JP3610274B2 - Waveguide and manufacturing method thereof - Google Patents

Waveguide and manufacturing method thereof Download PDF

Info

Publication number
JP3610274B2
JP3610274B2 JP2000043124A JP2000043124A JP3610274B2 JP 3610274 B2 JP3610274 B2 JP 3610274B2 JP 2000043124 A JP2000043124 A JP 2000043124A JP 2000043124 A JP2000043124 A JP 2000043124A JP 3610274 B2 JP3610274 B2 JP 3610274B2
Authority
JP
Japan
Prior art keywords
waveguide
metal plate
extruded
waveguide according
friction stir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000043124A
Other languages
Japanese (ja)
Other versions
JP2001237621A (en
Inventor
正樹 熊谷
直 田中
孝宏 宮野
良雄 土崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd, Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2000043124A priority Critical patent/JP3610274B2/en
Publication of JP2001237621A publication Critical patent/JP2001237621A/en
Application granted granted Critical
Publication of JP3610274B2 publication Critical patent/JP3610274B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、高周波電力を伝送する導波管、及び、その製造方法に関する。
【0002】
【従来の技術】
従来より、大口径の導波管には軽量で導電率の高いアルミニウム合金製の角パイプが最適と考えられ、この種の角パイプを配管して得られた導波管は、Spring−8等の施設に採用されている。従来は、溶接或いは押出加工により角パイプの導波管を製造していたが、近年、通常の押出機では製造できない大径の導波管に対する需要が高まってきた。
【0003】
【発明が解決しようとする課題】
このような大径の導波管を製造する方法としては、平板状の金属板をそのまま、或いは曲げて突き合わせることによって組み合わせ、断面方形の管状とした後、溶接によって互いに接合する方法が考えられる。ところが、溶接によって導波管を製造した場合、熱膨張と凝固収縮とによって大きな歪みが生じる。また、このように溶接を行った場合、溶接時の金属の溶け込み深さの調整が困難となる。そして、裏ビードを完全に出すと余盛り切除が必要となって、多大な工数を要する。特に、高周波電力を伝送する導波管では、内面に突起や亀裂があるとその部分から放電する可能性があり、内面の平滑性は極めて重要な要因となる。
【0004】
また、導波管の大型化に応じて管の肉厚も増加し、強度上5mm以上の板厚が要求されるようになると、通常のTIG溶接やMIG溶接では多層溶接とせざるを得ない。この場合、何回も溶接することにより入熱が大きくなって歪みが増大し、合金によっては前層に微小割れを生じることがある。
【0005】
そこで、本発明は、大型化に良好に対応でき、しかも、歪みが少なくて内面も平滑な導波管を提供することを目的としてなされた。
【0006】
【課題を解決するための手段及び発明の効果】
上記目的を達するためになされた請求項1記載の発明は、金属板または押出形材を断面方形の管状に組み合わせ、該各金属板または押出形材を互いに接合してなる導波管であって、上記各金属板または押出形材が、その突き合わせ部分に沿って回転工具を回転しながら移動させることによって摩擦撹拌接合され、余盛りの切除等の手直しが必要ない程度に内面が滑らかなことを特徴とする。
【0007】
摩擦撹拌接合は、入熱が少なく軟化や歪みの程度が軽い接合方法として、近年提案されている(例えば、特許2712838号)。この方法は、鋼鉄等の硬質の裏当ての上にアルミニウム合金等の軟質素材を突き合わせて拘束し、その突き合わせ部分に沿って硬質のピン型の回転工具を高速回転させながら移動させる方法である。この方法は、接合部が溶融しないのが特徴で、接合部の温度もそれ程上昇しない。更に、摩擦撹拌接合では、ルート部(接合部裏側)に未接合の亀裂が生じず、しかもそのルート部の接合面は極めて滑らかになる。管状の部材に摩擦撹拌接合を適用することは、今日まで不可能と考えられていたが、本願出願人は、管の内面に硬質の裏当てを配設することによってそれを可能とした。
【0008】
そこで、本発明では、金属板または押出形材を断面方形の管状に組み合わせ、それらを摩擦撹拌接合によって接合している。このため、複数の部材を接合することによって大型化に良好に対応でき、しかも、摩擦撹拌接合によって各部材を接合しているので極めて歪みが少ない。更に、摩擦撹拌接合によって各部を接合しているので、管の内面(すなわちルート部)には未接合の亀裂が生じず、しかもその内面が極めて滑らかになる。従って、本発明では、内面の平滑性も極めて良好に確保することができ、放電等の発生を良好に防止することができる。更に、本発明の導波管は、摩擦撹拌接合によって上記金属板等を接合しているので、余盛り切除等の作業を必要とすることなく上記平滑性等が得られる。よって、本発明の導波管は、製造が容易であると共に大型化に良好に対応でき、しかも、歪みが少なくて内面も平滑である。
【0009】
請求項2記載の発明は、請求項1記載の構成に加え、上記金属板が曲げて突き合わせることにより管状に組み合わせられたことを特徴とする。
本発明では、金属板を曲げて突き合わせることによって管状に組み合わせ、その各金属板の突き合わせ部分に前述の摩擦撹拌接合を施すことによって導波管を得ている。このため、本発明の導波管では、請求項1記載の発明の効果に加えて、製造が一層容易になるといった効果が生じる。
【0010】
請求項3記載の発明は、請求項2記載の構成に加え、上記金属板が、断面コの字型,断面L字型,または断面ロの字型に曲げて端縁を突き合わせることにより、管状に組み合わせられたことを特徴とする。
本発明では、金属板を断面コの字型,断面L字型,または断面ロの字型に曲げて端縁を突き合わせることによって管状に組み合わせているので、その組み合わせ作業が一層容易になる。このため、本発明の導波管では、請求項2記載の発明の効果に加えて、製造が更に一層容易になるといった効果が生じる。
【0011】
請求項4記載の発明は、請求項1記載の構成に加え、上記押出形材が断面コの字型または断面L字型に形成されたことを特徴とする。
本発明では、断面コの字型または断面L字型に形成された押出形材を突き合わせることによって管状に組み合わせ、その突き合わせ部分に前述の摩擦撹拌接合を施すことによって導波管を得ている。このため、押出形材を管状に組み合わせる作業が一層容易になる。従って、本発明の導波管では、請求項1記載の発明の効果に加えて、製造が一層容易になるといった効果が生じる。
【0012】
請求項5記載の発明は、請求項1〜4のいずれかに記載の構成に加え、上記管状に組み合わせられた金属板または押出形材の一端に、金属製のフランジ部材が外嵌され、該フランジ部材と上記金属板または押出形材との突き合わせ部分に沿って、内面にビード表面が位置しないように上記摩擦撹拌接合がなされたことを特徴とする。
【0013】
本発明では、上記管状に組み合わせられた金属板または押出形材の一端にフランジ部材を接合しているので、導波管をダクトのように曲げて配管することが容易になる。従来は、この種のフランジ部材の接合を不活性ガスアーク溶接によって行っていたので、歪みが大きく手直しが必要であったが、本発明では、前述の摩擦撹拌接合によって接合しているので歪みが極めて小さい。しかも、本発明では、内面にビード表面が位置しないようにその摩擦撹拌接合を行っているので、内面の平滑性も良好に確保することができる。
【0014】
従って、本発明の導波管では、歪みが少なくて内面も平滑であるといった請求項1〜4のいずれかに記載の発明の効果を確保したまま、その効果に加えて更に、ダクトのように曲げて配管することが容易になるといった効果が生じる。
請求項6記載の発明は、請求項1〜5のいずれかに記載の構成に加え、上記金属板または押出形材がアルミニウムまたはその合金によって構成されたことを特徴とする。
【0015】
本発明では、上記金属板または押出形材をアルミニウムまたはその合金によって構成している。アルミニウムまたはその合金は、前述のように、導電率が高いので、導波管としての性能が一層向上する。従って、本発明の導波管では、請求項1〜5のいずれかに記載の発明の効果に加えて、電気的伝送ロスが少ないため性能が一層向上するといった効果が生じる。
【0016】
請求項7記載の発明は、請求項1〜5のいずれかに記載の構成に加え、上記金属板または押出形材が銅またはその合金によって構成されたことを特徴とする。本発明では、上記金属板または押出形材を銅またはその合金によって構成している。銅またはその合金は、導電率が高く加工性に優れ酸に対しても強い。従って、本発明の導波管では、請求項1〜5のいずれかに記載の発明の効果に加えて、電気的伝送ロスが少なく加工性の向上に伴って製造が容易になると共に、良好な耐環境を有するといった効果が生じる。
【0017】
請求項8記載の発明は、請求項1〜5のいずれかに記載の構成に加え、上記金属板または押出形材が鉄またはその合金によって構成されたことを特徴とする。このため、本発明では、請求項1〜5のいずれかに記載の発明の効果に加えて、内面に銅メッキを施すことにより電気的伝送ロスを小さくできると共に、安価に製造できるといった効果が生じる。
【0018】
請求項9記載の発明は、請求項1〜8のいずれかに記載の導波管を製造する製造方法であって、上記管状に組み合わせられた金属板または押出形材の内面に硬質の裏当てを配設して、上記摩擦撹拌接合を行うことを特徴とする。
前述のように、管状の部材に摩擦撹拌接合を適用することは今日まで不可能のと考えられていたが、本発明では、管状に組み合わせられた金属板または押出形材の内面に硬質の裏当てを配設して摩擦撹拌接合を行っている。このため、導波管を摩擦撹拌接合によって容易に製造することができ、しかも、得られた導波管は、歪みが少なく内面も平滑になる。従って、本発明では、歪みが少なく内面も平滑な導波管を容易に製造することができるといった効果が生じる。
【0019】
請求項10記載の発明は請求項9記載の構成に加え、上記裏当てが、上記管状に組み合わせられた金属板または押出形材の内部で拡縮することを特徴とする。本発明では、裏当てが上記管状に組み合わせられた金属板または押出形材の内部で拡縮する。このため、裏当てを収縮させた状態で上記内部に挿入し、続いて裏当てを拡張させることにより、上記金属板または押出形材の突き合わせ部分を内側から極めて強固に支持することができる。従って、本発明では、上記摩擦撹拌接合を極めて確実に実行することができる。よって、本発明では、請求項9記載の発明の効果に加えて、得られる導波管の信頼性を高めると共に、接合不良の発生を防止してて歩留まりを向上させることができるといった効果が生じる。
【0020】
請求項11記載の発明は、請求項9記載の構成に加え、上記裏当てが、上記管状に組み合わせられた金属板または押出形材の内部を貫通する梁であることを特徴とする。
本発明では、裏当てが上記管状に組み合わせられた金属板または押出形材の内部を貫通する梁であるので、その梁に沿って上記管の長さ方向に連続的に摩擦撹拌接合を実行することができる。このため、摩擦撹拌接合によって上記金属板または押出形材を接合する作業が極めて容易になる。従って、本発明では、請求項9記載の発明の効果に加えて、導波管の製造を一層容易にすることができるといった効果が生じる。
【0021】
【発明の実施の形態】
次に、本発明の実施の形態を図面と共に説明する。本実施の形態では、金属板または押出形材を断面方形の管状に組み合わせ、その金属板または押出形材の突き合わせ部分に沿って硬質の回転工具1(図1〜図5参照)を高速回転させながら移動させた。これによって、上記組み合わせられた金属板または押出形材が互いに接合され、導波管が得られた。なお、回転工具1は、図1〜図5に示すように、大径の肩部1aと、その肩部1aの下端から突出した小径の柱1bとから構成され、図示しない駆動系から駆動力を伝達されることにより、柱1bの中心軸回りに回転すると共に金属の突き合わせ部分に沿って水平移動する。すると、その突き合わせ部分では、上記突き合わせられた金属が柱1bによって攪拌され、接合される。このような摩擦撹拌接合は、入熱が少なく軟化や歪みの程度が軽い接合方法として知られている。更に、摩擦撹拌接合では、接合部の温度もそれ程上昇しないのでブローホールや高温割れも発生せず、ルート部には未接合の亀裂が生じず、しかもそのルート部の接合面は極めて滑らかになる。
【0022】
本実施の形態では、このような摩擦撹拌接合を利用して導波管を製造したので、歪みが少なくて内面も平滑な導波管を容易に製造することができた。以下、本発明の実施の形態を具体的な実施例を挙げて説明する。なお、後述の図4,図5は切断端面図に対応する図であるが、説明の便宜上、断面を表すハッチングを省略している。
【0023】
【実施例】
実施例1
3003合金のH34材からなる板厚6mmの板を切断し、一対の広幅の平面板11と一対の狭幅の平面板13とを得た。これらを、図1に示すように、長辺600mm,短辺300mm,長さ1000mmの角パイプ状に組み合わせ、内面に硬質の裏当てジグ15を配設して拘束した。各平面板11,13の突き合わせ部分に沿って、回転工具1を回転させながら、接合速度500mm/分で水平移動させて摩擦撹拌接合を行った。接合部を99で表す(他図も同様)。4箇所の上記突き合わせ部分全てに対して、長手方向に摩擦撹拌接合を行って得られた導波管19は、長さ方向で−2mm〜0mmの寸法精度を有し、反り、曲がりは5mm以内であり、何等手直しを必要とすることなく所望の寸法精度が得られた。また、内面も極めて平滑であり、突起も未接合の亀裂も観察できなかった。このため、余盛り切除等の手直しを何等施さなくても、放電等の発生を充分に防止することができる。
【0024】
実施例2
1050合金のH14材からなる板厚5mmの板21を切り出し、図2に示すように、長辺600mm,短辺300mm,長さ2000mmの角パイプ状になるように断面ロの字型に曲げて端縁を突き合わせ、定盤上に拘束した。上記突き合わせ部分の内面に硬質の裏当てジグ25を配設して拘束し、回転工具1を回転させながら、接合速度500mm/分で水平移動させて摩擦撹拌接合を行った。得られた導波管29は、長さ方向で−2mm〜0mmの寸法精度を有し、反り、曲がりは5mm以内であり、何等手直しを必要とすることなく所望の寸法精度が得られた。また、内面も極めて平滑であり、突起も未接合の亀裂も観察できなかった。このため、余盛り切除等の手直しを何等施さなくても、放電等の発生を充分に防止することができる。
【0025】
実施例3
1100合金のH34材からなる板厚10mm,幅1200mm,長さ3000mmの板31,32を、ベンダーでコの字型に曲げた。これを、図3に示すように、長辺800mm,短辺400mmの角パイプ状になるように向かい合わせて端縁を突き合わせ、両側から拘束した。更に、上記突き合わせ部分の内面に硬質の裏当てジグ35,35をそれぞれ配設して、油圧ジャッキで外方向に加圧することにより隙間が0.05mm以内になるように支持した。続いて、回転工具1を回転させながら、接合速度500mm/分で水平移動させて、上記突き合わせ部分を摩擦撹拌接合した。なお、接合に当たっては、片面を接合した後、裏当てジグ35ごと板31,32を上下反転し、同様に幅方向で拘束した上で反対側を接合した。得られた導波管39は、長さ方向で−2mm〜0mmの寸法精度を有し、反り、曲がりは7mm以内であり、何等手直しを必要とすることなく所望の寸法精度が得られた。また、内面も極めて平滑であり、突起も未接合の亀裂も観察できなかった。このため、余盛り切除等の手直しを何等施さなくても、放電等の発生を充分に防止することができる。
【0026】
実施例4
6N01合金のT5材からなる板厚5mmのコの字型の押出形材を、図3と同様に2本組み合わせて、長辺600mm,短辺300mm,長さ4000mmの角パイプ状になるように突き合わせ、両側から拘束した。突き合わせ部分の内面に硬質の裏当てジグを配設して、油圧ジャッキで外方向に加圧して支持した。続いて、回転工具1を回転させながら、接合速度500mm/分で水平移動させて、上記突き合わせ部分を摩擦撹拌接合した。なお、接合に当たっては、片面を接合した後、裏当てジグごと各押出形材を上下反転し、同様に幅方向で拘束した上で反対側を接合した。得られた導波管は、長さ方向で−5mm〜0mmの寸法精度を有し、反り、曲がりは9mm以内であり、何等手直しを必要とすることなく所望の寸法精度が得られた。また、内面も極めて平滑であり、突起も未接合の亀裂も観察できなかった。このため、余盛り切除等の手直しを何等施さなくても、放電等の発生を充分に防止することができる。
【0027】
実施例5
無酸素銅からなる板厚5mmの板を段違いにコの字型に曲げて組み合わせ、長辺600mm,短辺300mm,長さ4000mmの角パイプ状になるように突き合わせて、両側から拘束した。突き合わせ部分の内面に硬質の裏当てジグを配設して、油圧ジャッキで外方向に加圧して支持した。続いて、回転工具1を回転させながら、接合速度150mm/分で水平移動させて、上記突き合わせ部分を摩擦撹拌接合した。なお、接合に当たっては、片面を接合した後、裏当てジグごと各押出形材を上下反転し、同様に幅方向で拘束した上で反対側を接合した。得られた導波管は、長さ方向で−4mm〜0mmの寸法精度を有し、反り、曲がりは6mm以内であり、何等手直しを必要とすることなく所望の寸法精度が得られた。また、内面も極めて平滑であり、突起も未接合の亀裂も観察できなかった。このため、余盛り切除等の手直しを何等施さなくても、放電等の発生を充分に防止することができる。
【0028】
実施例6
実施例3の導波管39の端面を切断・面削し、予め成形した厚さ10mmのフランジ(フランジ部材)41を外嵌し、図4に示すように鋼製裏当てジグ43,45と共に拘束した。導波管39とフランジ41との突き合わせ部分に、上記端面の側から回転工具1を挿入し、回転させながら接合速度250mm/分で水平移動させて、上記突き合わせ部分を摩擦撹拌接合した。導波管39の内面には接合の影響はなく、接合後の寸法精度は接合部99で0.3mm変形しただけで良好であった。
【0029】
実施例7
実施例2の導波管29を長手方向に切断し、予め成形した厚さ6mmのフランジ(フランジ部材)51を外嵌して図5に示す配置に拘束した。続いて、1箇所ごとに鋼製裏当てを配設した状態で、フランジ51の表側と裏側とから次のように摩擦撹拌接合を行った。フランジ51の隅肉側(裏側)には、幅6mmに渡って45°に傾斜した傾斜部51aを設け、その傾斜部51aの表面に垂直な方向から回転工具1を挿入した。また、導波管29の端面の側(表側)からは、導波管29とフランジ51との突き合わせ部分に、上記端面の側から回転工具1を挿入した。回転工具1をそれぞれ回転させながら、接合速度200mm/分で水平移動させて摩擦撹拌接合を行った結果、導波管29の内面には接合の影響はなく、接合後の寸法精度は接合部99で0.5mm変形しただけで良好であった。
【0030】
なお、実施例6,7では、いずれも、導波管39,29の内面にビード表面が位置することはなく、導波管39,29において得られた内面の平滑性はそのまま確保することができた。
比較例1
3003合金のH34材からなる板厚6mmの板を切断し、一対の広幅の平面板と一対の狭幅の平面板とを得た。これらを、図1と同様に、長辺600mm,短辺300mm,長さ1000mmの角パイプ状に組み合わせ、接合部の裏側の溝付き(裏ビートの形状保持のため)鋼製裏当てジグに対して拘束した。交流TIG溶接により、電流180Aにて160mm/分で溶接した。この溶接も、実施例1と同様に、4箇所の突き合わせ部分全てに対して長手方向に行った。接合部裏面には、裏ビートの出ている箇所と出ていない箇所とがあった。裏ビートの出ていない箇所をTIG溶接にて補修溶接し、裏ビートを研磨で仕上げた。得られた導波管の寸法精度は、長さ方向で−10mm〜2mmで、反り、曲がりは15mmであり、歪みも上記実施例に比べて大きかった。
【0031】
比較例2
1100合金のH34材からなる板厚10mm,幅1200mm,長さ3000mmの板を、ベンダーでコの字型に曲げた。この端面を開先加工し、長辺800mm,短辺400mmの角パイプ状になるように向かい合わせて突き合わせ、両側から拘束した。突き合わせ部分の内面に硬質の溝付き裏当てジグを当て、それに対向する片側の表面より、MIG溶接にて、電流240A、電圧25V、溶接速度500mm/分で2層に分けて溶接した。裏ビードは出ていたが、角変形が大きく、管断面における中央部の高さが10mm小さくなり、反り、曲がりも30mmと大きかった。
【0032】
比較例3
実施例3の導波管39の端面を切断・開先加工し、予め成形した厚さ10mmのフランジを溝付きの鋼製裏当てジグと共に拘束した。端面側(表側)とその裏側とから交流TIG溶接により、電流180Aにて160mm/分で溶接した。端面には高さ3mmの余盛りができたので面削した。裏側には、脚長が付いたが、その凝固収縮が大きく、フランジに大きく反りが生じた。
【0033】
このように、上記各実施例の導波管は、製造において摩擦撹拌接合を利用したので、製造が容易であると共に大型化に良好に対応でき、しかも、歪みが少なくて内面も平滑である。特に、上記各実施例では、導波管の内面側に裏当てジグを配設して摩擦撹拌接合を行っているので、その内面の平滑性を極めて良好に確保することができる。また、実施例2,3,5の導波管では、金属板を断面コの字型または断面ロの字型に曲げて端縁を突き合わせることによって角パイプ状にしているので、製造が一層容易になる。実施例4でも同様に、断面コの字型の押出形材を突き合わせることによって角パイプ状にしているので、平板状の押出形材を利用する場合に比べて製造を容易にすることができる。
【0034】
なお、4枚の金属板を断面L型に曲げて端縁を突き合わせたり、断面L字型の押出形材を突き合わせたりして導波管を製造した場合も、同様に製造を容易にすることができる。特に、押出形材を利用する場合は、断面L字型の押出形材を利用した方が一層大きな導波管を容易に製造することができる。
【0035】
また、実施例6,7では、導波管39,29における歪みが少なく内面も平滑であるといった特性を失うことなく、フランジ41,51を設けることができた。しかも、フランジ41,51には殆ど歪みが発生していない。このため、このようにフランジ41,51を設けた導波管39,29では、前述の効果を何等失うことなく、ダクトのように曲げて配管することが容易になるといった新たな効果が生じる。
【0036】
以上、具体的な実施例を挙げて本発明を説明したが、本発明は上記実施例及び実施の形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の形態で実施することができる。例えば、本発明は、摩擦撹拌接合が可能な金属であればいかなる金属によって構成された導波管にも適用することができ、実施例1,2,3,4,6,または7の導波管を銅またはその合金によって製造してもよい。但し、アルミニウムまたはその合金は導電率が高い。このため、実施例1,2,3,4,6,7に記載のようにアルミニウム合金によって導波管を構成した場合、導波管としての性能が一層向上する。一方、銅またはその合金は、導電率も高く加工性に優れ酸に対しても強い。このため、実施例5に記載のように銅によって導波管を構成した場合、加工性の向上に伴って製造が容易になると共に、良好な耐環境性が得られる。更に、実施例1〜7の導波管を鉄またはその合金によって製造してもよい。この場合、内面に銅メッキを施すことにより電気的伝送ロスを小さくできると共に、安価に製造することができる。
【0037】
また、実施例3,4,5では、裏当てジグを油圧ジャッキで外方向に加圧しているが、裏当てジグを外方向に加圧する手段としては、機械的な手段、気圧,または液圧を利用する手段等、種々考えられる。このように、裏当てジグを内側から拡張させて上記突き合わせ部分を支持する場合、その突き合わせ部分を内側から極めて強固に支持することができる。このため、上記摩擦撹拌接合を一層確実に実行することができ、延いては、得られる導波管の信頼性を高めると共に、接合不良の発生を防止して歩留まりを向上させることができる。一方、実施例2で用いた裏当てジグ25のように、裏当てジグを導波管を貫通する梁とした場合、その梁に沿って上記管の長さ方向に連続的に摩擦撹拌接合を実行することができ、導波管の製造を一層容易にすることができる。
【図面の簡単な説明】
【図1】実施例1の導波管及びその製造方法を表す説明図である。
【図2】実施例2の導波管及びその製造方法を表す説明図である。
【図3】実施例3の導波管及びその製造方法を表す説明図である。
【図4】実施例6の導波管及びその製造方法を表す説明図である。
【図5】実施例7の導波管及びその製造方法を表す説明図である。
【符号の説明】
1…回転工具 1a…肩部 1b…柱 11,13…平面板
15,25,35,43,45…裏当てジグ 19,29,39…導波管
21,31,32…板 41,51…フランジ 51a…傾斜部
99…接合部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a waveguide for transmitting high-frequency power and a method for manufacturing the same.
[0002]
[Prior art]
Conventionally, it is considered that a square pipe made of aluminum alloy having a light weight and high conductivity is optimal for a large-diameter waveguide, and a waveguide obtained by piping this kind of square pipe is, for example, Spring-8. It is adopted in the facility. Conventionally, rectangular pipe waveguides have been manufactured by welding or extrusion, but in recent years, there has been an increasing demand for large-diameter waveguides that cannot be manufactured by ordinary extruders.
[0003]
[Problems to be solved by the invention]
As a method of manufacturing such a large-diameter waveguide, a method of concatenating flat metal plates as they are or by bending and joining them to form a rectangular tube and then joining them together by welding is conceivable. . However, when a waveguide is manufactured by welding, large distortion occurs due to thermal expansion and solidification shrinkage. In addition, when welding is performed in this way, it is difficult to adjust the depth of metal penetration during welding. And if a back bead is taken out completely, extra cutting will be needed, and a lot of man-hours will be required. In particular, in a waveguide that transmits high-frequency power, if there are protrusions or cracks on the inner surface, there is a possibility of discharging from that portion, and the smoothness of the inner surface is an extremely important factor.
[0004]
In addition, as the waveguide becomes larger, the thickness of the tube increases, and when a thickness of 5 mm or more is required in terms of strength, ordinary TIG welding or MIG welding must be multilayer welding. In this case, by welding many times, heat input becomes large and distortion increases, and depending on the alloy, a microcrack may be generated in the front layer.
[0005]
SUMMARY OF THE INVENTION The present invention has been made with the object of providing a waveguide that can cope with an increase in size and that has a low distortion and a smooth inner surface.
[0006]
[Means for Solving the Problems and Effects of the Invention]
In order to achieve the above object, the invention according to claim 1 is a waveguide obtained by combining metal plates or extruded profiles into a tube having a square cross section and joining the metal plates or extruded profiles together. Each metal plate or extruded profile is friction stir welded by rotating the rotary tool along the abutting portion, and the inner surface is smooth to the extent that reworking such as cutting off the surplus is not necessary. Features.
[0007]
Friction stir welding has recently been proposed as a joining method that has low heat input and a low degree of softening and distortion (for example, Japanese Patent No. 2712838). In this method, a soft material such as an aluminum alloy is abutted and restrained on a hard backing such as steel, and a hard pin-type rotary tool is moved along the abutting portion while rotating at high speed. This method is characterized in that the joint does not melt, and the temperature of the joint does not rise so much. Further, in the friction stir welding, an unjoined crack does not occur in the root portion (back side of the joint portion), and the joint surface of the root portion becomes extremely smooth. Although applying friction stir welding to tubular members has been considered impossible to date, the applicant has made this possible by placing a hard backing on the inner surface of the tube.
[0008]
Therefore, in the present invention, the metal plate or the extruded shape member is combined into a tube having a square cross section, and these are joined by friction stir welding. For this reason, it is possible to satisfactorily cope with an increase in size by joining a plurality of members, and furthermore, since each member is joined by friction stir welding, there is very little distortion. Furthermore, since each part is joined by friction stir welding, an unjoined crack does not occur on the inner surface (that is, the root portion) of the tube, and the inner surface becomes extremely smooth. Therefore, in the present invention, the smoothness of the inner surface can be ensured very well, and the occurrence of discharge or the like can be prevented satisfactorily. Furthermore, since the waveguide of the present invention joins the metal plate and the like by friction stir welding, the smoothness and the like can be obtained without requiring extra work such as excision. Therefore, the waveguide of the present invention is easy to manufacture and can cope with an increase in size, and has little distortion and a smooth inner surface.
[0009]
The invention according to claim 2 is characterized in that, in addition to the structure according to claim 1, the metal plates are combined into a tubular shape by bending and butting.
In the present invention, the waveguide is obtained by bending the metal plates and combining them into a tubular shape, and applying the above-mentioned friction stir welding to the butted portions of the metal plates. For this reason, in the waveguide of the present invention, in addition to the effect of the first aspect of the invention, an effect that the manufacture becomes easier is produced.
[0010]
In addition to the structure of claim 2, the invention according to claim 3 is configured such that the metal plate is bent into a U-shaped cross-section, an L-shaped cross-section, or a U-shaped cross-section and abuts the edges. It is combined in a tubular shape.
In the present invention, the metal plates are combined into a tubular shape by bending the metal plate into a U-shaped cross-section, an L-shaped cross-section, or a U-shaped cross-section and abutting the edges, so that the combination work is further facilitated. For this reason, in the waveguide of the present invention, in addition to the effect of the invention described in claim 2, the effect that the manufacture is further facilitated occurs.
[0011]
The invention described in claim 4 is characterized in that, in addition to the structure described in claim 1, the extruded shape member is formed in a U-shaped section or an L-shaped section.
In the present invention, an extruded shape formed in a U-shaped cross section or an L-shaped cross section is combined into a tubular shape by abutting, and a waveguide is obtained by applying the aforementioned friction stir welding to the abutting portion. . For this reason, the operation | work which combines an extrusion shape material in a tube becomes still easier. Therefore, in the waveguide of the present invention, in addition to the effect of the first aspect of the invention, an effect that the manufacture becomes easier is produced.
[0012]
According to a fifth aspect of the present invention, in addition to the configuration according to any one of the first to fourth aspects, a metal flange member is externally fitted to one end of the tubular metal plate or extruded profile, The friction stir welding is performed so that the bead surface is not located on the inner surface along the abutting portion between the flange member and the metal plate or the extruded profile.
[0013]
In the present invention, since the flange member is joined to one end of the metal plate or extruded profile combined in the above-described tubular shape, it becomes easy to bend the waveguide like a duct and perform piping. Conventionally, since this type of flange member was joined by inert gas arc welding, the distortion was large and it was necessary to rework it. However, in the present invention, since the above-mentioned friction stir welding is used, the distortion is extremely high. small. Moreover, in the present invention, since the friction stir welding is performed so that the bead surface is not located on the inner surface, the smoothness of the inner surface can be ensured well.
[0014]
Therefore, in the waveguide according to the present invention, while maintaining the effect of the invention according to any one of claims 1 to 4 such that the distortion is small and the inner surface is smooth, in addition to the effect, a duct is further provided. The effect that it becomes easy to bend and piping is produced.
The invention according to claim 6 is characterized in that, in addition to the structure according to any one of claims 1 to 5, the metal plate or the extruded profile is made of aluminum or an alloy thereof.
[0015]
In the present invention, the metal plate or extruded profile is made of aluminum or an alloy thereof. As described above, aluminum or an alloy thereof has high electrical conductivity, so that the performance as a waveguide is further improved. Therefore, in the waveguide according to the present invention, in addition to the effect of the invention according to any one of claims 1 to 5, there is an effect that the performance is further improved because the electrical transmission loss is small.
[0016]
In addition to the structure in any one of Claims 1-5, invention of Claim 7 is characterized by the said metal plate or extrusion shape material being comprised by copper or its alloy. In the present invention, the metal plate or extruded profile is made of copper or an alloy thereof. Copper or an alloy thereof has high electrical conductivity, excellent workability, and is strong against acids. Therefore, in the waveguide according to the present invention, in addition to the effects of the invention according to any one of claims 1 to 5, the electrical transmission loss is small, and the manufacture becomes easy with the improvement of workability, and the waveguide is good. The effect of having an environment resistance occurs.
[0017]
The invention according to claim 8 is characterized in that, in addition to the structure according to any one of claims 1 to 5, the metal plate or the extruded profile is made of iron or an alloy thereof. For this reason, in addition to the effect of the invention according to any one of claims 1 to 5, the present invention has an effect that the electrical transmission loss can be reduced and the manufacturing cost can be reduced by applying copper plating to the inner surface. .
[0018]
A ninth aspect of the present invention is a manufacturing method for manufacturing the waveguide according to any one of the first to eighth aspects, wherein a hard backing is provided on the inner surface of the metal plate or extruded profile combined in the tubular shape. And the friction stir welding is performed.
As described above, it has been considered to be impossible to apply friction stir welding to a tubular member until now. However, in the present invention, a rigid back is applied to the inner surface of a metal plate or an extruded profile combined in a tubular shape. Friction stir welding is performed with a pad. For this reason, the waveguide can be easily manufactured by friction stir welding, and the obtained waveguide is less distorted and the inner surface becomes smooth. Therefore, the present invention produces an effect that a waveguide with less distortion and a smooth inner surface can be easily manufactured.
[0019]
The invention described in claim 10 is characterized in that, in addition to the structure described in claim 9, the backing expands / contracts inside the metal plate or extruded profile combined in the tubular shape. In the present invention, the backing expands and contracts inside the metal plate or extruded profile combined in the above tubular shape. Therefore, by inserting the backing into the inside in a contracted state and subsequently expanding the backing, the butt portion of the metal plate or extruded profile can be supported extremely firmly from the inside. Therefore, in the present invention, the above friction stir welding can be performed very reliably. Therefore, in the present invention, in addition to the effect of the invention according to the ninth aspect, the reliability of the obtained waveguide is enhanced, and the yield can be improved by preventing the occurrence of defective bonding. .
[0020]
The invention described in claim 11 is characterized in that, in addition to the configuration described in claim 9, the backing is a beam penetrating the inside of the metal plate or extruded profile combined in the tubular shape.
In the present invention, since the backing is a beam penetrating the inside of the tubular metal plate or extruded profile, the friction stir welding is continuously performed in the length direction of the tube along the beam. be able to. For this reason, the operation | work which joins the said metal plate or extruded shape material by friction stir welding becomes very easy. Therefore, in the present invention, in addition to the effect of the ninth aspect of the invention, there is an effect that the manufacture of the waveguide can be further facilitated.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings. In the present embodiment, a metal plate or an extruded profile is combined into a tube having a square cross section, and the hard rotary tool 1 (see FIGS. 1 to 5) is rotated at a high speed along the butted portion of the metal plate or the extruded profile. I moved it. As a result, the combined metal plates or extruded profiles were joined together to obtain a waveguide. 1 to 5, the rotary tool 1 is composed of a large-diameter shoulder 1a and a small-diameter column 1b protruding from the lower end of the shoulder 1a, and a driving force from a driving system (not shown). Is transmitted around the center axis of the pillar 1b and moved horizontally along the metal abutting portion. Then, at the butt portion, the butt metal is agitated and joined by the pillar 1b. Such friction stir welding is known as a joining method with little heat input and a low degree of softening and distortion. Furthermore, in friction stir welding, the temperature of the joint does not rise so much, so no blowholes or hot cracks occur, no unjoined cracks occur in the root, and the joint surface of the root becomes extremely smooth. .
[0022]
In this embodiment, since the waveguide is manufactured using such friction stir welding, a waveguide having a small distortion and a smooth inner surface can be easily manufactured. Hereinafter, embodiments of the present invention will be described with reference to specific examples. 4 and 5 to be described later correspond to the cut end views, but the hatching representing the cross section is omitted for convenience of explanation.
[0023]
【Example】
Example 1
A 6 mm thick plate made of 3003 alloy H34 material was cut to obtain a pair of wide flat plates 11 and a pair of narrow flat plates 13. As shown in FIG. 1, these were combined into a square pipe shape having a long side of 600 mm, a short side of 300 mm, and a length of 1000 mm, and a hard backing jig 15 was disposed on the inner surface and restrained. Friction stir welding was performed by horizontally moving the rotating tool 1 along the abutting portions of the flat plates 11 and 13 at a joining speed of 500 mm / min. The joint portion is represented by 99 (the same applies to other drawings). The waveguide 19 obtained by performing friction stir welding in the longitudinal direction with respect to all of the four butted portions has a dimensional accuracy of -2 mm to 0 mm in the length direction, and warpage and bending are within 5 mm. Thus, the desired dimensional accuracy was obtained without requiring any reworking. Also, the inner surface was extremely smooth, and no protrusions or unbonded cracks could be observed. For this reason, the occurrence of discharge or the like can be sufficiently prevented without any rework such as extra excision.
[0024]
Example 2
A plate 21 made of 1050 alloy H14 and having a thickness of 5 mm is cut out and bent into a square pipe shape having a long side of 600 mm, a short side of 300 mm, and a length of 2000 mm as shown in FIG. The edges were matched and restrained on the surface plate. A hard backing jig 25 was disposed and restrained on the inner surface of the abutting portion, and while rotating the rotary tool 1, it was moved horizontally at a welding speed of 500 mm / min to perform friction stir welding. The obtained waveguide 29 had a dimensional accuracy of -2 mm to 0 mm in the length direction, warpage and bending were within 5 mm, and a desired dimensional accuracy was obtained without requiring any reworking. Also, the inner surface was extremely smooth, and no protrusions or unbonded cracks could be observed. For this reason, the occurrence of discharge or the like can be sufficiently prevented without any rework such as extra excision.
[0025]
Example 3
Plates 31 and 32 made of H34 material of 1100 alloy and having a plate thickness of 10 mm, a width of 1200 mm, and a length of 3000 mm were bent into a U-shape by a vendor. As shown in FIG. 3, the ends were abutted so as to form a square pipe having a long side of 800 mm and a short side of 400 mm, and restrained from both sides. Further, hard backing jigs 35 and 35 were respectively disposed on the inner surfaces of the abutting portions, and the gaps were supported within 0.05 mm by applying pressure outward with a hydraulic jack. Subsequently, while rotating the rotary tool 1, it was moved horizontally at a joining speed of 500 mm / min, and the butt portion was friction stir welded. In joining, after joining one side, board 31 and 32 were turned upside down with backing jig 35, and after constraining similarly in the width direction, the other side was joined. The obtained waveguide 39 had a dimensional accuracy of -2 mm to 0 mm in the length direction, warpage and bending were within 7 mm, and a desired dimensional accuracy was obtained without requiring any reworking. Also, the inner surface was extremely smooth, and no protrusions or unbonded cracks could be observed. For this reason, the occurrence of discharge or the like can be sufficiently prevented without any rework such as extra excision.
[0026]
Example 4
In the same manner as in FIG. 3, two 5 mm thick U-shaped extruded members made of T5 material of 6N01 alloy are combined to form a square pipe with a long side of 600 mm, a short side of 300 mm, and a length of 4000 mm. Butted and restrained from both sides. A hard backing jig was disposed on the inner surface of the butted portion, and supported by pressing outward with a hydraulic jack. Subsequently, while rotating the rotary tool 1, it was moved horizontally at a joining speed of 500 mm / min, and the butt portion was friction stir welded. In joining, after joining one side, each extrusion shape member was turned upside down together with the backing jig, and similarly restrained in the width direction and joined the opposite side. The obtained waveguide had a dimensional accuracy of −5 mm to 0 mm in the length direction, warpage and bending were within 9 mm, and desired dimensional accuracy was obtained without requiring any reworking. Also, the inner surface was extremely smooth, and no protrusions or unbonded cracks could be observed. For this reason, the occurrence of discharge or the like can be sufficiently prevented without any rework such as extra excision.
[0027]
Example 5
A plate of 5 mm thick made of oxygen-free copper was bent into a U-shape in a stepwise combination, butted together into a square pipe shape having a long side of 600 mm, a short side of 300 mm, and a length of 4000 mm, and restrained from both sides. A hard backing jig was disposed on the inner surface of the butted portion, and supported by pressing outward with a hydraulic jack. Subsequently, while rotating the rotary tool 1, it was moved horizontally at a joining speed of 150 mm / min, and the butt portion was friction stir welded. In joining, after joining one side, each extrusion shape member was turned upside down together with the backing jig, and similarly restrained in the width direction and joined the opposite side. The obtained waveguide had a dimensional accuracy of −4 mm to 0 mm in the length direction, warpage and bending were within 6 mm, and desired dimensional accuracy was obtained without requiring any reworking. Also, the inner surface was extremely smooth, and no protrusions or unbonded cracks could be observed. For this reason, the occurrence of discharge or the like can be sufficiently prevented without any rework such as extra excision.
[0028]
Example 6
The end face of the waveguide 39 of the third embodiment is cut and faced, and a pre-formed flange (flange member) 41 having a thickness of 10 mm is externally fitted together with steel backing jigs 43 and 45 as shown in FIG. Restrained. The rotary tool 1 was inserted into the abutting portion between the waveguide 39 and the flange 41 from the end face side, and moved horizontally at a joining speed of 250 mm / min while rotating, whereby the abutting portion was friction stir welded. The inner surface of the waveguide 39 was not affected by the bonding, and the dimensional accuracy after the bonding was good only by being deformed by 0.3 mm at the bonding portion 99.
[0029]
Example 7
The waveguide 29 of Example 2 was cut in the longitudinal direction, and a 6 mm-thick flange (flange member) 51 formed in advance was externally fitted and restrained in the arrangement shown in FIG. Subsequently, friction stir welding was performed as follows from the front side and the back side of the flange 51 in a state where the steel backing was disposed at each location. On the fillet side (back side) of the flange 51, an inclined portion 51a inclined at 45 ° over a width of 6 mm was provided, and the rotary tool 1 was inserted from a direction perpendicular to the surface of the inclined portion 51a. Further, from the end face side (front side) of the waveguide 29, the rotary tool 1 was inserted from the end face side into the abutting portion between the waveguide 29 and the flange 51. As a result of performing friction stir welding by horizontally moving the rotary tool 1 at a joining speed of 200 mm / min while rotating the rotary tool 1, there is no influence on the inner surface of the waveguide 29, and the dimensional accuracy after joining is the joint 99. It was good only by being deformed by 0.5 mm.
[0030]
In each of Examples 6 and 7, the bead surface is not positioned on the inner surfaces of the waveguides 39 and 29, and the smoothness of the inner surfaces obtained in the waveguides 39 and 29 can be ensured as it is. did it.
Comparative Example 1
A 6 mm thick plate made of 3003 alloy H34 material was cut to obtain a pair of wide flat plates and a pair of narrow flat plates. These are combined into a square pipe shape with a long side of 600 mm, a short side of 300 mm, and a length of 1000 mm, as in FIG. 1, and a steel backing jig with a groove on the back side of the joint (to maintain the shape of the back beat). And restrained. By alternating current TIG welding, welding was performed at a current of 180 A at 160 mm / min. Similar to Example 1, this welding was also performed in the longitudinal direction on all four butted portions. On the back side of the joint, there were a portion where the back beat appeared and a portion where it did not. The part where the back beat did not come out was repair welded by TIG welding, and the back beat was finished by polishing. The dimensional accuracy of the obtained waveguide was −10 mm to 2 mm in the length direction, the warpage and the bending were 15 mm, and the distortion was larger than that of the above example.
[0031]
Comparative Example 2
A plate made of H4 material of 1100 alloy and having a plate thickness of 10 mm, a width of 1200 mm, and a length of 3000 mm was bent into a U shape by a bender. This end face was grooved and faced to face each other in a square pipe shape having a long side of 800 mm and a short side of 400 mm, and restrained from both sides. A hard grooved backing jig was applied to the inner surface of the butted portion, and welding was carried out in two layers by MIG welding at a current of 240 A, a voltage of 25 V, and a welding speed of 500 mm / min. Although the back bead had come out, the angular deformation was large, the height of the central part in the cross section of the tube was reduced by 10 mm, and the warpage and the bending were also large, 30 mm.
[0032]
Comparative Example 3
The end face of the waveguide 39 of Example 3 was cut and grooved, and a preformed flange having a thickness of 10 mm was restrained together with a steel backing jig with a groove. From the end surface side (front side) and the back side, welding was performed at 160 mm / min at a current of 180 A by AC TIG welding. Since the end face had an extra 3 mm high, it was chamfered. The back side had a leg length, but the coagulation shrinkage was large, and the flange was greatly warped.
[0033]
As described above, the waveguide of each of the above embodiments uses friction stir welding in manufacturing, so that it is easy to manufacture and can cope with an increase in size, and has less distortion and a smooth inner surface. In particular, in each of the above embodiments, since the backing jig is disposed on the inner surface side of the waveguide and the friction stir welding is performed, the smoothness of the inner surface can be secured extremely well. In addition, in the waveguides of Examples 2, 3, and 5, the metal plate is bent into a U-shaped cross section or a B-shaped cross section, and the ends are abutted to form a square pipe. It becomes easy. Similarly, in Example 4, since the rectangular pipe shape is formed by abutting the U-shaped extruded section, the manufacturing can be facilitated as compared with the case of using the flat extruded section. .
[0034]
In addition, when a waveguide is manufactured by bending four metal plates into an L-shaped cross section and butting edges, or butting an extruded profile having an L-shaped cross section, the manufacturing should be similarly facilitated. Can do. In particular, when an extruded profile is used, a larger waveguide can be easily manufactured by using an extruded profile having an L-shaped cross section.
[0035]
Further, in Examples 6 and 7, the flanges 41 and 51 could be provided without losing the characteristics that the waveguides 39 and 29 had little distortion and the inner surface was smooth. Moreover, the flanges 41 and 51 are hardly distorted. For this reason, in the waveguides 39 and 29 provided with the flanges 41 and 51 in this way, there is a new effect that it is easy to bend and pipe like a duct without losing any of the aforementioned effects.
[0036]
The present invention has been described with reference to specific examples. However, the present invention is not limited to the above examples and embodiments, and can be implemented in various forms without departing from the gist of the present invention. can do. For example, the present invention can be applied to a waveguide made of any metal as long as it is a metal capable of friction stir welding, and the waveguide of Examples 1, 2, 3, 4, 6, or 7 can be used. The tube may be made of copper or an alloy thereof. However, aluminum or its alloy has high conductivity. For this reason, when a waveguide is comprised with an aluminum alloy as described in Examples 1, 2, 3, 4, 6, and 7, the performance as the waveguide is further improved. On the other hand, copper or an alloy thereof has high conductivity, excellent workability, and is strong against acids. For this reason, when the waveguide is made of copper as described in the fifth embodiment, it becomes easier to manufacture as the workability is improved, and good environmental resistance is obtained. Furthermore, you may manufacture the waveguide of Examples 1-7 with iron or its alloy. In this case, it is possible to reduce the electrical transmission loss by applying copper plating to the inner surface, and to manufacture at a low cost.
[0037]
In Examples 3, 4 and 5, the backing jig is pressurized outwardly with a hydraulic jack, but mechanical means, atmospheric pressure, or hydraulic pressure may be used as means for pressing the backing jig outward. Various means such as a means of using the above are conceivable. In this way, when the backing jig is expanded from the inside to support the butted portion, the butted portion can be supported extremely firmly from the inside. For this reason, the friction stir welding can be more reliably performed, and as a result, the reliability of the obtained waveguide can be improved, and the yield can be improved by preventing the occurrence of poor bonding. On the other hand, when the backing jig is a beam penetrating the waveguide as in the backing jig 25 used in Example 2, friction stir welding is continuously performed in the length direction of the tube along the beam. It can be implemented and the manufacture of the waveguide can be made easier.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a waveguide and a manufacturing method thereof according to Embodiment 1. FIG.
FIG. 2 is an explanatory diagram illustrating a waveguide and a manufacturing method thereof according to the second embodiment.
FIG. 3 is an explanatory diagram illustrating a waveguide and a manufacturing method thereof according to the third embodiment.
4 is an explanatory diagram illustrating a waveguide and a manufacturing method thereof according to Embodiment 6. FIG.
5 is an explanatory view showing a waveguide and a manufacturing method thereof according to Embodiment 7. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Rotary tool 1a ... Shoulder part 1b ... Pillar 11, 13 ... Planar plate 15, 25, 35, 43, 45 ... Backing jig 19, 29, 39 ... Waveguide 21, 31, 32 ... Plate 41, 51 ... Flange 51a ... Inclined part 99 ... Joint part

Claims (11)

金属板または押出形材を断面方形の管状に組み合わせ、該各金属板または押出形材を互いに接合してなる導波管であって、
上記各金属板または押出形材が、その突き合わせ部分に沿って回転工具を回転しながら移動させることによって摩擦撹拌接合され、余盛りの切除等の手直しが必要ない程度に内面が滑らかなことを特徴とする導波管。
A waveguide formed by combining metal plates or extruded profiles into a tube having a square cross section, and joining the metal plates or extruded profiles together.
Each metal plate or extruded profile is friction stir welded by rotating the rotating tool along its abutting portion, and the inner surface is smooth to the extent that no reworking such as excision of surplus is required. A waveguide.
上記金属板が曲げて突き合わせることにより管状に組み合わせられたことを特徴とする請求項1記載の導波管。2. The waveguide according to claim 1, wherein the metal plates are combined into a tubular shape by bending and butting. 上記金属板が、断面コの字型,断面L字型,または断面ロの字型に曲げて端縁を突き合わせることにより、管状に組み合わせられたことを特徴とする請求項2記載の導波管。3. The waveguide according to claim 2, wherein the metal plates are combined into a tubular shape by bending the metal plate into a U-shaped cross-section, an L-shaped cross-section, or a U-shaped cross-section and abutting the edges. tube. 上記押出形材が断面コの字型または断面L字型に形成されたことを特徴とする請求項1記載の導波管。2. The waveguide according to claim 1, wherein the extruded shape member is formed in a U-shaped section or an L-shaped section. 上記管状に組み合わせられた金属板または押出形材の一端に、金属製のフランジ部材が外嵌され、該フランジ部材と上記金属板または押出形材との突き合わせ部分に沿って、内面にビード表面が位置しないように上記摩擦撹拌接合がなされたことを特徴とする請求項1〜4のいずれかに記載の導波管。A metal flange member is externally fitted to one end of the metal plate or extruded profile combined in the tubular shape, and a bead surface is formed on the inner surface along the abutting portion between the flange member and the metal plate or extruded profile. The waveguide according to any one of claims 1 to 4, wherein the friction stir welding is performed so as not to be positioned. 上記金属板または押出形材がアルミニウムまたはその合金によって構成されたことを特徴とする請求項1〜5のいずれかに記載の導波管。6. The waveguide according to claim 1, wherein the metal plate or the extruded shape member is made of aluminum or an alloy thereof. 上記金属板または押出形材が銅またはその合金によって構成されたことを特徴とする請求項1〜5のいずれかに記載の導波管。6. The waveguide according to claim 1, wherein the metal plate or the extruded profile is made of copper or an alloy thereof. 上記金属板または押出形材が鉄またはその合金によって構成されたことを特徴とする請求項1〜5のいずれかに記載の導波管。6. The waveguide according to claim 1, wherein the metal plate or the extruded shape member is made of iron or an alloy thereof. 請求項1〜8のいずれかに記載の導波管を製造する製造方法であって、
上記管状に組み合わせられた金属板または押出形材の内面に硬質の裏当てを配設して、上記摩擦撹拌接合を行うことを特徴とする導波管の製造方法。
A manufacturing method for manufacturing the waveguide according to claim 1,
A method of manufacturing a waveguide, characterized in that a rigid backing is disposed on the inner surface of a metal plate or an extruded profile combined in the above-described tubular shape, and the friction stir welding is performed.
上記裏当てが、上記管状に組み合わせられた金属板または押出形材の内部で拡縮することを特徴とする請求項9記載の導波管の製造方法。10. The method of manufacturing a waveguide according to claim 9, wherein the backing expands and contracts inside a metal plate or an extruded profile combined in the tubular shape. 上記裏当てが、上記管状に組み合わせられた金属板または押出形材の内部を貫通する梁であることを特徴とする請求項9記載の導波管の製造方法。10. The method for manufacturing a waveguide according to claim 9, wherein the backing is a metal plate or a beam penetrating the extruded shape member combined in the tubular shape.
JP2000043124A 2000-02-21 2000-02-21 Waveguide and manufacturing method thereof Expired - Fee Related JP3610274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000043124A JP3610274B2 (en) 2000-02-21 2000-02-21 Waveguide and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000043124A JP3610274B2 (en) 2000-02-21 2000-02-21 Waveguide and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001237621A JP2001237621A (en) 2001-08-31
JP3610274B2 true JP3610274B2 (en) 2005-01-12

Family

ID=18566089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000043124A Expired - Fee Related JP3610274B2 (en) 2000-02-21 2000-02-21 Waveguide and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3610274B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009035434A1 (en) 2008-12-26 2010-07-08 Mitsubishi Electric Corporation Waveguide structure, antenna device using the waveguide structure, and vehicle radar device using a waveguide structure or an antenna device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6676008B1 (en) * 2002-04-30 2004-01-13 Edison Welding Institute Friction stir welding of corner configurations
JP3762370B2 (en) 2003-01-14 2006-04-05 本田技研工業株式会社 Friction stir welding method and apparatus
US7093745B2 (en) 2003-01-14 2006-08-22 Honda Motor Co., Ltd. Method of and apparatus for friction stir welding
JP5003287B2 (en) 2006-09-14 2012-08-15 日産自動車株式会社 Container joint structure, torque converter case joint structure, and container joint method
JP5304583B2 (en) 2009-10-09 2013-10-02 日本軽金属株式会社 Rotating tool for inner corner joining and inner corner joining method using the same
JP5435109B2 (en) * 2012-11-27 2014-03-05 日本軽金属株式会社 Joining method
FR2998498B1 (en) * 2012-11-27 2014-11-14 Hispano Suiza Sa METHOD FOR PRODUCING A POWER TRANSMISSION PANEL
JP6429104B2 (en) * 2013-07-05 2018-11-28 スズキ株式会社 Friction stir joint
JP6696809B2 (en) * 2016-03-29 2020-05-20 株式会社総合車両製作所 Friction stir welding backing material and friction stir welding method
JP7280399B1 (en) 2022-02-24 2023-05-23 ヤマザキマザック株式会社 Thin-walled tube manufacturing method, intermediate for thin-walled tube manufacturing, and thin-walled tube

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009035434A1 (en) 2008-12-26 2010-07-08 Mitsubishi Electric Corporation Waveguide structure, antenna device using the waveguide structure, and vehicle radar device using a waveguide structure or an antenna device
US8633790B2 (en) 2008-12-26 2014-01-21 Mitsubishi Electric Corporation Waveguide structure, antenna apparatus that uses that waveguide structure, and vehicle radar apparatus in which a waveguide structure or an antenna apparatus is used

Also Published As

Publication number Publication date
JP2001237621A (en) 2001-08-31

Similar Documents

Publication Publication Date Title
JP4754991B2 (en) Friction stir welding method
JP3610274B2 (en) Waveguide and manufacturing method thereof
JP3297845B2 (en) Aluminum member joining method
JP2008043974A (en) Longitudinal seam welded joint of uoe steel pipe
KR101032241B1 (en) Manufacturing method of butt joint, butt joint, manufacturing method of bent member, and friction stir joining method
JP3283434B2 (en) Jig for friction stir welding and friction stir welding method using the same
JP5090132B2 (en) Manufacturing method and bonded structure of bonded product
JP3333497B2 (en) Friction welding method and friction welding device
JP3333394B2 (en) Panel manufacturing method and panel
JP3297847B2 (en) Friction joining member, joining method and joining panel
JP5121420B2 (en) Hybrid welding joint
JP3283433B2 (en) Manufacturing method of aluminum wide profile
JPH11179569A (en) Sandwich panel
JP3583558B2 (en) Pipe frame structure joining method
JPH1099982A (en) Laser beam welding method
JPH11300480A (en) Vacuum chamber for semiconductor manufacturing device and its manufacture
JP2006088173A (en) Friction stir welding method for double skin shape
JP4043005B2 (en) Friction welding method
JP3045672B2 (en) Butt joint structure of metal hollow material
JP5509798B2 (en) Joining method
KR20090062465A (en) Manufacturing method of plate-stiffener assembly and a plate-stiffener assembly formed using the same
JP5203311B2 (en) Friction stir welding structure and friction stir welding method
JP2000153376A (en) Frictional joining method and its device
US20210069822A1 (en) Systems and methods for joining and repair using ultrasonic additive manufacturing with a contoured sonotrode
JP2001096377A (en) Method of friction welding and welded structure

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3610274

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071022

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees