JP4134873B2 - Charging method and charger for sealed alkaline storage battery - Google Patents

Charging method and charger for sealed alkaline storage battery Download PDF

Info

Publication number
JP4134873B2
JP4134873B2 JP2003341805A JP2003341805A JP4134873B2 JP 4134873 B2 JP4134873 B2 JP 4134873B2 JP 2003341805 A JP2003341805 A JP 2003341805A JP 2003341805 A JP2003341805 A JP 2003341805A JP 4134873 B2 JP4134873 B2 JP 4134873B2
Authority
JP
Japan
Prior art keywords
charging
battery
storage battery
alkaline storage
sealed alkaline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003341805A
Other languages
Japanese (ja)
Other versions
JP2005108687A (en
Inventor
唱起 宮本
香織 初代
誠二郎 落合
金本  学
充浩 児玉
実 黒葛原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2003341805A priority Critical patent/JP4134873B2/en
Publication of JP2005108687A publication Critical patent/JP2005108687A/en
Application granted granted Critical
Publication of JP4134873B2 publication Critical patent/JP4134873B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

本発明は、密閉型アルカリ蓄電池の充電方法に関するものであり、特に充電時に電池の内圧が予め定めた規定値を超えたときに電気回路を切断して充電を停止させ、内圧が前記規定値以下に低下したときに電気回路を導通させて充電を再開させるスイッチ機能を内蔵する密閉型アルカリ蓄電池の充電方法であって1時間未満の短時間で充電を終了させる急速充電方法および該充電に適用する充電器に関するものである。   The present invention relates to a method for charging a sealed alkaline storage battery, and particularly when the internal pressure of the battery exceeds a predetermined specified value during charging, the electric circuit is disconnected to stop charging, and the internal pressure is equal to or less than the specified value. A charging method for a sealed alkaline storage battery having a built-in switch function that causes an electric circuit to conduct and resume charging when the voltage drops to a low level, and is applied to the quick charging method that terminates charging in a short time of less than one hour It relates to the charger.

密閉形のアルカリ蓄電池は、耐放電後放置性能、耐過充電性能に優れ、一般ユーザーにとって使い易い電池であるところから、携帯電話、小型電動工具、小型パーソナルコンピュータ等の携帯用小型電子機器類用の電源として広く利用されている。   Sealed alkaline storage batteries are excellent in performance after being discharged and withstand overcharge, and are easy to use for general users. For portable electronic devices such as mobile phones, small power tools, and small personal computers. Widely used as a power source.

前記密閉型アルカリ蓄電池の充電において、これまでは急速充電とはいえ、充電完了までに約1時間を要する充電であり、充電中に電池の内圧が異常に上昇してベントが動作(異常昇圧)したり、電池の温度が電池にとって好ましい温度の上限を超えて上昇する(異常昇温)ことはまれなので、充電を繰り返し行っても顕著な性能低下が認められず特に問題とはならなかった。しかし、近年30〜15分間という極めて短い時間で充電を完了するという従来にない急速な充電に対する要求が高まっている。このような急速充電を行うと、前記異常昇圧や異常昇温が頻繁におこり、電解液の消耗や電池構成材料の変質などが生じて電池性能が顕著に低下する虞があるため、前記急速充電に関する要求に対して、従来構造の電池で対応することは極めて困難であった。   The charging of the sealed alkaline storage battery is a charging that takes about 1 hour to complete the charging, although it is a quick charging so far, and the vent operates when the internal pressure of the battery abnormally rises during the charging (abnormal pressure increase) However, the battery temperature rarely rises above the upper limit of the temperature preferable for the battery (abnormal temperature rise), and therefore, even if charging is repeated, no significant performance degradation was observed and no particular problem was found. However, in recent years, there has been an increasing demand for unprecedented rapid charging that completes charging in an extremely short time of 30 to 15 minutes. When such rapid charging is performed, the abnormal pressure increase or abnormal temperature increase frequently occurs, and there is a risk that the battery performance may be significantly deteriorated due to the consumption of the electrolyte or the deterioration of the battery constituent material. It has been extremely difficult to meet the demands for the battery with the conventional structure.

前記従来になかった急速充電の要求に対応する方策として、特許文献1に密閉型電池に前記圧力スイッチ機能を持たせることが提案されている。該提案によれば、圧力スイッチ機能を働かせることによって、30〜15分間で充電を完了させる急速充電を行ったときにも電池温度が電池にとって好ましい温度範囲の上限を超えて上昇しないように電池温度を制御できるとしている。(特許文献1参照)
WO 02/35618 A1 号公報(FIG.2A、FIG.2B)
As a measure corresponding to a request for quick charging that has not been made in the past, Patent Document 1 proposes that a sealed battery has the pressure switch function. According to the proposal, by operating the pressure switch function, the battery temperature does not rise beyond the upper limit of the temperature range preferable for the battery even when a quick charge is performed to complete the charge in 30 to 15 minutes. Can control. (See Patent Document 1)
WO 02/35618 A1 Publication (FIG.2A, FIG.2B)

密閉型アルカリ蓄電池においては、正極の容量に比べてに負極の容量を大きくして、充電末期に正極で発生する酸素を負極で吸収する方式を採用している。該方式を酸素サイクル方式と称し、該方式の採用によって、原理的には過充電を行っても電池が破壊されることはない。しかし、前記負極による酸素吸収反応は、発熱反応であり、電池の内部温度を上昇させ、電池構成材料の変質を招来する虞がある。また、過充電による正極からの酸素の発生は、電池の内圧を高め、電極やセパレータから電解液を押し出して、電極やセパレータの液涸れ現象を招来する虞がある。また、過度に早すぎる充電の打ち切りは充電不足に繋がる。従って、密閉型アルカリ蓄電池の充電終了時点を適正に決めることは、蓄電池本来の性能を発揮させることと、蓄電池の性能を長期に亘り維持することにとって極めて重要である。   The sealed alkaline storage battery employs a method in which the capacity of the negative electrode is made larger than that of the positive electrode, and oxygen generated at the positive electrode at the end of charging is absorbed by the negative electrode. This method is referred to as an oxygen cycle method, and by adopting this method, in principle, the battery is not destroyed even if overcharging is performed. However, the oxygen absorption reaction by the negative electrode is an exothermic reaction, and there is a possibility that the internal temperature of the battery is raised and the battery constituent material is deteriorated. Moreover, the generation of oxygen from the positive electrode due to overcharging may increase the internal pressure of the battery and push out the electrolyte from the electrode or separator, leading to a liquid dripping phenomenon of the electrode or separator. In addition, the termination of charging too early leads to insufficient charging. Therefore, appropriately determining the end of charging of the sealed alkaline storage battery is extremely important for exerting the original performance of the storage battery and maintaining the performance of the storage battery for a long period of time.

前記特許文献1には、前記圧力スイッチ機能を備えた蓄電池を定電圧で充電する充電方法が記載されている。該充電方法においては、アルカリ蓄電池の充電終了時点を決定する方法として、従来広く採用されている−ΔV充電制御方式(−ΔVを検知して充電を終了させるという充電終止の判定方式)が採用できない。   Patent Document 1 describes a charging method for charging a storage battery having the pressure switch function with a constant voltage. In this charging method, as a method for determining the end point of charging of the alkaline storage battery, a -ΔV charge control method (a charging end determination method in which charging is terminated by detecting -ΔV) that has been widely used in the past cannot be adopted. .

充電終止時点を決定する最も単純な方法は、充電開始からの経過時間によって決める方法である。しかし、この方法によれば充電するときの周囲温度によって充電受け入れ率(ここでいう充電受け入れ率とは、当該充電後における放電容量の、電池の定格容量に対する比率をいう。なお、定格容量とは、フルに充電した電池が本来持っている放電容量を意味し、ここでは、フルに充電した電池を常温において0.2ItAのレートで放電したときに得られる放電容量と定義する)や、充電効率(ここでいう充電効率とは当該充電後における放電容量の充電電気量に対する比率をいう)が周囲温度によって大きく変わる欠点がある。   The simplest method of determining the charging end point is a method of determining by the elapsed time from the start of charging. However, according to this method, the charge acceptance rate depends on the ambient temperature when charging (the charge acceptance rate here is the ratio of the discharge capacity after the charge to the rated capacity of the battery. This means the discharge capacity inherently possessed by a fully charged battery. Here, it is defined as the discharge capacity obtained when a fully charged battery is discharged at a rate of 0.2 ItA at room temperature.) (Charge efficiency here means the ratio of the discharge capacity to the charge electricity amount after the charge) has a drawback that it varies greatly depending on the ambient temperature.

また、特許文献1には、蓄電池の表面に外層缶の膨張変形を司るストレインゲージを取り付け該ゲージの指示値が規定値に達した時点で充電を終止させる方法が提案されているが、この方法はストレインゲージを必要とするので、充電器の構成が複雑になり、高価になる欠点がある。   Patent Document 1 proposes a method in which a strain gauge that controls expansion and deformation of an outer layer can is attached to the surface of a storage battery, and charging is terminated when the indicated value of the gauge reaches a specified value. Since the strain gauge requires a strain gauge, the structure of the charger is complicated and expensive.

本発明は、値前記従来技術の欠点に鑑みなされたものであって、前記急速に短時間で密閉型アルカリ蓄電池を充電する方法において、充電不足、過充電の発生を極力抑制することを可能とする充電打ち切りのタイミングを簡便な方法で決定する充電方法を提供せんとするものである。   The present invention has been made in view of the disadvantages of the above-described prior art, and in the method for rapidly charging a sealed alkaline storage battery in a short time, it is possible to suppress the occurrence of insufficient charging and overcharging as much as possible. It is intended to provide a charging method for determining the timing of charging termination to be performed by a simple method.

本発明は、鋭意検討の結果、アルカリ蓄電池の充電受け入れ率や充電効率と、充電電流と電池の定格容量の比(AC/CN)や充電電流と充電電流のピーク値の比(AC/ACM)との間に相関性があり、該2つの比を充電打ち切り時点を決定するための指標として適用できること、また、上記2つの比を充電打ち切り時点決定の指標とすることにより、一定時間で充電を打ちきる方式に比べて充電受け入れ率や充電効率が充電時の周囲温度の影響を受け難いことを見出したことによってなされたものである。 In the present invention, as a result of intensive studies, the charging acceptance rate and charging efficiency of an alkaline storage battery, the ratio between the charging current and the rated capacity of the battery (A C / C N ), and the ratio between the charging current and the peak value of the charging current (A C / A CM ), the two ratios can be applied as an index for determining the charging termination time point, and the above two ratios can be used as an index for determining the charging termination time point. This is based on the finding that the charge acceptance rate and the charging efficiency are less affected by the ambient temperature during charging compared to the method in which charging is completed in time.

本発明は、密閉型アルカリ蓄電池の充電方法を以下の構成とすることによって前記課題を解決する。
(1)本発明に係る密閉型アルカリ蓄電池の充電方法は、充電時に電池の内圧が予め定めた規定値を超えたときに電気回路を切断して充電を停止させ、内圧が前記規定値を下回ったときに電気回路を導通させて充電を再開させる圧力スイッチ機能を内蔵する急速に短時間で密閉型アルカリ蓄電池を充電する充電方法であって、1セル当たり1.5〜1.7Vの定電圧を印可して充電し、充電電流(AC)と電池の定格容量(CN)との比(AC/CN)が、1〜2(mA/mAh)の範囲内にある予め定めた規定値に達した時点をもって充電を打ちきる密閉型アルカリ蓄電池の充電方法である。なお、ここでいうところの充電電流(AC)は圧力スイッチが作動して充電回路がOFFにあるときではなく充電回路がONにあるときに流れる充電電流値を指す。
(2)本発明に係る密閉型アルカリ蓄電池の充電方法は、充電時に電池の内圧が予め定めた規定値を超えたときに電気回路を切断して充電を停止させ、内圧が前記規定値を下回ったときに電気回路を導通させて充電を再開させる圧力スイッチ機能を内蔵する急速に短時間で密閉型アルカリ蓄電池を充電する充電方法であって、1セル当たり1.5〜1.7Vの定電圧を印可して充電し、充電電流とピーク充電電流(充電電流のピーク値)の比(AC/ACM)が、0.25〜0.6の範囲内にある予め定めた規定比率に達した時点をもって充電を打ちきる密閉型アルカリ蓄電池の充電方法である。
(3)本発明に係る密閉型アルカリ蓄電池の充電器は、充電時に電池の内圧が予め定めた規定値を超えたときに電気回路を切断して充電を停止させ、内圧が前記規定値を下回ったときに電気回路を導通させて充電を再開させる圧力スイッチ機能を内蔵する密閉型アルカリ蓄電池用の充電器であって、1セル当たり1.5〜1.7Vの定電圧を印可して充電する機能を有し、充電電流を検知する機能と電池の定格容量を記録する機能、または、充電電流を検知する機能と充電電流のピーク値を記録する機能を備え、前記AC/CN、または、前記AC/ACMが予め定めた規定値に達したことを検知して充電を終了させる機能を持つ密閉型アルカリ蓄電池用充電器である。
This invention solves the said subject by making the charging method of a sealed alkaline storage battery into the following structure.
(1) The method for charging a sealed alkaline storage battery according to the present invention is such that when the internal pressure of the battery exceeds a predetermined specified value during charging, the electric circuit is disconnected to stop charging, and the internal pressure falls below the specified value. Charging method for rapidly charging a sealed alkaline storage battery in a short time with a built-in pressure switch function for turning on an electric circuit and restarting charging, and a constant voltage of 1.5 to 1.7 V per cell The ratio (A C / C N ) between the charging current (A C ) and the rated capacity (C N ) of the battery is within a range of 1 to 2 (mA / mAh). This is a method for charging a sealed alkaline storage battery that completes charging when it reaches a specified value. The charging current (A C ) here refers to a charging current value that flows when the charging circuit is ON, not when the pressure switch is operated and the charging circuit is OFF.
(2) The method for charging a sealed alkaline storage battery according to the present invention is such that when the internal pressure of the battery exceeds a predetermined specified value during charging, the electric circuit is disconnected to stop charging, and the internal pressure falls below the specified value. Charging method for rapidly charging a sealed alkaline storage battery in a short time with a built-in pressure switch function for turning on an electric circuit and restarting charging, and a constant voltage of 1.5 to 1.7 V per cell Is applied, and the ratio of charging current and peak charging current (peak value of charging current) (A C / A CM ) reaches a predetermined specified ratio in the range of 0.25 to 0.6. This is a method for charging a sealed alkaline storage battery that completes charging at the time when the battery is discharged.
(3) The battery charger of the sealed alkaline storage battery according to the present invention stops the charging by cutting the electric circuit when the internal pressure of the battery exceeds a predetermined specified value during charging, and the internal pressure falls below the specified value. Is a battery charger for a sealed alkaline storage battery that has a built-in pressure switch function that makes an electric circuit conductive and resumes charging, and is charged by applying a constant voltage of 1.5 to 1.7 V per cell. a function, a function to record the rated capacity of the function and the battery for detecting a charge current or a function of recording a peak value of the function as the charging current for detecting the charging current, the a C / C N or, A battery charger for a sealed alkaline storage battery having a function of detecting that A C / A CM has reached a predetermined value and terminating charging.

本発明に係る密閉型アルカリ蓄電池の充電方法によれば、充電時に電池の内圧が予め定めた規定値を超えたときに電気回路を切断して充電を停止させ、内圧が前記規定値を下回ったときに電気回路を導通させて充電を再開させる圧力スイッチ機能を内蔵する急速に短時間で密閉型アルカリ蓄電池を充電するに際して、簡便な方法で、かつ、充電不足や過充電に陥るのを極力抑制するように充電を終了させることができる。(請求項1、請求項2)   According to the method for charging a sealed alkaline storage battery according to the present invention, when the internal pressure of the battery exceeds a predetermined specified value during charging, the electric circuit is disconnected to stop charging, and the internal pressure falls below the specified value. When charging a sealed alkaline storage battery in a short period of time with a built-in pressure switch function that sometimes turns on the electrical circuit and resumes charging, it is a simple method and minimizes shortage and overcharging. Charging can be terminated. (Claim 1, Claim 2)

本発明に係る密閉型アルカリ蓄電池の充電器は、充電時に電池の内圧が予め定めた規定値を超えたときに電気回路を切断して充電を停止させ、内圧が前記規定値を下回ったときに電気回路を導通させて充電を再開させる圧力スイッチ機能を内蔵する急速に短時間で密閉型アルカリ蓄電池を充電するに際して、簡単な構成で、充電不足や過充電に陥るのを極力抑制することのできる密閉型アルカリ蓄電池の充電器である。(請求項3)   The battery charger for the sealed alkaline storage battery according to the present invention disconnects the electric circuit when the internal pressure of the battery exceeds a predetermined specified value during charging and stops charging, and when the internal pressure falls below the specified value. When charging a sealed alkaline storage battery in a short period of time with a built-in pressure switch function that turns on the electric circuit and restarts charging, it is possible to suppress the shortage and overcharging as much as possible with a simple configuration. It is a charger for a sealed alkaline storage battery. (Claim 3)

本発明に係る充電方法は、前記圧力スイッチ機能を備えた密閉型アルカリ蓄電池を定電圧充電にて充電する充電方法であって、フル放電状態にある電池を、30〜15分間という短時間で充電を完了することのできる急速充電方法である。   A charging method according to the present invention is a charging method for charging a sealed alkaline storage battery having the pressure switch function by constant voltage charging, and charging a battery in a fully discharged state in a short time of 30 to 15 minutes. It is a quick charging method that can complete.

前記圧力スイッチの構成は、特に限定されるものではないが1例として前記特許文献1に記載されている圧力スイッチが適用できる。具体的には、図1に示したような圧力スイッチ12を内蔵した密閉型アルカリ蓄電池11を充電の対象とする。該圧力スイッチ12は、図1に示すように筒状の電槽13の開放端(図の上部)に、電気絶縁性の封口部材1とリング状金属板5を配置し、封口部材1の中心部分に筒状の透孔2を設け、該透孔2に電極(正極)10とキャップ状端子6を結ぶ電気回路を構成する接続部材3を貫通させている。前記透孔2の内壁と接続部材3の側壁、封口部材1の外周面と電槽13の内壁およびリング状金属板5の外周壁と封口部材1をそれぞれ気密に当接させることによって電池を気密に密閉している。なお、封口部材1は、可撓性を有しており、接続部材3は、図の上下方向に位置を変えることができるのに対して、リング状金属板5は位置が固定されている。   The configuration of the pressure switch is not particularly limited, but the pressure switch described in Patent Document 1 can be applied as an example. Specifically, a sealed alkaline storage battery 11 having a built-in pressure switch 12 as shown in FIG. As shown in FIG. 1, the pressure switch 12 has an electrically insulating sealing member 1 and a ring-shaped metal plate 5 disposed at the open end (upper part of the figure) of a cylindrical battery case 13, and the center of the sealing member 1. A cylindrical through hole 2 is provided in the portion, and a connecting member 3 constituting an electric circuit connecting the electrode (positive electrode) 10 and the cap-shaped terminal 6 is passed through the through hole 2. The battery is hermetically sealed by bringing the inner wall of the through-hole 2 and the side wall of the connecting member 3, the outer peripheral surface of the sealing member 1, the inner wall of the battery case 13, and the outer peripheral wall of the ring-shaped metal plate 5 and the sealing member 1, respectively. Sealed. The sealing member 1 is flexible, and the connecting member 3 can be moved in the vertical direction in the figure, whereas the ring-shaped metal plate 5 is fixed in position.

電極10と接続部材3とはタブ端子9を介して接続している。接続部材3の側壁上部にはリング状の金属製接続片4が接合され、前記リング状金属板5の外面(図では上の面)にはキャップ状端子6が接合されており、端子6とリング状金属板5で囲まれた空間に弾性体7を挿入し、該弾性体7の押圧力によって接続部材3を電池の内側方向(図では下方向)に押圧している。   The electrode 10 and the connection member 3 are connected via a tab terminal 9. A ring-shaped metal connection piece 4 is bonded to the upper portion of the side wall of the connection member 3, and a cap-shaped terminal 6 is bonded to the outer surface (the upper surface in the drawing) of the ring-shaped metal plate 5. An elastic body 7 is inserted into a space surrounded by the ring-shaped metal plate 5, and the connecting member 3 is pressed inward (downward in the figure) by the pressing force of the elastic body 7.

電池の内圧が規定値以下のときは、弾性体7の押圧力の大きさが電池の内圧の大きさを上回るため、接続部材3が電池の内方向(図では下方)に押されて、図に示すように、接続片4の下面がリング状金属板5の上面に当接し、電極10と端子6を結ぶ回路は導通状態になる。電池の内圧が規定値を超えたときには、電池の内圧が弾性体28の押圧力に勝るため、接続部材3が電池の外方向(図では上方向)押されて、接続片4とリング状金属板5が離れて電気回路が切断される構成をとっている。   When the internal pressure of the battery is less than or equal to the specified value, the magnitude of the pressing force of the elastic body 7 exceeds the magnitude of the internal pressure of the battery, so that the connecting member 3 is pushed inward (downward in the figure) of the battery. As shown in FIG. 5, the lower surface of the connection piece 4 comes into contact with the upper surface of the ring-shaped metal plate 5, and the circuit connecting the electrode 10 and the terminal 6 becomes conductive. When the internal pressure of the battery exceeds a specified value, the internal pressure of the battery exceeds the pressing force of the elastic body 28, so that the connecting member 3 is pressed outward (upward in the figure) of the battery, and the connecting piece 4 and the ring-shaped metal The board 5 is separated and the electric circuit is cut off.

本発明においては、充電電圧を1.5〜1.7Vの範囲内に設定することが望ましい。充電電圧が1.5V未満では充電の進行が遅く充電に長時間を要する虞がある。充電電圧が1.7Vを超えると、充電時に正極において酸素の発生が、負極において水素の発生が盛んになり、電池の温度が好ましい温度範囲を超えて上昇する他に、充電当初から圧力スイッチが動作し、短時間で充電ができない虞がある。   In the present invention, it is desirable to set the charging voltage within the range of 1.5 to 1.7V. If the charging voltage is less than 1.5V, the progress of charging is slow and there is a possibility that it takes a long time for charging. When the charging voltage exceeds 1.7 V, oxygen generation occurs at the positive electrode during charging, and hydrogen generation occurs at the negative electrode, and in addition to the battery temperature rising beyond the preferred temperature range, It operates and there is a possibility that it cannot be charged in a short time.

本発明においては、充電時の前記AC/CNが1〜2(mA/mAh)、より好ましくは1.3〜1.7(A/Ah)の範囲内にあって、予め定められた値に到達した時点で充電を打ちきる。AC/CNが1未満では過充電となり、該充電を繰り返すことによって電池性能の劣化を招く虞がある。また、AC/CNが2を超えると充電不足となり、電池の本来持っている性能を十分に生かせない虞がある。 In the present invention, the A C / C N at the time of charging is 1~2 (mA / mAh), and more preferably be in the range of 1.3~1.7 (A / Ah), a predetermined Stop charging when the value is reached. Becomes overcharging is less than A C / C N is 1, there is a possibility of causing deterioration of battery performance by repeating the charging. Also, A C / C N becomes insufficient charging exceeds 2, there is a possibility that not Ikase performance have original battery sufficiently.

本発明においては、充電時の前記AC/ACMが0.25〜0.6、より好ましくは0.25〜0.5の範囲内にあって、予め定められた値に到達した時点で充電を終了させる。AC/ACMが0.25未満では過充電となり、該充電を繰り返すことによって電池性能の劣化を招く虞がある。また、AC/ACMが0.6を超えると充電不足となり、電池の本来持っている性能を十分に生かせない虞がある。 In the present invention, when the A C / A CM at the time of charging is within a range of 0.25 to 0.6, more preferably 0.25 to 0.5, and reaches a predetermined value. Stop charging. If A C / A CM is less than 0.25, the battery is overcharged, and the battery performance may be deteriorated by repeating the charge. Further, if A C / A CM exceeds 0.6, charging is insufficient, and there is a possibility that the performance inherent in the battery cannot be fully utilized.

以下、定電圧充電様式を適用した実施例によって、本発明の詳細を説明する。
(第1の実施形態:AC/CNが規定値に達した時点で充電打ち切り)
(実施例1)
正極にニッケル電極を、負極に水素吸蔵合金電極を備えた定格容量2000mAh、AAサイズ(単3サイズ)の密閉型ニッケル水素蓄電池であって、前記図1に示した圧力スイッチを備え、該圧力スイッチの動作圧力が2.4メガパスカル(MPa)である密閉型ニッケル水素蓄電池を作製した。
Hereinafter, the details of the present invention will be described with reference to an embodiment to which a constant voltage charging mode is applied.
(First Embodiment: Charge censored at the time A C / C N has reached the predetermined value)
(Example 1)
A sealed nickel-metal hydride storage battery having a rated capacity of 2000 mAh and an AA size (AA) having a nickel electrode as a positive electrode and a hydrogen storage alloy electrode as a negative electrode, comprising the pressure switch shown in FIG. A sealed nickel-metal hydride storage battery having an operating pressure of 2.4 megapascals (MPa) was produced.

該蓄電池を5個用意し、各々の電池の表面に電池の温度を測定するための温度センサーを取り付けた。なお、定められた方法で電池を初期化成した後、周囲温度20℃において、充電電流0.2ItAにて6時間充電し、1時間放置した後同周囲温度において放電電流0.2ItAにて放電終止電圧を1.0Vとして放電した。該放電で得られた放電容量を実施例1の前記定格容量A(mAh)とした。   Five storage batteries were prepared, and a temperature sensor for measuring the battery temperature was attached to the surface of each battery. After initializing the battery by a prescribed method, it was charged for 6 hours at a charging current of 0.2 ItA at an ambient temperature of 20 ° C., left for 1 hour, and then discharged at a discharge current of 0.2 ItA at the same ambient temperature. The voltage was discharged at 1.0V. The discharge capacity obtained by the discharge was defined as the rated capacity A (mAh) of Example 1.

放電終了後の電池を周囲温度20℃、において、充電電圧1.65Vの定電圧で充電した。供試電池10個を本発明の実施形態に係る充電方法、具体的には前記AC/CNが1.3(mA/mAh)に到達した時点で充電を停止した。充電停止後2時間放置した後に周囲温度20℃において放電電流0.2ItAにて放電終止電圧を1.0Vとして放電した。該放電で得られた放電容量をB(mAh)とし、B(mAh)の前記A(mAh)に対する比率B/A(%)を定電圧充電を行ったときの充電受け入れ率とした。また、充電中の充電電流をモニターし、これを積算して充電電気量C(mAh)を求めた。前記放電容量B(mAh)の充電電気量C(mAh)に対する比率B/C(%)を算定し、該算定値を充電効率とした。 The battery after the discharge was charged at a constant voltage of 1.65 V at an ambient temperature of 20 ° C. Charging method according ten specimen cell to an embodiment of the present invention, specifically stops charging when it reaches the A C / C N within 1.3 (mA / mAh). After leaving the battery for 2 hours, the battery was discharged at an ambient temperature of 20 ° C. with a discharge current of 0.2 ItA and a discharge end voltage of 1.0 V. The discharge capacity obtained by the discharge was defined as B (mAh), and the ratio B / A (%) of B (mAh) to A (mAh) was defined as the charge acceptance rate when constant voltage charging was performed. Moreover, the charging current during charging was monitored, and this was integrated to obtain the amount of charged electricity C (mAh). The ratio B / C (%) of the discharge capacity B (mAh) to the charge electricity amount C (mAh) was calculated, and the calculated value was defined as the charge efficiency.

放電終了後の電池を周囲温度5℃と35℃と別々の温度において、充電電圧1.65Vの定電圧で充電した。供試電池10個を本発明の実施形態に係る充電方法、具体的には前記AC/CNが1.3(mA/mAh)に到達した時点で充電を停止した。充電停止後電池を周囲温度20℃の雰囲気に移して2時間放置した後に、同周囲温度において放電電流0.2ItAにて放電終止電圧を1.0Vとして放電した。 The battery after the discharge was charged at a constant voltage of 1.65 V at different temperatures of ambient temperature 5 ° C. and 35 ° C. Charging method according ten specimen cell to an embodiment of the present invention, specifically stops charging when it reaches the A C / C N within 1.3 (mA / mAh). After stopping the charge, the battery was transferred to an atmosphere at an ambient temperature of 20 ° C. and left for 2 hours, and then discharged at a discharge current of 0.2 ItA at a discharge current of 1.0 V at the same ambient temperature.

(実施例2〜実施例4)
前記実施例1と同じ構成の電池を周囲温度20℃、において、充電電圧1.65Vの定電圧で充電した。ただし、AC/CNが、それぞれ1、1.7、2(mA/mAh)に到達した時点で充電を打ち切り、実施例1と同様、充電停止後1時間放置した後に周囲温度20℃において放電電流0.2ItAにて放電終止電圧を1.0Vとして放電した。実施例1と同様の方法にて充電受け入れ率、充電効率を求めた。該充電方法をそれぞれ実施例2、実施例3、実施例4とする。
(Example 2 to Example 4)
A battery having the same configuration as in Example 1 was charged at a constant voltage of 1.65 V at an ambient temperature of 20 ° C. However, A C / C N, respectively abort charging when it reaches the 1,1.7,2 (mA / mAh), as in Example 1, at ambient temperature 20 ° C. After standing for 1 hour after charging stop The battery was discharged at a discharge current of 0.2 ItA and a final discharge voltage of 1.0V. The charge acceptance rate and the charge efficiency were determined in the same manner as in Example 1. The charging methods are referred to as Example 2, Example 3, and Example 4, respectively.

(比較例1、比較例2)
前記実施例1と同じ構成の電池を、AC/CNが、それぞれ0.8、2.3(mA/mAh)に到達した時点で充電をうち切り、実施例1と同様の方法にて充電受け入れ率、充電効率を求めた。該充電方法をそれぞれ比較例1、比較例2とする。
(Comparative Example 1 and Comparative Example 2)
The battery having the same structure as in Example 1, A C / C N is, of cutting the charging when it reaches the respective 0.8,2.3 (mA / mAh), in the same manner as in Example 1 Charging acceptance rate and charging efficiency were calculated. The charging methods are referred to as Comparative Example 1 and Comparative Example 2, respectively.

図2に実施例1〜実施例4、比較例1、比較例2の充電受け入れ率を、図3に実施例1〜実施例4、比較例1、比較例2の充電効率を示す。   FIG. 2 shows the charge acceptance rates of Examples 1 to 4, Comparative Example 1, and Comparative Example 2, and FIG. 3 shows the charging efficiencies of Examples 1 to 4, Comparative Example 1, and Comparative Example 2.

図2に示したとおり、実施例1〜実施例4、および比較例1に比べて比較例2は、充電受け入れ率が低い。実施例、比較例共に1.65Vの定電圧で充電しているので、充電電流がいずれも同じ時間的推移を示すなかで、実施例1〜実施例4の場合は、充電時間が14〜20分間、比較例1の場合は、充電時間が25分間であるのに対して、比較例2においては、充電時間が約10分間であり短い。比較例2の場合は、充電時間が短いために充電不足になったものと考えられる。   As shown in FIG. 2, compared to Examples 1 to 4 and Comparative Example 1, Comparative Example 2 has a lower charge acceptance rate. Since both the example and the comparative example are charged at a constant voltage of 1.65 V, the charging time is 14 to 20 in the case of Example 1 to Example 4 while the charging current shows the same temporal transition. In the case of Comparative Example 1, the charging time is 25 minutes, whereas in Comparative Example 2, the charging time is about 10 minutes, which is short. In the case of Comparative Example 2, it is considered that charging was insufficient because the charging time was short.

また、図3に示した通り、比較例1は、実施例1〜実施例4、比較例2に比べて充電効率が低い。比較例1の場合は前記のように充電時間が長く、充電の末期正極からの酸素発生が盛ん(副反応が盛んに起きている状態)になったために充電効率が低くなったものと考えられる。
図2と図3に示した結果から、前記AC/CNが1〜2(mA/mAh)が良く、1.3〜1.7(mA/mAh)がより好ましいことが分かる。
In addition, as shown in FIG. 3, Comparative Example 1 has lower charging efficiency than Examples 1 to 4 and Comparative Example 2. In the case of Comparative Example 1, it is considered that the charging efficiency is low because the charging time is long as described above, and oxygen generation from the positive electrode at the end of charging is active (a state in which side reactions are actively occurring). .
From the results shown in FIGS. 2 and 3, the A C / C N is good 1~2 (mA / mAh), it is understood that more preferably 1.3~1.7 (mA / mAh).

(本発明の第2の実施形態:AC/ACMが規定値に達した時点で充電打ち切り)
(実施例5)
前記実施例1において充電電流とピーク充電電流の比(AC/ACM)が0.4に達した時点で充電を終了した。その他は、実施例1と同じとした。該充電方法を実施例7とする。
(Second embodiment of the present invention: when A C / A CM reaches a specified value, charging is terminated)
(Example 5)
Charging was terminated when the ratio of charging current to peak charging current (A C / A CM ) in Example 1 reached 0.4. Others were the same as in Example 1. This charging method is referred to as Example 7.

(実施例6〜実施例8)
前記実施例7において、充電電流とピーク充電電流の比(AC/ACM)がそれぞれ0.25、0.5、0.6になった時点で充電を終了した。それ以外は、実施例5と同じとした。該充電方法をそれぞれ実施例6、実施例7、実施例8とする。
(Example 6 to Example 8)
In Example 7, the charging was terminated when the ratio of charging current to peak charging current (A C / A CM ) reached 0.25, 0.5, and 0.6, respectively. Otherwise, it was the same as Example 5. The charging methods are referred to as Example 6, Example 7, and Example 8, respectively.

(比較例3、比較例4)
前記実施例7において、充電電流とピーク充電電流の比(AC/ACM)がそれぞれ0.2、0.7になった時点で充電を終了した。それ以外は実施例7と同じとした。該充電方法をそれぞれ比較例3、比較例4とする。
(Comparative Example 3, Comparative Example 4)
In Example 7, the charging was terminated when the ratio of charging current to peak charging current (A C / A CM ) reached 0.2 and 0.7, respectively. Otherwise, it was the same as Example 7. The charging methods are referred to as Comparative Example 3 and Comparative Example 4, respectively.

図4に実施例5〜実施例8、比較例3、比較例4の充電受け入れ率を、図5にと実施例5〜実施例8、比較例3、比較例4の充電効率を示す。   FIG. 4 shows the charge acceptance rates of Examples 5 to 8, Comparative Example 3, and Comparative Example 4, and FIG. 5 shows the charging efficiencies of Examples 5 to 8, Comparative Example 3, and Comparative Example 4.

図4に示したとおり、実施例1〜実施例4、および比較例4に比べて比較例3は、充電受け入れ率が低い。実施例、比較例共に1.65Vの定電圧で充電しているので、充電電流がいずれも同じ時間的推移を示すなかで、実施例1〜実施例4の場合は、充電時間が14〜20分間、比較例4の場合は、充電時間が25分間であるのに対して、比較例3においては、充電時間が約10分間であり短い。比較例3の場合は、充電時間が短いために充電不足になったものと考えられる。   As shown in FIG. 4, compared to Examples 1 to 4 and Comparative Example 4, Comparative Example 3 has a lower charge acceptance rate. Since both the example and the comparative example are charged at a constant voltage of 1.65 V, the charging time is 14 to 20 in the case of Example 1 to Example 4 while the charging current shows the same temporal transition. In the case of Comparative Example 4, the charging time is 25 minutes, whereas in Comparative Example 3, the charging time is about 10 minutes, which is short. In the case of Comparative Example 3, it is considered that charging was insufficient because the charging time was short.

また、図5に示した通り、比較例4は、実施例1〜実施例4、比較例3に比べて充電効率が低い。比較例4の場合は前記のように充電時間が長く、充電の末期正極からの酸素発生が盛ん(副反応が盛んに起きている状態)になったために充電効率が低くなったものと考えられる。
図4、図5に示した結果から、AC/ACMが0.25〜0.6が良く、0.25〜0.5がより好ましいことがことが分かる。
Further, as shown in FIG. 5, Comparative Example 4 has lower charging efficiency than Examples 1 to 4 and Comparative Example 3. In the case of Comparative Example 4, the charging time is long as described above, and it is considered that the charging efficiency was lowered because oxygen generation from the positive electrode at the end of charging became active (a state in which side reactions were actively occurring). .
From the results shown in FIGS. 4 and 5, it is understood that A C / A CM is preferably 0.25 to 0.6 and more preferably 0.25 to 0.5.

(本発明実施形態と一定時間で充電を打ちきる充電方式の比較)
(実施例9、実施例10)
前記実施例1と同じ構成の電池を実施例1と同じ試験に供した。但し、充電時の周囲温度を20℃、5℃と35℃の3種の温度で実施した。該実施例を実施例9とする。
前記実施例1と同じ構成の電池を実施例7と同じ試験に供した。但し、充電時の周囲温度を20℃、5℃と35℃の3種の温度で実施した。該実施例を実施例10とする。
(比較例5、比較例6)
実施例1と同じ構成の蓄電池5個を実施例9と同じ試験に供した。但し、充電開始後15分間経過した時点で充電をうち切った。該例を比較例5とする。
実施例1と同じ構成の蓄電池5個を実施例9と同じ試験に供した。但し、充電開始後20分間経過した時点で充電をうち切った。該例を比較例6とする。
(Comparison between the embodiment of the present invention and a charging method that stops charging in a certain time)
(Example 9, Example 10)
A battery having the same configuration as in Example 1 was subjected to the same test as in Example 1. However, the ambient temperature during charging was carried out at three temperatures of 20 ° C., 5 ° C. and 35 ° C. This example is referred to as Example 9.
A battery having the same configuration as in Example 1 was subjected to the same test as in Example 7. However, the ambient temperature during charging was carried out at three temperatures of 20 ° C., 5 ° C. and 35 ° C. This example is referred to as Example 10.
(Comparative Example 5 and Comparative Example 6)
Five storage batteries having the same configuration as in Example 1 were subjected to the same test as in Example 9. However, the charging was cut off when 15 minutes had elapsed after the start of charging. This example is referred to as Comparative Example 5.
Five storage batteries having the same configuration as in Example 1 were subjected to the same test as in Example 9. However, the charging was stopped when 20 minutes passed after the start of charging. This example is referred to as Comparative Example 6.

図6と図7に周囲温度5℃、20℃、35℃における実施例9、実施例10、比較例5、比較例6に係る充電試験結果を示す。   FIGS. 6 and 7 show the charge test results according to Example 9, Example 10, Comparative Example 5, and Comparative Example 6 at ambient temperatures of 5 ° C., 20 ° C., and 35 ° C.

図6、図7に示した通り、本発明に係る充電方法によれば、充電開始後一定時間経過後に充電を終了する比較例に比べて、充電時の周囲温度が変わっても充電受け入れ率、充電効率の変化が小さく周囲温度の影響を受け難い。一方比較例5においては図6に示したように5℃において充電受け入れ率が低い。比較例5の場合は、充電時の周囲温度が低いために充電電流が低くなったこと等により充電が不足したためと考えられる。また、比較例7の場合は図7に示したように充電時の周囲温度20℃および35℃における充電効率が低い。比較例7の場合は、充電時間を長く設定したために、充電により電池温度が上昇した後も充電が続行されたため、正極からの酸素ガス発生等の副反応の比率が増したために充電効率が低くなったものと考えられる。これに対して、実施例9や実施例10の場合は、充電打ち切り時点を決定するための指標をAC/CNやAC/ACMとすることにより、充電時の周囲温度によって充電時間を調節でき、充電受け入れ率や充電効率が充電時の周囲温度の影響を受け難くできたものと考えられる。 As shown in FIG. 6 and FIG. 7, according to the charging method of the present invention, the charge acceptance rate even when the ambient temperature at the time of charging changes, as compared with the comparative example in which the charging is terminated after the elapse of a certain time after the start of charging, Changes in charging efficiency are small and are not easily affected by ambient temperature. On the other hand, in Comparative Example 5, the charge acceptance rate is low at 5 ° C. as shown in FIG. In the case of the comparative example 5, it is considered that charging was insufficient due to a low charging current due to a low ambient temperature during charging. Moreover, in the case of the comparative example 7, as shown in FIG. 7, the charging efficiency in the ambient temperature 20 degreeC and 35 degreeC at the time of charge is low. In the case of Comparative Example 7, since the charging time was set to be long, the charging was continued even after the battery temperature rose due to charging, so the charging efficiency was low because the ratio of side reactions such as oxygen gas generation from the positive electrode increased. It is thought that it became. On the other hand, in the case of the ninth and tenth embodiments, the charging time is determined depending on the ambient temperature at the time of charging by using A C / CN or A C / A CM as an index for determining the charging end point. The charge acceptance rate and charge efficiency are considered to be less affected by the ambient temperature during charging.

本発明に係る充電器は、密閉型アルカリ蓄電池を定電圧で充電する充電器であって、充電電流を検知する電気回路および入力された電池の定格容量を記録するメモリー回路を内蔵し、且つ、充電電流(AC)と電池の定格容量(CN)の比が予め設定された値に到達したときに充電回路を切断するスイッチ機能を備える。該構成の充電器とすることによって、本発明の充電方法にとって好適な充電器とすることができる。 The charger according to the present invention is a charger for charging a sealed alkaline storage battery at a constant voltage, and includes an electric circuit for detecting a charging current and a memory circuit for recording a rated capacity of the input battery, and A switch function is provided that disconnects the charging circuit when the ratio between the charging current (A C ) and the rated capacity (C N ) of the battery reaches a preset value. By setting it as the charger of this structure, it can be set as the charger suitable for the charging method of this invention.

本発明に係る充電器は、密閉型アルカリ蓄電池を定電圧で充電する充電器であって、充電電流を検知する電気回路とピーク充電電流を記録するメモリー回路を備え、且つ、充電電流(AC)とピーク充電電流(ACM)の比が予め設定された比率に到達したときに充電回路を切断するスイッチ機能を備える。該構成の充電器とすることによって、本発明の充電方法にとって好適な充電器とすることができる。 A charger according to the present invention is a charger for charging a sealed alkaline storage battery at a constant voltage, and includes an electric circuit for detecting a charging current and a memory circuit for recording a peak charging current, and a charging current (A C ) And the peak charging current (A CM ) have a switch function that disconnects the charging circuit when the ratio reaches a preset ratio. By setting it as the charger of this structure, it can be set as the charger suitable for the charging method of this invention.

圧力スイッチ機能付きの密閉型アルカリ蓄電池の要部構造を模式的に示す図である。It is a figure which shows typically the principal part structure of a sealed alkaline storage battery with a pressure switch function. 充電打ち切り時点の充電電流と定格容量の比(AC/CN)と、充電受け入れ率の関係を示すグラフである。It is a graph which shows the relationship between the ratio ( AC / CN ) of the charging current and rated capacity at the time of charge termination, and a charge acceptance rate. 充電打ち切り時点の充電電流と定格容量の比(AC/CN)と、充電効率の関係を示すグラフである。It is a graph which shows the relationship between the ratio (A C / C N ) of the charging current and the rated capacity at the time of charging termination, and the charging efficiency. 充電打ち切り時点の充電電流とピーク充電電流の比(AC/ACM)と、充電受け入れ率の関係を示すグラフである。It is a graph which shows the relationship between the ratio (A C / A CM ) of the charging current and the peak charging current at the time of charging termination, and the charging acceptance rate. 充電打ち切り時点の充電電流とピーク充電電流の比(AC/ACM)と、充電効率の関係を示すグラフである。It is a graph which shows the relationship between the ratio (A C / A CM ) of the charging current and peak charging current at the time of charging termination, and the charging efficiency. 充電時の周囲温度と充電受け入れ率の関係を示すグラフである。It is a graph which shows the relationship between the ambient temperature at the time of charge, and a charge acceptance rate. 充電時の周囲温度と充電効率の関係を示すグラフである。It is a graph which shows the relationship between the ambient temperature at the time of charge, and charging efficiency.

符号の説明Explanation of symbols

11 圧力スイッチ内蔵密閉型アルカリ蓄電池
12 圧力スイッチ
11 Sealed alkaline storage battery with built-in pressure switch 12 Pressure switch

Claims (3)

充電時に電池の内圧が予め定めた規定値を超えたときに電気回路を切断して充電を停止させ、内圧が前記規定値を下回ったときに電気回路を導通させて充電を再開させる圧力スイッチ機能を内蔵する密閉型アルカリ蓄電池を、1セル当たり1.5〜1.7Vの定電圧を印可して充電する充電方法であって、充電電流(A)と電池の定格容量(C)との比(A/C)が、1〜2(mA/mAh)の範囲内にある予め定めた規定値に達した時点をもって充電を打ちきる密閉型アルカリ蓄電池の充電方法。 Pressure switch function that stops the charging by disconnecting the electric circuit when the internal pressure of the battery exceeds a predetermined value during charging, and resumes the charging by making the electric circuit conductive when the internal pressure falls below the specified value Is a charging method for charging a sealed alkaline storage battery with a constant voltage of 1.5 to 1.7 V per cell, the charging current (A C ) and the rated capacity (C N ) of the battery A method for charging a sealed alkaline storage battery in which charging is stopped when the ratio (A C / C N ) reaches a predetermined specified value within a range of 1 to 2 (mA / mAh). 充電時に電池の内圧が予め定めた規定値を超えたときに電気回路を切断して充電を停止させ、内圧が前記規定値を下回ったときに電気回路を導通させて充電を再開させる圧力スイッチ機能を内蔵する密閉型アルカリ蓄電池を、1セル当たり1.5〜1.7Vの定電圧を印可して充電する充電方法であって、充電電流とピーク充電電流の比(A/ACM)が、0.25〜0.6の範囲内にある予め定めた規定値に達した時点をもって充電を終了する密閉型アルカリ蓄電池の充電方法。 Pressure switch function that stops the charging by disconnecting the electric circuit when the internal pressure of the battery exceeds a predetermined value during charging, and resumes the charging by making the electric circuit conductive when the internal pressure falls below the specified value Is a charging method for charging a sealed alkaline storage battery with a constant voltage of 1.5 to 1.7 V per cell , and the ratio of charging current to peak charging current (A C / A CM ) is , A charging method for a sealed alkaline storage battery that terminates charging when a predetermined specified value within a range of 0.25 to 0.6 is reached. 充電時に電池の内圧が予め定めた規定値を超えたときに電気回路を切断して充電を停止させ、内圧が前記規定値を下回ったときに電気回路を導通させて充電を再開させる圧力スイッチ機能を内蔵する密閉型アルカリ蓄電池用の充電器であって、1セル当たり1.5〜1.7Vの定電圧を印可して充電する機能を有し、充電電流を検知する機能を備え、充電電流と電池の定格容量との比(A /C )、または、充電電流とピーク充電電流との比(A /A CM が予め定めた規定値に達したことを検知して充電を終了させる機能を持つ密閉型アルカリ蓄電池用充電器。 Pressure switch function that stops the charging by disconnecting the electric circuit when the internal pressure of the battery exceeds a predetermined value during charging, and resumes the charging by making the electric circuit conductive when the internal pressure falls below the specified value Is a battery charger for a sealed alkaline storage battery, which has a function of charging by applying a constant voltage of 1.5 to 1.7 V per cell , a function of detecting a charging current , and a charging current. When the ratio between the battery and the rated capacity of the battery (A C / C N ) or the ratio between the charging current and the peak charging current (A C / A CM ) reaches a predetermined value, charging is performed. Sealed alkaline storage battery charger with the ability to terminate.
JP2003341805A 2003-09-30 2003-09-30 Charging method and charger for sealed alkaline storage battery Expired - Lifetime JP4134873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003341805A JP4134873B2 (en) 2003-09-30 2003-09-30 Charging method and charger for sealed alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003341805A JP4134873B2 (en) 2003-09-30 2003-09-30 Charging method and charger for sealed alkaline storage battery

Publications (2)

Publication Number Publication Date
JP2005108687A JP2005108687A (en) 2005-04-21
JP4134873B2 true JP4134873B2 (en) 2008-08-20

Family

ID=34536299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003341805A Expired - Lifetime JP4134873B2 (en) 2003-09-30 2003-09-30 Charging method and charger for sealed alkaline storage battery

Country Status (1)

Country Link
JP (1) JP4134873B2 (en)

Also Published As

Publication number Publication date
JP2005108687A (en) 2005-04-21

Similar Documents

Publication Publication Date Title
US5849426A (en) Hybrid energy storage system
JP4038241B2 (en) Hybrid energy storage system
JP5281843B2 (en) Battery pack and charging method thereof
JP4048031B2 (en) Sealed electricity storage device
US20040145344A1 (en) Method and apparatus for regulating charging of electrochemical cells
JP4221636B2 (en) Lithium ion secondary battery charging method and charging device
JP4134873B2 (en) Charging method and charger for sealed alkaline storage battery
JP2006092901A (en) Charge-discharge system
JP3605733B2 (en) Charging method
JP2006504244A (en) Method and apparatus for adjusting charge of electrochemical cell
JP2009151977A (en) Coin type secondary battery
JP2006066175A (en) Sealed storage battery
JP4967219B2 (en) Sealed storage battery
JP4537662B2 (en) Sealed storage battery
Barsukov Battery selection, safety, and monitoring in mobile applications
JP2000251949A (en) Sealed storage battery
JP4436485B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP3808420B2 (en) Secondary battery and charger and secondary battery system using them
JP2002199607A (en) Charging method of secondary battery
JP2006032253A (en) Sealed storage battery
JP2004274849A (en) Method and device for charging battery
KR100677386B1 (en) Battery heat equipment of mobile communication terminal
JP2538471Y2 (en) Sealed secondary battery with charge control mechanism
JPH06349461A (en) Alkaline storage battery
JP2022544855A (en) Methods and Systems for Improved Performance of Cells Containing Silicon Anodes Via Formation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050902

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080130

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080520

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4134873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

EXPY Cancellation because of completion of term