JP3609004B2 - Low friction member and method for reducing shear earth pressure of structure using the low friction member - Google Patents

Low friction member and method for reducing shear earth pressure of structure using the low friction member Download PDF

Info

Publication number
JP3609004B2
JP3609004B2 JP2000152080A JP2000152080A JP3609004B2 JP 3609004 B2 JP3609004 B2 JP 3609004B2 JP 2000152080 A JP2000152080 A JP 2000152080A JP 2000152080 A JP2000152080 A JP 2000152080A JP 3609004 B2 JP3609004 B2 JP 3609004B2
Authority
JP
Japan
Prior art keywords
friction member
ground
underground
low friction
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000152080A
Other languages
Japanese (ja)
Other versions
JP2001329526A (en
Inventor
博 佐藤
充 柴沼
義隆 大嶋
尚哉 大川
昌弘 宮澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Maeda Corp
Original Assignee
Tokyo Electric Power Co Inc
Maeda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Maeda Corp filed Critical Tokyo Electric Power Co Inc
Priority to JP2000152080A priority Critical patent/JP3609004B2/en
Publication of JP2001329526A publication Critical patent/JP2001329526A/en
Application granted granted Critical
Publication of JP3609004B2 publication Critical patent/JP3609004B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Description

【0001】
【発明の属する技術分野】
本発明は、低摩擦部材及びこの低摩擦部材を用いた構造物のせん断土圧低減方法に関し、更に詳細には、道路下の共同溝、地下鉄の開削トンネル、発電所の取水路、放水路などの地中構造物、建物の地下部分などに好適な低摩擦部材及びこの低摩擦部材を用いた構造物のせん断土圧低減方法に関する。
【0002】
【従来の技術】
例えば開削トンネルは、地中に掘った穴に構築されるのが普通である。図16は、矩形状の地中構造物1を地中に掘った穴Hに構築したものの従来例を示している。図16において、地中構造物1の上スラブ1aには、地中構造物1を埋設状態におくための土や砂等2が隙間なく被せられている。
【0003】
これらの土や砂等2は、地中構造物1の上スラブ1aに載せられるので、以下「上載土2」ということにし、地中構造物1の上スラブ1a以外の外壁面に対応する穴Hの土や砂のことを「周辺埋設土3」と便宜上いうことにする。なお、図16及び図17中の符号1bは地中構造物1内の空間部であって、この中を車や電車などが通れるようになっている。
【0004】
地中構造物1は矩形状であるから、その上スラブ1aは平面形状をしている。このような平面形状の上スラブ1aを有する地中構造物1を、穴H内に構築してから上載土2を被せて埋設すると、上載土2は上スラブ1aで受け止められる。
【0005】
そして、地中構造物1は、通常、地中深く埋設されるので、上スラブ1aに掛かる上載土2の重量はかなり重くなる。このため、地中構造物1は、上スラブ1aを介して上載土2によって下方に押圧される。すなわち、上載土2は、その重量が土圧として地中構造物1の上スラブ1aに直接作用する。
【0006】
地中構造物1を含む地盤が、例えば地震によって図17の矢印4で示すような横揺れをすると、上載土2は地中構造物1に対して相対的に位置ずれを起こす。このような位置ずれを生じると、上載土2の重量は、単なる土圧として上スラブ1aに作用する以外に、せん断土圧(矢印4方向に上スラブ1aを水平方向に引っ張る力)としても作用してしまう。このため、上載土2と上スラブ1aとの間では、大きな摩擦力を生ずる。この摩擦力が、地中構造物1に大きなせん断変形を生じさせてしまう虞れがある。
【0007】
また、せん断土圧は、上述のように地震時に上載土2が水平方向に相対移動したときの他に、地下構造物1の側方の地盤が沈下したときにも、地下構造物1の側面に発生する。
【0008】
そこで、従来は、地中構造物1に用いられる鉄筋の数を増やしたり、コンクリートの使用量を増やしたりすることにより地中構造物1の強度を高め、これによって地中構造物1が地震時に損傷を受けるのを防止してきた。
【0009】
【発明が解決しようとする課題】
しかしながら、従来の地中構造物1においては、上述のように鉄筋の数やコンクリートの使用量を増やすことにより、強度を上げる必要があるので、コストアップになるという問題があった。
【0010】
このような問題は、地下鉄の開削トンネルに限らず、道路下の共同溝、発電所の取水路、放水路などの地中構造物、建物の地下部分などにも、同様に発生する問題である。
【0011】
本発明の目的は、かかる従来の問題点を解決するためになされたもので、地震や地盤沈下によって、地中に埋設されている構造物に大きなせん断土圧が発生するのを防止でき、これにより構造物の強度を増大させる必要がなく、コストアップを従来より抑えることが可能な低摩擦部材及びこの低摩擦部材を用いた構造物のせん断土圧低減方法を提供することにある。
【0012】
【課題を解決するための手段】
本発明は低摩擦部材及びこれを用いた構造物のせん断土圧低減方法であり、前述の技術的課題を解決するために以下のように構成されている。すなわち、本発明は、相対移動可能な2つの物体間の摩擦を低減するため、前記2つの物体間に配置される低摩擦部材において、2枚の硬質樹脂シート又はプレートと、前記2枚の硬質樹脂シート又はプレートの間に配置されたフッ素樹脂シート又はプレートと、を備えたことを特徴とする。
【0013】
本発明は、相対移動可能な2つの物体間の摩擦を低減するため、前記2つの物体間に配置される低摩擦部材において、一定以上の強度及び一定の容積を有する柔軟な袋と、前記袋に封入された流動物又は軟質物と、を備えたことを特徴とする。
【0014】
本発明の低摩擦部材を用いた建造物のせん断土圧低減方法は、構造物と周囲の地盤との間に上述の低摩擦部材を配置することにより、前記地盤が相対移動したときに前記構造物と前記地盤との摩擦によって前記構造物に作用するせん断土圧を低減することを特徴とする。
【0015】
次に、各構成要素について説明する。
(硬質樹脂シート又はプレート)
2つの物体の対向面に応じた大きさとし、厚さは使用条件に応じて適宜選択できる。硬質樹脂シートとフッ素樹脂シートとを積層した状態で巻回することができ、これにより、長尺な低摩擦部材をコンパクトにまとめることができるので、取り扱いが容易になる。
(フッ素樹脂シート又はプレート)
フッ素樹脂は摩擦係数が非常に小さいので、これを2枚の硬質樹脂シート又はプレートの間に挟むことによって、2枚の硬質樹脂シート又はプレート間の摩擦係数を非常に小さくできる。このフッ素樹脂シート又はプレートは、硬質樹脂シート又はプレートに応じた大きさとし、その厚さは適宜選択できる。フッ素樹脂シート又はプレートは、2枚の硬質樹脂シート又はプレートの一方に固定してもよく、また、固定しなくてもよい。
(袋)
例えばポリエチレンやビニールなどの高分子材料を利用して柔軟で防水性を有する袋を形成する。この柔軟な袋に流動物又は軟質物を封入することにより、大きな荷重がかかった場合でも、流動物又は軟質物が潰されることなく一定の厚さが保持されるので、柔軟性を保持することができる。
(流動物)
流動物としては、水,空気,各種の気体又は液体を使用できる。
(軟質物)
軟質物としては、例えば軟弱な地盤などを使用でき、この場合には、水分が抜けると柔軟性がなくなるので、袋を完全に密封して水分が抜けるのを防止する。その他、土,高分子材料,ベントナイトなどを単独で若しくは混合して使用できる。
(構造物)
地中構造物や、多層階建造物の地下部分などに適用できる。
【0016】
【発明の実施の形態】
以下、本発明に係る低摩擦部材及びこの低摩擦部材を用いた構造物のせん断土圧低減方法の実施の形態を図面を参照して詳細に説明する。
(第1実施形態)
図1は、本発明の低摩擦部材及びこの低摩擦部材を用いた建造物のせん断土圧低減方法を、地中構造物1に適用した場合について説明する図である。この地中構造物1は断面がほぼ矩形であり、その内部には例えば地下鉄などを通すために矩形の中空部1b,1bが形成されている。地中構造物1の上スラブ1aの上面は平坦であり、その上には土や砂などの上載土2が埋め戻されている。また、地中構造物1の上スラブ1aと上載土2との間には、低摩擦部材5が配置されている。なお、図1中の符号Hは穴、3は周辺埋設土である。
【0017】
低摩擦部材5は、図2(A)にも示すように、2枚の例えば塩化ビニールなどの硬質樹脂シート51,53と、これらの硬質樹脂シート51,53間に配置された例えばテフロン(商標名)などのフッ素樹脂シート52とを有している。フッ素樹脂シート52は、図2(B)に示すように、下側、ここでは上スラブ1a側に配置される硬質樹脂シート53に固定されている。フッ素樹脂シート52は摩擦係数が非常に小さいため、その両側にある硬質樹脂シート51,53が相対移動するときの摩擦係数は、非常に小さくなる。
【0018】
なお、フッ素樹脂シート52は、図3(A)に示すように、上側の硬質樹脂シート51に固定してもよく、また、図3(B)に示すように、いずれにも固定しなくてもよい。更に、この低摩擦部材5は、2枚の硬質樹脂シート51,53と、フッ素樹脂シート52とを積層した状態で巻回しておき、使用時に巻き出すことができる。これにより、長尺な低摩擦部材5をコンパクトにまとめることができるので、取り扱いが容易になる。また、硬質樹脂シート51,53及びフッ素樹脂シート52は、厚さを厚くしてプレート状にすることもできる。
【0019】
次に、このせん断土圧低減方法の作用を説明する。いま、図4に示すように、例えば地震等の振動によって、上載土2に矢印4方向の横荷重が作用すると、上載土2が横移動して地中構造物1との間に位置ずれが生じる。
【0020】
このとき、地中構造物1と上載土2との間には、低摩擦部材5が配置されているので、この低摩擦部材5の上載土2側の硬質樹脂シート51がフッ素樹脂シート52上を滑って、上載土2と一緒に相対移動する。これによって、地中構造物1と上載土2との間の摩擦力が非常に小さくなる。そのため、上載土2から地中構造物1に作用するせん断土圧(矢印4方向に上スラブ1aを引っ張る力)Fが非常に小さくなる。
【0021】
したがって、地中構造物本体1の強度を従来ほど増大することなく、すなわち、地中構造物本体1に使用する鉄筋やコンクリートの使用量を従来ほど増やすことなく低コストで、地中構造物本体1の地震時の損傷を防止することができる。
【0022】
なお、図5に示すように、低摩擦部材5の両端を地中構造物1より外側に突出させて配置することができる。この場合は、低摩擦部材5の端部5aが地中構造物1より離れているので、低摩擦部材5の端部5aに発生した地盤応力が周辺埋設土3に分散し、地中構造物1に作用するのを防止できる。
【0023】
また、図6に示すように、地中構造物1の両側に周辺埋設土3より軟らかい例えばゴムなどの軟質材6を配置することができる。これにより、周辺埋設土3から地中構造物1に作用する直土圧Qを軟質材6によって吸収できるので、地中構造物1の強度を必要以上に高くする必要がなくなる。
【0024】
更に、図7に示すように、軟質材6を上載土2の両側に配置することもできる。この場合には、軟質材6の厚さを適宜設定することにより、上載土2の変位を軟質材6で吸収することができる。この結果、上載土2から周辺埋設土3に伝達される地盤応力が極めて小さくなり、周辺埋設土3から地中構造物1の側面に作用する直土圧Qが増大するのを抑制できる。
(第2実施形態)
この第2実施形態は、図8に示すように、本発明を地下部分11を有する多層階建造物10に適用したものである。地下部分11は周辺埋設土3に埋設されている。そして、地下部分11の全周に亘って周辺埋設土3との間に上述と同様な低摩擦部材5が配置されている。
【0025】
この場合には、図9に示すように、地盤沈下によって多層階建造物10の周囲の周辺埋設土3が、相対的に下側に位置ずれした場合には、低摩擦部材5によって多層階建造物10の地下部分11と周辺埋設土3との摩擦力、すなわち、周辺埋設土3から地下部分11に作用するせん断土圧Fが非常に小さくなる。従って、多層階建造物10の地下部分11及び基礎部分の強度をそれ程高くしなくても、損傷するのを防止できるので、コスト低減が可能になる。
(第3実施形態)
図10は、本発明の第3実施形態を示す。この第3実施形態は、図1の低摩擦部材5に代えて塊状の低摩擦部材12が多数配置されており、それ以外は図1と同一である。
【0026】
低摩擦部材12は、図11にも示すように、袋13内に流動物又は軟質物14が封入されている。袋13は、一定以上の強度と一定の容積、及び防水性を有するものであり、例えばポリエチレンやビニールなどの高分子材料で柔軟に形成されている。
【0027】
また、流動物としては、水など各種の液体、又は空気など各種の気体を使用できる。軟質物14としては、所定の荷重がかかったときに自由に変形するものであればよく、例えば、軟弱地盤、土、高分子材料、ベントナイトなどを単独で、又は混合して使用することができる。
【0028】
このような流動物又は軟質物14を一定の容積を有する袋13に充満させることによって、袋13に一定以上の荷重がかかった場合でも袋13が潰れてしまうのを防止でき、これによって、低摩擦部材12としての柔軟性を保持できる。
【0029】
本実施の形態では、軟質物として軟弱地盤を使用している。但し、軟弱地盤は圧密(圧力により土の隙間の中の水や空気が追い出されて密度が大きくなる現象)により、その剛性が大きくなってしまう可能性がある。そのため、ここでは、袋13を完全密封して軟弱地盤中の水や空気が抜けるのを防止するようになっている。この低摩擦部材12は、地中構造物1のスラブ1a上にほぼ隙間なく多数配置されている。
【0030】
いま、図12に示すように、地震などによって、上載土2に矢印4方向の横荷重がかかると、地中構造物1に対して位置ずれを起こす。このときには、低摩擦部材12が変形するので、地中構造物1と上載土2の間の摩擦力が非常に小さくなる。したがって、地中構造物1に作用するせん断土圧Fも非常に小さくなる。従って、地中構造物1の強度を必要以上に高くする必要がなく、コスト低減が可能になる。
【0031】
上述の低摩擦部材12は、図13に示すように、多層階建造物10の地下部分11の周囲に配置することができる。この場合は、図14に示すように、地盤沈下によって周辺埋設土3が下側に相対移動したときに、低摩擦部材12が変形するので、多層階建造物10の地下部分11と周辺埋設土3との摩擦力が非常に小さくなるため、地下部分11に作用するせん断土圧が非常に小さくなる。
【0032】
なお、低摩擦部材12は、図15に示すように、多段に重ねて配置することができる。この場合には、低摩擦部材12の全体の変形量が大きくなる。
上述の実施の形態では、本発明を地中構造物1又は多層階建造物10の地下部分11に適用した場合について説明したが、本発明は、道路下の共同溝、地下鉄の開削トンネル、発電所の取水路、放水路などにも適用することができる。
【0033】
【発明の効果】
以上説明したように、本発明によれば、地震時や地盤沈下時に地中構造物又は構造物の地下部分に作用するせん断土圧を低減できるので、地中構造物又は構造物の地下部分の強度を従来ほど高くする必要がないため、鉄筋の数やコンクリートの使用量を従来に比べて低減でき、これによって、コストダウンを図ることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態を示す図である。
【図2】本発明の第1の実施の形態の低摩擦部材を示す図である。
【図3】本発明の第1の実施の形態の低摩擦部材を示す図である。
【図4】本発明の第1の実施の形態の作用を説明する図である。
【図5】本発明の第1の実施の形態の別の例を示す図である。
【図6】本発明の第1の実施の形態の別の例を示す図である。
【図7】本発明の第1の実施の形態の別の例を示す図である。
【図8】本発明の第2の実施の形態を示す図である。
【図9】本発明の第2の実施の形態の作用を説明する図である。
【図10】本発明の第3の実施の形態を示す図である。
【図11】本発明の第3の実施の形態の低摩擦部材を示す図である。
【図12】本発明の第3の実施の形態の作用を説明する図である。
【図13】本発明の第4の実施の形態を示す図である。
【図14】本発明の第4の実施の形態の作用を説明する図である。
【図15】本発明の第4の実施の形態の別の例を示す図である。
【図16】従来の地中構造物を示す図である。
【図17】従来の地中構造物に作用するせん断土圧を説明する図である。
【符号の説明】
1 地中構造物
2 上載土
5,12 低摩擦部材
11 建造物の地下部分
13 袋
14 軟質物
51,53 硬質樹脂シート
52 フッ素樹脂シート
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a low friction member and a method for reducing the shear earth pressure of a structure using the low friction member, and more particularly, a common groove under a road, a subsurface open tunnel, a power plant intake channel, a water discharge channel, and the like. The present invention relates to a low-friction member suitable for underground structures, underground parts of buildings, and the like, and a method for reducing the shear earth pressure of a structure using the low-friction member.
[0002]
[Prior art]
For example, an open-cut tunnel is usually built in a hole dug in the ground. FIG. 16 shows a conventional example of a rectangular underground structure 1 constructed in a hole H dug in the ground. In FIG. 16, the upper slab 1a of the underground structure 1 is covered with soil and sand 2 for leaving the underground structure 1 in an embedded state without any gaps.
[0003]
Since these soils and sands 2 are placed on the upper slab 1a of the underground structure 1, they are hereinafter referred to as "upper soil 2" and holes corresponding to the outer wall surfaces other than the upper slab 1a of the underground structure 1. The soil and sand of H will be referred to as “peripheral buried soil 3” for convenience. In addition, the code | symbol 1b in FIG.16 and FIG.17 is the space part in underground structure 1, Comprising: A car, a train, etc. can pass through this.
[0004]
Since the underground structure 1 is rectangular, the upper slab 1a has a planar shape. When the underground structure 1 having such an upper slab 1a having a planar shape is built in the hole H and then embedded with the upper soil 2, the upper soil 2 is received by the upper slab 1a.
[0005]
And since the underground structure 1 is normally embed | buried deep underground, the weight of the overburden 2 applied to the upper slab 1a becomes quite heavy. For this reason, the underground structure 1 is pressed downward by the upper soil 2 through the upper slab 1a. That is, the overburden 2 directly acts on the upper slab 1a of the underground structure 1 with its weight as earth pressure.
[0006]
When the ground including the underground structure 1 rolls as indicated by an arrow 4 in FIG. 17 due to, for example, an earthquake, the overlay soil 2 is displaced relative to the underground structure 1. When such misalignment occurs, the weight of the overlaid soil 2 acts not only on the upper slab 1a as a simple earth pressure but also as a shear earth pressure (force that pulls the upper slab 1a in the horizontal direction in the direction of arrow 4). Resulting in. For this reason, a large frictional force is generated between the upper loading soil 2 and the upper slab 1a. This frictional force may cause a large shear deformation in the underground structure 1.
[0007]
Further, the shear earth pressure is applied to the side surface of the underground structure 1 when the ground on the side of the underground structure 1 sinks in addition to when the upper soil 2 moves in the horizontal direction during the earthquake as described above. Occurs.
[0008]
Therefore, conventionally, the strength of the underground structure 1 is increased by increasing the number of reinforcing bars used in the underground structure 1 or increasing the amount of concrete used. Has been prevented from being damaged.
[0009]
[Problems to be solved by the invention]
However, the conventional underground structure 1 has a problem that the cost increases because it is necessary to increase the strength by increasing the number of reinforcing bars and the amount of concrete used as described above.
[0010]
Such a problem is not limited to the open tunnel of a subway, but also occurs in underground structures such as a common ditch under the road, an intake channel of a power plant, a discharge channel, and the like. .
[0011]
An object of the present invention is to solve such a conventional problem, and it is possible to prevent a large shear earth pressure from being generated in a structure buried in the ground due to an earthquake or ground subsidence. Accordingly, it is an object of the present invention to provide a low-friction member that does not require an increase in the strength of the structure and can suppress an increase in cost compared to the conventional one, and a method for reducing the shear pressure of the structure using the low-friction member.
[0012]
[Means for Solving the Problems]
The present invention is a low friction member and a method for reducing the shear earth pressure of a structure using the same, and is configured as follows in order to solve the above technical problem. That is, in the present invention, in order to reduce the friction between two relatively movable objects, in the low friction member disposed between the two objects, the two hard resin sheets or plates and the two hard materials are disposed. And a fluororesin sheet or plate disposed between the resin sheets or plates.
[0013]
In order to reduce friction between two relatively movable objects, the present invention provides a flexible bag having a certain level of strength and a certain volume in a low friction member disposed between the two objects, and the bag. And a fluid or soft material enclosed in the container.
[0014]
The method of reducing the shear earth pressure of a building using the low friction member according to the present invention includes disposing the above-described low friction member between the structure and the surrounding ground so that the structure is moved when the ground is relatively moved. A shear earth pressure acting on the structure is reduced by friction between an object and the ground.
[0015]
Next, each component will be described.
(Hard resin sheet or plate)
The size is determined according to the opposing surfaces of the two objects, and the thickness can be appropriately selected according to the use conditions. Since the hard resin sheet and the fluororesin sheet can be wound in a laminated state, long low-friction members can be gathered in a compact manner, so that handling becomes easy.
(Fluororesin sheet or plate)
Since the fluororesin has a very small friction coefficient, the friction coefficient between the two hard resin sheets or plates can be very small by sandwiching the fluororesin between the two hard resin sheets or plates. The fluororesin sheet or plate is sized according to the hard resin sheet or plate, and the thickness can be selected as appropriate. The fluororesin sheet or plate may be fixed to one of the two hard resin sheets or plates, or may not be fixed.
(bag)
For example, a flexible and waterproof bag is formed using a polymer material such as polyethylene or vinyl. By enclosing the fluid or soft material in this flexible bag, even if a large load is applied, the fluid or soft material can be maintained in a certain thickness without being crushed. Can do.
(Fluid)
As the fluid, water, air, various gases or liquids can be used.
(Soft material)
As the soft material, for example, a soft ground can be used. In this case, since the flexibility is lost when the moisture is removed, the bag is completely sealed to prevent the moisture from being removed. In addition, soil, polymer material, bentonite, etc. can be used alone or in combination.
(Structure)
It can be applied to underground structures and underground parts of multi-story buildings.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a low friction member and a method for reducing the shear pressure of a structure using the low friction member according to the present invention will be described below in detail with reference to the drawings.
(First embodiment)
FIG. 1 is a diagram for explaining a case where the low friction member of the present invention and the method for reducing the shear earth pressure of a building using the low friction member are applied to an underground structure 1. The underground structure 1 has a substantially rectangular cross section, and rectangular hollow portions 1b and 1b are formed inside the underground structure 1 for passing a subway, for example. The upper surface of the upper slab 1a of the underground structure 1 is flat, and the overlay soil 2 such as soil and sand is backfilled thereon. A low friction member 5 is disposed between the upper slab 1 a of the underground structure 1 and the upper soil 2. In addition, the code | symbol H in FIG. 1 is a hole, 3 is surrounding buried soil.
[0017]
As shown in FIG. 2A, the low friction member 5 includes two hard resin sheets 51 and 53 such as vinyl chloride and, for example, Teflon (trademark) disposed between the hard resin sheets 51 and 53. Name) and the like. As shown in FIG. 2B, the fluororesin sheet 52 is fixed to a hard resin sheet 53 disposed on the lower side, here, on the upper slab 1a side. Since the fluororesin sheet 52 has a very small coefficient of friction, the coefficient of friction when the hard resin sheets 51 and 53 on both sides thereof move relatively is very small.
[0018]
Note that the fluororesin sheet 52 may be fixed to the upper hard resin sheet 51 as shown in FIG. 3 (A), or may not be fixed to either as shown in FIG. 3 (B). Also good. Further, the low friction member 5 can be wound in a state where the two hard resin sheets 51 and 53 and the fluororesin sheet 52 are laminated and unwound at the time of use. Thereby, since the long low friction member 5 can be put together compactly, handling becomes easy. Further, the hard resin sheets 51 and 53 and the fluororesin sheet 52 can be formed into a plate shape by increasing the thickness.
[0019]
Next, the effect | action of this shear earth pressure reduction method is demonstrated. Now, as shown in FIG. 4, for example, when a lateral load in the direction of the arrow 4 is applied to the upper soil 2 due to vibration such as an earthquake, the upper soil 2 moves laterally and a positional shift occurs between the underground soil structure 1 and the upper soil 2. Arise.
[0020]
At this time, since the low friction member 5 is disposed between the underground structure 1 and the overburden 2, the hard resin sheet 51 on the upper soil 2 side of the low friction member 5 is placed on the fluororesin sheet 52. And move relative to the top soil 2. Thereby, the frictional force between the underground structure 1 and the overlying soil 2 becomes very small. Therefore, the shear earth pressure (force that pulls the upper slab 1a in the direction of the arrow 4) F acting on the underground structure 1 from the overlaid soil 2 becomes very small.
[0021]
Therefore, without increasing the strength of the underground structure main body 1 as much as before, that is, without increasing the amount of reinforcing bars and concrete used for the underground structure main body 1 as much as before, the underground structure main body It is possible to prevent damage during an earthquake.
[0022]
In addition, as shown in FIG. 5, the both ends of the low friction member 5 can be made to protrude outside the underground structure 1, and can be arrange | positioned. In this case, since the end portion 5a of the low friction member 5 is separated from the underground structure 1, the ground stress generated at the end portion 5a of the low friction member 5 is dispersed in the surrounding buried soil 3, and the underground structure 1 can be prevented.
[0023]
Further, as shown in FIG. 6, soft materials 6 such as rubber that are softer than the surrounding buried soil 3 can be disposed on both sides of the underground structure 1. Thereby, since the direct soil pressure Q which acts on the underground structure 1 from the surrounding buried soil 3 can be absorbed by the soft material 6, it is not necessary to make the strength of the underground structure 1 higher than necessary.
[0024]
Furthermore, as shown in FIG. 7, the soft material 6 can be arranged on both sides of the overlaid soil 2. In this case, by appropriately setting the thickness of the soft material 6, the displacement of the overlay soil 2 can be absorbed by the soft material 6. As a result, the ground stress transmitted from the overburden soil 2 to the surrounding buried soil 3 becomes extremely small, and an increase in the direct soil pressure Q acting on the side surface of the underground structure 1 from the surrounding buried soil 3 can be suppressed.
(Second Embodiment)
In the second embodiment, as shown in FIG. 8, the present invention is applied to a multi-story building 10 having an underground portion 11. The underground portion 11 is buried in the surrounding buried soil 3. And the low friction member 5 similar to the above is arrange | positioned between the surrounding buried soil 3 over the perimeter of the underground part 11.
[0025]
In this case, as shown in FIG. 9, when the surrounding buried soil 3 around the multi-story building 10 is displaced relatively downward due to ground subsidence, the multi-story building is constructed by the low friction member 5. The frictional force between the underground portion 11 of the object 10 and the surrounding buried soil 3, that is, the shear earth pressure F acting on the underground portion 11 from the surrounding buried soil 3 becomes very small. Therefore, even if the strength of the underground part 11 and the foundation part of the multi-story building 10 is not so high, it can be prevented from being damaged, so that the cost can be reduced.
(Third embodiment)
FIG. 10 shows a third embodiment of the present invention. This third embodiment is the same as FIG. 1 except that a large number of massive low friction members 12 are arranged instead of the low friction member 5 of FIG.
[0026]
As shown in FIG. 11, the low friction member 12 includes a bag 13 in which a fluid or soft material 14 is enclosed. The bag 13 has a certain level of strength, a certain volume, and waterproofness, and is formed of a polymer material such as polyethylene or vinyl flexibly.
[0027]
As the fluid, various liquids such as water or various gases such as air can be used. The soft material 14 may be any material that can be freely deformed when a predetermined load is applied. For example, soft ground, soil, polymer material, bentonite and the like can be used alone or in combination. .
[0028]
By filling the fluid 13 or the soft material 14 in the bag 13 having a certain volume, it is possible to prevent the bag 13 from being crushed even when a certain load or more is applied to the bag 13. The flexibility as the friction member 12 can be maintained.
[0029]
In the present embodiment, soft ground is used as the soft material. However, there is a possibility that the rigidity of soft ground may increase due to consolidation (a phenomenon in which water or air in the soil gap is expelled by pressure and the density increases). Therefore, here, the bag 13 is completely sealed to prevent the water and air in the soft ground from escaping. A number of the low friction members 12 are arranged on the slab 1a of the underground structure 1 with almost no gap.
[0030]
Now, as shown in FIG. 12, when a lateral load in the direction of the arrow 4 is applied to the overlying soil 2 due to an earthquake or the like, the underground structure 1 is displaced. At this time, since the low friction member 12 is deformed, the frictional force between the underground structure 1 and the overburden 2 becomes very small. Therefore, the shear earth pressure F acting on the underground structure 1 is also very small. Therefore, it is not necessary to increase the strength of the underground structure 1 more than necessary, and the cost can be reduced.
[0031]
The low-friction member 12 described above can be disposed around the underground portion 11 of the multi-story building 10 as shown in FIG. In this case, as shown in FIG. 14, when the surrounding buried soil 3 is relatively moved downward due to ground subsidence, the low friction member 12 is deformed. Therefore, the underground portion 11 and the surrounding buried soil of the multi-story building 10 are deformed. Since the frictional force with 3 is very small, the shear earth pressure acting on the underground portion 11 is very small.
[0032]
The low friction member 12 can be arranged in multiple stages as shown in FIG. In this case, the entire deformation amount of the low friction member 12 is increased.
In the above-described embodiment, the case where the present invention is applied to the underground structure 11 or the underground portion 11 of the multi-story building 10 has been described. However, the present invention is not limited to the common groove under the road, the underground tunnel, the power generation It can also be applied to the intake and discharge channels.
[0033]
【The invention's effect】
As described above, according to the present invention, since the shear earth pressure acting on the underground structure or the underground part of the structure at the time of an earthquake or subsidence can be reduced, the underground part of the underground structure or the structure can be reduced. Since it is not necessary to increase the strength as in the conventional case, the number of reinforcing bars and the amount of concrete used can be reduced as compared with the conventional case, thereby reducing the cost.
[Brief description of the drawings]
FIG. 1 is a diagram showing a first embodiment of the present invention.
FIG. 2 is a view showing a low friction member according to the first embodiment of the present invention.
FIG. 3 is a view showing a low friction member according to the first embodiment of the present invention.
FIG. 4 is a diagram for explaining the operation of the first exemplary embodiment of the present invention.
FIG. 5 is a diagram showing another example of the first embodiment of the present invention.
FIG. 6 is a diagram showing another example of the first embodiment of the present invention.
FIG. 7 is a diagram showing another example of the first embodiment of the present invention.
FIG. 8 is a diagram showing a second embodiment of the present invention.
FIG. 9 is a diagram for explaining the operation of the second exemplary embodiment of the present invention.
FIG. 10 is a diagram showing a third embodiment of the present invention.
FIG. 11 is a view showing a low friction member according to a third embodiment of the present invention.
FIG. 12 is a diagram for explaining the operation of the third exemplary embodiment of the present invention.
FIG. 13 is a diagram showing a fourth embodiment of the present invention.
FIG. 14 is a diagram for explaining the operation of the fourth exemplary embodiment of the present invention.
FIG. 15 is a diagram showing another example of the fourth embodiment of the present invention.
FIG. 16 is a view showing a conventional underground structure.
FIG. 17 is a diagram for explaining shear earth pressure acting on a conventional underground structure.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Underground structure 2 Overlay soil 5,12 Low friction member 11 Underground part 13 of a building 13 Bag 14 Soft material 51,53 Hard resin sheet 52 Fluororesin sheet

Claims (8)

少なくとも一部分が地中に埋設された構造物の地中の部分と、その周囲の地盤との間の摩擦を低減するため、前記構造物の地中の部分とその周囲の前記地盤との間に配置される低摩擦部材において、
2枚の硬質樹脂シート又はプレートと、
前記2枚の硬質樹脂シート又はプレートの間に配置されたフッ素樹脂シート又はプレートと、を備えたことを特徴とする低摩擦部材。
In order to reduce the friction between the underground part of the structure at least partially embedded in the ground and the surrounding ground, between the underground part of the structure and the surrounding ground In the low friction member to be arranged,
Two hard resin sheets or plates;
A low-friction member comprising: a fluororesin sheet or plate disposed between the two hard resin sheets or plates.
前記フッ素樹脂シート又はプレートは、前記2枚の硬質樹脂シート又はプレートの一方に固定されていることを特徴とする請求項1に記載の低摩擦部材。The low-friction member according to claim 1, wherein the fluororesin sheet or plate is fixed to one of the two hard resin sheets or plates. 前記2枚の硬質樹脂シート及びフッ素樹脂シートが巻回されていることを特徴とする請求項1又は2に記載の低摩擦部材。The low friction member according to claim 1 or 2, wherein the two hard resin sheets and the fluororesin sheet are wound. 少なくとも一部分が地中に埋設された構造物の地中の部分と、その周囲の地盤との間の摩擦を低減するため、前記構造物の地中の部分とその周囲の前記地盤との間に配置される低摩擦部材において、
一定以上の強度及び一定の容積を有し且つ完全密封された柔軟な袋に、流動物又は軟質物が封入されて塊状に形成され、
前記構造物の地中の部分とその周囲の前記地盤との間に、前記構造物に沿って多数並べて配置されることを特徴とする低摩擦部材。
In order to reduce the friction between the underground part of the structure at least partially embedded in the ground and the surrounding ground, between the underground part of the structure and the surrounding ground In the low friction member to be arranged,
Into a closed and and fully sealed flexible bag above a certain intensity and a certain volume, fluids or soft material is formed on the encapsulated mass,
A low-friction member characterized in that a large number of low-friction members are arranged side by side along the structure between an underground part of the structure and the surrounding ground .
前記軟質物は軟弱地盤であることを特徴とする請求項4に記載の低摩擦部材。The low friction member according to claim 4, wherein the soft material is soft ground. 構造物の少なくとも一部分が地中に埋設され、前記構造物の地中の部分と周囲の地盤との間に、請求項1〜5の何れかに記載の低摩擦部材を配置することにより、前記地盤が前記構造物に対して相対移動したときに前記構造物と前記地盤との間の摩擦が低減され、前記構造物に作用するせん断土圧が低減されることを特徴とする低摩擦部材を用いた構造物
のせん断土圧低減方法。
At least a part of the structure is embedded in the ground, and the low-friction member according to any one of claims 1 to 5 is disposed between the ground part of the structure and the surrounding ground. A low friction member characterized in that when the ground moves relative to the structure, friction between the structure and the ground is reduced, and shear earth pressure acting on the structure is reduced. A method for reducing the shear pressure of the structure used.
前記構造物は前記地盤に完全に埋設された地中構造物であり、前記地中構造物の少なくとも上面に前記低摩擦部材を配置し、前記低摩擦部材の上に上載土を埋め戻すことにより、地震時に前記上載土が相対移動したときに前記地中構造物と前記上載土との摩擦が低減され、前記地中構造物に作用するせん断土圧が低減されることを特徴とする請求項6に記載の低摩擦部材を用いた構造物のせん断土圧低減方法。The structure is an underground structure completely embedded in the ground, and the low friction member is disposed on at least the upper surface of the underground structure, and the upper soil is backfilled on the low friction member. The friction between the underground structure and the overlay soil is reduced when the overlay soil is relatively moved during an earthquake, and the shear earth pressure acting on the underground structure is reduced. A method for reducing the shear earth pressure of a structure using the low friction member according to claim 6. 前記構造物は建造物の地下部分であり、前記地下部分の側面と前記地盤との間に前記低摩擦部材を配置することにより、前記地盤の沈下時に前記地下部分と前記地盤との摩擦が低減され、前記地下部分に作用するせん断土圧が低減されることを特徴とする請求項6に記載の低摩擦部材を用いた構造物のせん断土圧低減方法。The structure is an underground part of a building, and the friction between the underground part and the ground is reduced when the ground sinks by disposing the low friction member between a side surface of the underground part and the ground. The shear earth pressure reducing method for a structure using a low friction member according to claim 6, wherein the shear earth pressure acting on the underground portion is reduced.
JP2000152080A 2000-05-23 2000-05-23 Low friction member and method for reducing shear earth pressure of structure using the low friction member Expired - Lifetime JP3609004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000152080A JP3609004B2 (en) 2000-05-23 2000-05-23 Low friction member and method for reducing shear earth pressure of structure using the low friction member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000152080A JP3609004B2 (en) 2000-05-23 2000-05-23 Low friction member and method for reducing shear earth pressure of structure using the low friction member

Publications (2)

Publication Number Publication Date
JP2001329526A JP2001329526A (en) 2001-11-30
JP3609004B2 true JP3609004B2 (en) 2005-01-12

Family

ID=18657551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000152080A Expired - Lifetime JP3609004B2 (en) 2000-05-23 2000-05-23 Low friction member and method for reducing shear earth pressure of structure using the low friction member

Country Status (1)

Country Link
JP (1) JP3609004B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5526842B2 (en) * 2010-02-10 2014-06-18 株式会社大林組 Ground subsidence countermeasure structure, ground subsidence countermeasure method

Also Published As

Publication number Publication date
JP2001329526A (en) 2001-11-30

Similar Documents

Publication Publication Date Title
EP1252397B1 (en) Soil reinforcement method and apparatus
JP2000154550A (en) Vibration control footing structure in building and construction method therefor
JP3594385B2 (en) Seismic isolation structure of structure
JP3609004B2 (en) Low friction member and method for reducing shear earth pressure of structure using the low friction member
JP5532325B2 (en) Construction method of underground wall
JP2015055147A (en) Underground base isolation wall structure and construction method for the same
JP2015105510A (en) Base isolated structure of underground construction and construction method of base isolated structure of underground construction
KR100297436B1 (en) Methods for constructing a backfill of concrete structures
JP2006022631A (en) Method for constructing impervious layer of embankment dam
Kim et al. Two-chambered water-filled geomembrane tubes used as water barriers: experiments and analysis
Bartlett et al. II PROTECTION OF STEEL PIPELINES FROM PERMANENT GROUND DEFORMATION USING EPS GEOFOAM
JPH0536044Y2 (en)
JPH03103535A (en) Countermeasure structure for liquefaction of building
JP3760299B2 (en) Ground lateral flow countermeasure structure
GB2250762A (en) Soil treatment
JPH0988089A (en) Earthquake-damping footing structure
JP2881665B2 (en) Construction method of underground continuous wall by high-pressure injection system ground improvement
JPH11323960A (en) Aseismatic underground structure for structural body
JP2668922B2 (en) Seismic structure of excavated road
JP3936299B2 (en) Underground continuous impermeable wall construction method
JP2807696B2 (en) Underground structure
JP2000144782A (en) Settlement preventive structure of underground structure
JPH05255941A (en) Liquefaction countermeasure construction method for buried structure
JP3595422B2 (en) Seismic resistant underground structure and method of forming the same
JP2524536B2 (en) Foundation structure of underground structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041012

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3609004

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071022

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term