JP3605733B2 - Charging method - Google Patents

Charging method Download PDF

Info

Publication number
JP3605733B2
JP3605733B2 JP02325794A JP2325794A JP3605733B2 JP 3605733 B2 JP3605733 B2 JP 3605733B2 JP 02325794 A JP02325794 A JP 02325794A JP 2325794 A JP2325794 A JP 2325794A JP 3605733 B2 JP3605733 B2 JP 3605733B2
Authority
JP
Japan
Prior art keywords
charging
temperature
time
secondary battery
seconds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02325794A
Other languages
Japanese (ja)
Other versions
JPH07211354A (en
Inventor
正隆 山下
Original Assignee
株式会社エイ・ティーバッテリー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エイ・ティーバッテリー filed Critical 株式会社エイ・ティーバッテリー
Priority to JP02325794A priority Critical patent/JP3605733B2/en
Publication of JPH07211354A publication Critical patent/JPH07211354A/en
Application granted granted Critical
Publication of JP3605733B2 publication Critical patent/JP3605733B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【産業上の利用分野】
本発明は、非水系の二次電池の充電方法に係り、特に温度範囲条件に対応し各温度にて二次電池を最適かつ最短の充電時間で充電することのできる充電方法に関する。
【0002】
【従来の技術】
近年、携帯電話、ビデオムービー、携帯型ノートパソコン等のコードレスで使用される電子機器がめざましく普及してきている。そして、更なる高性能化、小型軽量化が図られていることから、これら電子機器の電源となる二次電池の高容量化及び高エネルギー化の要請が高まっている。
【0003】
この二次電池としては、鉛二次電池、ニッケルカドミウム二次電池が従来から用いられているが、最近では更に小型で且つ高電圧が得られるすなわち高エネルギー密度化が図れるリチウムイオン二次電池の如き非水系電解液の二次電池の開発が進んでいる。
【0004】
このリチウムイオン二次電池の如き非水系の二次電池にあっては、端子間電圧が所定電圧以上になると安全上好ましくないことから、その充電に際しては二次電池の端子間電圧が一定電圧になるまでは定電流充電若しくは準定電流充電を行い、そして端子間電圧が一定電圧に達した後は定電圧充電を行う充電電流制限型の定電圧充電方法等が用いられていた。
【0005】
しかし、従来の充電電流制限型の定電圧充電方法にあっては、充電時間を短縮すべく急速充電を行う際には、充電電流の制限を緩め充電電流を大きくすることが必要となるものの、充電電流の増大は充電装置における電流定格の増大を招くものであり、これは充電装置の低コスト化や充電装置の小型化の流れと逆行するものであるとともに、充放電の繰り返しでの容量保持率の低下の虞れもあった。
【0006】
そこで本出願の発明者は、特開平4−123771号公報に開示されている非水系二次電池の急速充電方法を案出した。これは、充電開始当初は定電流充電若しくは準定電流充電を行い、次いでパルス充電に移行するもので、従来の充電電流制限型の定電圧充電方法における定電圧充電に要する時間を大幅に短縮させることにより、充電装置の定格電流を増大させることなく充電時間を短縮できるという優れた充電方法である。
【0007】
【発明が解決しようとする課題】
しかしながら、前述したパルス充電による充電方法は、適宜最大電流値を設定することにより急速充電することができるものの、過酷な使用条件を想定した低温から高温までの広い温度範囲の全ての条件に対応して、好適な充電率で充電を行うことは困難であった。
【0008】
そこで、本発明にあっては、低温から高温までの温度範囲条件に対応し、各温度での二次電池の最適かつ最短の充電時間を可能とする充電方法を実現することを目的とする。
【0009】
【課題を解決するための手段】
上述した目的を達成すべく、本発明の充電方法は、非水系の二次電池のパルス充電方法において、該二次電池における−40℃から+80℃の温度範囲条件に対応し、該二次電池を充電するパルス電流の1サイクル中のオン時間をほぼ一定としかつ二次電池の温度が低温から高温に変移するのに応じてオフ時間を100秒間乃至1秒間の範囲から0.5秒間乃至0.0001秒間の範囲まで負の温度係数で連続的にもしくは段階的に減少変化させてデューティ比を大きくするとともに、オン時間とオフ時間の和を1周期とするパルス電流の1サイクルの周波数を−40℃で1Hzから0.01Hzの間、+80℃で10kHzから2Hzの間の範囲で正の温度係数で連続的にもしくは段階的に変化させることを特徴とするものである。
【0010】
【作用】
非水系の二次電池のパルス充電方法において、該二次電池における−40℃から+80℃の温度範囲条件に対応し、該二次電池を充電するパルス電流の1サイクル中のオフ時間を100秒間乃至1秒間の範囲から0.5秒間乃至0.0001秒間の範囲まで負の温度係数で連続的にもしくは段階的に減少変化させることで、低温時には二次電池における緩慢な化学反応に応じたゆっくりした小さな充電率で好適に充電するとともに、高温時には二次電池が対応し得る大きな充電率で急速に充電することができる。
【0011】
また、非水系の二次電池を充電するパルス電流の1サイクル中のオン時間の比率を示すデューティ比を、二次電池の温度が低温から高温に変移するのに応じて連続的にもしくは段階的に大きくすることで、低温の二次電池にとって好適なゆっくりした小さな充電率から、高温の二次電池が対応し得る急速な大きな充電率まで、低温から高温まで各温度に対応した最適でかつ最速の充電時間で充電することができる。
【0012】
また、非水系の二次電池を充電するパルス電流の1サイクル中のオン時間をほぼ一定とするとともに、前記1サイクル中のオフ時間を、二次電池の温度が低温から高温に変移するのに応じて連続的にもしくは段階的に短くすることで、低温の二次電池にとって好適なゆっくりした小さな充電率から、高温の二次電池が対応し得る急速な大きな充電率まで、低温から高温まで連続的に各温度に対応した最適でかつ最速の充電時間で充電することができる。
【0013】
【実施例】
図1は、本発明の充電方法の第1の実施例におけるパルス電流の波形図である。このパルス電流1は矩形波からなり、オン時間t(on)とオフ時間t(off)とで1サイクルを形成し、このうちオン時間t(on)をほぼ一定に保持しつつ、オフ時間t(off)の温度特性を負の温度係数としている。
【0014】
図1(a)は、二次電池もしくはその周囲温度が約−20℃のときのパルス電流の波形であり、オン時間t(on)とオフ時間t(off)の比率がほぼ1対1となっている。また、図1(b)は、二次電池もしくはその周囲温度が約0℃のときのパルス電流の波形であり、オン時間t(on)とオフ時間t(off)の比率がほぼ10対1となっている。そして、図1(c)は、二次電池もしくはその周囲温度が約+30℃のときのパルス電流の波形であり、オン時間t(on)とオフ時間t(off)の比率がほぼ100対1となっている。
【0015】
図2は、本発明の充電方法の第1の実施例において、パルス電流のオン時間t(on)を10秒と一定にした場合に、オフ時間t(off)が設定されるべき温度特性を示すグラフ図である。枠Aにて囲繞された範囲が本発明の充電方法の第1の実施例における好適な範囲であり、この範囲内において二次電池の種類、定格等に応じて適宜好適な温度特性を選択する。オフ時間t(off)は、−40℃では100秒から1秒の間、+80℃では0.5秒から0.0001秒の間の範囲内とすることが好適である。
【0016】
また、一般的な二次電池、例えば特開昭55−13613号公報、特開昭62−90863号公報、特開昭63−299056号公報等で開示されているリチウムイオン二次電池等の実用的な温度範囲である−20℃〜+60℃の範囲では、通常枠Bで示される−20℃で10秒から1秒の間、+60℃で0.1秒から0.001秒の間の範囲に設定するのが好ましい。また、オン時間t(on)は、100秒から0.01秒が好適で、更に好ましくは10秒から0.1秒の範囲内が望ましい。
【0017】
図3は、パルス充電の充電電流波形が矩形波の場合に、オン時間の長さをパラメータとしてオフ時間を変化させたときの充電率(平均充電電流値をピーク電流値で除した百分率)を示すグラフ図である。このグラフ図を参考にして、各種二次電池における低温時に好適な充電率と高温時に好適な充電率とから、各温度におけるオフ時間を設定すればよいものである。
【0018】
図4は、本発明の充電方法の第2の実施例を示し、オン時間t(on)とオフ時間t(off)の和を1周期とするパルス電流の1サイクルの周波数(以下、充電周波数という)の温度特性を示すグラフ図である。この充電周波数の温度特性は正の温度係数を有し、−40℃では1Hzから0.01Hzの間、+80℃では10kHzから2Hzの間の枠Cで示される範囲が好適である。
【0019】
また、一般的な二次電池、例えば特開昭55−13613号公報、特開昭62−90863号公報、特開昭63−299056号公報等で開示されているリチウムイオン二次電池等の実用的な温度範囲である−20℃〜+60℃の範囲では、通常枠Dで示される−20℃で0.05Hz〜5Hzの間、+60℃で10Hz〜1kHzの間の範囲に設定するのが好ましい。尚、オン時間とオフ時間の比率(t(on)/t(off))は1対1とは限らず、二次電池の各温度での充電特性に合わせて設定する。一般に、0.1〜10の範囲で変えれば充分であり、低温から高温になるにつれて増大するように設定するが、連続的に変化する必要はなく、段階的に変化させてもよい。勿論、オン時間とオフ時間の比率は一定でもよいが、この場合は低温側での特性に制約される。
【0020】
また、本発明の第3の実施例としては、特に図示しないが、パルス電流のオン時間の温度特性を正の温度係数を有するものとするとともに、パルス電流のオフ時間の温度特性を負の温度係数を有するものとするものである。これは、上述した本発明の第1の実施例と同様に、パルス電流のオン時間に対するオフ時間の比率が温度の上昇とともに減少するものである。
【0021】
尚、上述した各実施例において、充電電流波形を矩形波として説明したが、勿論これに限定されることはなく、半波の正弦波、歪んだ矩形波、歪んだ半波の正弦波、DCバイアスされた正弦波等であってもよいものである。
【0022】
また、上述した各実施例において、低温時から高温時にかけてパルス電流のオフ時間が減少するが、電極と電解液の界面のインピーダンスが全電池の内部インピーダンスに対する寄与の割合が小さくなる、例えば特開昭55−13613号公報、特開昭62−90863号公報、特開昭63−299056号公報等で開示されているリチウムイオン二次電池にあっては、常温を超える高温域ではパルス電流のオン時間に対してオフ時間の比率が充分小さくなることから、パルス電流のオフ時間を必ずしも減少させる必要はない。
【0023】
【発明の効果】
以上詳述した如く、本発明の充電方法によれば、非水系の二次電池のパルス充電方法において、該二次電池における−40℃から+80℃の温度範囲条件に対応し、該二次電池を充電するパルス電流の1サイクル中のオフ時間を100秒間乃至1秒間の範囲から0.5秒間乃至0.0001秒間の範囲まで負の温度係数で連続的にもしくは段階的に減少変化させることで、低温時には二次電池における緩慢な化学反応に応じたゆっくりした小さな充電率で好適に充電するとともに、高温時には二次電池が対応し得る大きな充電率で急速に充電することができるものである。
【0024】
また、非水系の二次電池を充電するパルス電流の1サイクル中のオン時間の比率を示すデューティ比を、二次電池の温度が低温から高温に変移するのに応じて連続的にもしくは段階的に大きくすることで、低温の二次電池にとって好適なゆっくりした小さな充電率から、高温の二次電池が対応し得る急速な大きな充電率まで、低温から高温まで各温度に対応した最適でかつ最速の充電時間で充電することができる。
【0025】
また、非水系の二次電池を充電するパルス電流の1サイクル中のオン時間をほぼ一定とするとともに、前記1サイクル中のオフ時間を、二次電池の温度が低温から高温に変移するのに応じて連続的にもしくは段階的に短くすることで、低温の二次電池にとって好適なゆっくりした小さな充電率から、高温の二次電池が対応し得る急速な大きな充電率まで、低温から高温まで連続的に各温度に対応した最適でかつ最速の充電時間で充電することができる。
【0026】
したがって、本発明の充電方法によれば、低温から高温まで二次電池の周囲温度に対応し各温度での最適かつ最短の充電時間を可能とするとともに、充放電サイクルを重ねても容量保持率が低下することなく非水系二次電池の長寿命化が可能となるものである。
【図面の簡単な説明】
【図1】本発明の充電方法の第1の実施例におけるパルス電流の波形図である。
【図2】本発明の充電方法の第1の実施例におけるパルス電流のオフ時間の温度特性を示すグラフ図である。
【図3】本発明の充電方法の第1の実施例におけるオン時間をパラメータとしてオフ時間を変化させたときの充電率を示すグラフ図である。
【図4】本発明の充電方法の第2の実施例におけるパルス電流の周波数の温度特性を示すグラフ図である。
【符号の説明】
1 パルス電流
t(on) パルス電流のオン時間
t(off) パルス電流のオフ時間
[0001]
[Industrial applications]
The present invention relates to a method of charging a non-aqueous secondary battery, and more particularly to a charging method capable of charging a secondary battery optimally and at a minimum charging time at each temperature in accordance with temperature range conditions.
[0002]
[Prior art]
In recent years, cordless electronic devices such as mobile phones, video movies, and portable notebook personal computers have been remarkably popularized. Further, since higher performance and smaller size and lighter weight are being achieved, demands for higher capacity and higher energy of a secondary battery serving as a power source of these electronic devices are increasing.
[0003]
As this secondary battery, a lead secondary battery and a nickel cadmium secondary battery have been conventionally used, but recently, a lithium ion secondary battery which is smaller and has a higher voltage, that is, a higher energy density can be achieved. The development of such non-aqueous electrolyte secondary batteries has been progressing.
[0004]
In a non-aqueous secondary battery such as this lithium ion secondary battery, if the voltage between terminals is higher than a predetermined voltage, it is not preferable for safety. Therefore, when charging, the voltage between terminals of the secondary battery is set to a constant voltage. Until then, constant-current charging or quasi-constant-current charging is performed, and after the terminal voltage reaches a constant voltage, constant-voltage charging is performed.
[0005]
However, in the conventional charging current limiting type constant voltage charging method, when performing quick charging to shorten the charging time, it is necessary to loosen the charging current limit and increase the charging current. An increase in charging current causes an increase in the current rating of the charging device, which goes against the trend of lowering the cost of the charging device and miniaturizing the charging device, and maintaining the capacity through repeated charging and discharging. There was also a risk that the rate would decrease.
[0006]
Therefore, the inventor of the present application has devised a method for rapidly charging a non-aqueous secondary battery disclosed in Japanese Patent Application Laid-Open No. 4-123773. In this method, constant-current charging or quasi-constant-current charging is performed at the beginning of charging, and then the operation shifts to pulse charging. This significantly reduces the time required for constant-voltage charging in the conventional charging-current-limited constant-voltage charging method. This is an excellent charging method in which the charging time can be reduced without increasing the rated current of the charging device.
[0007]
[Problems to be solved by the invention]
However, the above-described charging method by pulse charging can be rapidly charged by appropriately setting the maximum current value, but is compatible with all conditions in a wide temperature range from low to high temperatures assuming severe use conditions. Therefore, it has been difficult to perform charging at a suitable charging rate.
[0008]
In view of the above, an object of the present invention is to realize a charging method corresponding to a temperature range condition from a low temperature to a high temperature and enabling an optimal and shortest charging time of the secondary battery at each temperature.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a charging method according to the present invention corresponds to a pulse charging method for a non-aqueous secondary battery, which corresponds to a temperature range of −40 ° C. to + 80 ° C. in the secondary battery. The on-time during one cycle of the pulse current for charging the battery is substantially constant, and the off-time ranges from 100 seconds to 1 second to 0.5 seconds to 0 in response to the temperature of the secondary battery changing from low to high. The duty ratio is increased by continuously or stepwise decreasing the negative temperature coefficient to a range of 0.0001 seconds to increase the duty ratio, and the frequency of one cycle of the pulse current having one cycle of the on-time and the off-time as- It is characterized in that the temperature is changed continuously or stepwise with a positive temperature coefficient in the range of 1 Hz to 0.01 Hz at 40 ° C. and 10 kHz to 2 Hz at + 80 ° C.
[0010]
[Action]
In the pulse charging method for a non-aqueous secondary battery, the off time in one cycle of a pulse current for charging the secondary battery corresponding to a temperature range of −40 ° C. to + 80 ° C. in the secondary battery is set to 100 seconds. From 1 second to 0.5 seconds to 0.0001 seconds with a negative temperature coefficient, continuously or stepwise, so as to respond slowly to slow chemical reactions in secondary batteries at low temperatures. The battery can be suitably charged at the small charging rate described above, and can be rapidly charged at a high charging rate that the secondary battery can cope with at a high temperature.
[0011]
Further, the duty ratio indicating the ratio of the ON time in one cycle of the pulse current for charging the non-aqueous secondary battery is changed continuously or stepwise according to the transition of the temperature of the secondary battery from low to high. Optimum and fastest for each temperature from low temperature to high temperature, from slow low charging rate suitable for low temperature rechargeable batteries to rapid high charging rate that high temperature rechargeable batteries can support It can be charged in the charging time.
[0012]
In addition, the on-time during one cycle of the pulse current for charging the non-aqueous secondary battery is made substantially constant, and the off-time during the one cycle is changed when the temperature of the secondary battery changes from low to high. Continuously or stepwise shortening accordingly, from a slow low charging rate suitable for low-temperature rechargeable batteries to a rapid high charging rate that high-temperature rechargeable batteries can support, from low to high temperatures It is possible to charge the battery with an optimal and fastest charging time corresponding to each temperature.
[0013]
【Example】
FIG. 1 is a waveform diagram of a pulse current in the first embodiment of the charging method of the present invention. The pulse current 1 is formed of a rectangular wave, and forms one cycle of the on-time t (on) and the off-time t (off). The temperature characteristic of (off) is a negative temperature coefficient.
[0014]
FIG. 1A shows a pulse current waveform when the secondary battery or its ambient temperature is about −20 ° C., and the ratio of the on-time t (on) to the off-time t (off) is about 1: 1. Has become. FIG. 1B shows a pulse current waveform when the secondary battery or its ambient temperature is about 0 ° C., and the ratio of the on-time t (on) to the off-time t (off) is approximately 10: 1. It has become. FIG. 1C shows the waveform of the pulse current when the secondary battery or its ambient temperature is about + 30 ° C., and the ratio of the on-time t (on) to the off-time t (off) is almost 100: 1. It has become.
[0015]
FIG. 2 shows a temperature characteristic in which the off time t (off) should be set when the on time t (on) of the pulse current is fixed to 10 seconds in the first embodiment of the charging method of the present invention. FIG. The range surrounded by the frame A is a preferable range in the first embodiment of the charging method of the present invention, and within this range, a suitable temperature characteristic is appropriately selected according to the type and rating of the secondary battery. . The off time t (off) is preferably in the range of 100 seconds to 1 second at -40 ° C and 0.5 seconds to 0.0001 seconds at + 80 ° C.
[0016]
In addition, the practical use of general secondary batteries such as lithium ion secondary batteries disclosed in JP-A-55-13613, JP-A-62-90863, JP-A-63-299056, and the like. In the typical temperature range of −20 ° C. to + 60 ° C., a range of 10 to 1 second at −20 ° C. and a range of 0.1 to 0.001 second at + 60 ° C., which are usually indicated by frame B. It is preferable to set The ON time t (on) is preferably from 100 seconds to 0.01 seconds, and more preferably from 10 seconds to 0.1 seconds.
[0017]
FIG. 3 shows the charging rate (percentage obtained by dividing the average charging current value by the peak current value) when the off time is changed using the length of the on time as a parameter when the charging current waveform of the pulse charging is a rectangular wave. FIG. With reference to this graph, the off-time at each temperature may be set based on a suitable charging rate at a low temperature and a preferable charging rate at a high temperature in various secondary batteries.
[0018]
FIG. 4 shows a second embodiment of the charging method according to the present invention, in which a cycle of a pulse current having one cycle of the sum of the on-time t (on) and the off-time t (off) (hereinafter, charging frequency) FIG. 7 is a graph showing the temperature characteristics of FIG. The temperature characteristic of the charging frequency has a positive temperature coefficient, and a range indicated by a frame C between 1 Hz and 0.01 Hz at −40 ° C. and between 10 kHz and 2 Hz at + 80 ° C. is preferable.
[0019]
In addition, the practical use of general secondary batteries such as lithium ion secondary batteries disclosed in JP-A-55-13613, JP-A-62-90863, JP-A-63-299056, and the like. In the range of -20 ° C to + 60 ° C, which is a typical temperature range, it is preferable to set the range between 0.05Hz to 5Hz at -20 ° C and the range between 10Hz to 1kHz at + 60 ° C, which are usually indicated by frame D. . Note that the ratio (t (on) / t (off)) of the on-time and the off-time is not limited to one-to-one, but is set according to the charging characteristics of the secondary battery at each temperature. Generally, it is sufficient to change the value in the range of 0.1 to 10 and the setting is made to increase from low temperature to high temperature. However, it is not necessary to change continuously, and it may be changed stepwise. Of course, the ratio between the on-time and the off-time may be constant, but in this case, the characteristics at the low temperature side are restricted.
[0020]
As a third embodiment of the present invention, although not shown, the on-time temperature characteristic of the pulse current has a positive temperature coefficient and the off-time temperature characteristic of the pulse current has a negative temperature coefficient. It has a coefficient. This means that the ratio of the off time to the on time of the pulse current decreases as the temperature rises, as in the first embodiment of the present invention described above.
[0021]
In each of the above-described embodiments, the charging current waveform is described as a rectangular wave. However, the present invention is not limited to this, and is not limited to this. For example, a half-wave sine wave, a distorted rectangular wave, a distorted half-wave sine wave, DC It may be a biased sine wave or the like.
[0022]
In each of the embodiments described above, the off time of the pulse current decreases from low to high temperatures, but the ratio of the impedance of the interface between the electrode and the electrolyte to the internal impedance of the entire battery decreases. In the lithium ion secondary batteries disclosed in JP-A-55-13613, JP-A-62-90863, JP-A-63-299056, etc., the pulse current is not turned on in a high temperature range exceeding room temperature. Since the ratio of the off time to the time becomes sufficiently small, it is not always necessary to reduce the off time of the pulse current.
[0023]
【The invention's effect】
As described above in detail, according to the charging method of the present invention, in the pulse charging method for a non-aqueous secondary battery, the secondary battery corresponds to a temperature range of −40 ° C. to + 80 ° C. By continuously or stepwise decreasing the off time in one cycle of the pulse current for charging from a range of 100 seconds to 1 second with a negative temperature coefficient from a range of 0.5 seconds to 0.0001 seconds. In addition, at low temperatures, the secondary battery can be suitably charged at a small charge rate corresponding to a slow chemical reaction, and at high temperatures, it can be rapidly charged at a large charge rate that the secondary battery can handle.
[0024]
Further, the duty ratio indicating the ratio of the ON time in one cycle of the pulse current for charging the non-aqueous secondary battery is changed continuously or stepwise according to the transition of the temperature of the secondary battery from low to high. Optimum and fastest for each temperature from low temperature to high temperature, from slow low charging rate suitable for low temperature rechargeable batteries to rapid high charging rate that high temperature rechargeable batteries can support It can be charged in the charging time.
[0025]
In addition, the on-time during one cycle of the pulse current for charging the non-aqueous secondary battery is made substantially constant, and the off-time during the one cycle is changed when the temperature of the secondary battery changes from low to high. Continuously or stepwise shortening accordingly, from a slow low charging rate suitable for low-temperature rechargeable batteries to a rapid high charging rate that high-temperature rechargeable batteries can support, from low to high temperatures It is possible to charge the battery with an optimal and fastest charging time corresponding to each temperature.
[0026]
Therefore, according to the charging method of the present invention, the optimum and shortest charging time at each temperature can be achieved at low temperatures to high temperatures corresponding to the ambient temperature of the secondary battery, and the capacity retention rate can be maintained even when charging and discharging cycles are repeated. It is possible to extend the life of the non-aqueous secondary battery without lowering the battery life.
[Brief description of the drawings]
FIG. 1 is a waveform diagram of a pulse current in a first embodiment of the charging method of the present invention.
FIG. 2 is a graph showing a temperature characteristic of an off time of a pulse current in the first embodiment of the charging method of the present invention.
FIG. 3 is a graph showing a charging rate when the off-time is changed using the on-time as a parameter in the first embodiment of the charging method of the present invention.
FIG. 4 is a graph showing a temperature characteristic of a frequency of a pulse current in a second embodiment of the charging method of the present invention.
[Explanation of symbols]
1 Pulse current t (on) On time t (off) of pulse current Off time of pulse current

Claims (1)

非水系の二次電池のパルス充電方法において、該二次電池における−40℃から+80℃の温度範囲条件に対応し、該二次電池を充電するパルス電流の1サイクル中のオン時間をほぼ一定としかつ二次電池の温度が低温から高温に変移するのに応じてオフ時間を100秒間乃至1秒間の範囲から0.5秒間乃至0.0001秒間の範囲まで負の温度係数で連続的にもしくは段階的に減少変化させてデューティ比を大きくするとともに、オン時間とオフ時間の和を1周期とするパルス電流の1サイクルの周波数を−40℃で1Hzから0.01Hzの間、+80℃で10kHzから2Hzの間の範囲で正の温度係数で連続的にもしくは段階的に変化させることを特徴とする充電方法。In the pulse charging method for a non-aqueous secondary battery, the on-time during one cycle of a pulse current for charging the secondary battery is substantially constant , corresponding to a temperature range of −40 ° C. to + 80 ° C. for the secondary battery. And according to the temperature of the secondary battery changes from a low temperature to a high temperature, the OFF time is continuously or negatively with a negative temperature coefficient ranging from 100 seconds to 1 second to 0.5 seconds to 0.0001 seconds. The duty ratio is increased stepwise and the duty ratio is increased, and the frequency of one cycle of the pulse current in which the sum of the ON time and the OFF time is one cycle is from 1 Hz to 0.01 Hz at −40 ° C. and 10 kHz at + 80 ° C. A charging method characterized in that the temperature is changed continuously or stepwise with a positive temperature coefficient in the range from to 2 Hz .
JP02325794A 1994-01-25 1994-01-25 Charging method Expired - Fee Related JP3605733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02325794A JP3605733B2 (en) 1994-01-25 1994-01-25 Charging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02325794A JP3605733B2 (en) 1994-01-25 1994-01-25 Charging method

Publications (2)

Publication Number Publication Date
JPH07211354A JPH07211354A (en) 1995-08-11
JP3605733B2 true JP3605733B2 (en) 2004-12-22

Family

ID=12105557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02325794A Expired - Fee Related JP3605733B2 (en) 1994-01-25 1994-01-25 Charging method

Country Status (1)

Country Link
JP (1) JP3605733B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10819131B2 (en) * 2016-08-01 2020-10-27 Toyota Jidosha Kabushiki Kaisha Regeneration method of nickel-hydrogen battery

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005065476A (en) * 2003-07-25 2005-03-10 Sanyo Electric Co Ltd Method for charging battery
JP6048278B2 (en) * 2013-03-28 2016-12-21 マツダ株式会社 Vehicle charging control device
JP5982317B2 (en) * 2013-03-29 2016-08-31 Kyb株式会社 Charge control device and hybrid construction machine
MY190877A (en) * 2016-02-05 2022-05-13 Guangdong Oppo Mobile Telecommunications Corp Ltd Terminal charging system, charging method, and power adapter
JP6941789B2 (en) * 2017-04-27 2021-09-29 パナソニックIpマネジメント株式会社 Power supply device, power storage system, and charging method
CN111446511B (en) * 2019-01-17 2021-09-03 太普动力新能源(常熟)股份有限公司 Battery and method for charging battery core

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10819131B2 (en) * 2016-08-01 2020-10-27 Toyota Jidosha Kabushiki Kaisha Regeneration method of nickel-hydrogen battery

Also Published As

Publication number Publication date
JPH07211354A (en) 1995-08-11

Similar Documents

Publication Publication Date Title
JP4038241B2 (en) Hybrid energy storage system
US9065292B2 (en) Methods and systems for charging electrochemical cells
JP5372495B2 (en) Secondary battery protection circuit and secondary battery having the same
Hasan et al. Analysis of the implications of rapid charging on lithium-ion battery performance
CN100547850C (en) A kind of safety device that secondary cell overcharges and secondary cell of preventing with this safety device
US8912762B2 (en) Charging method for non-aqueous electrolyte secondary battery by repeating a set of constant current charge and constant voltage charge and battery pack implementing the charging method
JP4112478B2 (en) Battery pack charger
JPWO2011065009A1 (en) Lithium ion secondary battery charging method and battery pack
JP4246399B2 (en) Battery cell maintenance charging system and method
JP2009178017A (en) Battery pack and charging method of the same
JP2002058171A (en) Charge control method for secondary battery
JP3605733B2 (en) Charging method
JP3558523B2 (en) Charging method for non-aqueous secondary batteries
JP4221636B2 (en) Lithium ion secondary battery charging method and charging device
JP2950956B2 (en) Charging method
JP2006092901A (en) Charge-discharge system
JP2905581B2 (en) Charging device
JP4429621B2 (en) Charge control method for alkaline aqueous battery
JP4436485B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
CN214428688U (en) Ultralow temperature battery SRS is from waking up system
JP2903954B2 (en) Rechargeable battery charger
Barsukov Battery selection, safety, and monitoring in mobile applications
JPH11307134A (en) Charging method of alkaline aqueous solution secondary battery for backup
JPH10321262A (en) Method for charging non-aqueous secondary battery
JP4134873B2 (en) Charging method and charger for sealed alkaline storage battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040922

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees