JP3604883B2 - Quartz tube bubble detector - Google Patents

Quartz tube bubble detector Download PDF

Info

Publication number
JP3604883B2
JP3604883B2 JP28120197A JP28120197A JP3604883B2 JP 3604883 B2 JP3604883 B2 JP 3604883B2 JP 28120197 A JP28120197 A JP 28120197A JP 28120197 A JP28120197 A JP 28120197A JP 3604883 B2 JP3604883 B2 JP 3604883B2
Authority
JP
Japan
Prior art keywords
quartz tube
image
bubble
quartz
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28120197A
Other languages
Japanese (ja)
Other versions
JPH11106224A (en
Inventor
明 小池
一郎 田中
弘和 間宮
康紀 金森
Original Assignee
東芝セラミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝セラミックス株式会社 filed Critical 東芝セラミックス株式会社
Priority to JP28120197A priority Critical patent/JP3604883B2/en
Publication of JPH11106224A publication Critical patent/JPH11106224A/en
Application granted granted Critical
Publication of JP3604883B2 publication Critical patent/JP3604883B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/04Forming tubes or rods by drawing from stationary or rotating tools or from forming nozzles

Description

【0001】
【発明の属する技術分野】
本発明は石英管の泡検出装置に係わり、特に撮像手段を用いた石英管の泡検出装置に関する。
【0002】
【従来の技術】
一般に石英ガラスはSiOの単一成分であること、耐熱性に優れていること、化学的に安定であること、光の透過性に優れていること、および電気絶縁性に優れていることなどの理由で、石英ガラスから製作される石英管は照明用の光源や半導体製造プロセス部材として用いられている。
【0003】
この石英管が照明用の光源や半導体製造プロセス部材として用いられる場合には、この石英管に製造過程で取り込まれる水素ガス等の泡が存在すると石英管の強度を減じるばかりでなく、照明用の光源や半導体製造プロセス部材の製品特性を損ない、または使用雰囲気などに悪影響を与える虞がある。
【0004】
そこで、石英管の製造時石英管中に存在する泡の検査を徹底的に行い、泡の存在しない石英管を提供する必要がある。
【0005】
一般に、石英管は原料の石英粉を石英溶融炉に入れ、水素雰囲気でヒータにより加熱し、溶融した溶融石英を溶融炉の下部に設けられた狭小部と石英管の内側を空洞にするための耐熱製ガイドであるマンドレルとで形成される狭い環状の間隙を通して、成形され製造される。
【0006】
この成形された石英管には、石英管が水素雰囲気の溶融炉で製造されるため、主として水素の大小の泡が含まれることがあり、従来、石英管の泡の検査は、石英管の製造時、適宜作業員が巡回し、石英管の目視により行っていた。
【0007】
しかし、この目視検査では精度が低く、泡の幅が0.2mm〜0.3mm以上の場合、石英管が用いられる製品の特性を低減させたり、石英管の強度を低下させる等の障害があり、このような石英管を不良品として排除すべきであるが、往々にして見落とされ、次工程に送られる虞があった。
【0008】
また、目視検査では作業員が石英溶融時の溶融炉内の温度は最大約2300℃にもなる高温の溶融炉に接近し、成形された約1000℃になる高温の石英管を目視するので、かなり危険な作業である。また、この目視検査は石英管製造工程の自動化にも支障となっている。
【0009】
そこで、泡の見落としがなく、かつ泡検査が無人化でき、さらには自動化にてオンラインで泡検査可能な石英管の泡検査装置が要望されていた。
【0010】
【発明が解決しようとする課題】
本発明は上述した事情を考慮してなされたもので、撮像手段を用いた石英管の泡検出装置により、泡検査が無人化され、さらには自動化にてオンラインで石英管の泡検査が可能な石英管の泡検出装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記目的を達成するためになされた本願請求項1の発明は、石英溶融炉から連続的に管状に押し出されまたは引き出される石英管に対向して設けられ、石英管内に存在する泡の状態を撮像する撮像手段と、この撮像手段から泡の状態の画像信号を受け、この画像信号を分析し泡の状態を測定する画像処理装置と、この画像処理装置の処理情報を出力する出力装置とを有する石英管の泡検出装置であって、前記撮像手段は前記石英管の直径の延長線に対し同一側に3個配設され、この3個の撮像手段のうちの2個の撮像手段を反射ミラーと組み合わせ、前記3個の撮像手段で石英管の外周位置を周方向にほぼ等間隔をおいて外側から撮像可能に構成することを特徴とする石英管の泡検出装置であることを要旨としている。
【0013】
本願請求項の発明は、3個の撮像手段のうち中央に配設された撮像手段と2個の反射ミラーを石英管の外周側にほぼ120度の間隔に配設したことを特徴とする請求項記載の石英管の泡検出装置であることを要旨としている。
【0014】
本願請求項の発明は、石英溶融炉から連続的に管状に押し出されまたは引き出される石英管に対向して設けられ、石英管内に存在する泡の状態を撮像する撮像手段と、この撮像手段から泡の状態の画像信号を受け、この画像信号を分析し泡の状態を測定する画像処理装置と、この画像処理装置の処理情報を出力する出力装置とを有する石英管の泡検出装置であって、それぞれ石英管の対向面の泡の状態を撮像するよう石英管の周囲にほぼ90度の間隔をもって配設された第1の撮像手段および第2の撮像手段と、この2個の撮像手段と石英管に対し反対側に配設され前記石英管の対向面にほぼ対応する石英管の裏面の泡の状態を写し、第1の撮像手段と光学系にある第1の反射ミラーおよび第2の撮像手段と光学系にある第2の反射ミラーを有し、前記第1の撮像手段が石英管と所定の離間距離を有して配設され、前記第2の反射ミラーは石英管の中心と一定の離間距離を有し、かつ直径の延長線との直交面から一定角度回転した位置に配設され、第1の撮像手段および第2の撮像手段により石英管の対向面および第1の反射ミラーおよび第2の反射ミラーを撮像することにより、石英管の対向面および裏面の泡の状態を撮像することを特徴とする石英管の泡検出装置であることを要旨としている。
【0019】
【発明の実施の形態】
以下、本発明に係る石英管の泡検出装置の実施の形態について添付図面に基づき説明する。
【0020】
図1は本発明に係る石英管の泡検出装置1を実施した例を示し、また図2はその要部を示す概略図であるが、溶融炉2を用いた連続管引法により製造され、石英管3内に存在する泡を検査するものである。溶融炉2は石英の原料粉Mが供給されヒータ4により加熱される耐熱金属製のルツボ5と、このルツボ5とヒータ4を囲う断熱性の耐火物6と、この耐火物6を囲う金属製の外囲7から形成されている。さらに、ルツボ5には金属製で円盤状の突部8a を有するマンドレル8がルツボ5の上方から底部に亘り挿入され、突部8a とルツボ5の底部に設けられたモールド9とで、溶融石英Mm が押し出され石英管3を形成する環状の間隙部10が形成されている。
【0021】
また、石英管3に対向して撮像手段、例えば光学検査手段を構成するCCDラインセンサー11a 、11b 、11c が少なくとも3個配設され、各CCDラインセンサー11a 、11b 、11c は画像処理装置12と電気的に接続されている。さらに、画像処理装置12はその処理情報を出力する出力装置、例えばモニター13やヒータ4に供給される電気入力を制御する制御装置14、あるいは次工程の良品と不良品を自動的に仕分けする自動選別機(図示せず)の選別機制御部15に電気的に接続されている。
【0022】
3個のCCDラインセンサー11a 、11b 、11c は石英管3の外周面をほぼ均等に撮像できるようになっている。3個のCCDラインセンサー11a 、11b 、11c は石英管3の直径の延長線L上で測定領域を2分割した場合、3個とも片側の測定領域に集中的に配置され、撮像場所(測定領域)の省スペース化を図っている。
【0023】
3個のCCDラインセンサー11a 、11b 、11c は石英管3の外周面を周方向に等間隔をおいて外側から撮像し、検査できるようになっている。具体的には、測定領域を2分割した石英管3の直径の延長線Lに直交する石英管3の半径方向(直径方向)の放射光線Sa 上に基準となるCCDラインセンサー11a が配設され、この基準のCCDラインセンサー11a から石英管3の軸線廻りに中心角で120度回転した石英管3の外周側に2個の反射ミラー16b 、16c が配設され、この反射ミラー16b 、16c で反射光が石英管3の外周側を通って残りの2個のCCDラインセンサー11b 、11c にそれぞれ反射されるようになっている。
【0024】
しかして、3個のCCDラインセンサー11a、11b、11cのうち1個の基準のCCDラインセンサー11aは石英管3のある外周位置に対向して配設され、石英管3の基準位置を撮像可能になっており、2個のCCDラインセンサー11b、11cは、反射ミラー16b、16cにより石英管3の基準位置から中心角度で120度異なる位置を撮像可能に設置される。
【0025】
なお、CCDラインセンサーを4台以上設置し、石英管の外周面をほぼ等間隔に撮像できるようにしてもよい。
【0026】
本発明に係る石英管の泡検出装置は以上のような構造になっているから、連続管引法で石英管3を製造するには、水素雰囲気のルツボ5に原料粉Mを供給し、ヒータ4により原料Mを約1500℃に加熱、溶融し、溶融石英Mm とし、フランジ部8a とルツボ4の底部のモールド9間に形成された環状の間隙部10から押し出される。
【0027】
このとき間隙部10は環状に形成されているので、間隙部10から押し出される溶融石英Mm は管状になり、約1000℃に冷却され連続した石英管3が製造される。
【0028】
この連続して製造される石英管3は、石英管3の外周を約3分割して撮像するCCDラインセンサー11a 、11b 、11c で同時に常時撮像され、CCDラインセンサー11a 、11b 、11c による画像情報は画像処理装置12に送られる。CCDラインセンサー11a により直接撮像される石英管3の範囲は、直径の延長線LのCCDラインセンサー11a 、11b 、11c 側にあり、かつ放射光線Sa を中心に約120度の部分であり、一方、上述CCDラインセンサー11a の撮像範囲外、すなわち直径の延長線Lの反CCDラインセンサー11a 側等の部分は、反射ミラー16b または反射ミラー16c を介してCCDラインセンサー11b 、CCDラインセンサー11c で撮像される。
【0029】
そして、石英管3が下方に連続して移動するので、CCDラインセンサー11a 、11b 、11c によって石英管3は面として撮像され、一定長さ毎に画像処理装置12により画像処理される。すなわち、画像処理装置12内では、連続的に移動する石英管3の濃淡画像の一定区間をとり出し、この区間内の泡の状態、すなわちこの区間に存在する泡Bのサイズ(幅w、長さl)と泡Bの個数等を演算処理して求める。
【0030】
一方、溶融炉2は水素雰囲気中で使用されるので、石英管製造中に石英管3に図3に示すような泡Bが取り込まれることがある。
【0031】
石英管3に泡Bが存在すると画像処理装置12の演算処理により泡Bのサイズ(幅w、長さl)が分析され、所定のサイズ、例えば幅wが0.2mm以上の場合には、常時画像を表示しているモニター13にこの泡Bを表示すると共に、選別機制御部15を介して自動選別機(図示せず)を作動させ、この泡Bを含む石英管3を不良品として除外する。また、制御装置14を介してヒータ4に供給される電力量を制御するなどして溶融炉2の炉内条件を変更し、泡Bの発生を抑制する。
【0032】
図4は3台のCCDラインセンサー11a 、11b 、11c から取り込まれた3方向の画像を合体しモニター13に表示された画像を示す。溶融炉2から排出された直後の石英管3は約1000℃の高温であるため、石英管3自体が発光し、しかも泡Bの存在する部分は泡Bの表面で光が散乱し、他の部分より明るく輝いている。泡Bが存在する部分は泡Bが存在しない部分より明るく輝いているため、画像処理装置12内で濃淡レベルを調整することで、上述図4のようなモニター13の画像Pa 、Pb 、Pc が得られる。画像Pa はCCDラインセンサー11a により直接撮像された画像であり、画像Pb 、Pc はそれぞれ反射ミラー16b 、16c を介してCCDラインセンサー11b 、11c に撮像され、画像処理装置12内でミラー反転処理された画像である。
【0033】
逐次同様の検査が継続され、無人かつ自動的に石英管3の泡検査が行われ石英管3は継続的に製造される。
【0034】
このように、本実施の形態においては、3個のCCDラインセンサー11a 、11b 、11c が石英管3の直径の延長線Lに対して同一側に配設し、2個の反射ミラー16a 、16b を延長線Lの反対側に配設したので、CCDラインセンサー11a 、11b 、11c の点検、調整が容易で、かつ石英管の泡検出装置の設置場所の省スペース化が図れる。
【0035】
次に、他の実施の形態について説明する。
【0036】
図5は、本発明の他の実施の形態である石英管の泡検出装置17で、石英管3の直交する2本の直径の延長線La、Lb上には、第1のCCDカメラ18a、第2のCCDカメラ18bが配設されている。CCDカメラ18aは石英管3の中心と一定の離間距離Daを有して配設されており、この離間距離Daは、例えば石英管3の直径が25mmのときは2000mm、石英管3の直径が50mmのときは3000mmであることが望ましい。
【0037】
一方、CCDカメラ18b と光学系にある反射ミラー19b は、石英管3の中心と一定の離間距離db を有し、かつ直径の延長線Lb との直交面から一定角度θb 時計廻り方向に回転した位置に配置されている。
【0038】
石英管3の中心と反射ミラー19b の離間距離db は上述離間距離Da が例えば2000mm、3000mmいずれの場合にも30mm以上が必要であり、30mm〜100mmが望ましい。
【0039】
上述一定角度θb は、石英管3の直径が25mm、50mmいずれの場合にも10°〜30°が望ましい。10°未満であると、例えば図6(b)で示すP2bとP3bの像が重なり、また30°を超すといずれかの像P2bまたはP3bがCCDカメラ18b の視野から外れてしまう。
【0040】
上述のように配置されたCCDカメラ18aは直接石英管3の正面およびその対応する裏面をCCDカメラ18aと光学系にある反射ミラー19aを介して、図6(a)に示すようにCCDカメラ18aの画像P2a、反射ミラー19aに写る画像P3aのように撮像し、CCDカメラ18bは同様に、直接石英管3の正面およびその対応する裏面を反射ミラー19bを介して図6(b)のCCDカメラ18bの画像P2b、反射ミラー19bに写る画像P3bのように撮像する。
【0041】
なお、図7は冷却した製品石英管3の表面周囲に1から0までの10個の数値を等間隔で表示し、これを図6の石英管の泡検出装置17で撮像したもので、図6(a)はCCDカメラ18a で撮像したもので、図6(b)はCCDカメラ18b で撮像したものである。
【0042】
このように、2個のCCDカメラ18a 、18b と2個の反射ミラー19a 、19b で石英管3表面周囲が的確に撮像されているかがわかる。
【0043】
上述のように、本実施の形態の石英管の泡検出装置は2個のCCDカメラ18a 、18b と2個の反射ミラー19a 、19b を用いるので、石英管の泡検出装置の設置場所の省スペース化、撮像手段の削減、および画像処理のスピード化が図れ、経済的でかつ効率的である。
【0044】
【発明の効果】
以上に述べたように本発明に係る石英管の泡検出装置において、撮像手段を用いた石英管の泡検出装置により、泡検査が無人化され、危険作業から作業者を解放し、目視検査に比べ検査精度を向上することができ、さらには自動化にてオンラインで石英管の泡検査が可能になった。また、石英管自身の発光を利用した泡検査で、特別な照明も必要とせず、経済的な泡検出装置である。さらに、撮像手段と反射ミラーを組み合わせて用いる場合には、石英管の泡検出装置の設置場所の省スペース化が図れる。
【図面の簡単な説明】
【図1】本発明に係る石英管の泡検出装置の縦断面図。
【図2】図1の要部を説明する概略図。
【図3】石英管に含まれる泡の状態を示す説明図。
【図4】モニターに表示された泡の状態を示す参考図。
【図5】本発明に係る他の実施の形態の石英管の泡検査装置の概略図。
【図6】図5のCCDカメラに撮像さる画像の説明図。
【図7】図5のCCDカメラに撮像さた石英管の画像写真。
【符号の説明】
1 石英管の泡検出装置
2 溶融炉
3 石英ルツボ
4 ヒータ
5 ルツボ
6 耐火物
7 外囲
8 マンドレル
8a 突部
9 モールド
10 間隙部
11a 、11b 、11c CCDラインセンサー
12 画像処理装置
13 モニター
14 制御装置
15 選別機制御部
16b 、16c 反射ミラー
17 石英管の泡検出装置
18a 、18b CCDカメラ
19a 、19b 反射ミラー
B 泡
Da 、db 離間距離
L、La 、Lb 直径の延長線
M 原料粉
Mm 溶融石英
Pa 、Pb 、Pc 、P2a、P2b 画像
P3a、P3b 反射ミラー画像
Sa 放射光線
θb 一定角度
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a bubble detecting device for a quartz tube, and more particularly to a bubble detecting device for a quartz tube using an imaging unit.
[0002]
[Prior art]
In general, quartz glass is a single component of SiO 2 , has excellent heat resistance, is chemically stable, has excellent light transmission, and has excellent electrical insulation. For this reason, a quartz tube made of quartz glass is used as a light source for illumination or a semiconductor manufacturing process member.
[0003]
When this quartz tube is used as a light source for lighting or a semiconductor manufacturing process member, the presence of bubbles such as hydrogen gas introduced in the manufacturing process in the quartz tube not only reduces the strength of the quartz tube but also reduces the intensity of the quartz tube. There is a possibility that the product characteristics of the light source or the semiconductor manufacturing process member may be impaired, or the use atmosphere may be adversely affected.
[0004]
Therefore, it is necessary to thoroughly inspect the bubbles present in the quartz tube during the manufacture of the quartz tube, and to provide a quartz tube free of bubbles.
[0005]
Generally, a quartz tube is used to put raw material quartz powder into a quartz melting furnace and heat it with a heater in a hydrogen atmosphere to make the fused quartz melt into a narrow portion provided at the lower part of the melting furnace and the inside of the quartz tube as a cavity. It is molded and manufactured through a narrow annular gap formed by a mandrel which is a heat-resistant guide.
[0006]
Since the quartz tube is manufactured in a melting furnace in a hydrogen atmosphere, the formed quartz tube may mainly contain large and small bubbles of hydrogen. Occasionally, an operator patrols as needed to visually check the quartz tube.
[0007]
However, in this visual inspection, accuracy is low, and when the width of the bubble is 0.2 mm to 0.3 mm or more, there are obstacles such as reducing the characteristics of the product using the quartz tube or reducing the strength of the quartz tube. Although such a quartz tube should be excluded as a defective product, it is often overlooked and may be sent to the next process.
[0008]
Also, in the visual inspection, the operator approaches the high-temperature melting furnace where the temperature in the melting furnace at the time of melting the quartz is as high as about 2300 ° C., and visually observes the formed high-temperature quartz tube of about 1000 ° C. It is a very dangerous task. This visual inspection also hinders automation of the quartz tube manufacturing process.
[0009]
Therefore, there has been a demand for a quartz tube bubble inspection apparatus which can eliminate the oversight of bubbles, can perform an unmanned bubble inspection, and can automatically perform online bubble inspection.
[0010]
[Problems to be solved by the invention]
The present invention has been made in consideration of the above-described circumstances, and a bubble inspection device using a quartz tube using an imaging unit makes the bubble inspection unmanned. Further, the bubble inspection of the quartz tube can be performed online by automation. An object of the present invention is to provide a bubble detector for a quartz tube.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the invention of claim 1 of the present application is provided to face a quartz tube that is continuously extruded or drawn out of a quartz melting furnace in a tubular shape, and images a state of bubbles existing in the quartz tube. An image processing device that receives an image signal of a bubble state from the image pickup device, analyzes the image signal and measures the bubble state, and an output device that outputs processing information of the image processing device. A quartz tube bubble detecting device, wherein three of said image pickup means are provided on the same side with respect to an extension of the diameter of said quartz tube, and two of said three image pickup means are provided with a reflection mirror. In summary, the present invention provides a bubble detecting device for a quartz tube, characterized in that the outer peripheral position of the quartz tube can be imaged from the outside at substantially equal intervals in the circumferential direction by the three imaging means. .
[0013]
The invention according to claim 2 of the present application is characterized in that the imaging means provided at the center of the three imaging means and the two reflecting mirrors are provided at an interval of approximately 120 degrees on the outer peripheral side of the quartz tube. is summarized in that a bubble detector of the quartz tube of claim 1, wherein.
[0014]
The invention of claim 3 of the present application is directed to an image pickup means provided to face a quartz tube continuously extruded or drawn out of a quartz melting furnace in a tubular manner, and an image pickup device for picking up an image of a bubble present in the quartz tube. What is claimed is: 1. A bubble detector for a quartz tube, comprising: an image processing device that receives an image signal of a bubble state, analyzes the image signal and measures the bubble state, and an output device that outputs processing information of the image processing device. a first imaging means and the second iMAGING means disposed at intervals of approximately 90 degrees around the quartz tube to image the state of the foam facing surface of the quartz tube, respectively, the two image pickup means and is disposed on the opposite side with respect to the quartz tube copy the state of the rear surface of the bubbles approximately corresponds to the quartz tube on the opposite surface of the quartz tube, the first reflecting mirror and the second in the first imaging means and an optical system the second reflection mirror in the imaging means and an optical system A, extension of the first imaging means is disposed with a quartz tube with a predetermined distance, the second reflection mirror has a constant distance between the center of the quartz tube, and the diameter disposed in a predetermined angular rotation position from the orthogonal plane of the line, by imaging the opposed surface and the first reflecting mirror and second reflecting mirrors of the quartz tube by the first imaging means and second imaging means In addition, the gist of the present invention is to provide a bubble detector for a quartz tube, characterized in that the state of bubbles on the opposed surface and the back surface of the quartz tube is imaged.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a bubble detector for a quartz tube according to the present invention will be described with reference to the accompanying drawings.
[0020]
FIG. 1 shows an embodiment in which a quartz tube bubble detecting apparatus 1 according to the present invention is implemented, and FIG. 2 is a schematic view showing a main part thereof, which is manufactured by a continuous pipe drawing method using a melting furnace 2. This is for inspecting bubbles existing in the quartz tube 3. The melting furnace 2 is made of a heat-resistant metal crucible 5 to which the raw material powder M of quartz is supplied and heated by the heater 4, a heat-insulating refractory 6 surrounding the crucible 5 and the heater 4, and a metal crucible surrounding the refractory 6. Is formed from the outer periphery 7 of the first embodiment. Further, a mandrel 8 made of metal and having a disk-shaped projection 8a is inserted into the crucible 5 from above the crucible 5 to the bottom, and the fused quartz is formed by the projection 8a and the mold 9 provided on the bottom of the crucible 5. Mm is extruded to form an annular gap 10 forming the quartz tube 3.
[0021]
Further, at least three CCD line sensors 11a, 11b, 11c constituting an image pickup means, for example, an optical inspection means, are disposed facing the quartz tube 3, and each of the CCD line sensors 11a, 11b, 11c is connected to the image processing device 12. It is electrically connected. Further, the image processing device 12 is an output device for outputting the processing information, for example, a control device 14 for controlling an electric input supplied to the monitor 13 and the heater 4, or an automatic device for automatically sorting non-defective products and non-defective products in the next process. It is electrically connected to a sorter control unit 15 of a sorter (not shown).
[0022]
The three CCD line sensors 11a, 11b, and 11c can capture an image of the outer peripheral surface of the quartz tube 3 almost uniformly. When the three CCD line sensors 11a, 11b, and 11c divide the measurement area into two on the extension line L of the diameter of the quartz tube 3, all three CCD line sensors are arranged intensively on one side of the measurement area, and the imaging location (measurement area) ) To save space.
[0023]
The three CCD line sensors 11a, 11b, and 11c are configured so that the outer peripheral surface of the quartz tube 3 can be imaged from the outside at equal intervals in the circumferential direction and inspected. Specifically, a reference CCD line sensor 11a is provided on a radiation ray Sa in the radial direction (diameter direction) of the quartz tube 3 orthogonal to the extension line L of the diameter of the quartz tube 3 obtained by dividing the measurement region into two. Two reflecting mirrors 16b and 16c are disposed on the outer peripheral side of the quartz tube 3 rotated by 120 degrees at the central angle around the axis of the quartz tube 3 from the reference CCD line sensor 11a. The reflected light passes through the outer peripheral side of the quartz tube 3 and is reflected by the remaining two CCD line sensors 11b and 11c.
[0024]
Thus, one of the three CCD line sensors 11a, 11b, and 11c is provided so as to face the outer peripheral position of the quartz tube 3 so that the reference position of the quartz tube 3 can be imaged. The two CCD line sensors 11b and 11c are installed so as to be able to image a position different from the reference position of the quartz tube 3 by 120 degrees from the reference position by the reflection mirrors 16b and 16c.
[0025]
Note that four or more CCD line sensors may be provided so that the outer peripheral surface of the quartz tube can be imaged at substantially equal intervals.
[0026]
Since the quartz tube bubble detecting device according to the present invention has the above structure, in order to manufacture the quartz tube 3 by the continuous drawing method, the raw material powder M is supplied to the crucible 5 in a hydrogen atmosphere, and the heater is heated. 4, the raw material M is heated to about 1500 ° C. and melted to form fused quartz Mm, which is extruded from an annular gap 10 formed between the flange 8 a and the mold 9 at the bottom of the crucible 4.
[0027]
At this time, since the gap 10 is formed in an annular shape, the fused quartz Mm extruded from the gap 10 becomes tubular, and is cooled to about 1000 ° C. to produce the continuous quartz tube 3.
[0028]
The continuously manufactured quartz tube 3 is constantly imaged simultaneously by CCD line sensors 11a, 11b, and 11c that image the outer periphery of the quartz tube 3 by dividing the quartz tube into approximately three parts, and image information obtained by the CCD line sensors 11a, 11b, and 11c. Is sent to the image processing device 12. The range of the quartz tube 3 directly imaged by the CCD line sensor 11a is on the side of the CCD line sensors 11a, 11b and 11c on the extension line L of the diameter, and is a portion of about 120 degrees centering on the radiation ray Sa. The outside of the imaging range of the above-mentioned CCD line sensor 11a, that is, the portion of the extension line L of the diameter on the side opposite to the CCD line sensor 11a is imaged by the CCD line sensor 11b and the CCD line sensor 11c via the reflection mirror 16b or 16c. Is done.
[0029]
Since the quartz tube 3 moves downward continuously, the quartz tube 3 is imaged as a surface by the CCD line sensors 11a, 11b, and 11c, and is image-processed by the image processing device 12 at regular intervals. That is, in the image processing device 12, a certain section of the gray image of the quartz tube 3 that moves continuously is taken out, and the state of the bubbles in this section, that is, the size of the bubble B (width w, length L) and the number of bubbles B are calculated.
[0030]
On the other hand, since the melting furnace 2 is used in a hydrogen atmosphere, bubbles B as shown in FIG.
[0031]
When the bubble B exists in the quartz tube 3, the size (width w, length 1) of the bubble B is analyzed by the arithmetic processing of the image processing device 12, and when the predetermined size, for example, the width w is 0.2 mm or more, The bubble B is displayed on the monitor 13 displaying an image at all times, and an automatic sorter (not shown) is operated via the sorter control unit 15, and the quartz tube 3 containing the bubble B is regarded as a defective product. exclude. Further, the conditions inside the melting furnace 2 are changed by controlling the amount of electric power supplied to the heater 4 via the control device 14 and the generation of bubbles B is suppressed.
[0032]
FIG. 4 shows an image displayed on the monitor 13 by combining images in three directions taken from the three CCD line sensors 11a, 11b, and 11c. Since the quartz tube 3 immediately after being discharged from the melting furnace 2 is at a high temperature of about 1000 ° C., the quartz tube 3 itself emits light. It shines brighter than the part. Since the portion where the bubble B exists is brighter and brighter than the portion where the bubble B does not exist, the images Pa 1, Pb and Pc of the monitor 13 as shown in FIG. can get. The image Pa is an image directly captured by the CCD line sensor 11a, and the images Pb and Pc are captured by the CCD line sensors 11b and 11c via the reflection mirrors 16b and 16c, respectively, and are subjected to mirror inversion processing in the image processing device 12. Image.
[0033]
The same inspection is continued successively, and the bubble inspection of the quartz tube 3 is performed unmanned and automatically, and the quartz tube 3 is continuously manufactured.
[0034]
As described above, in the present embodiment, the three CCD line sensors 11a, 11b, 11c are arranged on the same side with respect to the extension line L of the diameter of the quartz tube 3, and the two reflection mirrors 16a, 16b Is arranged on the opposite side of the extension line L, the inspection and adjustment of the CCD line sensors 11a, 11b, 11c are easy, and the space for installing the bubble detecting device for the quartz tube can be saved.
[0035]
Next, another embodiment will be described.
[0036]
FIG. 5 shows a quartz tube bubble detecting device 17 according to another embodiment of the present invention , in which a first CCD camera 18a and a first CCD camera 18a are placed on two orthogonal extension lines La and Lb of the quartz tube 3. A second CCD camera 18b is provided. The CCD camera 18a is disposed at a certain distance Da from the center of the quartz tube 3, and the distance Da is, for example, 2000 mm when the diameter of the quartz tube 3 is 25 mm, and the diameter of the quartz tube 3 is 25 mm. When it is 50 mm, it is preferably 3000 mm.
[0037]
On the other hand, the CCD camera 18b and the reflection mirror 19b in the optical system have a certain separation distance db from the center of the quartz tube 3 and rotate at a certain angle θb clockwise from a plane perpendicular to the extension line Lb of the diameter. Is located in the position.
[0038]
The distance db between the center of the quartz tube 3 and the reflection mirror 19b needs to be 30 mm or more when the above-described distance Da is, for example, 2000 mm or 3000 mm, and desirably 30 mm to 100 mm.
[0039]
The above-mentioned constant angle θb is desirably 10 ° to 30 ° regardless of whether the diameter of the quartz tube 3 is 25 mm or 50 mm. If it is less than 10 °, for example, the images of P2b and P3b shown in FIG. 6B will overlap, and if it exceeds 30 °, either image P2b or P3b will be out of the field of view of the CCD camera 18b.
[0040]
As shown in FIG. 6A, the CCD camera 18a arranged as described above directly connects the front surface of the quartz tube 3 and the corresponding back surface thereof with the CCD camera 18a and the reflection mirror 19a in the optical system as shown in FIG. Image P2a and the image P3a reflected on the reflection mirror 19a, and the CCD camera 18b similarly similarly directly connects the front surface of the quartz tube 3 and the corresponding back surface via the reflection mirror 19b to the CCD camera of FIG. 18b of the image P2b, to the image shooting as image P3b caught on the reflecting mirror 19b.
[0041]
FIG. 7 shows 10 numerical values from 1 to 0 at equal intervals around the surface of the cooled product quartz tube 3, which are imaged by the quartz tube bubble detector 17 in FIG. 6 (a) is an image captured by the CCD camera 18a, and FIG. 6 (b) is an image captured by the CCD camera 18b.
[0042]
In this way, it can be seen that the two CCD cameras 18a and 18b and the two reflecting mirrors 19a and 19b accurately image the periphery of the quartz tube 3 surface.
[0043]
As described above, the bubble detecting device for the quartz tube of the present embodiment uses two CCD cameras 18a, 18b and two reflecting mirrors 19a, 19b, so that the space for installing the bubble detecting device for the quartz tube is saved. It is possible to reduce the number of imaging means and speed up image processing, and it is economical and efficient.
[0044]
【The invention's effect】
As described above, in the quartz tube bubble detection device according to the present invention, the bubble inspection is unmanned by the quartz tube bubble detection device using the imaging unit, thereby releasing the worker from dangerous work and performing a visual inspection. Inspection accuracy has been improved compared to the previous one, and online bubble inspection of quartz tubes has become possible by automation. In addition, it is an economical bubble detection device that does not require any special lighting because it is a bubble inspection using the light emission of the quartz tube itself. Further, when the imaging means and the reflection mirror are used in combination, the space for installing the bubble detecting device for the quartz tube can be saved.
[Brief description of the drawings]
FIG. 1 is a vertical sectional view of a quartz tube bubble detecting apparatus according to the present invention.
FIG. 2 is a schematic diagram illustrating a main part of FIG. 1;
FIG. 3 is an explanatory view showing a state of bubbles contained in a quartz tube.
FIG. 4 is a reference diagram showing a state of bubbles displayed on a monitor.
FIG. 5 is a schematic view of a bubble inspection apparatus for a quartz tube according to another embodiment of the present invention.
Figure 6 is an explanatory diagram of an image that will be captured in the CCD camera of FIG.
[7] image photograph of a quartz tube that is captured by the CCD camera of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Quartz tube bubble detector 2 Melting furnace 3 Quartz crucible 4 Heater 5 Crucible 6 Refractory 7 Enclosure 8 Mandrel 8a Projection 9 Mold 10 Gap parts 11a, 11b, 11c CCD line sensor 12 Image processing device 13 Monitor 14 Control device 15 Separator control unit 16b, 16c Reflecting mirror 17 Foam detecting device 18a, 18b of quartz tube CCD camera 19a, 19b Reflecting mirror B Foam Da, db Separation distance L, La, Lb Extension line of diameter M Raw material powder Mm Fused quartz Pa , Pb, Pc, P2a, P2b Image P3a, P3b Reflection mirror image Sa Radiation ray θb Constant angle

Claims (3)

石英溶融炉から連続的に管状に押し出されまたは引き出される石英管に対向して設けられ、石英管内に存在する泡の状態を撮像する撮像手段と、この撮像手段から泡の状態の画像信号を受け、この画像信号を分析し泡の状態を測定する画像処理装置と、この画像処理装置の処理情報を出力する出力装置とを有する石英管の泡検出装置であって、前記撮像手段は前記石英管の直径の延長線に対し同一側に3個配設され、この3個の撮像手段のうちの2個の撮像手段を反射ミラーと組み合わせ、前記3個の撮像手段で石英管の外周位置を周方向にほぼ等間隔をおいて外側から撮像可能に構成することを特徴とする石英管の泡検出装置。 An imaging unit provided to face a quartz tube which is continuously extruded or drawn out of the quartz melting furnace in a tubular form, and which captures an image of a bubble present in the quartz tube; and receives an image signal of the bubble state from the imaging unit. An image processing apparatus for analyzing the image signal and measuring the state of the bubbles, and an output device for outputting processing information of the image processing apparatus, wherein the quartz tube has a bubble detector. Are arranged on the same side with respect to the extension of the diameter of the lens, two of the three imaging means are combined with a reflecting mirror, and the three imaging means are used to surround the outer peripheral position of the quartz tube. An apparatus for detecting bubbles in a quartz tube, characterized in that the apparatus can be imaged from the outside at substantially equal intervals in the direction. 3個の撮像手段のうち中央に配設された撮像手段と2個の反射ミラーを石英管の外周側にほぼ120度の間隔に配設したことを特徴とする請求項記載の石英管の泡検出装置。Three quartz tube according to claim 1, wherein the two reflecting mirrors and the imaging means disposed in the center, characterized in that disposed approximately 120 degree intervals on the outer peripheral side of the quartz tube of the imaging means Foam detection device. 石英溶融炉から連続的に管状に押し出されまたは引き出される石英管に対向して設けられ、石英管内に存在する泡の状態を撮像する撮像手段と、この撮像手段から泡の状態の画像信号を受け、この画像信号を分析し泡の状態を測定する画像処理装置と、この画像処理装置の処理情報を出力する出力装置とを有する石英管の泡検出装置であって、それぞれ石英管の対向面の泡の状態を撮像するよう石英管の周囲にほぼ90度の間隔をもって配設された第1の撮像手段および第2の撮像手段と、この2個の撮像手段と石英管に対し反対側に配設され前記石英管の対向面にほぼ対応する石英管の裏面の泡の状態を写し、第1の撮像手段と光学系にある第1の反射ミラーおよび第2の撮像手段と光学系にある第2の反射ミラーを有し、前記第1の撮像手段が石英管と所定の離間距離を有して配設され、前記第2の反射ミラーは石英管の中心と一定の離間距離を有し、かつ直径の延長線との直交面から一定角度回転した位置に配設され、第1の撮像手段および第2の撮像手段により石英管の対向面および第1の反射ミラーおよび第2の反射ミラーを撮像することにより、石英管の対向面および裏面の泡の状態を撮像することを特徴とする石英管の泡検出装置。 An imaging unit provided to face a quartz tube which is continuously extruded or drawn out of the quartz melting furnace in a tubular form, and which captures an image of a bubble present in the quartz tube; and receives an image signal of the bubble state from the imaging unit. An image processing apparatus for analyzing the image signal to measure the state of the bubbles, and an output device for outputting processing information of the image processing apparatus, a bubble detector of the quartz tube , each of the opposed surface of the quartz tube a first imaging means and the second iMAGING means disposed at intervals of approximately 90 degrees around the quartz tube to image the state of the foam on the opposite side with respect to the two image pickup means and the quartz tube The state of the bubbles on the back surface of the quartz tube which is disposed and substantially corresponds to the opposing surface of the quartz tube is photographed, and the first imaging means and the first reflection mirror in the optical system and the second imaging means and the optical system are in the optical system. a second reflecting mirror, said first imaging Stage is provided with a quartz tube with a predetermined distance, a predetermined angle from the plane perpendicular to the extension line of the second reflection mirror has a central constant distance between the quartz tube, and the diameter It is disposed at a rotated position, and the opposing surface and the back surface of the quartz tube are imaged by the first imaging unit and the second imaging unit imaging the opposing surface of the quartz tube and the first reflection mirror and the second reflection mirror. A bubble detector for a quartz tube, characterized in that it captures an image of a bubble state.
JP28120197A 1997-09-30 1997-09-30 Quartz tube bubble detector Expired - Fee Related JP3604883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28120197A JP3604883B2 (en) 1997-09-30 1997-09-30 Quartz tube bubble detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28120197A JP3604883B2 (en) 1997-09-30 1997-09-30 Quartz tube bubble detector

Publications (2)

Publication Number Publication Date
JPH11106224A JPH11106224A (en) 1999-04-20
JP3604883B2 true JP3604883B2 (en) 2004-12-22

Family

ID=17635767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28120197A Expired - Fee Related JP3604883B2 (en) 1997-09-30 1997-09-30 Quartz tube bubble detector

Country Status (1)

Country Link
JP (1) JP3604883B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114460008B (en) * 2022-02-16 2023-11-21 西南石油大学 Wellhead foam detection device and method

Also Published As

Publication number Publication date
JPH11106224A (en) 1999-04-20

Similar Documents

Publication Publication Date Title
TWI232298B (en) Apparatus and method for detecting surface defects on a workpiece such as a rolled/drawn metal bar
EP1070243A1 (en) Method and apparatus for the automatic inspection of optically transmissive planar objects
JP2004525583A (en) Infrared camera sensitive to infrared
JP2014129224A (en) Method for producing glass product from glass product material, and assembly apparatus for executing method
CN113533352B (en) Detection system and detection method for surface defects
JP3157626B2 (en) Ceramic welding method and apparatus
JP3604883B2 (en) Quartz tube bubble detector
JP2006184177A (en) Infrared inspection device and method
JP2009300181A (en) Inspection device and inspection system of tube
JPS60187608A (en) Apparatus for monitoring condition in front of blast furnace tuyere
JPH0475405A (en) Disconnection detector for strand of transmission line
JP3322606B2 (en) Plate width and meandering detection method and device
JP2858194B2 (en) O-ring inspection method
JP3362605B2 (en) Combustion flame detector
Maldague et al. Dual imager and its applications to active vision robot welding, surface inspection, and two-color pyrometry
JPH0815093A (en) Device for inspecting headlight
JPH0436644A (en) Inspecting method for defect in internal wall surface of cylinder
JPH1073419A (en) Device for inspecting erroneous and missing parts mounted externally on engine
WO2004074768A1 (en) Imaging device
US10386309B2 (en) Method and apparatus for determining features of hot surface
RU2152065C1 (en) Method for checking of inner surface of chimney and device for its embodiment
JP3239639U (en) Molded product inspection device
JP2012173277A (en) Shape measuring apparatus and optical filter to be used for the same
JP3201296B2 (en) Diagnosis method for metal material defect detection device and defect spark simulated light source
JPS5868651A (en) Tester for surface of photosensitive film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040930

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071008

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees