JP3604954B2 - Aerobic fermentation method of organic solid waste and its apparatus - Google Patents

Aerobic fermentation method of organic solid waste and its apparatus Download PDF

Info

Publication number
JP3604954B2
JP3604954B2 JP16683099A JP16683099A JP3604954B2 JP 3604954 B2 JP3604954 B2 JP 3604954B2 JP 16683099 A JP16683099 A JP 16683099A JP 16683099 A JP16683099 A JP 16683099A JP 3604954 B2 JP3604954 B2 JP 3604954B2
Authority
JP
Japan
Prior art keywords
partition
packed bed
solid waste
organic solid
fermenter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16683099A
Other languages
Japanese (ja)
Other versions
JP2000354897A (en
Inventor
良一 芳賀
昌彦 石田
剛 武本
勝 難波
憲一 相馬
節雄 斉藤
Original Assignee
有機質肥料生物活性利用技術研究組合
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有機質肥料生物活性利用技術研究組合 filed Critical 有機質肥料生物活性利用技術研究組合
Priority to JP16683099A priority Critical patent/JP3604954B2/en
Publication of JP2000354897A publication Critical patent/JP2000354897A/en
Application granted granted Critical
Publication of JP3604954B2 publication Critical patent/JP3604954B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/16Particles; Beads; Granular material; Encapsulation
    • C12M25/18Fixed or packed bed
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/34Internal compartments or partitions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/14Rotation or movement of the cells support, e.g. rotated hollow fibers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/06Nozzles; Sprayers; Spargers; Diffusers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Landscapes

  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Immunology (AREA)
  • Clinical Laboratory Science (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Fertilizers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、有機固形廃棄物のコンポスト化方法およびその装置に関する。
【0002】
【従来の技術】
都市ごみ、畜産廃棄物、下水汚泥等の生物性固形有機廃棄物を原料とし、各原料を、内部に構造物等が無い筒状の発酵槽中に充填して連続した充填床を形成し、槽底のみから空気を供給して床上面から排気するコンポスト化方法が特開昭54−101769号公報、並びに特開昭55−121990号公報に記載されている。
【0003】
また、発酵槽内に固定した棚を複数間隔をおいて上下に配置し、該棚は水平棚の一部に充填床を落下させるための孔を有し、さらに各段には自転、公転自在の撹拌手段を有し、最上段の棚に供給する充填床を順次下方の棚へ移送する過程で、棚段上面に配置する給気口から空気を床中に供給して発酵する方法が特開昭54−54877号公報に記載されている。
【0004】
さらに発酵槽内部に、横軸を中心に回転し、水平に仕切る機能と充填床を流下させる機能とを有する仕切りを上下に間隔をおいて複数段配置して、原料を各段の仕切り上に空間を残して充填し、最下段から上の段に向かって各空間部を排気用、給気用に交互に配置して発酵し、その発酵過程もしくは発酵終了後に仕切りを回転して床を下降もしくは排出する方法が、特開昭60−155589号公報と実開昭55−90997号公報に記載されている。
【0005】
【発明が解決しようとする課題】
一般に普及しているプール形の平面堆積撹拌式発酵槽では、広く浅く充填した充填床を、床上面を大気に解放下で機械撹拌して発酵する。このため、広い面積を必要とすると同時に臭気の捕集が困難になる恐れがある。従って、面積が少なくて済み、排気の捕集が容易で、かつ、槽内に強制的撹拌手段等の複雑な構造のない発酵槽が望まれている。
【0006】
面積を小さくし臭気を捕集し易くするには、槽高を高くする方法が考えられる。前記のように、槽内部に構造物が無い縦形サイロ式の発酵槽に原料を充填しただけでは、床高のみならず槽径の増加に伴い、床が圧密化して給気が妨げられるため、発酵活性が低下する恐れがある。
【0007】
こうした課題を解決するため、前述のように槽内に強制的撹拌手段を有し、水平棚面の一部に充填床を下段に落下させるための孔を備えた固定棚を、上下に複数段間隔をおいて配置し、最上段の棚に供給する原料床を順次下方の棚へ移送する過程で、棚段上面に配置した給気ノズルから給気して発酵する方法がある。しかし、固定棚先端と槽内壁面との隙間の分だけ充填量が減るため、省面積の効果を十分に発揮しにくく、各棚に強制的撹拌手段が必要になり構造が複雑になる恐れがある。
【0008】
また、発酵槽内部に、横軸を中心に回転して水平に仕切る機能と、床を流下させる機能とを有する仕切りを上下に間隔をおいて複数段配置し、原料を各段の仕切り上に空間を残して充填し、最下段の空間部から上の段に向かって各空間部を排気用、給気用に交互に配置し、その発酵過程もしくは発酵終了後に仕切りを回転して床を下降もしくは排出する方法では、気相空間部に供給した空気の流れは二方向に分配される。
【0009】
即ち、一方は給気用気相空間部直下の充填床の表面から下方に浸透し、その下の仕切りの間隙を通り、さらにその下の排気用気相空間部に出る。他方は給気用気相空間部の真上の床中を上昇し、その上の排気用気相空間部に出る。両気流の流量は両床の通気抵抗によって変化する。特に、給気用気相空間部の下面と接する充填床は給気の圧力により圧縮され易い。
【0010】
このため、充填床の単位容積当たりの給気量を同一にすることが困難になり、段により活性に差が生じる恐れがある。さらに、後者の気流は充填床の圧縮により仕切りの間隙を閉塞させる恐れも生ずる。
【0011】
本発明の目的は、発酵槽内に複数段に分割充填した各充填床に酸素を過不足なく供給し、かつ、充填床を簡素な機構で移動して混合することにより、高速で発酵し良質のコンポストを得る有機固形廃棄物の好気発酵方法、並びに、その装置を提供することである。
【0012】
【課題を解決するための手段】
上記の課題を解決する本発明の要旨は次のとおりである。
【0013】
〔1〕 発酵槽内に開閉自在の仕切りを槽内上下に複数配置し、有機固形廃棄物またはその好気発酵物を、真上に位置する仕切りの下に気相空間部が形成されるよう充填して多段の充填床を形成し、該充填床を好気発酵する有機固形廃棄物の好気発酵方法において、
前記各仕切りの上面から給気し、各充填床の上面から排気し、発酵途上または発酵終了後、該充填床を前記仕切りを開いて下段に落下移送することを特徴とする有機固形廃棄物の好気発酵方法。
【0014】
〔2〕 発酵槽内の各充填床上の気相空間部の気圧が、最下段から最上段に向かって減少する勾配を保持しながら各充填床に給気および排気する前記の有機固形廃棄物の好気発酵方法。
【0015】
〔3〕 最上段の充填床の気相空間部が大気圧となるよう給気および排気を調節する前記の有機固形廃棄物の好気発酵方法。
【0016】
〔4〕 各充填床の気相空間部の気圧調節を各充填床への給気量と排気量とを調節することで行う前記の有機固形廃棄物の好気発酵方法。
【0017】
〔5〕 発酵槽内に有機固形廃棄物またはその好気発酵物からなる充填物の通過を制御する開閉自在の仕切りを槽内に複数段配置し、各仕切り上に充填された充填物と、その上に位置する仕切りとの間に気相空間部を形成できるよう充填物を充填して発酵槽内に多段の充填床を形成し、有機固形廃棄物を好気発酵する好気発酵装置において、
前記開閉自在の仕切りが、回転軸にその一部を固定した複数の回転棚板で構成され、該回転棚板の上面に酸素供給手段を備えていることを特徴とする有機固形廃棄物の好気発酵装置。
【0018】
〔6〕 前記仕切りと充填床により形成される気相空間部の気圧が、発酵槽の上部に対して下部が高くなる気圧分布を形成させるための各段に排気量を調節する排気手段または/および給気量を調節する給気手段を有する前記の有機固形廃棄物の好気発酵装置。
【0019】
〔7〕 各仕切りにより分画された発酵槽の各段に形成される気相空間部の気圧を計測する気圧計測手段を設けた前記の有機固形廃棄物の好気発酵装置。
【0020】
〔8〕 槽内に設けた仕切りにより2以上に分画した発酵槽と、前記仕切り上に有機固形廃棄物またはその好気発酵物を充填して充填床を形成し、該充填床の有機固形廃棄物を好気発酵する縦型コンポスト化装置において、
前記仕切りがその一部を回転軸に固定した複数の回転棚板で構成され、かつ、該回転棚板の上表面に酸素供給手段を配し、前記仕切りにより分画された発酵槽の各段に排気量調節手段を具備した排気管路を設け、
発酵槽上部に有機固形廃棄物またはその好気発酵物の供給手段と、発酵槽下部に好気発酵物を発酵槽外に排出する排出手段と、発酵槽外に排出された好気発酵物を発酵槽上部に移送する移送手段と、好気発酵物に供給する水分供給手段を備え、
前記充填床と仕切りとで形成される各気相空間部の気圧が、発酵槽の下部側より上部側に行きに従って低くなる気圧分布を発酵槽内に形成させるための気圧計測手段、気圧調節手段を備えたことを特徴とする有機固形廃棄物を好気発酵する縦型多段コンポスト化装置。
【0021】
〔9〕 前記仕切り上の充填床に給,排気する給,排気手段を配置した前記の有機固形廃棄物を好気発酵する縦型多段コンポスト化装置。
【0022】
【発明の実施の形態】
本発明の有機固形廃棄物の好気発酵方法は、発酵槽内の有機固形廃棄物の充填物の通過を制御する仕切りを槽内上下に複数配置し、各仕切りと充填物とで気相空間部を形成し、該充填床を多段に有する縦型多段発酵槽を用いて有機固形廃棄物を好気発酵するものである。上記仕切りの上面から給気し、必要に応じて発酵途上または発酵完了後に仕切りを開いて前記有機固形廃棄物もしくはその好気発酵物からなる充填物を下の段に移送することができる。
【0023】
各段の充填床の底面、即ち、仕切りの上面には複数の通気ノズルを配置し、充填床中に酸素含有ガスを均一供給する。なお、供給酸素含有ガスは充填量に応じて酸素の過不足が生じないよう制御する。
【0024】
上記のように、充填床内に均一に酸素の供給が可能となるが、仕切り上面に設けた酸素供給手段から供給された酸素含有ガスの一部が、水平仕切りの隙間から下の段に漏れ、その分だけ発酵に利用されることなく排出される。
【0025】
これを防ぐため、本発明では下式(1)で示すように、下段の気相空間部の気圧Pdを、その上段の気相空間部の気圧Puより差圧αだけ大きくすることにより、仕切りの隙間から下段へのガス漏れを防ぐことができ、発酵槽に供給される酸素含有ガスの利用率を向上することができる。
【0026】
【数1】
Pd ≧ Pu+α …………………(1)
上記の気圧調整方法は、当該段が最下段である場合は仕切りの下の空間を密閉する。当該段の下に別の充填床が存在する場合には、下の段の充填床への酸素含有ガスの供給量と当該段の仕切りの下の気相空間部からの排気量とが同量になるように調節する。
【0027】
発酵槽内に多段の充填床を形成する縦型多段発酵槽の場合には、各段毎に仕切り上面からの給気と気相空間部からの排気を行い、槽底部側の気相空間部の気圧が槽頂部側の気相空間部の気圧より大きくなるよう各段の気相空間部の気圧が順次傾斜する分布となるようにする。
【0028】
また、最上段の気相空間部は、実質的に大気圧としてもよい。この際、最上段の気相空間部の気圧を大気圧とし、かつ、該最上段での給気量と排気量が一致するように、直下の段の気相空間部の気圧を調節する。
【0029】
また、各段に形成される気相空間部の気圧が発酵槽頂部側の段に対して底部側の段が高くなるように発酵槽内部に気圧分布を形成させるために、各段に排気ガス流量を調節する調節手段を備えた排気管路を設ける。
【0030】
コンポスト化での好気発酵を効率よく行わせるためには、充填床を適度に混合することが好ましい。混合が不足すると発酵の活発な部分での反応基質の欠乏や、発酵中間生成物の蓄積により発酵速度が低下する。
【0031】
本発明のコンポスト化装置では、有機固形廃棄物またはその発酵物を最上段に供給して仕切り上に充填し、これを下段に落下させることにより発酵物の混合と破砕とを行なう。発酵槽底に落下した発酵物は、コンポスト化が目標とする分解度に達している場合にはこれを槽外に排出し、途上にある場合には、再び、最上段に移送し、発酵を継続させる。
【0032】
本発明が対象とする原料は、コンポスト化の対象となり得る成分を含むものであれば特に限定されないが、一般的には生ゴミ、畜産廃棄物、食品加工廃棄物、農産廃棄物、林産廃棄物、水産廃棄物、微生物性汚泥等有機固形廃棄物全般に適用される。
【0033】
また、上記原料に鋸屑、籾殻、バーク等の他、発酵後回収再利用する前提でプラスチック、セラミック等の非発酵物を水分吸収材または空隙保持材に、また、発酵種菌として中間発酵物、製品コンポスト、発酵菌濃縮物を添加してもよい。
【0034】
粒径や水分も発酵槽の大きさ、原料の発酵特性、原料の物理特性から適宜選定する。必要に応じ、粒径や水分、pH等の調節を行ってもよい。
【0035】
仕切りの方法やその構造も特に限定されず、横軸周りに回転し、弁的機能を有するものなど適宜選択する。即ち、仕切り面の形状として平面、曲面、屈折した複数の平面等で形成される合成面が用いられる。また、仕切りの形状として片翼、両翼、仕切りの横方向の配置方法と数、単位仕切りの大きさ、仕切りの縦方向の配置と数等の条件は、原料の特性、発酵槽の大きさと形状、槽内滞留期間、発酵条件により適宜選択する。
【0036】
仕切り上面に設ける給気孔の配置、構造、槽内の給気経路も特に限定されず、配置密度、孔径、閉塞防止のための孔の部分的遮蔽手段も充填物、仕切りの大きさ、形状により適宜選択される。例えば、仕切り板上面に多数の単孔ノズルを分散してもよいし、網板や多孔質材を配置してもよい。仕切り板の大きさ、即ち、水平幅は開いた際に充填物が落下するように充填物粒径、粘性等の物理特性を考えて選定する。
【0037】
仕切り板の開閉の駆動機構も特に限定されず、油圧駆動、ギヤ駆動等の駆動手段から適宜選択する。
【0038】
有機固形廃棄物またはその好気発酵物は、好気性微生物による好気発酵によって分解される。酸素が欠乏すると発酵速度が低下するだけでなく、好気性発酵から嫌気性発酵に移行して有機酸の蓄積が生じ、悪臭発生や酸性化によりコンポスト製品の品質低下を招く恐れがある。
【0039】
好気発酵を効率よく行わせるためには、原料、有機固形廃棄物またはその好気発酵物に過不足なく酸素を供給し、かつ、充填床全体に酸素を均一に供給する酸素供給手段が特に重要である。各充填床が必要とする酸素量は、原料の有機固形廃棄物の種類、充填量、有機物の分解され易さ等によって異なり、発酵分解の経過に伴って変化する。
【0040】
一方、酸素含有ガスの必要以上の供給は、充填床を冷却して発酵速度を低下させるほかに充填床に注入するための酸素含有ガスの加圧用エネルギーの浪費となる。効率よく好気発酵を行うための排気中の酸素濃度は、5%以上、好ましくは10%以上にすることが望ましい。このため、各充填床の排気管路に酸素濃度計測手段を設け、排気中の酸素濃度が上記になるよう酸素含有ガスの供給量を調節する。
【0041】
空の発酵槽に原料を投入するには次の方法で行う。最下段の仕切りを閉じ、その上の各仕切りを全て開いておき、槽上から原料を投入し、最下段に所定量集積した時点でその上の段の仕切りを閉じる。同じ要領で更に上の段に順次充填して行く。または、全ての仕切りを閉じ、最上段に原料を所定量集積した時点で最上段の仕切りを開き、下方の段に順次原料を落下させて移送する。次いで再び最上段の仕切りを閉じて再び原料を所定量集積する。これを各段毎に繰り返して最上段まで原料を充填する。
【0042】
原料の有機固形廃棄物またはこれらの好気発酵物を必ずしも全部の段に充填する必要はなく、負荷、発酵速度に応じて一部の段を使用してもよい。充填床には、仕切りの上面からその充填床の発酵に必要な酸素を供給して発酵させる。
【0043】
発酵中、充填床を槽外に排出し、再度発酵槽上部から供給して循環することにより、充填床の破砕と混合を行い、発酵物粒子間の結着を防止する。その際には、最底部の仕切りを開いて空にしてから仕切りを閉じ、その上の段の仕切りを開き、上の段の充填床を受け入れる。同じ要領で充填床を順次段階的に下方に移送して最上段を空にしてから最上部に返送する。
【0044】
上記において、最上段に返送する空間部が不足する場合には、発酵中は最上段を空にした状態で運転してもよい。
【0045】
上記充填床の排出方法や構造も特に限定されず、回転スクリュー、無限軌道掻取り式、ロータリーフィーダー、プランジャー式、ターンテーブル式等、充填床の物性、設定移送運転時間に適したものを適宜選択して使用する。移送手段も、エンドレス式、例えば、ベルトフィーダ、パンフィーダ、エプロンフィーダ、チェーンフィーダ、バッケトコンベア、回転スクリュー式等の定量移送手段を適宜選択することができる。
【0046】
次に、本発明を実施例により具体的に説明する。
【0047】
〔実施例 1〕
図1は、本発明の生物性有機固形廃棄物のコンポスト化装置の一実施例を示す模式図である。発酵槽1を3段に分画する仕切り2―1〜2―3が設けられており、有機固形廃棄物(またはその好気発酵物)を発酵槽最上段に供給するコンベア10、充填床5―1〜5―3を発酵槽1の外に排出するスクリュー排出機11、空気供給用のブロワ12、制御装置26を備えている。
【0048】
有機固形廃棄物3は、家庭から排出される生ゴミ、食品製造工程から排出される食品残渣、牛糞等の各種動物排泄物、生物処理法による廃水処理施設から排出される汚泥等、またはこれらの一次発酵処理物で、農薬や重金属等の有害物を含まず、生物が分解し得る有機物であれば原料として利用できる。
【0049】
有機固形廃棄物3の性状によっては、金属片や瓦礫等の異物除去、粗大物の破砕、および、好気発酵微生物を含む種コンポストの混合等の処理を行うことがある。原料の有機固形排気物3を次の手順で発酵槽1に充填する。最下段の回転棚板13―1a〜13―1cを水平にして仕切り2―1を閉じ、その上の仕切り2―2、2―3の回転棚板13―2a〜13―2c、13―3a〜13―3cを開く。
【0050】
原料投入口14、コンベア10を経て有機固形廃棄物3を投入する。最下の充填床5―1が所定量集積した時点で、その上の回転棚板13―2a〜13―2cを水平にし、仕切り2―2を閉じる。以下同じ要領でその上の段まで順次充填し、充填床5―2、5―3を形成する。
【0051】
充填床5―1〜5―3は、上部の仕切り2―2,2―3の下に気相空間部4―1〜4―3を形成するように充填される。充填床5−1〜5―3の充填高さは、原料の物理性、槽径等から給気可能な床圧に対応する高さ以下になるが、更に、容積効率、運転条件、気相空間部の必要な厚さ等を勘案して設定する。好ましくは0.5〜2mの範囲にする。
【0052】
気相空間部は、少なくとも充填床5が回転して傾斜した仕切りから下の段に落下するに足る角度、即ち安息角がとれる厚さが必要である。
【0053】
充填終了後、酸素含有ガス9をブロワ12により、酸素含有ガス供給管18―1〜18―3、弁16―1〜16―3、流量計側手段20―1〜20―3を経て各回転棚板13―1a〜13―1c、13―2a〜13―2c、13―3a〜13―3c上に供給して発酵を開始する。また、発酵期間中、発酵途上の充填床5―1〜5―3は適時スクリュー排出機11により発酵槽1の外に抜き出し、コンベア10により発酵槽最上段に供給して循環し、発酵を続行する。
【0054】
目標分解度に到達した充填床5―1〜5―3は、必要に応じ仕切り2―1〜2―3を開閉し、スクリュー排出機11、コンベア10を経て充填床排出口27から系外に製品コンポストとして排出する。
【0055】
充填床5―1〜5―3の有機固形廃棄物またはその好気発酵物は、好気性微生物による好気発酵によって分解される。
【0056】
好気発酵を効率よく行わせるためには、充填床5―1〜5―3に酸素を過不足なく供給することが重要である。酸素が欠乏すると発酵速度が低下するだけでなく、好気性発酵から嫌気性発酵に移行して有機酸の蓄積が起り、悪臭の発生や酸性化によるコンポスト製品の品質の低下を招く恐れがある。このため、充填床5―1〜5―3全体に、酸素を均一に供給する酸素供給手段が特に重要である。
【0057】
本実施例では、上面に複数の通気ノズルを付設した仕切り2―1〜2―3を用いている。図2は、仕切り2―1の平面図で、図3は、その側面図である。仕切り2―1は、3組の回転棚板13―1a〜13―1cにより構成されている。仕切り2―2、2―3も同様に、それぞれ3組の回転棚板13―2a〜13―2cおよび13―3a〜13―3cにより構成されている。
【0058】
図4は、回転棚板13―1aの概要を示す斜視図である。回転棚板13―1aは回転軸7に固定され回転可能に構成されている。回転棚板13―1a上面には、側面に通気ノズル6を有する棚板通気管路8Bが設けられている。棚板通気管路8Aおよび8Bに酸素含有ガス9を通し、通気ノズル6より充填床5―1中に吹き出させ、発酵に必要な酸素を供給する。
【0059】
棚板通気管路8Bは、回転棚板13―1a〜13―1cを開いて充填床5―1を下段へ落下させる流れと並流になるように配置し、かつ、通気ノズル6が図5に示すように断面が矩形の棚板通気管路8Bの側面に設けている。これにより、充填床5―1や、充填床5―1からの滲出する液による通気ノズル6の閉塞を防止できる。
【0060】
図6〜図9は、棚板通気管路8Bの断面と通気ノズル6の位置を示す他の一例である。図6に示す棚板通気管路8Bも矩形の管を使用し、その1つの角部分を回転棚板13―1aに溶接したもので、通気ノズル6は上方から落下してくる好気発酵物の死角となる部分に設置されているため、さらに目詰まりしにくい構成となっている。
【0061】
図7に示す棚板通気管路8Bは二つの平面を結合させた逆V字形の傾斜板24が覆っており、目詰まりを起こしにくい。通気ノズル6から供給された酸素含有ガス9は、傾斜板24の切り欠き部分から充填床5内に供給される。
【0062】
図8に示す棚板通気管路8Bは円管25を用いたもので、その加工が容易である。また、図9に示す棚板通気管路8Bは図8と同様に円管25を用いているが、その一部を切断して回転棚板13―1aとの溶接面積を拡大した点に特徴がある。この溶接面積の拡大により、回転棚板13―1aの剛性を補強することができる。
【0063】
充填床5―1内に酸素含有ガスを均一に供給するためには、通気ノズル6を回転棚板13―1a〜13―1c上面に分散して配置することが望ましい。通気ノズル6の設置密度は、充填床の物理性、発酵活性、充填床高等を勘案して適宜選択する。
【0064】
通気ノズル6から充填床5―1〜5―3内に供給された酸素含有ガス9は、充填床5―1〜5―3中を上昇して気相空間部4―1〜4―3に排出され、排気管路15―1〜15―3から発酵槽1外に排出される。
【0065】
充填床5―1〜5―3内部に供給する酸素含有ガス9としては、通常空気を用いるが、通気量を低減したい場合には酸素富化ガスを用いてもよい。各充填床5―1〜5―3が必要とする酸素量は、原料の有機固形廃棄物の成分、充填量、床温度、菌濃度、粒径、空隙密度、水分濃度等によって異なり、発酵の経過に伴って変化するが、酸素濃度が低いと好気発酵の速度が低下する。
【0066】
また、酸素含有ガス9を必要以上に供給することは充填床5―1〜5―3を冷却して発酵速度を低下させるほか、充填床に注入するための酸素含有ガス9の加圧用エネルギーの浪費となる。従って、効率よく好気発酵を行うためには、排気中の酸素濃度は5%以上好ましくは10%以上にするのがよい。このため、各充填床5―1〜5―3への酸素含有ガス9の供給量は、予め設定した排気酸素濃度に対し、排気管路15―1〜15―3に設けた酸素濃度計測手段17―1〜17―3により求めた排気中の酸素濃度が、設定値になるように制御装置26により、酸素含有ガス供給管路18―1〜18―3に設けた弁16―1〜16―3を制御開閉して、酸素含有ガスの供給量を調節する。
【0067】
本実施例では、各段の気相空間の気圧が、発酵槽底部側の段に対して頂部側の段が低くなるように、発酵槽内部に気圧分布を形成し、各段に供給された酸素含有ガスが下段に流出することなく、確実に充填床5―1〜5―3を通過して気相空間部に排出され、酸素が十分に供給されるように図っている。
【0068】
発酵槽内部に気圧分布を形成させる手段として、各段の酸素含有ガス供給管路18―1〜18―3の途中に、流量計測手段20―1〜20―3、当該段の排気管路15―1〜15―3の途中に弁19―1〜19―3、および、流量計測手段21―1〜21―3を設けている。
【0069】
槽内部に気圧分布を形成させる制御装置26は、当該段の酸素含有ガス供給管路18―1〜18―3の途中に設けた流量計測手段20―1〜20―3により計測した酸素含有ガス供給量に対し、排気管路15―1〜15―3の途中に設けた弁19―1〜19―3を制御して流量計測手段21―1〜21―3により計測される排気量との割合を90〜100%、好ましくは95〜99%になるように調節する。これにより各段の気相空間の気圧が発酵槽底部側の段に対して頂部側の段が低くなるよう発酵槽内部に気圧分布が形成される。
【0070】
なお、最上段の気相空間4―3の気圧は大気圧とし、最上段への給気量に対する排気量の割合が100〜110%となるよう最上段より下の段の気相空間4―2の気圧を調節する。これにより、最上段の排気管路15―3へは流量計測手段21―3を設置するだけでよく、排気量調節のための弁19―3が不要となる。
【0071】
また、最下段では、発酵槽底部を密閉して発酵槽外への流出を防止しているが、予め、仕切り2―1から発酵槽底部に流出する量に相当する分を増量して、酸素含有ガス9を供給してもよい。
【0072】
発酵槽内部に気圧分布を形成させる方法としては、前記の排気の流量を監視する代わりに、各段の気相空間部4―1〜4―3に気圧計測手段23―1〜23―3を設け、該計測値に基づき給気量と排気量とを調節し、必要な気圧に調整することもできる。
【0073】
なお、上記の発酵槽内の気圧および流量調整操作は、制御装置26の代わりに、運転操作員が手動で調節してもよい。
【0074】
コンポスト化を効率よく行わせるためには、充填床を適度に混合することが好ましい。
【0075】
本実施例のコンポスト化装置では、充填床を支持している仕切り2―1〜2―3を開放して充填床5―1〜5―3を下の段に落下,移送する操作により、充填物の破砕と混合とを行う。混合が不足すると発酵の活発な部分での反応基質の欠乏や発酵生産物の過剰蓄積により発酵速度が低下する。
【0076】
しかし、必ずしも上記の混合を多くすれば発酵速度が向上するものではなく、原料の有機固形廃棄物の種類、充填量、有機物の分解し易さ、分解の進行度によって最適な混合頻度がある。本実施例では、適切な混合時期、即ち、充填床5―1〜5―3の下の段への移送時期を充填床の温度、酸素消費速度および前回の混合操作からの経過時間により判定する。
【0077】
上記の混合時期判定については、図10に示す処理フローによって説明する。制御装置26は予め設定された所定時間毎に、前回の混合操作からの経過時間tを算出する。そして制御装置26はtが予め設定された最大許容静置時間tH以下であるかを判定する。
【0078】
tHは、充填床を静置した状態で発酵させた場合に発酵物同士が結着して充填床全体の固化を起こさず、仕切り2―1〜2―3を開放した際に充填床を下の段に移送できる性状を維持できる時間であり、原料、充填の高さ、充填床の水分濃度、分解の程度等によって異なる。通常、24〜100時間、好ましくは24〜72時間である。
【0079】
tHを超える場合には直ちに混合操作実施時期と判定する。tH以下の場合には、次に各段に設けた温度計測手段22―1〜22―3により充填床の温度Tを計測し、制御装置26に蓄積されている充填床最高温度Tm以下であるかどうかを判定する。Tmを超える場合には、Tmの情報をTの情報と入れ替え、後述する酸素消費速度の判定に進む。
【0080】
TがTm以下である場合には、次に制御装置26で算出される充填床の温度下限値TLと比較する。TLはTmから予め定めた温度を差し引いた数値であり、特に限定されるものではないが、通常は5〜10℃を差し引いた数値とする。
【0081】
TがTL以上である場合には、酸素消費速度の判定に進む。酸素消費速度の判定工程では、流量計測手段20―1〜20―3および酸素濃度計測手段17―1〜17―3より計測される酸素含有ガスの給気量と、排気ガス中の酸素濃度の情報に基づき酸素消費速度Orを算出し、制御装置26に蓄積されている酸素消費速度Orm以下であるか否かを判定する。Ormを超える場合には、Ormの情報をOrの情報と入れ替えを行った後、次の判定時間まで待機する。
【0082】
Orm以下の場合には、次に制御装置26で算出される酸素消費速度下限値OrLと比較する。OrLはOrmに予め定めた割合を乗じた数値であり、特に限定されるものではないが、通常はOrmに1/3、好ましくは1/2を乗じた数値とする。OrがOrL以上である場合には、次の判定時間まで待機する。
【0083】
OrがOrm以下の場合、およびTがTL以下である場合には、次にtが制御装置26に予め設定された最少静置時間tL以上であるかを判定する。tL以上である場合には、混合操作実施時期と判定する。tL以下である場合には、次の判定時間まで待機する。本判定で用いた各種の情報は、制御装置26に経時的なデータベースとして蓄積する。
【0084】
発酵槽1内に複数の充填床を設けた本実施例の場合には、各段について上記の判定操作を繰り返し、半数以上の段で混合操作実施時期と判定された場合に、装置全体で混合操作を行うようにすることが好ましい。なお、原料が同一のもので、発酵槽内の充填床のコンポスト化の度合いがほぼ均一と考えられる場合には、一段分の判定で装置全体の混合時期を決定することもできる。
【0085】
充填床の混合操作の実施は、制御装置26の指令に基づいて仕切り2―1〜2―3の駆動機構を作動させて行う。なお、制御装置26によって自動的に混合操作を行うこともでき、混合操作の実施時期を表示または通知する手段によって運転操作員に認知させ、手動で混合操作を行う方法もある。
【0086】
混合操作を実施後は、前記Tm、TL、Orm、OrLの各数値を0にクリアする。
【0087】
本実施例のコンポスト化装置を使用して好気発酵を継続することにより、充填床容積および重量が減少し、原料中の有機物が分解されて、有機物濃度が徐々に低下する。それに伴って、好気発酵速度の低下と酸素消費速度の減少も起こり、好気発酵による発熱量の減少に伴ない充填床の温度も低下する。これらの状況を勘案して、コンポスト化の終了を判定する。判定に当たっては、特に有機物分解率と酸素消費速度の経時変化を指標とすることが好ましい。また、電気伝導度、陽イオン交換容量、pH等も指標として利用できる。
【0088】
なお、コンポストを農産物生産のための肥料として有効利用する場合には、有機物を極限まで分解する必要はなく、目的とする農産物に生育阻害等の悪影響を与えないレベルまで分解すればよいことは述べるまでもない。
【0089】
コンポストが目標とする分解度に達していると判定された場合は、スクリュー排出機11およびコンベア10により発酵物を槽外に排出し、必要に応じて水分量の調節や肥料成分の調整を行ってコンポスト製品とする。
【0090】
複数の発酵槽での発酵には、単槽における原料供給、充填床の循環並びに系外排出の各移送経路を共有する以下の移送手段が必要になる。
【0091】
▲1▼ 各発酵槽底部の排出口と縦方向移送経路の下部とを接続する横方向移送経路。
【0092】
▲2▼ 上方に移送可能な縦移送経路。
【0093】
▲3▼ 縦方向移送経路の上部と、各発酵槽上部の供給口とを接続する横方向移送経路。
【0094】
なお、移送経路は複数発酵槽のバッチ処理、連続処理等の運転方式、発酵槽の配置、移送手段、原料の物理性、搬送能力等により適宜選択する。
【0095】
〔実施例 2〕
次に、複数の発酵槽を含む発酵系による発酵方法の例を説明する。本実施例は、1本の縦方向移送経路を含む発酵系によるバッチ発酵の順送り方式で、図11はそのフローを示す図である。
【0096】
原料有機固形廃棄物3が原料供給用枝経路32、下部横方向移送経路42−1、下部経路接続部37を経て縦方向移送経路40により上昇し、上部経路接続部45を経て図の左側の上部横方向移送経路43−1を移送し、発酵槽供給経路44−1を経て発酵槽1−1に導入する。
【0097】
発酵の加速が必要な場合には、必要に応じ種用充填床35を種用充填床移送用枝経路36を経て原料有機固形廃棄物3に添加する。発酵槽1−1に導入後、充填床5―11中に給気して発酵を開始する。
【0098】
その間、任意の時間間隔で発酵槽1−1中に有効容積が飽和または設定容積に達するまで間欠的、例えば、1日1回の頻度で原料固形有機廃棄物3を導入する。また、間欠的に任意の間隔、例えば、1〜3日の頻度で、発酵槽1−1中の充填床5―11の一部または全量を発酵槽排出経路41−1を経て排出して、前述と同じ経路を図中反時計回りに循環し発酵を続行する。
【0099】
発酵槽に集積中または集積後に滞留して、発酵が設定発酵度まで進行または発酵が終了した時点で、充填床5―11を図の右方向に下部横方向移送経路42−1により移送し、下部横方向移送経路37から充填床排出用の系外排出用枝経路39を経て系外排出充填床38として排出する。
【0100】
一方、発酵槽1−1の有効容積が飽和または設定した不飽和状態において、前述した処理の過程と並行して、発酵槽1−1への原料有機固形廃棄物3の導入を停止し、他槽、例えば発酵槽1−3に向け原料供給用枝経路32、下部横方向移送経路42−1、縦方向移送経路40、上部横方向移送経路43−2、発酵槽供給経路44−3を経て移送し、発酵槽1−3に導入して発酵を開始する。
【0101】
以下、同じ要領で未使用の発酵槽および発酵が終了して空になった発酵槽に順次、原料有機固形廃棄物3の導入、発酵、循環、系外排出を繰り返すことにより、バッチ発酵の順送り式で連続処理する。
【0102】
図11では横方向移送経路が一本の連続した経路からなるのに対し、図12に示すように、下部横方向移槽経路42、上部横方向移送経路43が各々一本のコンベア等からなる例を示す。図11での下部横移送経路の42−1の右方向、42−2の左方向および上部横移送経路43−1の右方向、43−2の左方向への移送の代わりに、図12の下部横方向移送経路42、上部横方向移送経路43の移送方向を反転させることにより、目的方向に移送する。図中、上部経路接続件移送方向切換え部46、下部経路接続件移送方向切換え部47は経路接続機能のほか、移送方向切り替え機能を合わせ持つ。
【0103】
なお、移送手段としてはコンベアやスクリュー等の強制移送式の一部を傾斜管や傾斜溝を用いた重力移送で代替できる。
【0104】
その例として、図14,15に独立槽4基の中心にバッケト式コンベア等の縦方向移送経路、底部に複数のベルトコンベア等の組み合わせによる横方向移送経路を設け、上部横方向移送経路として傾斜管を用いる例を示す。
【0105】
図14は下部横方向移送経路の一部をベルトコンベア等の強制移送式とし、それ以外を重力移送式にした例を示す。
【0106】
〔実施例 3〕
本実施例は、1本の縦方向移送経路を含む循環付発酵による押出し流れ式連続発酵の例で、図12を用いて説明する。
【0107】
原料有機固形廃棄物3が原料供給用枝経路32、下部横方向移送経路42を経て縦方向移送経路40により上昇する。次いで、上部横方向移送経路43により左側に移送し、発酵槽供給経路44―1を経て発酵槽1―1に導入し発酵が開始する。その間、任意の時間間隔で発酵槽1―1中の充填床5−11の一部または全量を、発酵槽1―1から発酵槽排出経路41−1を経て排出し、実施例2と同じ経路を経て図中反時計回りに循環する。
【0108】
発酵が設定進行度まで進行した時点で、充填床5−11を下部横方向移送経路42により右方向に移送する。次いで、縦方向移送経路40、上部横方向移送経路43、発酵槽供給経路44−2を経て発酵槽1−2に導入し、さらに発酵が進行する。
【0109】
同じ要領で充填床5−12を発酵槽1−3に間欠循環下で設定期間滞留する。さらに同じ要領で充填床5−13を排出し発酵槽1−4に導入し発酵する。
【0110】
最終の設定発酵度に達した充填床5−14を下部水平移送経路42、下部経路接続部47、系外排出用枝経路39を経て系外排出充填床38として系外に排出する。
【0111】
なお、循環せずに他発酵槽に順次移送することによっても連続発酵できる。
【0112】
〔実施例 4〕
本実施例は、複数本の縦方向移送経路を含む発酵系によるバッチ式順送り発酵について説明する。
【0113】
図13は2本の縦方向移送経路を含む発酵系のフロー図である。実施例2と同じ要領で発酵するが、原料の導入、発酵、循環、排出に際して、当該発酵槽に近い方の縦方向移送経路、例えば、発酵槽1−1では縦方向移送経路40−1を用い時計回りに、発酵槽1−nでは縦方向移送経路40−2を用い反時計回りで充填床を移送し循環する。
【0114】
本実施例により、短期間の好気発酵によりで品質のよいコンポストを生産することができる。
【0115】
〔実施例 5〕
本実施例の特徴は、図16に示すように、実施例1における発酵槽内の各段の充填床への酸素供給手段として、充填床内に通気ノズル6を有する通気格子50を付加したものである。
【0116】
通気格子50は図17に示すように、傾斜した2平面を山形に接続し、その断面が逆V字形の傾斜板24と、表面に通気ノズル6を設けた格子通気管路53とで構成されており、これを同一平面上で直行させて格子状に形成したものを用いる。
【0117】
充填床中への酸素供給は、仕切り2の上面に設けた通気ノズル6および通気格子50に設けた通気ノズル6より行う。通気格子50の形状、設置数、設置位置等は特に限定されず、原料の有機固形廃棄物と充填量、床温度、菌濃度、粒径、空隙密度、水分濃度を勘案して選択する。
【0118】
通気格子50を、仕切り2が開いて充填床が上段から落下してくる経路の途中に設置すれば、充填床の破砕効果をさらに向上し、充填高さの平準化できる。
【0119】
また、充填床高が高い場合や、酸素消費速度の大きい原料の発酵等、底面からの酸素含有ガスのみの供給では酸素が不足するような場合に、特に効果が大きい。
【0120】
なお、発酵槽の槽径が小さい場合には、通気格子50は直交したものではなく、平行配置したものでもよい。
【0121】
〔実施例 6〕
本実施例の特徴は、図18に示すように、実施例5の発酵槽内の各段に、充填床の排気ガス排出手段として排気格子54を充填床内に付加したものである。
【0122】
排気格子54の形状、設置数、設置位置等は特に限定されず、原料の有機固形廃棄物とその充填量、床温度、菌濃度、粒径、空隙密度、水分濃度を勘案して選択する。通常は前記の通気格子50と同形状のものを用いる。
【0123】
発酵床に多量の酸素含有ガスの供給が必要な場合に、通気差圧を小さくすることができ、酸素ガス供給用ブロワの供給気圧を下げることができ、省エネルギーに有効である。
【0124】
〔実施例 7〕
実施例1のコンポスト化装置を用いて、発酵原料として食堂より排出された生ゴミを粉砕、乾燥した一次処理生ゴミ500kgと、バークを重量比で20%添加した牛糞2000kgとを混合し、好気条件下50日間発酵させてコンポストを調製した。コンポストを乾燥処理して含水率10%の乾燥コンポスト600kgを得た。
【0125】
上記コンポストの10gに純水200gを加えた抽出水を用いて、小松菜の発芽試験を実施した。その結果、95%の発芽率が得られ、発芽に対する阻害は認められず、良質のコンポストであることが確認された。
【0126】
【発明の効果】
本発明により、槽内横方向に隙間なく充填でき、各段充填床それぞれに発酵に必要な酸素を均一に供給できる。
【0127】
また、簡素な機構による混合により効率よく迅速な好気発酵を行うことができ、良質のコンポストを得ることができる。
【図面の簡単な説明】
【図1】本発明の一実施例による有機固形廃棄物のコンポスト化装置の模式縦断面図である。
【図2】本発明の一実施例に用いた仕切りの概要を示す平面図である。
【図3】本発明の一実施例に用いた仕切りの概要を示す側面図である。
【図4】本発明の一実施例に用いた回転棚板の概要を示す斜視図である。
【図5】本発明の一実施例に用いた通気管路と通気ノズルの概要を示す断面図である。
【図6】本発明の一実施例に用いた通気管路と通気ノズルの概要を示す断面図である。
【図7】本発明の一実施例に用いた通気管路と通気ノズルの概要を示す断面図である。
【図8】本発明の一実施例に用いた通気管路と通気ノズルの概要を示す断面図である。
【図9】本発明の一実施例に用いた通気管路と通気ノズルの概要を示す断面図である。
【図10】本発明の一実施例における混合時期判定方法のフロー図である。
【図11】本発明の一実施例における複数発酵槽の好気発酵物の移送フローを示す図である。
【図12】本発明の一実施例における複数発酵槽の好気発酵物の移送フロー示す図である。
【図13】本発明の一実施例における複数発酵槽の好気発酵物の移送フロー示す図である。
【図14】本発明の一実施例における複数発酵槽の好気発酵物の移送フロー示す図である。
【図15】本発明の一実施例における複数発酵槽の好気発酵物の移送フロー示す図である。
【図16】本発明の一実施例における有機固形廃棄物コンポスト化装置の酸素供給方法を示す模式断面図である。
【図17】本発明の一実施例に用いた通気格子の模式斜視図である。
【図18】本発明の一実施例における有機固形廃棄物コンポスト化装置の酸素供給方法を示す模式断面図である。
【符号の説明】
1…発酵槽、2…仕切り、3…有機固形廃棄物、4…気相空間部、5…充填床、6…通気ノズル、7…回転軸、8…棚板通気管路、9…酸素含有ガス、10…コンベア、11…スクリュー排出機、12…ブロワ、13…回転棚板、14…原料投入孔、15…排気管路、16,19…弁、17…酸素濃度計測手段、18…酸素含有ガス供給管路、20,21…流量計測手段、22…温度計測手段、23…気圧計側手段、24…傾斜板、25…円管、26…制御装置、27…充填床排出口、32…原料供給用枝経路、35…種用充填床、36…種用充填床移送用枝経路、37…下部経路接続部、38…系外排出充填床、39…系外排出充填床排出用枝経路、40…縦方向移送経路、41…発酵槽排出経路、42…下部横方向移送経路、43…上部横方向移送経路、44…発酵槽供給経路、45…上部経路接続部、46…上部経路接続兼移送方向切り替え部、47…下部経路接続兼移送方向切り替え部、50…通気格子、53…格子通気管路、54…排気格子。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for composting organic solid waste.
[0002]
[Prior art]
Municipal solid waste, livestock waste, biological solid organic waste such as sewage sludge as a raw material, each raw material is filled into a cylindrical fermenter having no structure or the like inside to form a continuous packed bed, A composting method in which air is supplied only from the bottom of the tank and exhausted from the upper surface of the floor is described in JP-A-54-10169 and JP-A-55-121990.
[0003]
In addition, shelves fixed in the fermentation tank are arranged vertically at a plurality of intervals, and the shelves have holes for dropping a packed bed in a part of the horizontal shelf, and each stage is free to rotate and revolve. In the process of sequentially transferring a packed bed to be supplied to the uppermost shelf to a lower shelf, a method of fermenting by supplying air into the floor from an air supply port arranged on the upper surface of the shelf, having a stirring means of It is described in JP-A-54-54877.
[0004]
Further, inside the fermenter, a plurality of partitions having a function of rotating horizontally about a horizontal axis and partitioning horizontally and a function of flowing down a packed bed are arranged at intervals vertically, and the raw material is placed on the partition of each stage. Filling leaving space, fermenting by alternately arranging each space part for exhaust and air supply from the bottom to the top, fermenting, and after the fermentation process or after fermentation, rotate the partition and descend the floor Alternatively, the discharging method is described in JP-A-60-155589 and JP-A-55-90997.
[0005]
[Problems to be solved by the invention]
In a generally used pool-type flat-bed agitation fermenter, a wide and shallow packed bed is fermented by mechanical stirring while the top surface of the bed is open to the atmosphere. For this reason, a large area is required, and at the same time, odor collection may be difficult. Therefore, a fermentation tank which requires a small area, easily collects exhaust gas, and has no complicated structure such as a forced stirring means in the tank is desired.
[0006]
In order to reduce the area and facilitate the collection of odor, it is conceivable to increase the tank height. As described above, simply filling the raw material into the vertical silo fermentation tank having no structure inside the tank, not only the floor height but also the tank diameter increases, because the bed is compacted and air supply is hindered, Fermentation activity may be reduced.
[0007]
In order to solve such a problem, a fixed shelf having forced stirring means in the tank as described above and having a hole on a part of the horizontal shelf surface for allowing the packed bed to drop down to a lower stage, a plurality of vertically arranged shelves. There is a method in which fermentation is performed by supplying air from an air supply nozzle disposed on the upper surface of a shelf in the process of sequentially arranging the raw material beds to be supplied to the uppermost shelf to lower shelves at intervals. However, since the filling amount is reduced by the gap between the fixed shelf tip and the inner wall surface of the tank, it is difficult to sufficiently achieve the effect of saving area, and there is a possibility that forced stirring means is required for each shelf and the structure becomes complicated. is there.
[0008]
Also, inside the fermenter, a plurality of partitions having a function of rotating horizontally about the horizontal axis and partitioning horizontally and a function of flowing down the floor are arranged at intervals vertically, and the raw material is placed on the partition of each stage. Filling leaving space, arranging each space part alternately for exhaust and air supply from the bottom space part to the upper part, rotating the partition after the fermentation process or fermentation, and descending the floor Alternatively, in the discharging method, the flow of the air supplied to the gas phase space is distributed in two directions.
[0009]
That is, one penetrates downward from the surface of the packed bed immediately below the gas phase space for air supply, passes through the gap of the partition below, and further exits to the gas phase space for exhaust below. The other rises in the floor just above the gas-phase space for air supply and exits above the gas-phase space for exhaust. The flow rates of both airflows vary depending on the ventilation resistance of both floors. In particular, the packed bed in contact with the lower surface of the gas supply space is easily compressed by the pressure of the gas supply.
[0010]
For this reason, it becomes difficult to make the amount of air supply per unit volume of the packed bed the same, and there is a possibility that a difference in activity may occur depending on the stage. In addition, the latter airflow may also block the gaps in the partitions due to the compression of the packed bed.
[0011]
An object of the present invention is to supply oxygen to each packed bed divided and filled in a plurality of stages in a fermenter without excess and deficiency, and to move and mix the packed bed with a simple mechanism to ferment at a high speed and achieve good quality. An aerobic fermentation method for organic solid waste to obtain the following compost, and an apparatus therefor.
[0012]
[Means for Solving the Problems]
The gist of the present invention for solving the above problems is as follows.
[0013]
[1] A plurality of partitions that can be opened and closed in the fermentation tank are arranged above and below the tank, and the organic solid waste or its aerobic fermentation product is formed such that a gas phase space is formed under the partition located directly above. In the aerobic fermentation method of organic solid waste to form a multistage packed bed by filling and aerobic fermentation of the packed bed,
Air is supplied from the upper surface of each partition, exhausted from the upper surface of each packed bed, and during the fermentation or after fermentation is completed, the packed bed is opened, the partition is dropped and transferred to the lower stage. Aerobic fermentation method.
[0014]
[2] The above-mentioned organic solid waste is supplied to and exhausted from each packed bed while maintaining the pressure in the gas phase space above each packed bed in the fermenter while decreasing from the bottom to the top. Aerobic fermentation method.
[0015]
[3] The above-mentioned aerobic fermentation method for organic solid waste, wherein air supply and exhaust are adjusted so that the gas phase space of the uppermost packed bed is at atmospheric pressure.
[0016]
[4] The above-mentioned aerobic fermentation method for organic solid waste, wherein the pressure in the gas phase space of each packed bed is adjusted by adjusting the amount of air supplied to each packed bed and the amount of exhaust air.
[0017]
[5] In the fermenter, a plurality of openable and closable partitions for controlling the passage of the organic solid waste or the aerobic fermented material in the fermenter are arranged in the tank, and each filler is filled on each partition. In an aerobic fermentation apparatus that forms a multi-stage packed bed in a fermenter by filling the packing so as to form a gas phase space with a partition located thereon, and aerobically fermenting organic solid waste. ,
The organic solid waste is characterized in that the openable and closable partition is constituted by a plurality of rotating shelves, a part of which is fixed to a rotating shaft, and an oxygen supply means is provided on an upper surface of the rotating shelf. Ki fermentation equipment.
[0018]
[6] Exhaust means for adjusting the exhaust amount in each stage for forming a pressure distribution in which the lower part of the gas phase space formed by the partition and the packed bed is higher than the upper part of the fermenter, or / The above-mentioned aerobic fermentation apparatus for organic solid waste having an air supply means for adjusting the amount of air supply.
[0019]
[7] The above-mentioned aerobic fermentation apparatus for organic solid waste, which is provided with a pressure measuring means for measuring a pressure in a gas phase space formed in each stage of the fermenter separated by each partition.
[0020]
[8] A fermentation tank fractionated into two or more by a partition provided in the tank, and an organic solid waste or an aerobic fermentation product thereof is filled on the partition to form a packed bed, and the organic solid waste of the packed bed is formed. In vertical composting equipment for aerobic fermentation of waste,
The partition is constituted by a plurality of rotating shelves, a part of which is fixed to a rotating shaft, and oxygen supply means is arranged on the upper surface of the rotating shelf, and each stage of the fermenter tank fractionated by the partition is provided. An exhaust pipe equipped with an exhaust volume adjusting means is provided in
A means for supplying an organic solid waste or its aerobic fermented material at the upper part of the fermenter, a discharging means for discharging the aerobic fermented substance at the lower part of the fermenter, and an aerobic fermented substance discharged outside the fermenter. Transfer means for transferring to the upper part of the fermenter, and a water supply means for supplying to the aerobic fermented product,
Atmospheric pressure measurement means for forming in the fermentation tank a pressure distribution in which the pressure of each gas phase space formed by the packed bed and the partition decreases from the lower side to the upper side of the fermentation tank. A vertical multi-stage composting device for aerobically fermenting organic solid waste, comprising:
[0021]
[9] A vertical multi-stage composting device in which the organic solid waste is aerobically fermented and provided with supply and exhaust means for supplying and exhausting the packed bed on the partition.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
The method for aerobic fermentation of organic solid waste of the present invention, a plurality of partitions for controlling the passage of the organic solid waste filler in the fermenter is disposed vertically above and below the tank, and each partition and the filler are in a gas phase space. The organic solid waste is aerobically fermented by using a vertical multi-stage fermenter having a plurality of packed beds. Air is supplied from the upper surface of the partition, and if necessary, the partition is opened during the fermentation or after the fermentation is completed, and the organic solid waste or the packing composed of the aerobic fermented product thereof can be transferred to the lower stage.
[0023]
A plurality of ventilation nozzles are arranged on the bottom of the packed bed of each stage, that is, on the top of the partition, to uniformly supply the oxygen-containing gas into the packed bed. The supplied oxygen-containing gas is controlled in accordance with the filling amount so as not to cause an excess or deficiency of oxygen.
[0024]
As described above, oxygen can be uniformly supplied into the packed bed, but a part of the oxygen-containing gas supplied from the oxygen supply means provided on the upper surface of the partition leaks from the gap of the horizontal partition to the lower stage. , It is discharged without being used for fermentation.
[0025]
In order to prevent this, in the present invention, as shown by the following equation (1), the pressure Pd of the lower gas phase space is made larger than the pressure Pu of the upper gas phase space by the differential pressure α to thereby obtain the partition. Can be prevented from leaking from the gap to the lower stage, and the utilization rate of the oxygen-containing gas supplied to the fermenter can be improved.
[0026]
(Equation 1)
Pd ≧ Pu + α (1)
In the above-described method of adjusting the atmospheric pressure, when the stage is the lowest stage, the space below the partition is sealed. When another packed bed exists below the stage, the supply amount of the oxygen-containing gas to the packed bed of the lower stage and the exhaust amount from the gas phase space below the partition of the stage are the same. Adjust so that
[0027]
In the case of a vertical multi-stage fermenter in which a multi-stage packed bed is formed in the fermenter, air is supplied from the upper surface of the partition and exhausted from the gas-phase space at each stage, and the gas-phase space at the bottom of the tank is provided. So that the pressure in the gas space in each stage is gradually inclined so that the pressure in the gas space becomes higher than the pressure in the gas space at the top of the tank.
[0028]
The uppermost gas phase space may be substantially at atmospheric pressure. At this time, the pressure in the gas phase space in the immediately lower stage is adjusted so that the pressure in the gas phase space in the uppermost stage is the atmospheric pressure, and the supply amount and the exhaust amount in the uppermost stage match.
[0029]
Also, in order to form a pressure distribution inside the fermenter so that the pressure in the gas phase space formed in each stage is higher on the bottom side than on the top side of the fermenter, exhaust gas is formed in each stage. An exhaust line provided with an adjusting means for adjusting the flow rate is provided.
[0030]
In order to efficiently perform aerobic fermentation in composting, it is preferable to mix the packed beds appropriately. Insufficient mixing reduces the rate of fermentation due to lack of reaction substrates in the active part of the fermentation and accumulation of fermentation intermediates.
[0031]
In the composting apparatus of the present invention, the organic solid waste or the fermented product thereof is supplied to the uppermost stage, filled in the partition, and dropped into the lower stage to mix and crush the fermented product. The fermented material that has fallen to the bottom of the fermentation tank is discharged out of the tank when composting has reached the target degree of decomposition, and when it is in the process of being transferred, it is again transferred to the top and fermented. Let it continue.
[0032]
The raw material targeted by the present invention is not particularly limited as long as it contains components that can be composted, but is generally garbage, livestock waste, food processing waste, agricultural waste, forest waste. It is applied to all organic solid waste such as marine waste, microbial sludge, etc.
[0033]
In addition, in addition to sawdust, rice husk, bark, and the like, non-fermented materials such as plastics and ceramics are used as moisture absorbing materials or void holding materials in addition to collected and reused after fermentation, and intermediate fermented products and products are used as fermentation seed bacteria. Compost and fermentation bacteria concentrate may be added.
[0034]
The particle size and moisture are also appropriately selected from the size of the fermenter, the fermentation characteristics of the raw materials, and the physical characteristics of the raw materials. If necessary, the particle size, moisture, pH and the like may be adjusted.
[0035]
The method of partitioning and the structure thereof are not particularly limited, and a method of rotating around a horizontal axis and having a valve function is appropriately selected. That is, a composite surface formed by a flat surface, a curved surface, a plurality of bent surfaces, or the like is used as the shape of the partition surface. In addition, as for the shape of the partition, conditions such as one wing, two wings, lateral arrangement method and number of partitions, unit partition size, vertical arrangement and number of partitions, etc., are based on characteristics of raw materials, size and shape of fermenter. , The residence time in the tank and the fermentation conditions.
[0036]
The arrangement and structure of the air supply holes provided on the upper surface of the partition are not particularly limited, and the air supply path in the tank is not particularly limited. It is appropriately selected. For example, a large number of single-hole nozzles may be dispersed on the upper surface of the partition plate, or a mesh plate or a porous material may be arranged. The size of the partition plate, that is, the horizontal width, is selected in consideration of physical characteristics such as the particle size of the filler and the viscosity so that the filler drops when opened.
[0037]
The drive mechanism for opening and closing the partition plate is not particularly limited, and is appropriately selected from drive means such as hydraulic drive and gear drive.
[0038]
The organic solid waste or its aerobic fermentation product is decomposed by aerobic fermentation by aerobic microorganisms. Oxygen deficiency not only slows down the fermentation rate, but also shifts from aerobic fermentation to anaerobic fermentation, causing accumulation of organic acids, which may lead to malodor generation and acidification, leading to lower quality compost products.
[0039]
In order to efficiently perform aerobic fermentation, oxygen supply means for supplying oxygen to the raw material, the organic solid waste or the aerobic fermentation product without excess and deficiency, and for uniformly supplying oxygen to the entire packed bed are particularly preferable. is important. The amount of oxygen required by each packed bed depends on the type of organic solid waste as raw material, the amount of packing, the ease with which organic matter is decomposed, and the like, and changes with the progress of fermentation decomposition.
[0040]
On the other hand, excessive supply of the oxygen-containing gas not only reduces the fermentation rate by cooling the packed bed, but also wastes energy for pressurizing the oxygen-containing gas to be injected into the packed bed. It is desirable that the oxygen concentration in the exhaust gas for efficient aerobic fermentation is 5% or more, preferably 10% or more. For this reason, an oxygen concentration measuring means is provided in the exhaust pipe of each packed bed, and the supply amount of the oxygen-containing gas is adjusted so that the oxygen concentration in the exhaust gas becomes as described above.
[0041]
The following method is used to feed raw materials into an empty fermenter. The lowermost partition is closed, and all of the upper partitions are opened. Raw materials are charged from the tank, and when a predetermined amount is accumulated in the lowermost partition, the upper partition is closed. In the same manner, the upper stage is sequentially filled. Alternatively, all the partitions are closed, and the uppermost partition is opened when a predetermined amount of raw material is accumulated on the uppermost stage, and the raw materials are sequentially dropped and transferred to the lower stage. Next, the uppermost partition is closed again, and a predetermined amount of raw materials is again accumulated. This is repeated for each stage, and the raw material is filled up to the uppermost stage.
[0042]
It is not necessary to fill all the stages with the raw organic solid waste or these aerobic fermented products, and some stages may be used according to the load and the fermentation rate. The packed bed is fermented by supplying oxygen necessary for fermentation of the packed bed from the upper surface of the partition.
[0043]
During the fermentation, the packed bed is discharged out of the tank, supplied again from the upper part of the fermenter and circulated, whereby the packed bed is crushed and mixed, thereby preventing binding between fermented product particles. At that time, the lowermost partition is opened and emptied, then the partition is closed, the upper partition is opened, and the upper packed bed is received. In the same manner, the packed beds are sequentially transferred downward step by step to empty the uppermost stage and then return to the uppermost stage.
[0044]
In the above, when the space returned to the uppermost stage is insufficient, the operation may be performed with the uppermost stage empty during fermentation.
[0045]
The discharging method and structure of the packed bed are not particularly limited, and any suitable one for the properties of the packed bed and the set transfer operation time, such as a rotary screw, endless track scraping type, rotary feeder, plunger type, turntable type, etc. Select and use. As the transfer means, an endless type, for example, a fixed-quantity transfer means such as a belt feeder, a pan feeder, an apron feeder, a chain feeder, a bucket conveyor, and a rotary screw type can be appropriately selected.
[0046]
Next, the present invention will be specifically described with reference to examples.
[0047]
[Example 1]
FIG. 1 is a schematic view showing an embodiment of the bio-organic solid waste composting apparatus of the present invention. There are provided partitions 2-1 to 2-3 for fractionating the fermenter 1 into three stages, a conveyor 10 for supplying organic solid waste (or an aerobic fermented product thereof) to the uppermost stage of the fermenter, and a packed bed 5 A screw discharger 11 for discharging -1 to 5-3 out of the fermenter 1, a blower 12 for supplying air, and a controller 26 are provided.
[0048]
The organic solid waste 3 includes garbage discharged from homes, food residues discharged from a food manufacturing process, various animal excrements such as cow dung, sludge discharged from a wastewater treatment facility by a biological treatment method, and the like. It is a primary fermented product that does not contain harmful substances such as pesticides and heavy metals, and can be used as a raw material as long as it is an organic substance that can be decomposed by living organisms.
[0049]
Depending on the properties of the organic solid waste 3, treatments such as removal of foreign substances such as metal pieces and rubble, crushing of bulky substances, and mixing of seed compost containing aerobic fermentation microorganisms may be performed. The raw material organic solid exhaust 3 is charged into the fermenter 1 by the following procedure. The partition 2-1 is closed with the lowermost rotating shelves 13-1a to 13-1c horizontal, and the rotating shelves 13-2a to 13-2c and 13-3a of the partitions 2-2 and 2-3 thereon are closed. Open ~ 13-3c.
[0050]
The organic solid waste 3 is fed through the raw material inlet 14 and the conveyor 10. When a predetermined amount of the lowermost packed bed 5-1 is accumulated, the rotating shelves 13-2a to 13-2c thereon are leveled, and the partition 2-2 is closed. Thereafter, filling is performed sequentially up to the upper stage in the same manner to form packed beds 5-2 and 5-3.
[0051]
The packed beds 5-1 to 5-3 are filled so as to form gaseous space portions 4-1 to 4.3 under the upper partitions 2-2 and 2-3. The packing height of the packed beds 5-1 to 5-3 is equal to or less than the height corresponding to the floor pressure that can be supplied from the physical properties of the raw material, the tank diameter, and the like. It is set in consideration of the required thickness of the space. Preferably it is in the range of 0.5 to 2 m.
[0052]
The gaseous space must have an angle enough to allow the packed bed 5 to fall from the inclined partition to the lower stage, that is, a repose angle.
[0053]
After the filling is completed, the oxygen-containing gas 9 is rotated by the blower 12 through the oxygen-containing gas supply pipes 18-1 to 18-3, the valves 16-1 to 16-3, and the flow meter side means 20-1 to 20-3. The fermentation is started by supplying on the shelves 13-1a to 13-1c, 13-2a to 13-2c, and 13-3a to 13-3c. During the fermentation, the packed beds 5-1 to 5-3 during the fermentation are extracted from the fermenter 1 by the screw discharger 11 at appropriate times, supplied to the uppermost stage of the fermenter by the conveyor 10, circulated, and the fermentation is continued. I do.
[0054]
The packed bed 5-1 to 5-3 which has reached the target decomposition degree opens and closes the partitions 2-1 to 2-3 as necessary, passes through the screw discharger 11 and the conveyer 10 from the packed bed discharge port 27 to the outside of the system. Discharge as product compost.
[0055]
The organic solid waste or the aerobic fermentation product thereof in the packed beds 5-1 to 5-3 is decomposed by aerobic fermentation by aerobic microorganisms.
[0056]
In order to efficiently perform aerobic fermentation, it is important to supply oxygen to the packed beds 5-1 to 5-3 without excess or deficiency. Oxygen deficiency not only slows down the fermentation rate, but also shifts from aerobic fermentation to anaerobic fermentation, causing the accumulation of organic acids, which can lead to the generation of offensive odors and the deterioration of the quality of compost products due to acidification. For this reason, oxygen supply means for uniformly supplying oxygen to the entire packed beds 5-1 to 5-3 is particularly important.
[0057]
In this embodiment, partitions 2-1 to 2-3 having a plurality of ventilation nozzles attached to the upper surface are used. FIG. 2 is a plan view of the partition 2-1 and FIG. 3 is a side view thereof. The partition 2-1 is constituted by three sets of rotating shelf boards 13-1a to 13-1c. Similarly, each of the partitions 2-2 and 2-3 is constituted by three sets of rotating shelf boards 13-2a to 13-2c and 13-3a to 13-3c.
[0058]
FIG. 4 is a perspective view showing an outline of the rotating shelf 13-1a. The rotating shelf 13-1a is fixed to the rotating shaft 7 so as to be rotatable. On the upper surface of the rotating shelf 13-1a, a shelf board ventilation pipe 8B having a ventilation nozzle 6 on the side face is provided. The oxygen-containing gas 9 is passed through the shelf plate ventilation pipes 8A and 8B and blown out from the ventilation nozzle 6 into the packed bed 5-1 to supply oxygen required for fermentation.
[0059]
The shelf plate ventilation pipe 8B is arranged so as to be co-current with the flow of opening the rotating shelf plates 13-1a to 13-1c and dropping the packed bed 5-1 to the lower stage, and the ventilation nozzle 6 is provided in FIG. As shown in the figure, the section is provided on the side surface of the shelf board ventilation pipe 8B having a rectangular cross section. This can prevent clogging of the packed bed 5-1 and the ventilation nozzle 6 due to liquid oozing from the packed bed 5-1.
[0060]
6 to 9 are other examples showing the cross section of the shelf plate ventilation pipe 8B and the position of the ventilation nozzle 6. FIG. The shelf plate ventilation pipe 8B shown in FIG. 6 also uses a rectangular tube, one corner of which is welded to the rotating shelf 13-1a. The ventilation nozzle 6 has an aerobic fermentation product that falls from above. Because it is installed in the blind spot, it is more difficult to clog.
[0061]
The shelf plate ventilation pipe 8B shown in FIG. 7 is covered with an inverted V-shaped inclined plate 24 in which two planes are connected, and is unlikely to be clogged. The oxygen-containing gas 9 supplied from the ventilation nozzle 6 is supplied into the packed bed 5 from a cutout portion of the inclined plate 24.
[0062]
The shelf plate ventilation pipe 8B shown in FIG. 8 uses the circular pipe 25 and is easily processed. Also, the shelf plate ventilation pipe 8B shown in FIG. 9 uses a circular tube 25 as in FIG. 8, but is characterized in that a part thereof is cut to increase the welding area with the rotating shelf 13-1a. There is. By increasing the welding area, the rigidity of the rotating shelf 13-1a can be reinforced.
[0063]
In order to uniformly supply the oxygen-containing gas into the packed bed 5-1, it is desirable that the ventilation nozzles 6 are dispersedly arranged on the upper surfaces of the rotating shelves 13-1a to 13-1c. The installation density of the ventilation nozzle 6 is appropriately selected in consideration of the physical properties of the packed bed, fermentation activity, packed bed height, and the like.
[0064]
The oxygen-containing gas 9 supplied from the ventilation nozzle 6 into the packed beds 5-1 to 5-3 rises in the packed beds 5-1 to 5-3 and goes to the gas-phase spaces 4-1 to 4.3. The water is discharged from the fermenter 1 through the exhaust pipes 15-1 to 15-3.
[0065]
Normally, air is used as the oxygen-containing gas 9 supplied to the inside of the packed beds 5-1 to 5-3, but an oxygen-enriched gas may be used when the amount of ventilation is to be reduced. The amount of oxygen required by each packed bed 5-1 to 5-3 depends on the components of the raw material organic solid waste, the packed amount, the bed temperature, the bacterial concentration, the particle size, the void density, the moisture concentration, and the like. Although varying over time, low oxygen concentrations slow the rate of aerobic fermentation.
[0066]
In addition, supplying the oxygen-containing gas 9 more than necessary lowers the fermentation rate by cooling the packed beds 5-1 to 5-3, and also increases the energy for pressurizing the oxygen-containing gas 9 to be injected into the packed bed. Wasted. Therefore, in order to efficiently perform aerobic fermentation, the oxygen concentration in the exhaust gas should be 5% or more, preferably 10% or more. For this reason, the supply amount of the oxygen-containing gas 9 to each of the packed beds 5-1 to 5-3 depends on the oxygen concentration measuring means provided in the exhaust pipes 15-1 to 15-3 with respect to the preset exhaust oxygen concentration. The control device 26 controls the valves 16-1 to 16-3 provided in the oxygen-containing gas supply pipes 18-1 to 18-3 so that the oxygen concentration in the exhaust gas obtained by 17-1 to 17-3 becomes a set value. -3 is controlled to open and close to regulate the supply of oxygen-containing gas.
[0067]
In the present embodiment, the pressure in the gas phase space in each stage is such that the top stage is lower than the bottom stage in the fermenter so that a pressure distribution is formed inside the fermenter and supplied to each stage. The oxygen-containing gas is reliably discharged through the packed beds 5-1 to 5-3 to the gas phase space without flowing out to the lower stage, and oxygen is sufficiently supplied.
[0068]
As means for forming a pressure distribution inside the fermenter, flow measuring means 20-1 to 20-3 are provided in the middle of each of the oxygen-containing gas supply pipes 18-1 to 18-3 at each stage, and the exhaust pipe 15 Valves 19-1 to 19-3 and flow rate measuring means 21-1 to 21-3 are provided in the middle of -1 to 15-3.
[0069]
The control device 26 for forming the pressure distribution inside the tank is provided with the oxygen-containing gas measured by the flow rate measuring means 20-1 to 20-3 provided in the middle of the oxygen-containing gas supply pipes 18-1 to 18-3 of the stage. The supply amount is controlled by controlling valves 19-1 to 19-3 provided in the middle of the exhaust pipes 15-1 to 15-3 and the exhaust amount measured by the flow rate measuring means 21-1 to 21-3. The proportion is adjusted so as to be 90 to 100%, preferably 95 to 99%. Thereby, a pressure distribution is formed inside the fermenter so that the pressure in the gas phase space in each stage is lower at the top side than at the bottom side.
[0070]
The pressure in the uppermost gas phase space 4-3 is set to the atmospheric pressure, and the ratio of the amount of exhaust gas to the amount of air supplied to the uppermost gas stage is 100 to 110%. Adjust the air pressure of 2. As a result, it is only necessary to install the flow rate measuring means 21-3 in the uppermost exhaust pipe line 15-3, and the valve 19-3 for adjusting the exhaust gas amount becomes unnecessary.
[0071]
At the bottom, the bottom of the fermenter is sealed to prevent it from flowing out of the fermenter. However, the amount corresponding to the amount flowing out from the partition 2-1 to the bottom of the fermenter is increased in advance, and oxygen is increased. The contained gas 9 may be supplied.
[0072]
As a method of forming a pressure distribution inside the fermenter, instead of monitoring the flow rate of the exhaust gas described above, pressure measuring means 23-1 to 23-3 are provided in the gas phase spaces 4-1 to 4-3 of each stage. It is also possible to adjust the air supply amount and the exhaust amount based on the measured value to adjust the air pressure to a required pressure.
[0073]
The operation for adjusting the pressure and the flow rate in the fermenter may be manually adjusted by an operator instead of the control device 26.
[0074]
In order to perform composting efficiently, it is preferable to mix the packed beds appropriately.
[0075]
In the composting apparatus of the present embodiment, the partitions 2-1 to 2-3 supporting the packed bed are opened, and the packed beds 5-1 to 5-3 are dropped and transferred to the lower stage to perform the filling. The material is crushed and mixed. Insufficient mixing slows the fermentation rate due to lack of reaction substrates and excessive accumulation of fermentation products in the active part of the fermentation.
[0076]
However, the fermentation rate is not necessarily improved by increasing the amount of the above mixture, and there is an optimum mixing frequency depending on the type and amount of the organic solid waste as a raw material, the ease with which the organic matter is decomposed, and the degree of decomposition. In the present embodiment, the appropriate mixing time, that is, the transfer time to the lower stage of the packed bed 5-1 to 5-3 is determined based on the temperature of the packed bed, the oxygen consumption rate, and the elapsed time from the previous mixing operation. .
[0077]
The above-described mixing timing determination will be described with reference to the processing flow shown in FIG. The control device 26 calculates the elapsed time t from the previous mixing operation at every predetermined time. Then, the control device 26 determines whether or not t is equal to or less than a preset maximum allowable still time tH.
[0078]
When the fermented product is fermented in a state where the packed bed is allowed to stand still, the fermented material does not bind to each other to cause solidification of the whole packed bed. When the partitions 2-1 to 2-3 are opened, the packed bed is lowered. This is the time during which the properties that can be transferred to the next stage can be maintained, and varies depending on the raw materials, the height of packing, the water concentration in the packed bed, the degree of decomposition, and the like. Usually, it is 24 to 100 hours, preferably 24 to 72 hours.
[0079]
If it exceeds tH, it is immediately determined that the mixing operation is to be performed. When the temperature is equal to or lower than tH, the temperature T of the packed bed is measured by the temperature measuring means 22-1 to 22-3 provided at each stage, and the temperature T is equal to or lower than the packed bed maximum temperature Tm stored in the controller 26. Is determined. If it exceeds Tm, the information on Tm is replaced with the information on T, and the process proceeds to the determination of the oxygen consumption rate described later.
[0080]
If T is equal to or less than Tm, the temperature is compared with the lower limit temperature TL of the packed bed calculated by the control device 26 next. TL is a value obtained by subtracting a predetermined temperature from Tm, and is not particularly limited, but is usually a value obtained by subtracting 5 to 10 ° C.
[0081]
If T is greater than or equal to TL, the process proceeds to the determination of the oxygen consumption rate. In the determination step of the oxygen consumption rate, the supply amount of the oxygen-containing gas measured by the flow rate measuring means 20-1 to 20-3 and the oxygen concentration measuring means 17-1 to 17-3 and the oxygen concentration in the exhaust gas are measured. The oxygen consumption rate Or is calculated based on the information, and it is determined whether or not the oxygen consumption rate Orm stored in the control device 26 is equal to or less than Orm. If the value exceeds Orm, the information of Orm is replaced with the information of Orm, and the process waits until the next determination time.
[0082]
If it is equal to or less than Orm, it is compared with the oxygen consumption rate lower limit value OrL calculated by the control device 26 next. OrL is a numerical value obtained by multiplying Orm by a predetermined ratio and is not particularly limited, but is usually a numerical value obtained by multiplying Orm by 1/3, preferably by 1/2. If Or is equal to or greater than OrL, the process waits until the next determination time.
[0083]
If Or is equal to or less than Orm, and if T is equal to or less than TL, it is next determined whether or not t is equal to or greater than the minimum stationary time tL preset in the control device 26. If it is tL or more, it is determined that it is time to perform the mixing operation. If it is less than tL, it waits until the next determination time. The various information used in this determination is stored in the control device 26 as a database over time.
[0084]
In the case of the present embodiment in which a plurality of packed beds are provided in the fermenter 1, the above-described determination operation is repeated for each stage. Preferably, the operation is performed. When the raw materials are the same and the degree of composting of the packed bed in the fermenter is considered to be substantially uniform, the mixing time of the entire apparatus can be determined by one-stage determination.
[0085]
The mixing operation of the packed bed is performed by operating the drive mechanisms of the partitions 2-1 to 2-3 based on a command from the control device 26. The mixing operation can be automatically performed by the control device 26, and there is a method of performing the mixing operation manually by allowing the operating operator to recognize the execution time of the mixing operation by means of displaying or notifying the time.
[0086]
After the mixing operation, the values of Tm, TL, Orm, and OrL are cleared to zero.
[0087]
By continuing the aerobic fermentation using the composting apparatus of this embodiment, the packed bed volume and weight are reduced, the organic matter in the raw material is decomposed, and the organic matter concentration is gradually reduced. Accordingly, the rate of aerobic fermentation and the rate of oxygen consumption decrease, and the temperature of the packed bed also decreases with a decrease in the amount of heat generated by aerobic fermentation. The end of composting is determined in consideration of these situations. In making the determination, it is particularly preferable to use the change over time in the organic matter decomposition rate and the oxygen consumption rate as indexes. In addition, electric conductivity, cation exchange capacity, pH and the like can also be used as indices.
[0088]
When compost is effectively used as a fertilizer for the production of agricultural products, it is not necessary to decompose organic matter to the limit, and it is sufficient to decompose the target agricultural products to a level that does not adversely affect growth inhibition. Not even.
[0089]
When it is determined that the compost has reached the target decomposition degree, the fermented product is discharged out of the tank by the screw discharger 11 and the conveyor 10, and the water content is adjusted and the fertilizer component is adjusted as necessary. Into compost products.
[0090]
For the fermentation in a plurality of fermenters, the following transfer means that share the respective transfer routes for the raw material supply, the circulation of the packed bed, and the discharge outside the system in a single tank are required.
[0091]
(1) A horizontal transfer path that connects the outlet at the bottom of each fermenter with the lower part of the vertical transfer path.
[0092]
(2) A vertical transfer route that can be transferred upward.
[0093]
(3) A horizontal transfer path connecting the upper part of the vertical transfer path and the supply port at the top of each fermenter.
[0094]
The transfer route is appropriately selected depending on the operation method such as batch processing and continuous processing of a plurality of fermenters, the arrangement of the fermenters, the transfer means, the physical properties of the raw materials, the transfer capacity, and the like.
[0095]
[Example 2]
Next, an example of a fermentation method using a fermentation system including a plurality of fermenters will be described. The present embodiment is a sequential feeding method of batch fermentation by a fermentation system including one vertical transfer path, and FIG. 11 is a diagram showing the flow thereof.
[0096]
The raw organic solid waste 3 is raised by the vertical transfer path 40 via the raw material supply branch path 32, the lower horizontal transfer path 42-1 and the lower path connection part 37, and is passed through the upper path connection part 45 on the left side of the drawing. The upper lateral transfer path 43-1 is transferred and introduced into the fermenter 1-1 via the fermenter supply path 44-1.
[0097]
When the fermentation needs to be accelerated, the seed packed bed 35 is added to the raw organic solid waste 3 via the seed packed bed transfer branch path 36 as necessary. After introduction into the fermenter 1-1, air is supplied into the packed bed 5-11 to start fermentation.
[0098]
During this time, the raw solid organic waste 3 is introduced intermittently, for example, once a day, into the fermenter 1-1 at an arbitrary time interval until the effective volume reaches saturation or a set volume. Also, at an arbitrary interval intermittently, for example, at a frequency of 1 to 3 days, part or all of the packed bed 5-11 in the fermenter 1-1 is discharged via the fermenter discharge path 41-1. The same route as above is circulated counterclockwise in the figure to continue fermentation.
[0099]
During or after accumulation in the fermenter, when the fermentation has progressed to the set fermentation degree or when the fermentation has ended, the packed bed 5-1 is transferred rightward in the figure by the lower horizontal transfer path 42-1. It is discharged from the lower horizontal transfer path 37 through the outside discharge branch path 39 for discharging the packed bed as an outside discharge packed bed 38.
[0100]
On the other hand, when the effective volume of the fermenter 1-1 is saturated or set to an unsaturated state, the introduction of the raw material organic solid waste 3 into the fermenter 1-1 is stopped in parallel with the above-described process. To the tank, for example, the fermenter 1-3, the raw material supply branch path 32, the lower horizontal transfer path 42-1, the vertical transfer path 40, the upper horizontal transfer path 43-2, and the fermenter supply path 44-3. It is transferred and introduced into the fermenter 1-3 to start fermentation.
[0101]
Hereinafter, batch fermentation is sequentially performed by repeating introduction, fermentation, circulation, and out-of-system discharge of the raw material organic solid waste 3 sequentially to an unused fermenter and an empty fermenter after fermentation in the same manner. Perform continuous processing by the formula.
[0102]
In FIG. 11, the horizontal transfer path is composed of one continuous path, while as shown in FIG. 12, the lower horizontal transfer path 42 and the upper horizontal transfer path 43 are each composed of one conveyor or the like. Here is an example. Instead of the transfer to the right of the lower lateral transfer path 42-1 and the left of 42-2 and the transfer of the upper horizontal transfer path 43-1 to the right and 43-2 to the left in FIG. By inverting the transfer direction of the lower horizontal transfer path 42 and the upper horizontal transfer path 43, the transfer is performed in the target direction. In the figure, an upper route connection transfer direction switching unit 46 and a lower route connection transfer direction switching unit 47 have a transfer direction switching function in addition to the route connection function.
[0103]
As the transfer means, a part of a forced transfer type such as a conveyor or a screw can be replaced by gravity transfer using an inclined pipe or an inclined groove.
[0104]
For example, in FIGS. 14 and 15, a vertical transfer path such as a bucket type conveyor is provided at the center of four independent tanks, and a horizontal transfer path formed by combining a plurality of belt conveyors is provided at the bottom. An example using a tube will be described.
[0105]
FIG. 14 shows an example in which a part of the lower horizontal transfer path is of a forced transfer type such as a belt conveyor, and the other is of a gravity transfer type.
[0106]
[Example 3]
The present embodiment is an example of an extrusion flow type continuous fermentation by fermentation with circulation including one vertical transfer path, which will be described with reference to FIG.
[0107]
The raw organic solid waste 3 is raised by the vertical transfer path 40 via the raw material supply branch path 32 and the lower horizontal transfer path 42. Next, it is transferred to the left side by the upper lateral transfer path 43 and introduced into the fermenter 1-1 via the fermenter supply path 44-1 to start fermentation. Meanwhile, at an arbitrary time interval, part or all of the packed bed 5-11 in the fermenter 1-1 is discharged from the fermenter 1-1 via the fermenter discharge path 41-1. Circulates counterclockwise in the figure.
[0108]
When the fermentation has progressed to the set degree of progress, the packed bed 5-11 is transferred rightward by the lower horizontal transfer path 42. Next, the fermenter is introduced into the fermenter 1-2 via the vertical transfer path 40, the upper horizontal transfer path 43, and the fermenter supply path 44-2, and the fermentation further proceeds.
[0109]
In the same manner, the packed bed 5-12 stays in the fermenter 1-3 under intermittent circulation for a set period. Further, the packed bed 5-13 is discharged in the same manner and introduced into the fermenter 1-4 for fermentation.
[0110]
The packed bed 5-14 that has reached the final set fermentation degree is discharged out of the system as the outside discharge packed bed 38 through the lower horizontal transfer path 42, the lower path connection part 47, and the outside discharge branch path 39.
[0111]
In addition, continuous fermentation can also be performed by sequentially transferring to another fermentation tank without circulation.
[0112]
[Example 4]
Example 1 This example describes a batch-type progressive fermentation using a fermentation system including a plurality of vertical transfer paths.
[0113]
FIG. 13 is a flow diagram of a fermentation system including two vertical transfer paths. Fermentation is performed in the same manner as in Example 2, but when introducing, fermenting, circulating, and discharging the raw materials, a vertical transfer path closer to the fermenter, for example, a vertical transfer path 40-1 in the fermenter 1-1 is used. In the clockwise direction, the packed bed is transferred and circulated counterclockwise in the fermenter 1-n using the vertical transfer path 40-2.
[0114]
According to this embodiment, it is possible to produce high-quality compost by short-time aerobic fermentation.
[0115]
[Example 5]
The feature of the present embodiment is that, as shown in FIG. 16, a ventilation grid 50 having a ventilation nozzle 6 in the packed bed is added as an oxygen supply means to the packed bed of each stage in the fermenter in the first embodiment. It is.
[0116]
As shown in FIG. 17, the ventilation grid 50 is formed by connecting two inclined planes in a chevron shape, the inclined plate 24 having an inverted V-shaped cross section, and a grid ventilation pipe 53 having a ventilation nozzle 6 on the surface. This is used by forming it in the form of a lattice by making it orthogonal on the same plane.
[0117]
Oxygen is supplied into the packed bed from the ventilation nozzle 6 provided on the upper surface of the partition 2 and the ventilation nozzle 6 provided on the ventilation grid 50. The shape, number of installations, installation positions, and the like of the ventilation grid 50 are not particularly limited, and are selected in consideration of the organic solid waste as the raw material and the filling amount, the bed temperature, the bacterial concentration, the particle size, the void density, and the moisture concentration.
[0118]
If the ventilation grid 50 is installed in the middle of the path where the partition 2 opens and the packed bed falls from the upper stage, the crushing effect of the packed bed can be further improved and the filling height can be leveled.
[0119]
In addition, the effect is particularly great when oxygen is insufficient when only the oxygen-containing gas is supplied from the bottom surface, such as when the height of the packed bed is high or when the supply of only the oxygen-containing gas from the bottom surface is performed, such as fermentation of a raw material having a high oxygen consumption rate.
[0120]
When the diameter of the fermenter is small, the ventilation grids 50 may not be orthogonal but may be arranged in parallel.
[0121]
[Example 6]
The feature of the present embodiment is that, as shown in FIG. 18, an exhaust grate 54 is added to each stage in the fermenter of the fifth embodiment as an exhaust gas discharging means of the packed bed in the packed bed.
[0122]
The shape, the number of installations, the installation position, etc. of the exhaust grid 54 are not particularly limited, and are selected in consideration of the organic solid waste as a raw material and its filling amount, bed temperature, bacterial concentration, particle size, void density, and moisture concentration. Usually, the same shape as the ventilation grid 50 is used.
[0123]
When a large amount of oxygen-containing gas needs to be supplied to the fermentation bed, the aeration differential pressure can be reduced and the supply pressure of the oxygen gas supply blower can be reduced, which is effective for energy saving.
[0124]
[Example 7]
Using the composting apparatus of Example 1, 500 kg of primary-treated garbage, which was obtained by pulverizing and drying garbage discharged from a cafeteria as a fermentation raw material, and 2,000 kg of cow dung to which bark was added at a weight ratio of 20% were mixed. The compost was prepared by fermentation for 50 days under aerobic conditions. The compost was dried to obtain 600 kg of dry compost having a water content of 10%.
[0125]
A germination test of Komatsuna was carried out using extracted water obtained by adding 200 g of pure water to 10 g of the compost. As a result, a germination rate of 95% was obtained, no inhibition on germination was observed, and it was confirmed that the compost was high-quality compost.
[0126]
【The invention's effect】
According to the present invention, it is possible to fill the tank in the lateral direction without any gap, and to uniformly supply oxygen required for fermentation to each packed bed in each stage.
[0127]
In addition, aerobic fermentation can be performed efficiently and quickly by mixing with a simple mechanism, and high-quality compost can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view of an organic solid waste composting apparatus according to an embodiment of the present invention.
FIG. 2 is a plan view showing an outline of a partition used in one embodiment of the present invention.
FIG. 3 is a side view showing an outline of a partition used in one embodiment of the present invention.
FIG. 4 is a perspective view showing an outline of a rotating shelf used in one embodiment of the present invention.
FIG. 5 is a sectional view showing an outline of a ventilation pipe and a ventilation nozzle used in one embodiment of the present invention.
FIG. 6 is a sectional view showing an outline of a ventilation pipe and a ventilation nozzle used in one embodiment of the present invention.
FIG. 7 is a sectional view showing an outline of a ventilation pipe and a ventilation nozzle used in one embodiment of the present invention.
FIG. 8 is a sectional view showing an outline of a ventilation pipe and a ventilation nozzle used in one embodiment of the present invention.
FIG. 9 is a sectional view showing an outline of a ventilation pipe and a ventilation nozzle used in one embodiment of the present invention.
FIG. 10 is a flowchart of a mixing timing determination method according to an embodiment of the present invention.
FIG. 11 is a diagram showing a transfer flow of aerobic fermentation products in a plurality of fermenters in one embodiment of the present invention.
FIG. 12 is a diagram showing a transfer flow of aerobic fermentation products in a plurality of fermenters in one embodiment of the present invention.
FIG. 13 is a diagram showing a transfer flow of aerobic fermentation products in a plurality of fermenters in one embodiment of the present invention.
FIG. 14 is a diagram showing a transfer flow of aerobic fermentation products in a plurality of fermenters in one embodiment of the present invention.
FIG. 15 is a diagram showing a transfer flow of aerobic fermentation products in a plurality of fermenters in one embodiment of the present invention.
FIG. 16 is a schematic cross-sectional view showing an oxygen supply method of the organic solid waste composting apparatus according to one embodiment of the present invention.
FIG. 17 is a schematic perspective view of a ventilation grid used in one embodiment of the present invention.
FIG. 18 is a schematic sectional view showing an oxygen supply method of the organic solid waste composting apparatus according to one embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Fermentation tank, 2 ... Partition, 3 ... Organic solid waste, 4 ... Gas phase space part, 5 ... Packed bed, 6 ... Vent nozzle, 7 ... Rotation axis, 8 ... Shelf board ventilation line, 9 ... Oxygen-containing Gas: 10: Conveyor, 11: Screw ejector, 12: Blower, 13: Rotating shelf, 14: Raw material input hole, 15: Exhaust line, 16, 19: Valve, 17: Oxygen concentration measuring means, 18: Oxygen Contained gas supply conduit, 20, 21: flow rate measuring means, 22: temperature measuring means, 23: barometer side means, 24: inclined plate, 25: circular pipe, 26: control device, 27: packed bed discharge port, 32 ... Branch path for raw material supply, 35 ... Packed bed for seed, 36 ... Branch path for transfer of packed bed for seed, 37 ... Connector of lower path, 38 ... Outside packed bed, 39 ... Outboard packed bed for discharging outside Path, 40: vertical transfer path, 41: fermenter discharge path, 42: lower horizontal transfer path, 43: upper part Direction transfer path, 44: Fermenter supply path, 45: Upper path connection section, 46: Upper path connection and transfer direction switching section, 47: Lower path connection and transfer direction switching section, 50: Ventilation grid, 53: Grid ventilation pipe Road, 54 ... exhaust grid.

Claims (9)

発酵槽内に開閉自在の仕切りを槽内上下に複数配置し、有機固形廃棄物またはその好気発酵物を、真上に位置する仕切りの下に気相空間部が形成されるよう充填して多段の充填床を形成し、該充填床を好気発酵する有機固形廃棄物の好気発酵方法において、各充填床上の気相空間部の気圧が、最下段から最上段に向かって減少する勾配を保持しながら各充填床に給気および前記気相空間部から排気する有機固形廃棄物の好気発酵方法。A plurality of openable and closable partitions are arranged in the fermentation tank above and below the tank, and organic solid waste or its aerobic fermentation product is filled so that a gas phase space is formed under the partition located directly above. In the aerobic fermentation method of organic solid waste in which a multi-stage packed bed is formed and the packed bed is aerobically fermented, the pressure of the gas phase space on each packed bed decreases from the bottom to the top. An aerobic fermentation method for organic solid waste in which air is supplied to each packed bed and exhausted from the gas space while maintaining the pressure. 各充填床の気相空間部の気圧調節を各充填床への給気量と前記気相空間部からの排気量とを調節することにより行う請求項1に記載の有機固形廃棄物の好気発酵方法。The aerobic method of the organic solid waste according to claim 1, wherein the pressure of the gas phase space in each packed bed is adjusted by adjusting the amount of air supplied to each packed bed and the amount of exhaust gas from the gas space. Fermentation method. 発酵槽内に有機固形廃棄物またはその好気発酵物からなる充填物の通過を制御する開閉自在の仕切りを槽内に複数段配置し、各仕切り上に充填された充填物と、その上に位置する仕切りとの間に気相空間部を形成できるよう充填物を充填して発酵槽内に多段の充填床を形成し、有機固形廃棄物を好気発酵する好気発酵装置において、前記仕切りの複数段のうちの一つは、前記開閉自在の仕切りを複数の回転棚板から構成し、該複数の回転棚板は、上面に酸素供給手段を備え、一端が回転軸として固定され、同一方向に回転して当該段の仕切りを開閉できるように配置し、かつ当該段の仕切りの上下に位置する仕切りは、開閉時の回転方向が当該段の仕切りの回転方向とは逆向きとなるように配置したことを特徴とする有機固形廃棄物の好気発酵装置。A plurality of openable and closable partitions for controlling the passage of the organic solid waste or the aerobic fermented material in the fermenter are arranged in the tank, and the fillers filled on each partition are placed on the partitions. In the aerobic fermentation apparatus for filling the packing so as to form a gas phase space between the partition and a multi-stage packed bed in the fermenter, and for aerobically fermenting the organic solid waste, One of the plurality of stages comprises an openable and closable partition comprising a plurality of rotating shelves, the plurality of rotating shelves having an oxygen supply means on an upper surface, one end fixed as a rotating shaft, and the same rotating shelf. rotating in the direction disposed so as to open and close the partition of the stage, and partitioning rehabilitation positioned above and below the partition of the stage, the rotational direction of opening and closing in the opposite direction to the rotation direction of the partition of the stages Aerobic emission of organic solid waste characterized by the arrangement Apparatus. 発酵槽内に有機固形廃棄物またはその好気発酵物からなる充填物の通過を制御する開閉自在の仕切りを槽内に複数段配置し、各仕切り上に充填された充填物と、その上に位置する仕切りとの間に気相空間部を形成できるよう充填物を充填して発酵槽内に多段の充填床を形成し、有機固形廃棄物を好気発酵する好気発酵装置において、前記開閉自在の仕切りが、回転軸にその一部を固定した複数の回転棚板で構成され、該回転棚板の上面に酸素供給手段を備え、前記仕切りと充填床により形成される気相空間部の気圧が、発酵槽の上部に対して下部が高くなる気圧分布を形成させるための各段に排気量を調節する排気手段または/および給気量を調節する給気手段を有する有機固形廃棄物の好気発酵装置。A plurality of openable and closable partitions for controlling the passage of the organic solid waste or its aerobic fermentation material in the fermenter are arranged in the tank in multiple stages, and the fillers filled on each partition are placed on the partition. In an aerobic fermentation apparatus that forms a multi-stage packed bed in a fermenter by filling the packing so as to form a gas phase space with a partition located therein and aerobic fermentation of organic solid waste, A free partition is constituted by a plurality of rotating shelves, a part of which is fixed to a rotating shaft, provided with oxygen supply means on the upper surface of the rotating shelf, and a gas phase space formed by the partition and the packed bed is provided. In order to form a pressure distribution in which the lower part of the fermenter is higher than the upper part of the fermenter, the organic solid waste having an exhaust means for adjusting the exhaust amount and / or an air supply means for adjusting the air supply amount at each stage. Aerobic fermentation equipment. 各仕切りにより分画された発酵槽の各段に形成される気相空間部の気圧を計測する気圧計測手段を設けた請求項3または4に記載の有機固形廃棄物の好気発酵装置。The aerobic fermentation apparatus for organic solid waste according to claim 3 or 4, further comprising a pressure measuring means for measuring a pressure in a gas phase space formed in each stage of the fermenter separated by each partition. 槽内に設けた仕切りにより2以上に分画した発酵槽と、前記仕切り上に有機固形廃棄物またはその好気発酵物を充填して充填床を形成し、該充填床の有機固形廃棄物を好気発酵する縦型コンポスト化装置において、前記仕切りがその一部を回転軸に固定した複数の回転棚板で構成され、かつ、該回転棚板の上表面に酸素供給手段を配し、前記仕切りにより分画された発酵槽の各段に排気量調節手段を具備した排気管路を設け、発酵槽上部に有機固形廃棄物またはその好気発酵物の供給手段と、発酵槽下部に好気発酵物を発酵槽外に排出する排出手段と、発酵槽外に排出された好気発酵物を発酵槽上部に移送する移送手段と、好気発酵物に供給する水分供給手段を備え、前記充填床と仕切りとで形成される各気相空間部の気圧が、発酵槽の下部側より上部側に行くに従って低くなる気圧分布を発酵槽内に形成させるための気圧計測手段、気圧調節手段を備えたことを特徴とする有機固形廃棄物を好気発酵する縦型多段コンポスト化装置。A fermentation tank fractionated into two or more by a partition provided in the tank, and an organic solid waste or an aerobic fermentation product thereof is filled on the partition to form a packed bed, and the organic solid waste of the packed bed is formed. In the vertical composting apparatus for aerobic fermentation, the partition is constituted by a plurality of rotating shelves, a part of which is fixed to a rotating shaft, and arranging oxygen supply means on an upper surface of the rotating shelf, Each stage of the fermentation tank separated by the partition is provided with an exhaust pipe equipped with an exhaust air volume control means, an organic solid waste or aerobic fermentation product supply means at the upper part of the fermentation tank, and an aerobic part at the lower part of the fermentation tank. A discharging means for discharging the fermented material out of the fermenter, a transfer means for transferring the aerobic fermented material discharged out of the fermenter to the upper part of the fermenter, and a water supply means for supplying the aerobic fermented material; The air pressure in each gas phase space formed by the floor and the partition Vertical multistage composting apparatus for aerobic fermentation and more pressure measuring means for the pressure distribution to be low formed fermenter toward the upper side, the organic solid waste, comprising the pressure regulating means. 前記仕切り上の充填床に給,排気する給,排気手段を配置した請求項6に記載の有機固形廃棄物を好気発酵する縦型多段コンポスト化装置。7. The vertical multi-stage composting apparatus for aerobically fermenting organic solid waste according to claim 6, further comprising a supply / exhaust means for supplying / evacuating the packed bed on the partition. 仕切り上の充填床の温度と、該充填床の上に形成された気相空間部から排気するガスの流量と酸素濃度を計測し、混合操作の実施時期を判定し、前記仕切りを開いて下段に落下移送する請求項1または2に記載の有機固形廃棄物の好気発酵方法。The temperature of the packed bed on the partition, the flow rate and the oxygen concentration of the gas exhausted from the gas phase space formed on the packed bed are measured, the timing of performing the mixing operation is determined, and the partition is opened to open the lower section. The method for aerobic fermentation of organic solid waste according to claim 1 or 2, wherein the organic solid waste is dropped and transported. 充填床の温度を計測する手段と、該充填床の上に形成された気相空間部から排気するガスの流量と酸素濃度を計測する手段と、該充填床の酸素消費速度を算出して、混合操作の実施時期を判定し、前記仕切りを開いて下段に落下移送する制御手段とを備えた請求項3から5のいずれかに記載の有機固形廃棄物の好気発酵装置。Means for measuring the temperature of the packed bed, means for measuring the flow rate and oxygen concentration of gas exhausted from the gas phase space formed on the packed bed, and calculating the oxygen consumption rate of the packed bed, The aerobic fermentation apparatus for organic solid waste according to any one of claims 3 to 5, further comprising control means for judging an execution time of the mixing operation, opening the partition, and dropping and transferring it to a lower stage.
JP16683099A 1999-06-14 1999-06-14 Aerobic fermentation method of organic solid waste and its apparatus Expired - Fee Related JP3604954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16683099A JP3604954B2 (en) 1999-06-14 1999-06-14 Aerobic fermentation method of organic solid waste and its apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16683099A JP3604954B2 (en) 1999-06-14 1999-06-14 Aerobic fermentation method of organic solid waste and its apparatus

Publications (2)

Publication Number Publication Date
JP2000354897A JP2000354897A (en) 2000-12-26
JP3604954B2 true JP3604954B2 (en) 2004-12-22

Family

ID=15838459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16683099A Expired - Fee Related JP3604954B2 (en) 1999-06-14 1999-06-14 Aerobic fermentation method of organic solid waste and its apparatus

Country Status (1)

Country Link
JP (1) JP3604954B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100750686B1 (en) 2007-01-30 2007-08-22 한빛테크원 (주) Curing apparatus of organic sludge
CN106399060A (en) * 2016-08-31 2017-02-15 张红彬 Microbial fermentation method and fermentation device integrating ventilation and heat preservation
WO2018041207A1 (en) * 2016-08-31 2018-03-08 北京清净之水文化发展有限公司 Aerobic microorganism fermentation method, apparatus, and treatment system

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008050176A (en) * 2006-08-22 2008-03-06 National Agriculture & Food Research Organization Apparatus and method for measuring gas permeability of compost raw material, and method for producing compost using the method
JP2011025147A (en) * 2009-07-24 2011-02-10 Kenichi Iwabuchi Method and apparatus for fermentation of organic waste
CN103466849B (en) * 2013-09-07 2016-04-27 中北大学 A kind of device for the treatment of of Nitrobenzene class waste water
CN105215041A (en) * 2014-06-09 2016-01-06 成都新筑展博环保科技有限公司 The method of food and drink residue solid state fermentation
CN104722561B (en) * 2015-03-15 2016-06-08 天津清华德人环境工程有限公司 Organic waste aerobic fermentation device
KR102036091B1 (en) * 2019-08-14 2019-10-25 신화건설(주) System for treating animal carcass by super-temperature microorganism
US20230136156A1 (en) * 2019-10-17 2023-05-04 Shinhwa Construction Co., Ltd Livestock carcass treatment system using ultra-high temperature microorganisms
CN113801782B (en) * 2021-09-23 2023-09-01 郑州智拓生物科技有限公司 System and method for realizing rapid culture of microbial agent

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100750686B1 (en) 2007-01-30 2007-08-22 한빛테크원 (주) Curing apparatus of organic sludge
CN106399060A (en) * 2016-08-31 2017-02-15 张红彬 Microbial fermentation method and fermentation device integrating ventilation and heat preservation
WO2018041207A1 (en) * 2016-08-31 2018-03-08 北京清净之水文化发展有限公司 Aerobic microorganism fermentation method, apparatus, and treatment system
CN106399060B (en) * 2016-08-31 2019-10-01 张红彬 A kind of microbial fermentation processes and installation for fermenting for taking into account ventilation and heat preservation

Also Published As

Publication number Publication date
JP2000354897A (en) 2000-12-26

Similar Documents

Publication Publication Date Title
US3114622A (en) Waste material converter and method of digesting waste
US20080098779A1 (en) Composting apparatus with internal transport system
CA2161005A1 (en) Device and process for composting and wet fermentation of biological waste
JP3604954B2 (en) Aerobic fermentation method of organic solid waste and its apparatus
JP3423531B2 (en) Organic matter fermentation treatment method and fermentation treatment device
JP2011025147A (en) Method and apparatus for fermentation of organic waste
CN210001795U (en) Oxygenating device and fermentation equipment thereof
US20080022739A1 (en) Vertical composter with leachate retention system
AU2001282725A1 (en) A composting apparatus with internal transport system
EP0599661B1 (en) Fermentation treatment apparatus of organic refuse possessing malodor release preventive function
KR20070047893A (en) A tower type no agitation composting device and manufacturing method thereof
JP2021075445A (en) Organic fertilizer production facility by chemical engineering energy cogeneration using feces of livestock and domestic fowl
CN111018582A (en) Organic waste biological fermentation reaction equipment and organic fertilizer production line
CN106140776A (en) A kind of organic waste aerobic fermentation method and equipment
JP2005022883A (en) Composting facility, and composting method
CN210001796U (en) Loosening device and fermentation equipment thereof
JPS5910957B2 (en) composting equipment
JP3011129U (en) Decomposition and digestion equipment for organic substances
JP2005538023A (en) Upright composting device with treatment area
JP7120682B1 (en) Dried feces production method and production system
WO2010151101A1 (en) Novel in-vessel high rate composter
JP2006111479A (en) Organic waste treatment system
JP7217484B1 (en) Fermentation drying control method and fermentation drying apparatus
KR200176100Y1 (en) Tower composting system
JP2012020224A (en) Organic material fermentation treatment apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040930

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees