JP3609798B2 - Optical print head - Google Patents

Optical print head Download PDF

Info

Publication number
JP3609798B2
JP3609798B2 JP2002116883A JP2002116883A JP3609798B2 JP 3609798 B2 JP3609798 B2 JP 3609798B2 JP 2002116883 A JP2002116883 A JP 2002116883A JP 2002116883 A JP2002116883 A JP 2002116883A JP 3609798 B2 JP3609798 B2 JP 3609798B2
Authority
JP
Japan
Prior art keywords
light emitting
driving
selecting
print head
emitting elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002116883A
Other languages
Japanese (ja)
Other versions
JP3609798B6 (en
JP2003011426A (en
Inventor
充弘 尾前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Tottori Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tottori Sanyo Electric Co Ltd, Sanyo Electric Co Ltd filed Critical Tottori Sanyo Electric Co Ltd
Priority to JP2002116883A priority Critical patent/JP3609798B6/en
Priority claimed from JP2002116883A external-priority patent/JP3609798B6/en
Publication of JP2003011426A publication Critical patent/JP2003011426A/en
Publication of JP3609798B2 publication Critical patent/JP3609798B2/en
Application granted granted Critical
Publication of JP3609798B6 publication Critical patent/JP3609798B6/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)
  • Facsimile Heads (AREA)
  • Led Devices (AREA)

Description

【発明の属する技術分野】
本発明は、光プリンタなどの光源として有用な光プリントヘッドとその駆動用ICに関する。
【従来の技術】
従来の光プリントヘッドにおいて用いられる発光素子(アレイ)は、実公平6−48887号公報に示すように、複数の発光部に1対1で対応させて個別電極を素子表面側に設け、各発光部に共通の電極を素子裏側に設けて構成しているので、1つの素子内で時分割駆動することができなかった。時分割駆動することができないので、個別電極を発光部と同数設ける必要があり、発光部の高密度化が進むと、それに対応して個別電極も高密度配置になる結果、駆動用ICとの接続が困難になるという問題があった。
このような問題を解決するため、特開平6−163980号公報において、時分割駆動可能な発光素子が提案されている。すなわち、発光素子上の複数の発光部をM(2〜3)の群に分け、群毎の発光部に接続するようにM本の共通電極を設け、異なる群に属するM個の発光部に接続した個別電極をN個設けることによってM×N個の発光部を備える発光素子が提案されている。この発光素子によれば、M本の共通電極を時分割的に選択することによって個別電極の数を従来の1/Mに削減することができるので、駆動用ICとの接続を容易にすることができる。
図7は、前記公報にて提案されているような時分割駆動対応型の発光素子を用いる場合に、従来のダイナミック駆動方式に基づいて想定される回路構成例を示している。ここで、各発光素子100は、その表面に設けた複数の発光部を2つの群に分け、各群に属する複数の発光部に2本の共通電極を各々接続するとともに、別々の群に属する1組の発光部に対して各々個別電極を接続し、各個別電極を発光素子の片側に配置した構造を前提としている。そして、この発光素子100には、個別電極の数と同じ端子を備える駆動用のIC200が1対1でワイヤボンド接続されるとともに、前記共通電極の選択を行うための選択用IC300が2本のグランドライン400を介して接続される。
同図に示すような回路構成によれば、L個の発光素子100の各共通電極に接続した2本のグランドライン400に流れる大電流を1つの共通電極選択用IC300によって各々制御するため、このICは非常に大きな電流に耐え得る比較的大きな構造のものとする必要があり、構造の大型化につながるという問題がある。また、発光素子100の数を変更すれば、グランドライン400に流れる電流も変化するので、発光素子100の数に応じて共通電極選択用IC300の構造も変更する必要が生じるため、共通電極選択用ICの汎用性が欠ける等の問題が生じる。
【発明が解決しようとする課題】
本発明は、高解像度の光プリンタヘッドを提供することを課題の1つとする。また、個別電極の低密度配置を可能とし、個別電極の配線作業性を高めることができる光プリンタヘッドを提供することを課題の1つとする。また、構造の大型化を防止することを課題の1つとする。また、駆動用ICの汎用性を高めることを課題の1つとする。また、従来のスタティック方式の光プリンタヘッドの製造プロセスを利用して製造可能な光プリンタヘッドを提供することを課題の1つとする。
【課題を解決するための手段】
本発明の光プリントヘッドは、複数の発光部を複数の群に分けるとともに、群毎の発光部に接続した複数の共通電極と、異なる群に属する発光部に接続した複数の個別電極と、を設けて構成した複数の発光素子と、該発光素子を駆動する駆動回路を備え、前記駆動回路は、前記複数の個別電極を選択する第1の駆動部と、前記複数の共通電極を選択する第2の駆動部を一体に設けた複数の駆動用ICを前記各発光素子に対応して設けた光プリントヘッドであって、前記駆動用ICは、前記複数の個別電極を選択するための端子と、前記複数の共通電極を選択するための端子を一方の側部に配置したことを特徴とする。
また、本発明の光プリントヘッドは、複数の発光部を複数の群に分けるとともに、群毎の発光部に接続した複数の共通電極と、異なる群に属する発光部に接続した複数の個別電極と、を設けて構成した複数の発光素子と、該発光素子を駆動する駆動回路を備え、前記発光素子を一方向に複数配列した光プリントヘッドにおいて、前記駆動回路は、前記複数の個別電極を選択する第1の駆動部と、前記複数の共通電極を選択する第2の駆動部を一体に設けた複数の駆動用ICを前記各発光素子に対応させて前記発光素子の配列方向と同方向に配列し、前記駆動用ICは、前記複数の個別電極を選択するための端子と、前記複数の共通電極を選択するための端子を一方の側部に配置したことを特徴とする。
【発明の実施の形態】
以下本発明の実施例を図面を参照して説明する。まず図1(a),(b)を参照して同実施例の光プリントヘッド1の構造について説明する。光プリントヘッド1は、絶縁性基板2の上に複数、例えばL=38個の発光素子3を一列に配列し、この発光素子3の片側に隣接させて発光素子3を駆動するための駆動用IC4を発光素子3と1対1で対応させて一列に配列している。この例では、駆動用IC4を発光素子3の片側に配列しているが、駆動用IC4を発光素子3の両側に配列する場合は、発光素子3と駆動用IC4を1対2の対応関係で配列すれば良い。発光素子3と駆動用IC4間には、両者を接続するための配線5が施される。配線5としては、金線等のワイヤボンド線による直接接続構造、中継用のパターンを介在したワイヤボンド線による間接的接続構造を用いることができるが、高密度のフレキシブル配線を異方性導電接着剤を用いて接続する構造を用いることもできる。
基板2の上には、信号用、電力供給用の複数本の配線パターン6を発光素子3の配列方向に沿って延びるように形成している。駆動用IC4と配線パターン6の間には、前記配線5と同様の配線7を設けている。これら駆動用IC4、配線5,7、配線パターン6等は、発光素子3を駆動するための駆動回路を構成し、これらを含む光プリントヘッド1の回路構成は、例えば図2に示すような回路ブロック図で表される。
次に、発光素子3の構造を図3(a),(b)を参照して説明する。同図(a)は発光素子3の要部平面図、同図(b)は同図(a)の矢印に沿った断面図である。尚、以下の説明や図面において、図番に付したa,b,c,dの符号は、群を区別するものである。同図において、30は全長約10mm、幅約2mm程度のp型もしくは絶縁性の基板であり、Si,GaAsオンSi,GaAs等から選択された半導体材料等で構成するのが好ましい。この基板30の上には、基板30の幅方向に長いn型GaAs等のコンタクト層31(31a,31b)を基板30の長さ方向に複数形成している。基板30の一側部に位置する各コンタクト層31の上には、n型GaAlAs等のn型半導体層32(32a,32b)とp型GaAlAs等のp型半導体層33(33a,33b)とを積層して配置し、さらにその上にp型GaAs等のコンタクト層34(34a,34b)を積層配置している。このn型半導体層32とp型半導体層33とのPN接合により複数、例えば192個の発光部35(35a,35b)を形成している。この発光部35は、基板30の長さ方向に1列に配列しているが、後述するように千鳥配置にしたり、あるいは、前記公報に記載のように2列以上の複数列に配置することもできる。そして、コンタクト層34の上と基板30の他側部寄りに位置するコンタクト層31の一部を除いた表面には、Si34,SiO2などの絶縁層36を形成し、その上に複数の共通電極37(37a,37b)と複数の個別電極38を形成している。
共通電極37の数は、複数の発光部35を複数の群(M群)に区分けする場合の群の数に応じて設定され、ここでは192個の発光部35を交互に第1の群に属する発光部35aと第2の群に属する発光部35bのように2群に区分けする場合を例示しているので、M=2に対応して2本の共通電極37aと37bを設けている。そして、共通電極37aと37bによって各群の選択を行えるように、第1の群に属する発光部35aに接続したコンタクト層31aを第1の共通電極37aに接続し、第2の群に属する発光部35bに接続したコンタクト層31bを第2の共通電極37bに接続している。共通電極37とコンタクト層31の接続は、絶縁層36に設けた選択用の孔39を介して行われる。
個別電極38は、異なる群に属する発光部35aと35bを接続するように、この例では、隣接する2つの発光部35のコンタクト層34を接続するように設けている。個別電極38の幅広部分は、ワイヤボンド用のパッド領域として機能する。個別電極38は、基板30の長さ方向に沿って一列にN個、この例では96個設けられる。発光素子3上の発光部35の総数は、M×Nで表されるので、この例では192個となる。ここで、個別電極38の配列ピッチは、発光部35の配列ピッチのM倍、この例では2倍に設定することができるので、個別電極38へワイヤボンド接続を行う場合などの配線作業性を高めることができる。尚、発光素子3はL個(38個)であるので、ヘッド1全体の発光部35の数は、L×M×N=38×2×96=7296個となる。
上記のように構成された発光素子3は、共通電極37aと37bのいずれかを選択することによって、複数の群の内のいずれかの群に属する発光部35を選択することができ、選択された群に属する複数の発光部35の点灯状態は、個別電極38への通電状態によって選択することができる。例えば、一方の共通電極37aを選択すると、電流は、個別電極38、コンタクト層34a、p型半導体層33a、n型半導体層32a、コンタクト層31a、一方の共通電極37aを経て流れ、その時の電流によって発光部35aが発光する。他方の共通電極37bを選択すると、電流は、個別電極38、コンタクト層34b、p型半導体層33b、n型半導体層32b、コンタクト層31b、他方の共通電極37bを経て流れ、その時の電流によって発光部35bが発光する。
次に、上記駆動用IC4について、図4を参照して説明する。図4は、1つの駆動用IC4の内部回路構成を示している。従来のスタテック方式用のICと基本的に相違する部分は、個別電極選択用の第1駆動部41に加えて、発光素子3の共通電極37を選択するための第2駆動部42を内蔵し、素子内時分割駆動を行うことができる構成としたことである。以下詳細に説明する。駆動用IC4は、従来のスタテック方式用ICと同様に、複数の個別電極選択用端子DO1〜DO96と、これらに対応した個別電極選択用の第1駆動部41を備えている。この第1の駆動部41は、点灯用信号の入力端子SIからのシリアル信号をクロック信号CLOCK1に従って取り込むシフトレジスタ(96ビット)43と、選択信号SELとロード信号LOAD1の排他論理和出力に基づいてこのシフトレジスタ43の並列出力信号を取り込むラッチ回路44と、ストロ−ブ信号STBによってラッチ回路44の各出力を選択的に出力するアンドゲート回路45と、定電流回路46からの電力供給を受け、前記アンドゲート回路45からの信号に基づいて複数の個別電極選択用端子DO1〜DO96の各々に所望の電力を供給する電流駆動回路47とを備えている。
これに加えて、素子内時分割駆動を行うため、共通電極選択用の第2の駆動部42と、共通電極を選択するための共通電極用端子CDO1,CDO2を備えている。第2の駆動部42は、第1の駆動部41の作動タイミング、例えばラッチ回路44へ信号をラッチするタイミングに同期して動作するように設定された選択回路48と、この選択回路48の出力によって作動する共通駆動回路49からなり、ラッチ回路44へ信号がラッチされるタイミングに同期して共通電極用端子CDO1,CDO2を交互に一方の電源電位、例えば接地電位(Vss)に接続するように構成している。
前記各駆動用IC4は、上記のような回路構成を備えた同一のICで構成され、図1に示すように、上面の一方の側部に、前記複数の個別電極選択用端子DO1〜DO96と共通電極選択用端子CDO1,CDO2を配置し、上面の他側寄りに各種の信号端 子や電源端子を配列している。そして、各駆動用IC4は同図に示すように、対応する発光素子3と所定の間隔をもって発光素子3の配列方向と同方向に一列に配列される。
この図に示すように、発光素子3の個別電極38と駆動用IC4の個別電極用端子DO間の配線は、従来のスタティック方式の場合と同様に、発光素子3の配列方向と直交する方向に行われるが、従来のスタティック方式の場合と大きく相違するのは、駆動用IC4が共通電極選択用端子CDO1,CDO2を備え、これに接続する共通電極用の配線5CDOも個別電極用の配線5DOと同方向に配置したことである。ここで、一方の群に属する全ての発光部35を点灯状態とし、1つの発光部に4mAの電流を流す場合を考えると、その群に接続した共通電極37を介して流れる電流は、4mA×96=384mA程度となり、許容電流が1A程度の一般的なワイヤボンド線を共通電極37への配線として利用することができる。尚、この例では、余裕をもたせるため、共通電極選択用端子CDO1,CDO2に対する配線5CDOとして各々2本のワイヤボンド線を用いている。
このようにすることにより、従来のスタティック方式に対応した配線装置を用いた配線が可能となり、組立て装置の効率的な運用を行うことができる。
尚、共通電極37のいずれかが、発光部35に対して個別電極38の反対側に位置するように発光素子3を構成した場合は、駆動用IC4から共通電極37への配線5を発光部35の上を通過するように配置すると、発光部35の遮光が発生する恐れがある。このような場合は、これを防ぐために、基板2の表面に発光素子3の下を通過する補助配線パターンを形成し、この補助配線パターンの一端に駆動用IC4からの共通電極用の配線を接続し、補助配線パターンの他端に発光素子3への共通電極用の配線を接続することによる補助配線パターンを経由したワイヤボンド等の配線を行うことによって、駆動用IC4から共通電極37への配線5が発光部35の光を遮らないように構成することもできる。
図2は、光プリントヘッド1の回路ブロック図を示している。各駆動用IC4は、各種の信号線や電力供給線を有する配線パターン6に対して並列的に接続されるとともに、点灯用のシリアル信号を次の駆動用IC4に供給するように、駆動用IC4の信号出力端子SOが隣接する次の駆動用IC4の信号入力端子SIに接続されている。そして、各駆動用IC4は、クロック信号に同期して送られてくるシリアル入力信号を順次受け取るとともに、他のタイミング信号によって制御され、対応する発光素子3に対して、第1の共通電極37aを選択して第1の群に属する複数の発光部35aの点灯制御を行い、続いて、第2の共通電極37bを選択して第2の群に属する複数の発光部35bの点灯制御を行うことにより、発光素子3内時分割駆動を行う。このような発光素子3内の時分割駆動が全ての発光素子3で一斉に行われる結果、光プリントヘッド1の全発光部35の内、第1の群に属する発光部35aが一斉に点灯制御され、続いて第2の群に属する発光部35bが一斉に点灯制御される。
上記のように、各発光素子3が素子内時分割駆動に対応して構成され、各駆動用IC4が時分割駆動するための第2駆動部42を内蔵し、駆動用IC4毎に対応した発光素子3の時分割駆動を行う構成としているので、駆動部42に加わる最大負荷は、対応する発光素子3の1つの群に属する発光部35の数に基づき決定される。その結果、従来のダイナミック駆動方式のように時分割駆動用(共通電極選択用)の専用ICを用いて全ての発光素子を対象とした時分割駆動を行う場合に比べて、時分割駆動用の回路に加わる負荷を大幅に低減することができる。そして、駆動用IC4の第2駆動部42は、小電流を制御することができる小型回路で構成することができ、駆動用IC4を従来のスタテックタイプ用のICと同等の形状で構成することができるので、全体的な回路構成の小型化を達成することができる。
さらにまた、駆動用IC4毎にそれに対応した発光素子3の時分割駆動を行う構成としているので、光プリントヘッド1の長さ変更に対応して発光素子3の数を増減させる場合に、発光素子3の数の増減に対応して駆動用IC4の数も容易に増減させることができ、回路設計の容易化に寄与することができる。すなわち、従来のダイナミック駆動方式と同様の方式により、共通端子選択用の専用ICを用いる場合に予想される専用ICの大型化や、素子数増減に対応した専用ICの設計変更の問題を回避することができる。
尚、上記実施例は、複数の発光部35を1列に配置した発光素子3を時分割駆動するので、第1群と第2群の発光部間の点灯タイミングのズレに起因して印字ラインに若干の段差が生じるが、これを防ぐために、図5に示すように、第1群に属する発光部35aと第2群に属する発光部35bを、発光部35の配列方向(印字ライン方向)と直交する方向に対して所定距離d隔てて配置してもよい。この距離dは、全発光部を点灯させて1ラインの印字を行った場合に、前記段差が解消されて1ランイが直線となるように、ヘッドの構造や、感光ドラムの回転数等を考慮してあらかじめ計算して決定される。
また、上記実施例は、発光素子3の片側に駆動用IC4を配列する場合を示したが、発光素子3の両側に駆動用IC4を配置することもできる。この場合、駆動用IC4の両側配置に対応して、図1に示す発光素子3と基本構造を同じにする素子の一部を変更し、例えば図6に示すような発光素子3に構成することができる。すなわち、発光部35を4つの群(図の左の発光部から第1群35a、第2群35b、第3群35c、第4群35d、第1群35a・・の順)に区分けし、第1と第2の群に属する発光部35aと35bを選択するための2つの共通電極37aと37bを発光素子3の一方の側に配置するとともに、第1と第2の群に属する発光部35aと35bに接続した個別電極38Aをその共通電極37aと37bと同じ側に配置し、第3と第4の群に属する発光部35cと35dを選択するための2つの共通電極37cと37dを発光素子3の他方の側に配置するとともに、第3と第4の群に属する発光部35cと35dに接続した個別電極38Bをその共通電極と同じ側に配置して構成することもできる。このように構成することによって、個別電極38A,38Bの各ピッチを図1に示す場合と同じに設定した場合は、発光素子3の発光部35の配置密度を図1に示す場合に比べて2倍に設定することができ、光プリンタヘッドの高解像度化を図ることができる。
尚、本発明は、上記のように1つの発光素子とその駆動用の1つ以上のICの組合わせ構造を1つの単位とし、この構造単位を発光部の配列方向と同方向に複数配置した光プリントヘッドに好適であるが、これ以外にも適用可能であり、例えば、前記1つの構造単位を基本構造とする光プリントヘッドやそれに類する光学装置に適用することもできる。
【発明の効果】
以上のように本発明によれば、素子内時分割駆動に対応した発光素子を用いることにより、発光素子の個別電極の低密度配置、すなわち個別電極の長ピッチ配置を可能とし、個別電極への配線作業性を高めることができる。その結果、発光部を高密度配置した場合でも配線が容易になり、高解像度の光プリンタヘッドの提供が可能となる。
また、発光素子に対応した駆動用ICによって発光素子内の時分割駆動を行うので、時分割駆動用の専用の大型のICを設ける場合に比べて、駆動回路の小型化を行うことができるとともに、駆動用ICに汎用性を持たせることができたので、発光素子数の増減に対応した駆動回路の変更も容易に行うことができる。
【図面の簡単な説明】
【図1】本発明の一実施例に係わる光プリントヘッドの要部平面図(a)と、側面図(
b)である。
【図2】同実施例の回路ブロック図である。
【図3】同実施例の発光素子の要部平面図(a)と、断面図(b)である。
【図4】同実施例の駆動用ICの回路ブロック図である。
【図5】同実施例の発光素子の他の構成例を示す要部平面図である。
【図6】同実施例の発光素子の他の構成例を示す要部平面図である。
【図7】従来例を示す回路ブロック図である。
【符号の説明】
1 光プリントヘッド
3 発光素子
30 基板
31 コンタクト層
32 n型半導体層
33 p型半導体層
34 コンタクト層
35 発光部
37 共通電極
38 個別電極
4 駆動用IC
41 第1駆動部
42 第2駆動部
43 シフトレジスタ
44 ラッチ回路
47 電流駆動回路
48 選択回路
49 共通駆動回路
5 配線
6 配線パターン
7 配線
DO1 個別電極選択用端子
DO96 個別電極選択用端子
CDO1 共通電極用端子
CDO2 共通電極用端子
BACKGROUND OF THE INVENTION
The present invention relates to an optical print head useful as a light source for an optical printer or the like, and an IC for driving the optical print head.
[Prior art]
As shown in Japanese Utility Model Publication No. 6-48887, a light emitting element (array) used in a conventional optical print head is provided with individual electrodes on the element surface side in a one-to-one correspondence with a plurality of light emitting portions, and each light emitting element Since a common electrode is provided on the back side of the element, time-division driving cannot be performed within one element. Since time-division driving cannot be performed, it is necessary to provide the same number of individual electrodes as the light-emitting portions. As the density of the light-emitting portions increases, the individual electrodes also have a high-density arrangement. There was a problem that connection was difficult.
In order to solve such a problem, Japanese Patent Application Laid-Open No. 6-163980 proposes a light-emitting element that can be time-division driven. That is, a plurality of light emitting portions on the light emitting element are divided into M (2 to 3) groups, M common electrodes are provided so as to be connected to the light emitting portions for each group, and M light emitting portions belonging to different groups are provided. There has been proposed a light emitting element including M × N light emitting units by providing N connected individual electrodes. According to this light-emitting element, the number of individual electrodes can be reduced to 1 / M of the conventional one by selecting M common electrodes in a time-sharing manner, thereby facilitating connection with a driving IC. Can do.
FIG. 7 shows an example of a circuit configuration assumed based on a conventional dynamic drive method when using a time-division drive type light emitting element as proposed in the above publication. Here, each light emitting element 100 divides a plurality of light emitting portions provided on the surface into two groups, connects two common electrodes to the plurality of light emitting portions belonging to each group, and belongs to different groups. It is premised on a structure in which individual electrodes are connected to a set of light emitting units, and each individual electrode is arranged on one side of the light emitting element. The light emitting element 100 is connected to a driving IC 200 having the same number of terminals as the number of individual electrodes by wire bonding, and two selection ICs 300 for selecting the common electrode. Connection is made via the ground line 400.
According to the circuit configuration as shown in the figure, the large currents flowing in the two ground lines 400 connected to the respective common electrodes of the L light emitting elements 100 are respectively controlled by one common electrode selection IC 300. The IC needs to have a relatively large structure capable of withstanding a very large current, and there is a problem that the structure becomes large. Further, if the number of the light emitting elements 100 is changed, the current flowing through the ground line 400 also changes. Therefore, it is necessary to change the structure of the common electrode selecting IC 300 according to the number of the light emitting elements 100. Problems such as lack of versatility of the IC occur.
[Problems to be solved by the invention]
An object of the present invention is to provide a high-resolution optical printer head. It is another object of the present invention to provide an optical printer head that can arrange individual electrodes at a low density and can improve wiring workability of the individual electrodes. Another object is to prevent the structure from becoming large. Another object is to improve the versatility of the driving IC. It is another object of the present invention to provide an optical printer head that can be manufactured using a conventional static optical printer head manufacturing process.
[Means for Solving the Problems]
The optical print head of the present invention divides a plurality of light emitting units into a plurality of groups, a plurality of common electrodes connected to the light emitting units for each group, and a plurality of individual electrodes connected to the light emitting units belonging to different groups. A plurality of light emitting elements provided and a driving circuit for driving the light emitting elements, wherein the driving circuit selects a first driving unit that selects the plurality of individual electrodes, and a first driving unit that selects the plurality of common electrodes. 2 is an optical print head in which a plurality of driving ICs integrally provided with two driving units are provided corresponding to each light emitting element, and the driving IC includes a terminal for selecting the plurality of individual electrodes; A terminal for selecting the plurality of common electrodes is arranged on one side.
The optical print head of the present invention divides a plurality of light emitting units into a plurality of groups, a plurality of common electrodes connected to the light emitting units for each group, and a plurality of individual electrodes connected to the light emitting units belonging to different groups, , a plurality of light emitting elements which is configured by providing a includes a drive circuit for driving the light emitting element, in an optical print head having a plurality arranging the light emitting element in one direction, said driving circuit selects the plurality of individual electrodes A plurality of driving ICs integrally provided with a first driving unit and a second driving unit for selecting the plurality of common electrodes are associated with the respective light emitting elements in the same direction as the arrangement direction of the light emitting elements. The driving IC is characterized in that a terminal for selecting the plurality of individual electrodes and a terminal for selecting the plurality of common electrodes are arranged on one side.
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. First, the structure of the optical print head 1 of the embodiment will be described with reference to FIGS. 1 (a) and 1 (b). The optical print head 1 has a plurality of, for example, L = 38 light emitting elements 3 arranged in a row on an insulating substrate 2 and is driven for driving the light emitting elements 3 adjacent to one side of the light emitting elements 3. The ICs 4 are arranged in a row in a one-to-one correspondence with the light emitting elements 3. In this example, the driving IC 4 is arranged on one side of the light emitting element 3, but when the driving IC 4 is arranged on both sides of the light emitting element 3, the light emitting element 3 and the driving IC 4 have a one-to-two correspondence. Just arrange. Between the light emitting element 3 and the driving IC 4, wiring 5 for connecting them is provided. As the wiring 5, a direct connection structure using a wire bond line such as a gold wire or an indirect connection structure using a wire bond line with a relay pattern interposed can be used. A structure in which an agent is used for connection can also be used.
A plurality of wiring patterns 6 for signal and power supply are formed on the substrate 2 so as to extend along the arrangement direction of the light emitting elements 3. A wiring 7 similar to the wiring 5 is provided between the driving IC 4 and the wiring pattern 6. These driving ICs 4, wirings 5, 7, wiring pattern 6 and the like constitute a driving circuit for driving the light emitting element 3, and the circuit configuration of the optical print head 1 including these is, for example, a circuit as shown in FIG. Represented in block diagram.
Next, the structure of the light emitting element 3 will be described with reference to FIGS. FIG. 4A is a plan view of the main part of the light emitting element 3, and FIG. 4B is a cross-sectional view taken along the arrow in FIG. In the following description and drawings, the symbols a, b, c, and d attached to the figure numbers distinguish the groups. In the figure, reference numeral 30 denotes a p-type or insulating substrate having a total length of about 10 mm and a width of about 2 mm, and is preferably made of a semiconductor material selected from Si, GaAs on Si, GaAs and the like. On the substrate 30, a plurality of contact layers 31 (31 a, 31 b) such as n-type GaAs that are long in the width direction of the substrate 30 are formed in the length direction of the substrate 30. On each contact layer 31 located on one side of the substrate 30, an n-type semiconductor layer 32 (32a, 32b) such as n-type GaAlAs and a p-type semiconductor layer 33 (33a, 33b) such as p-type GaAlAs are provided. Are stacked and a contact layer 34 (34a, 34b) of p-type GaAs or the like is further stacked thereon. A plurality of, for example, 192 light emitting portions 35 (35a, 35b) are formed by the PN junction between the n-type semiconductor layer 32 and the p-type semiconductor layer 33. The light emitting portions 35 are arranged in one row in the length direction of the substrate 30, but may be arranged in a staggered manner as described later, or arranged in a plurality of rows of two or more rows as described in the publication. You can also. An insulating layer 36 such as Si 3 N 4 or SiO 2 is formed on the surface of the contact layer 34 excluding a part of the contact layer 31 located on the contact layer 34 and near the other side of the substrate 30. A plurality of common electrodes 37 (37a, 37b) and a plurality of individual electrodes 38 are formed.
The number of the common electrodes 37 is set in accordance with the number of groups when the plurality of light emitting units 35 are divided into a plurality of groups (M groups). Here, 192 light emitting units 35 are alternately arranged in the first group. Since the case of dividing into two groups such as the light emitting unit 35a belonging to and the light emitting unit 35b belonging to the second group is illustrated, two common electrodes 37a and 37b are provided corresponding to M = 2. The contact layer 31a connected to the light emitting portion 35a belonging to the first group is connected to the first common electrode 37a so that each group can be selected by the common electrodes 37a and 37b, and the light emission belonging to the second group. The contact layer 31b connected to the portion 35b is connected to the second common electrode 37b. The connection between the common electrode 37 and the contact layer 31 is made through a selection hole 39 provided in the insulating layer 36.
In this example, the individual electrode 38 is provided so as to connect the contact layers 34 of two adjacent light emitting units 35 so as to connect the light emitting units 35a and 35b belonging to different groups. The wide portion of the individual electrode 38 functions as a pad region for wire bonding. N individual electrodes 38 are provided in a row along the length direction of the substrate 30, and in this example, 96 individual electrodes 38 are provided. Since the total number of the light emitting portions 35 on the light emitting element 3 is represented by M × N, it is 192 in this example. Here, since the arrangement pitch of the individual electrodes 38 can be set to M times the arrangement pitch of the light emitting portions 35, or twice in this example, the wiring workability when performing wire bond connection to the individual electrodes 38 is improved. Can be increased. Since the number of light emitting elements 3 is L (38), the number of light emitting portions 35 of the entire head 1 is L × M × N = 38 × 2 × 96 = 7296.
The light emitting element 3 configured as described above can select and select the light emitting unit 35 belonging to one of the plurality of groups by selecting one of the common electrodes 37a and 37b. The lighting states of the plurality of light emitting units 35 belonging to the group can be selected according to the energization state to the individual electrodes 38. For example, when one common electrode 37a is selected, the current flows through the individual electrode 38, the contact layer 34a, the p-type semiconductor layer 33a, the n-type semiconductor layer 32a, the contact layer 31a, and the one common electrode 37a. As a result, the light emitting unit 35a emits light. When the other common electrode 37b is selected, current flows through the individual electrode 38, the contact layer 34b, the p-type semiconductor layer 33b, the n-type semiconductor layer 32b, the contact layer 31b, and the other common electrode 37b, and light is emitted by the current at that time. The part 35b emits light.
Next, the driving IC 4 will be described with reference to FIG. FIG. 4 shows the internal circuit configuration of one driving IC 4. The part fundamentally different from the conventional static IC is built in the second drive unit 42 for selecting the common electrode 37 of the light emitting element 3 in addition to the first drive unit 41 for selecting individual electrodes. In other words, it is possible to perform time-division driving in the element. This will be described in detail below. Similarly to the conventional static IC, the driving IC 4 includes a plurality of individual electrode selection terminals DO1 to DO96 and a corresponding first driving unit 41 for selecting individual electrodes. The first drive unit 41 is based on a shift register (96 bits) 43 that takes in a serial signal from the input terminal SI of the lighting signal according to the clock signal CLOCK1, and an exclusive OR output of the selection signal SEL and the load signal LOAD1. The latch circuit 44 that takes in the parallel output signal of the shift register 43, the AND gate circuit 45 that selectively outputs each output of the latch circuit 44 by the strobe signal STB, and the power supply from the constant current circuit 46, And a current drive circuit 47 for supplying desired power to each of the plurality of individual electrode selection terminals DO1 to DO96 based on a signal from the AND gate circuit 45.
In addition, in order to perform intra-element time-division driving, a second driving unit 42 for selecting a common electrode and common electrode terminals CDO1 and CDO2 for selecting a common electrode are provided. The second drive unit 42 includes a selection circuit 48 set to operate in synchronization with the operation timing of the first drive unit 41, for example, the timing of latching a signal to the latch circuit 44, and the output of the selection circuit 48. The common electrode terminals CDO1 and CDO2 are alternately connected to one power supply potential, for example, the ground potential (Vss) in synchronization with the timing at which the signal is latched to the latch circuit 44. It is composed.
Each of the driving ICs 4 is composed of the same IC having the circuit configuration as described above. As shown in FIG. 1, the plurality of individual electrode selection terminals DO1 to DO96 are provided on one side of the upper surface. Common electrode selection terminals CDO1 and CDO2 are arranged, and various signal terminals and power supply terminals are arranged on the other side of the upper surface. Each driving IC 4 is arranged in a line in the same direction as the arrangement direction of the light emitting elements 3 with a predetermined distance from the corresponding light emitting elements 3 as shown in FIG.
As shown in this figure, the wiring between the individual electrode 38 of the light emitting element 3 and the individual electrode terminal DO of the driving IC 4 is in a direction orthogonal to the arrangement direction of the light emitting elements 3 as in the case of the conventional static method. However, the driving IC 4 is provided with common electrode selection terminals CDO1 and CDO2, and the common electrode wiring 5CDO connected thereto is also different from the individual electrode wiring 5DO. It is arranged in the same direction. Here, considering a case where all the light emitting units 35 belonging to one group are turned on and a current of 4 mA is supplied to one light emitting unit, the current flowing through the common electrode 37 connected to the group is 4 mA × Since 96 = 384 mA, a general wire bond line having an allowable current of about 1 A can be used as the wiring to the common electrode 37. In this example, two wire bond lines are used as the wiring 5CDO for the common electrode selection terminals CDO1 and CDO2 in order to provide a margin.
By doing in this way, the wiring using the wiring apparatus corresponding to the conventional static system becomes possible, and the assembly apparatus can be efficiently operated.
When the light emitting element 3 is configured such that any one of the common electrodes 37 is located on the opposite side of the individual electrode 38 with respect to the light emitting unit 35, the wiring 5 from the driving IC 4 to the common electrode 37 is connected to the light emitting unit. If it is arranged so as to pass over 35, there is a possibility that the light emitting unit 35 may be shielded from light. In such a case, in order to prevent this, an auxiliary wiring pattern that passes under the light emitting element 3 is formed on the surface of the substrate 2, and a common electrode wiring from the driving IC 4 is connected to one end of the auxiliary wiring pattern. Then, wiring from the driving IC 4 to the common electrode 37 is performed by performing wiring such as wire bonding via the auxiliary wiring pattern by connecting the wiring for the common electrode to the light emitting element 3 to the other end of the auxiliary wiring pattern. It can also be configured such that 5 does not block the light of the light emitting unit 35.
FIG. 2 is a circuit block diagram of the optical print head 1. Each driving IC 4 is connected in parallel to the wiring pattern 6 having various signal lines and power supply lines, and the driving IC 4 so as to supply a serial signal for lighting to the next driving IC 4. The signal output terminal SO is connected to the signal input terminal SI of the next driving IC 4 adjacent thereto. Each driving IC 4 sequentially receives a serial input signal sent in synchronization with the clock signal, and is controlled by another timing signal, and the first common electrode 37a is connected to the corresponding light emitting element 3. The lighting control of the plurality of light emitting units 35a belonging to the first group is selected and subsequently the second common electrode 37b is selected and the lighting control of the plurality of light emitting units 35b belonging to the second group is performed. Thus, time-division driving in the light emitting element 3 is performed. As a result of such time-division driving in the light emitting elements 3 being performed simultaneously for all the light emitting elements 3, the light emitting sections 35a belonging to the first group among all the light emitting sections 35 of the optical print head 1 are controlled to be turned on all at once. Subsequently, the light emitting units 35b belonging to the second group are controlled to be turned on all at once.
As described above, each light-emitting element 3 is configured to correspond to the time-division drive in the element, each drive IC 4 includes the second drive unit 42 for time-division drive, and light emission corresponding to each drive IC 4. Since the element 3 is configured to perform time-division driving, the maximum load applied to the driving unit 42 is determined based on the number of the light emitting units 35 belonging to one group of the corresponding light emitting elements 3. As a result, as compared with the case of performing time division driving for all the light emitting elements using a dedicated IC for time division driving (for common electrode selection) as in the conventional dynamic driving method, The load applied to the circuit can be greatly reduced. The second driving unit 42 of the driving IC 4 can be configured by a small circuit that can control a small current, and the driving IC 4 is configured in the same shape as a conventional static type IC. Therefore, the overall circuit configuration can be reduced in size.
Furthermore, since each driving IC 4 is configured to perform time-division driving of the light emitting elements 3 corresponding thereto, when the number of the light emitting elements 3 is increased or decreased in accordance with the change in the length of the optical print head 1, the light emitting elements 3 Corresponding to the increase / decrease of the number 3, the number of driving ICs 4 can be easily increased / decreased, which contributes to the simplification of circuit design. That is, by the same method as the conventional dynamic drive method, the problem of the size increase of the dedicated IC expected when using the dedicated IC for selecting the common terminal and the design change of the dedicated IC corresponding to the increase / decrease in the number of elements are avoided. be able to.
In the above embodiment, since the light emitting elements 3 in which the plurality of light emitting portions 35 are arranged in one row are driven in a time-sharing manner, the print line is caused due to the deviation of the lighting timing between the light emitting portions of the first group and the second group. In order to prevent this, as shown in FIG. 5, the light emitting unit 35a belonging to the first group and the light emitting unit 35b belonging to the second group are arranged in the direction in which the light emitting units 35 are arranged (print line direction). May be arranged at a predetermined distance d with respect to a direction orthogonal to the direction. This distance d takes into account the structure of the head, the rotational speed of the photosensitive drum, etc. so that when one line is printed with all the light emitting parts turned on, the step is eliminated and one run becomes a straight line. It is determined by calculating in advance.
Moreover, although the said Example showed the case where the drive IC4 was arranged on the one side of the light emitting element 3, the drive IC4 can also be arrange | positioned on the both sides of the light emitting element 3. FIG. In this case, a part of the element having the same basic structure as that of the light emitting element 3 shown in FIG. 1 is changed in correspondence with the arrangement on both sides of the driving IC 4, and the light emitting element 3 as shown in FIG. Can do. That is, the light emitting unit 35 is divided into four groups (from the left light emitting unit in the drawing, the first group 35a, the second group 35b, the third group 35c, the fourth group 35d, the first group 35a,...) The two common electrodes 37a and 37b for selecting the light emitting parts 35a and 35b belonging to the first and second groups are arranged on one side of the light emitting element 3, and the light emitting parts belonging to the first and second groups An individual electrode 38A connected to 35a and 35b is arranged on the same side as the common electrodes 37a and 37b, and two common electrodes 37c and 37d for selecting the light emitting portions 35c and 35d belonging to the third and fourth groups are provided. The individual electrode 38B connected to the light emitting portions 35c and 35d belonging to the third and fourth groups can be arranged on the same side as the common electrode, while being arranged on the other side of the light emitting element 3. With this configuration, when the pitch of the individual electrodes 38A and 38B is set to be the same as that shown in FIG. 1, the arrangement density of the light emitting portions 35 of the light emitting element 3 is 2 as compared with the case shown in FIG. The optical printer head can have a high resolution.
In the present invention, as described above, a combined structure of one light emitting element and one or more ICs for driving the light emitting element is used as one unit, and a plurality of the structural units are arranged in the same direction as the arrangement direction of the light emitting portions. Although it is suitable for an optical print head, it can be applied to other than this, for example, an optical print head having the one structural unit as a basic structure or an optical device similar thereto.
【The invention's effect】
As described above, according to the present invention, by using a light-emitting element that supports time-division driving in the element, it is possible to arrange the individual electrodes of the light-emitting element at a low density, that is, to arrange the long pitch of the individual electrodes. Wiring workability can be improved. As a result, even when the light emitting units are arranged at high density, wiring becomes easy, and a high resolution optical printer head can be provided.
In addition, since the driving IC corresponding to the light emitting element performs time division driving in the light emitting element, the driving circuit can be reduced in size as compared with the case where a large dedicated IC for time division driving is provided. Since the driving IC can be provided with versatility, the driving circuit corresponding to the increase or decrease in the number of light emitting elements can be easily changed.
[Brief description of the drawings]
FIG. 1A is a plan view of a main part of an optical print head according to an embodiment of the present invention, and FIG.
b).
FIG. 2 is a circuit block diagram of the embodiment.
FIGS. 3A and 3B are a plan view and a cross-sectional view of a main part of the light emitting device of the same example.
FIG. 4 is a circuit block diagram of a driving IC according to the same embodiment;
FIG. 5 is a plan view of a principal part showing another configuration example of the light emitting element of the same embodiment.
FIG. 6 is a plan view of a principal part showing another configuration example of the light-emitting element of the example.
FIG. 7 is a circuit block diagram showing a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Optical print head 3 Light emitting element 30 Substrate 31 Contact layer 32 N-type semiconductor layer 33 P-type semiconductor layer 34 Contact layer 35 Light emitting part 37 Common electrode 38 Individual electrode 4 Driving IC
41 1st drive part 42 2nd drive part 43 Shift register 44 Latch circuit 47 Current drive circuit 48 Selection circuit 49 Common drive circuit 5 Wiring 6 Wiring pattern 7 Wiring DO1 Individual electrode selection terminal DO96 Individual electrode selection terminal CDO1 For common electrode Terminal CDO2 Common electrode terminal

Claims (2)

複数の発光部を複数の群に分けるとともに、群毎の発光部に接続した複数の共通電極と、異なる群に属する発光部に接続した複数の個別電極と、を設けて構成した複数の発光素子と、該発光素子を駆動する駆動回路を備え、前記駆動回路は、前記複数の個別電極を選択する第1の駆動部と、前記複数の共通電極を選択する第2の駆動部を一体に設けた複数の駆動用ICを前記各発光素子に対応して設けた光プリントヘッドであって、前記駆動用ICは、前記複数の個別電極を選択するための端子と、前記複数の共通電極を選択するための端子を一方の側部に配置したことを特徴とする光プリントヘッド。With dividing the plurality of light emitting portions into a plurality of groups, a plurality of light emitting elements which is configured by providing a plurality of common electrodes connected to the light emitting portion of each group, a plurality of individual electrodes connected to the light emitting unit belonging to different groups, the And a driving circuit for driving the light emitting element, wherein the driving circuit is integrally provided with a first driving unit for selecting the plurality of individual electrodes and a second driving unit for selecting the plurality of common electrodes. An optical print head provided with a plurality of driving ICs corresponding to each of the light emitting elements, wherein the driving IC selects a terminal for selecting the plurality of individual electrodes and the plurality of common electrodes. An optical print head characterized in that a terminal for carrying out is arranged on one side. 複数の発光部を複数の群に分けるとともに、群毎の発光部に接続した複数の共通電極と、異なる群に属する発光部に接続した複数の個別電極と、を設けて構成した複数の発光素子と、該発光素子を駆動する駆動回路を備え、前記発光素子を一方向に複数配列した光プリントヘッドにおいて、前記駆動回路は、前記複数の個別電極を選択する第1の駆動部と、前記複数の共通電極を選択する第2の駆動部を一体に設けた複数の駆動用ICを前記各発光素子に対応させて前記発光素子の配列方向と同方向に配列し、前記駆動用ICは、前記複数の個別電極を選択するための端子と、前記複数の共通電極を選択するための端子を一方の側部に配置したことを特徴とする光プリントヘッド。With dividing the plurality of light emitting portions into a plurality of groups, a plurality of light emitting elements which is configured by providing a plurality of common electrodes connected to the light emitting portion of each group, a plurality of individual electrodes connected to the light emitting unit belonging to different groups, the And an optical print head in which a plurality of the light emitting elements are arranged in one direction, wherein the driving circuit includes a first driving unit that selects the plurality of individual electrodes, and the plurality of the light emitting elements. A plurality of driving ICs integrally provided with a second driving unit for selecting the common electrode are arranged in the same direction as the arrangement direction of the light emitting elements in correspondence with the respective light emitting elements, An optical print head characterized in that a terminal for selecting a plurality of individual electrodes and a terminal for selecting the plurality of common electrodes are arranged on one side.
JP2002116883A 2002-04-19 Optical print head Expired - Fee Related JP3609798B6 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002116883A JP3609798B6 (en) 2002-04-19 Optical print head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002116883A JP3609798B6 (en) 2002-04-19 Optical print head

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP1420197A Division JP3357810B2 (en) 1997-01-28 1997-01-28 Optical print head

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004199313A Division JP2004322655A (en) 2004-07-06 2004-07-06 Drive ic and optical apparatus

Publications (3)

Publication Number Publication Date
JP2003011426A JP2003011426A (en) 2003-01-15
JP3609798B2 true JP3609798B2 (en) 2005-01-12
JP3609798B6 JP3609798B6 (en) 2008-09-10

Family

ID=

Also Published As

Publication number Publication date
JP2003011426A (en) 2003-01-15

Similar Documents

Publication Publication Date Title
KR20230098350A (en) Local passive matrix display
JP2807910B2 (en) Light emitting element array
JP4345173B2 (en) Driving circuit for light emitting thyristor array
JP3357810B2 (en) Optical print head
JP3609798B2 (en) Optical print head
JP3609798B6 (en) Optical print head
JP3609799B6 (en) Optical print head
JP3609799B2 (en) Optical print head
CA2366990A1 (en) Optical writing head using a self-scanning light-emitting element array
JP3717807B2 (en) Optical print head
EP1134084B1 (en) Driver ic and optical print head
JP2001353903A (en) Optical print head
JP2004276621A (en) Optical apparatus
JP2004322655A (en) Drive ic and optical apparatus
JP2001284653A (en) Light emitting element array
JPH06177431A (en) Light-emitting device array and optical printing head employing light-emitting device array
JP2003069078A (en) Light emitting device and optical printing head
JP2001353902A (en) Self-scanning two-dimensional light emitting element array
JP3600086B6 (en) Driving IC, light emitting element, and optical print head
JP2002036630A (en) Semiconductor light emitting device and optical printer head comprising it
JPH0443434B2 (en)
JP3515454B2 (en) Driving IC and optical print head
JP3600097B6 (en) Driving IC and optical print head
JP4688281B2 (en) Thermal head
JP3600097B2 (en) Driving IC and optical print head

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041014

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071022

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees