is thermally expanded, the leaf spring is bent in the axial direction of the main shaft to move the movable sleeve member in the axial direction relative to the housing, and the radial movement of the movable sleeve member relative to the housing is performed. Is prevented with strong rigidity. For this reason, thermal expansion of the main shaft is absorbed, and rattling of the movable sleeve member with respect to the housing in the radial direction is suppressed.
The shape and structure of the leaf springs are arbitrary. For example, the leaf spring may be a single annular member or a plurality of rectangular spring plates arranged annularly. Further, the number of leaf springs is not limited to one, and two or more leaf springs can be provided.
[0011]
Also, with this means , when the leaf spring is distorted due to a change in thermal conditions, the strain is released by operating the hydraulic clamp mechanism to unlock the outer end of the leaf spring from the housing. The release of the leaf spring is normally performed under the condition that the main shaft stops rotating and no load is applied to the main shaft.
[0012]
In the main spindle device of a machine tool according to claim 1 Symbol placement can be loaded slide ball bearings between the housing and the movable sleeve member (claim 2).
In this case, the leaf spring supplements the small load capacity of the slide ball bearing that facilitates the axial movement of the movable sleeve member.
[0013]
Oite the spindle equipment of a machine tool according to claim 1, between a substantially lower half of the inner peripheral surface of the housing that is arranged horizontally, approximately the lower half of the outer peripheral surface of the movable sleeve member opposed thereto, A hydraulic chamber that adds buoyancy to the movable sleeve member by the hydraulic oil is formed in communication with the oil supply hole, and the hydraulic oil is formed between the inner peripheral surface of the housing and the outer peripheral surface of the movable sleeve member. A throttle gap that resists outflow can be formed in communication with the oil discharge hole (claim 3) .
In this configuration, when hydraulic oil is supplied from the oil supply hole to the hydraulic chamber, the hydraulic oil pressure in the hydraulic chamber is increased by the outflow resistance of the throttle gap, and buoyancy is applied to the movable sleeve member. For this reason, the downward load of the movable sleeve member applied to the housing is reduced, and the axial frictional resistance between the housing and the movable sleeve member is reduced.
[0014]
In the spindle device for a machine tool according to any one of claims 1 to 3 , preload means can be attached to the movable sleeve member (claim 4 ).
With this configuration, the bearing preload is stabilized.
The preloading means includes a constant pressure preloading means using a spring and the like, a fixed position preloading means using a hydraulic pressure, etc., and these can be used alone or in combination.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the accompanying drawings.
1 to 4 show an embodiment of a spindle device of a machine tool according to the present invention. Since the basic structure of the spindle device is the same as that of the spindle device of FIG. 7, the same reference numerals are assigned to the same members and the description thereof is omitted.
[0016]
Between the rear member 1 a of the housing 1 and the movable sleeve member 7, annular leaf springs 21 and 22 are provided around the main shaft 2. The leaf springs 21 and 22 have outer end portions 21a and 22a between the housing 1 and the rear member 1a, and a rear member 1a and a cover member 1b that is detachably attached to the rear member 1a with bolts 23 integrally. The bearing retainer is fixed to the housing 1 with the shim 24 interposed therebetween, and the inner ends 21b and 22b are detachably and integrally attached to the movable sleeve member 7 and the movable sleeve member 7 with bolts 25. 7a and between the movable sleeve member 7 and a spring retainer 7b which is integrally attached to the movable sleeve member 7 with a bolt 26 so as to be detachable, and is fixed to the movable sleeve member 7. The main shaft 2 can be bent in the axial direction.
The leaf spring 22 is formed with three or four or more through holes 22c (only one is shown in FIG. 2) in an annular shape at equal intervals, and the preload spring 9 is inserted into each through hole 22c. ing. The shim 24 is used to adjust the leaf springs 21 and 22 to be flat when assembled.
[0018]
The hydraulic chamber Oa communicates with the oil supply hole 1c between the substantially lower half of the inner peripheral surface of the rear member 1a of the horizontal housing 1 and the substantially lower half of the outer peripheral surface of the movable sleeve member 7 opposed thereto. The oil discharge chamber Ob is formed between the substantially upper half of the inner peripheral surface of the rear member 1a of the housing 1 and the substantially upper half of the outer peripheral surface of the movable sleeve member 7 facing the oil discharge hole. 1d, and between the hydraulic chamber Oa and the oil discharge chamber Ob, resists the outflow of the hydraulic oil flowing from the oil pressure chamber Oa to the oil discharge chamber Ob, so that the oil discharge chamber Ob and the oil pressure chamber Oa Throttle gaps t and t that cause a pressure difference are formed.
[0019]
Further, bearing gaps c are formed over the entire inner and outer peripheral surfaces of the rear member 1a and the movable sleeve member 7 on both sides of the hydraulic chamber Oa, the throttle gap t, and the oil discharge chamber Ob. A ring-shaped seal member 27 is attached to the rear member 1a to make the bearing gap c liquid-tight. Although only one bolt 11, 23, 25, 26 is shown in the figure, a plurality of bolts are arranged in a ring shape.
[0020]
An oil supply hole 1c and an oil discharge hole 1d are formed in the rear member 1a of the housing 1. An oil cooler 29 with a pump is connected to the oil supply hole 1c by a supply pipe 28, and the oil discharge hole 1d is also connected to the oil discharge hole 1d. An oil drain pipe 31 having a flow sensor 30 is connected. The supply pipe 28 has an electromagnetic flow rate adjustment valve 32, and a branch pipe 33 of the supply pipe 28 is provided with an electromagnetic relief valve 34. The oil cooler with pump 29 may have a structure in which the oil pump and the oil cooler are separated, or may be only an oil pump depending on the case.
[0021]
The electromagnetic flow rate adjusting valve 32 adjusts the flow rate of the working oil (cooling oil) supplied from the oil cooler 29 with pump through the supply pipe 28 to the hydraulic chamber Oa. Further, the electromagnetic relief valve 34 limits the supply pressure of hydraulic oil so that the buoyancy F expressed by the following equation (1) does not become too large due to fluctuations in the sizes δ1 and δ2 of the throttle clearance t and the bearing clearance c. Used to provide.
F ≒ W1 x W2 x (PA-PB) (1)
However,
W1; vertical projection width W2 of the hydraulic chamber Oa; front-rear width PA of the hydraulic chamber Oa; hydraulic oil pressure PB of the hydraulic chamber Oa; hydraulic oil pressure of the oil discharge chamber Ob
Here, the size δ1 of the bearing gap c is set to a size that does not cause a problem even when the temperature difference between the rear member 1a and the movable sleeve member 7 becomes maximum, and is smaller than the size δ2 of the aperture gap t. ing. The bearing gap c in the portion of the throttle gap t in which the front-rear width W3 is made smaller than the front-rear width W2 of the hydraulic chamber Oa and the oil discharge chamber Ob also functions as a throttle and resists the flow of hydraulic oil. Mainly, the load capacity between the movable sleeve members 7 and their fitting are determined, and the ratio of controlling the flow of hydraulic oil is reduced.
[0023]
Next, the operation of the spindle device of the machine tool configured as described above will be described.
The relief valve 34 is set so that the buoyancy F is equal to or less than the supporting load applied to the own weight rolling bearing 4 of the main shaft 2 including the movable sleeve member 7 to operate the oil cooler 29 with a pump, and the hydraulic oil is supplied to the hydraulic chamber Oa. The main shaft 2 is rotated by the motor 6 while being supplied to the motor.
[0024]
The hydraulic oil supplied from the oil cooler 29 with pump to the hydraulic chamber Oa flows into the oil discharge chamber Ob through the throttle gap t, and cools the rear member 1a and the movable sleeve member 7 to reduce the temperature difference therebetween. At this time, a pressure difference is generated between the hydraulic chamber Oa and the oil discharge chamber Ob by the action of the throttle gap t, and the buoyancy F acts on the movable sleeve member 7, so that the axial direction of the movable sleeve member 7 with respect to the rear member 1a is increased. Frictional resistance is reduced.
Further, the leaf springs 21 and 22 support the movable sleeve member 7 in the housing 1 while preventing displacement in the radial direction with strong rigidity and making the movement of the movable sleeve member 7 in the axial direction free by flexibility. ing.
[0025]
Therefore, when the main shaft 2 is thermally expanded due to heat generated by the motor 6 or the like, the movable sleeve member 7 smoothly moves in the axial direction together with the main shaft 2 to prevent troubles caused by the thermal expansion. Further, since the movable sleeve member 7 moves smoothly in the axial direction as described above, an appropriate preload as designed is applied to the rolling bearings 3 and 4 which are main shaft bearings by the preload spring 9.
[0026]
In the above, when the thermal expansion of the movable sleeve member 7 is large and the bearing gap c (δ1) is eliminated and the outer peripheral surface of the movable sleeve member 7 comes into contact with the inner peripheral surface of the rear member 1a, the flow rate of the hydraulic oil decreases. To do. Measures are taken to detect this oil reduction by the flow sensor 30 and to give an alarm and stop the motor 6.
[0027]
In addition, when the temperature of the hydraulic oil is lowered and overcooled, the outer ring side of the rolling bearing 4 is cooled, leading to an increase in preload and fluctuations in the conventional structure. Since the hydraulic oil flow rate Q is throttled by the following formula (2) at the throttle gap t (δ2), the supercooling is automatically prevented.
Q = δ2 3 · W3 · (PA −PB) / (12 μ · L) (2)
However,
L: Length of the aperture gap t [0028]
FIG. 5 shows a second embodiment of the present invention.
The spindle device of this machine tool has a structure in which outer end portions 21a and 22a of leaf springs 21 and 22 are detachably fixed to the housing 1 side by pistons Pia and Pib inserted in cylinders Cya and Cyb. . The cylinder Cya is formed on the housing 1 and the rear member 1a, and the other cylinder Cyb is formed on the rear member 1a and the cover member 1b. The cylinder Cya and the piston Pia, and the cylinder Cyb and the piston Pib each constitute a hydraulic clamping mechanism. The cylinders Cya and Cyb are connected to an oil supply source (not shown) via oil passages 1e and 1f, respectively.
Other structures are the same as those of the spindle device of the machine tool shown in FIGS.
[0029]
In this spindle device, when the leaf springs 21 and 22 are distorted due to a change in thermal conditions, the outer ends 21a and 22a of the leaf springs 21 and 22 are unfixed by the pistons Pia and Pib, and again. The distortion is removed by re-fixing with the pistons Pia and Pib. The external command for releasing the fixing by the hydraulic clamp mechanism is performed under the condition that the spindle rotation is stopped and no load is applied to the spindle 2.
[0030]
FIG. 6 shows a third embodiment of the present invention.
The main spindle apparatus omits the hydraulic chamber Oa, the oil discharge chamber Ob, the throttle gap t, the supply pipe 28, and the like from the main spindle apparatus shown in FIGS. 1 to 4, and slide ball bearings in the gap Oc between the rear member 1a and the movable sleeve member 7. 8 is inserted.
Of course, the spindle bearing can be cooled by circulating the cooling oil through the clearance Oc in which the slide ball bearing 8 is inserted and preventing the thermal expansion of the movable sleeve member 7 from increasing the preload of the slide ball bearing 8. Needless to say, it is preferable.
Other structures are the same as those of the spindle device shown in FIGS.
[0031]
In the case of this spindle device, the leaf springs 21 and 22 having large rigidity and load capacity supplement the load capacity of the slide ball bearing 8 which is small by itself.
Therefore, in this spindle device, an effect according to the spindle device of the first and second embodiments can be obtained, and it is relatively easy to improve the spindle device of an existing machine tool.
[0032]
The linear expansion coefficient of the rear member 1a is preferably larger than the linear expansion coefficient of the movable sleeve member 7. For example, when the movable sleeve member 7 is made of steel, the rear member 1a is made of aluminum or brass having a larger linear expansion coefficient than steel. By the way, since heat is generated from the rolling bearing 4 and transmitted to the movable sleeve member 7, the temperature of the movable sleeve member 7 is always higher than that of the rear member 1a. Therefore, for example, when the rear member 1a and the movable sleeve member 7 are made of the same material, the bearing gap δ1 becomes smaller as the temperature rises. With this configuration, even if there is a temperature difference in the direction in which the temperature of the movable sleeve member 7 that is closer to the rolling bearing 4 that is the heat generation source than the rear member 1a rises, the reduction in the bearing gap δ1 is reduced. δ1 can be set small.
Aluminum materials have poor surface hardness and inferior strength (Young's modulus, proof stress, tensile strength) compared to steel materials, but they can reduce contact surface pressure and prevent wear and deformation by semi-floating with hydraulic oil.
[0033]
The bearing clearance δ1 is set so that it does not become zero under the condition that the rear member 1a and the movable sleeve member 7 are at the same minimum temperature in the operating temperature range. As a result, if the temperature is the same in the operating temperature range, a bearing clearance can always be secured from the difference in linear expansion coefficient.
When the inner movable sleeve member 7 expands due to the heat generated by the rolling bearing 4 and the bearing gap δ1 becomes smaller, the flow rate of the hydraulic oil decreases and the temperature rises. This heat is transmitted to the rear member 1a having a large coefficient of linear expansion, and the inner diameter increases, thereby increasing the bearing clearance δ1. When both parts come into contact with each other, heat is more easily transferred and the gap is shifted in the increasing direction.
[0034]
When a temperature sensor is installed on the rear member 1a, a method of calling attention is taken when the temperature falls outside the set temperature range, and it can be determined whether or not an alarm is actually oscillated from the signal of the flow sensor.
[0035]
As the preload, a constant pressure preload using a spring, hydraulic pressure, pneumatic pressure, and a preload switching device using a hydraulic cylinder or the like are generally used. However, in the main spindle device, the preload spring 9 includes In addition, it is possible to provide a hydraulic cylinder that enables a fixed position preload, as well as a fixed position preload only, or in some cases, it can be applied to a spindle device having no preload. Further, the preload structure is not limited to that shown in the figure, and is arbitrary.
[0036]
Moreover, although the spindle apparatus of the figure is a motor built-in type in which the motor 6 is provided in the housing 1, it can be applied to a spindle apparatus that is not a motor built-in type. Further, the slide ball bearing 8 can be omitted from the spindle device of FIG. It is possible to eliminate the oil discharge chamber Ob by providing two or more hydraulic chambers Oa or by directly connecting the throttle gap t to the oil discharge hole 1d.
[0037]
【The invention's effect】
As described above, according to the first aspect of the invention, it is possible to obtain a large support rigidity and load capacity that can withstand heavy cutting. Therefore, the influence of the thermal change can be suppressed as much as possible, and the spindle can be smoothly rotated without rattling from the low speed range to the high speed range, so that the machining can be performed with high accuracy.
[0039]
Further, the assembly structure is simplified and the cost can be reduced. Even if the leaf spring is distorted due to a change in the thermal condition, it can be easily removed and always kept in a normal state.
[0040]
The spindle device of machine tool according to claim 1, wherein, when charged with slide ball bearings between the housing and the movable sleeve member, Oite the spindle equipment of a machine tool according to claim 1, which is disposed horizontally A hydraulic chamber that adds buoyancy to the movable sleeve member by hydraulic oil is connected to the oil supply hole between the lower half of the inner peripheral surface of the housing and the lower half of the outer peripheral surface of the movable sleeve member facing the housing. When a throttle gap is formed between the inner peripheral surface of the housing above the hydraulic chamber and the outer peripheral surface of the movable sleeve member in contact with the oil discharge hole to resist outflow of hydraulic oil. In either case, the frictional resistance in the axial direction of the movable sleeve member decreases, and the movable sleeve member moves smoothly in the axial direction accordingly.
[0041]
In the main spindle device for a machine tool according to any one of claims 1 to 3 , the preload means is attached to the movable sleeve member, the bearing preload is stabilized, and the rotation of the main spindle becomes smoother.
[Brief description of the drawings]
FIG. 1 is a vertical sectional view showing an embodiment of a spindle device of a machine tool according to the present invention.
FIG. 2 is a horizontal sectional view of the spindle device of FIG. 1;
FIG. 3 is a diagram illustrating a relationship between a hydraulic chamber, a throttle gap, and an oil discharge chamber.
FIG. 4 is a cross-sectional view showing a relationship between a hydraulic chamber and a throttle gap.
FIG. 5 is a cross-sectional view showing a second embodiment of the present invention.
FIG. 6 is a cross-sectional view showing a third embodiment of the present invention.
FIG. 7 is a sectional view of a spindle device of a conventional machine tool.
FIG. 8 is a cross-sectional view of another conventional spindle device.
9 is a cross-sectional view of the (IX-IX) portion of the spindle device of FIG. 8. FIG.
[Explanation of symbols]
1 Housing 1a Rear member (rear housing)
2 Spindle 4 Rolling bearing 7 Movable sleeve member 8 Slide ball bearing 9 Preload spring (preload means) 21, 22 Leaf spring 21a, 22a Outer end 21b, 22b Inner end Cya, Cyb Cylinder Pia, Pib Piston Oa Hydraulic chamber Ob Exhaust Oil chamber Oc clearance t Throttle clearance c Bearing clearance

Claims (4)

ハウジング内に、主軸がころがり軸受で回転自在に支持され、上記ハウジングところがり軸受との間に、可動スリーブ部材がころがり軸受の外輪に嵌着して主軸の軸方向に移動自在に嵌挿され、上記ハウジングと可動スリーブ部材との間に、主軸の軸方向に屈撓自在とされた板ばねが、環状とされて主軸を中心に配設され、その外端部をハウジングに固定するとともに、内端部を可動スリーブ部材に固定して設けられた工作機械の主軸装置において、
板ばねの外端部が油圧クランプ機構によってハウジングに着脱自在とされたことを特徴とする工作機械の主軸装置。
A main shaft is rotatably supported by a rolling bearing in the housing, and a movable sleeve member is fitted to the outer ring of the rolling bearing so as to be movable in the axial direction of the main shaft between the housing and the rolling bearing. A leaf spring, which is bendable in the axial direction of the main shaft, is disposed between the housing and the movable sleeve member in an annular shape around the main shaft, and its outer end is fixed to the housing. In the spindle device of the machine tool provided with the end fixed to the movable sleeve member,
A spindle device for a machine tool, wherein an outer end portion of a leaf spring is detachably attached to a housing by a hydraulic clamp mechanism.
ハウジングと可動スリーブ部材との間にスライドボールベアリングが挿入されたことを特徴とする請求項1記載の工作機械の主軸装置。2. The spindle device for a machine tool according to claim 1, wherein a slide ball bearing is inserted between the housing and the movable sleeve member. 水平に配置されたハウジングの内周面のほぼ下半分と、これに対向する可動スリーブ部材の外周面のほぼ下半分との間に、作動油により可動スリーブ部材に浮力を付加する油圧室が、油供給孔に連絡して形成され、
該油圧室上部のハウジングの内周面と可動スリーブ部材の外周面との間に、作動油の流出に抵抗をかける絞り隙間が、油排出孔に連絡して形成されたことを特徴とする請求項1記載の工作機械の主軸装置。
A hydraulic chamber for adding buoyancy to the movable sleeve member with hydraulic fluid between a substantially lower half of the inner peripheral surface of the horizontally disposed housing and a substantially lower half of the outer peripheral surface of the movable sleeve member facing the housing, Formed in communication with the oil supply hole,
A throttle gap that resists the outflow of hydraulic fluid is formed between the inner peripheral surface of the upper housing of the hydraulic chamber and the outer peripheral surface of the movable sleeve member so as to communicate with the oil discharge hole. Item 1. A spindle device for a machine tool according to Item 1.
可動スリーブ部材に予圧手段が付設されたことを特徴とする請求項1ないしのいずれか1つに記載の工作機械の主軸装置。The spindle device of machine tool according to any one of claims 1, characterized in that the preloading means movable sleeve member annexed 3.
JP12534199A 1999-04-30 1999-04-30 Machine tool spindle equipment Expired - Fee Related JP3613754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12534199A JP3613754B2 (en) 1999-04-30 1999-04-30 Machine tool spindle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12534199A JP3613754B2 (en) 1999-04-30 1999-04-30 Machine tool spindle equipment

Publications (2)

Publication Number Publication Date
JP2000317754A JP2000317754A (en) 2000-11-21
JP3613754B2 true JP3613754B2 (en) 2005-01-26

Family

ID=14907729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12534199A Expired - Fee Related JP3613754B2 (en) 1999-04-30 1999-04-30 Machine tool spindle equipment

Country Status (1)

Country Link
JP (1) JP3613754B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106061657A (en) * 2014-02-28 2016-10-26 日本精工株式会社 Main shaft device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005161457A (en) * 2003-12-02 2005-06-23 Nsk Ltd Main spindle device
JP4823931B2 (en) * 2007-02-02 2011-11-24 東芝機械株式会社 Roll processing equipment
CN101704117B (en) * 2009-07-06 2012-09-26 厦门精合电气自动化有限公司 High-speed mainshaft bearing constant-pressure pre-loading device
JP5455578B2 (en) * 2009-11-19 2014-03-26 株式会社ソディック Spindle device
JP6492459B2 (en) * 2014-02-28 2019-04-10 日本精工株式会社 Spindle device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106061657A (en) * 2014-02-28 2016-10-26 日本精工株式会社 Main shaft device
CN106061657B (en) * 2014-02-28 2019-08-30 日本精工株式会社 Main shaft device

Also Published As

Publication number Publication date
JP2000317754A (en) 2000-11-21

Similar Documents

Publication Publication Date Title
JP3949801B2 (en) Bearing device for machine tool spindle
CN101484716B (en) Tapered roller bearing with displaceable rib
US7900752B2 (en) Dual actuator friction brake assembly
EP2345819B1 (en) Journal bearing
RU2381396C1 (en) Brake (versions)
US7611287B2 (en) Slide bearing
KR101097654B1 (en) Radial rotary transfer assembly
RU2077630C1 (en) Self-weighted shaft with controlled flexure
JP3613754B2 (en) Machine tool spindle equipment
US5549427A (en) Device for transferring a pressure medium
JPS63314372A (en) Water-lubrication type bearing device for water wheel
JP5771357B2 (en) Hydraulic end float regulator
KR920021891A (en) Bearing assembly and submersible
JP3500530B2 (en) Spindle device of machine tool and monitoring method thereof
US3734581A (en) Tandem thrust bearing
JP2009115215A (en) Caliper brake device for vehicle
JPS62148102A (en) Main spindle device
US6698561B2 (en) Hydrodynamic clutch device
JP2006505408A (en) Connection block for hydraulic supply conduits of hydrostatic bearings in oil film bearings
JP2000266046A (en) Bearing preload hydraulic circuit, main spindle device and method for preload of roller bearing
JP2003184873A (en) Bearing equipment for automatic transmission
JP2020133821A (en) Preload adjusting type spindle unit
US20040216602A1 (en) Rotating fluid machine
ITMI20010593A1 (en) SELF-BALANCED AXIAL THRUST VERTICAL CENTRIFUGAL PUMP
KR100799546B1 (en) A tilting pad radial journal bearing which the hardness and cooling efficiency are improved

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041021

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees